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1 Introduction 

In the 21st century, smart electronics are prevalent in everyday life. Therefore, it is important that 

consumers can trust their electronic devices. In this context, the term trust covers many aspects of an 

electronic device, among others its correct functionality, safety in regard to its user and environment, and 

security. Within this report, we focus on the security of electronic devices, more specifically, their resilience 

against hardware attacks. 

For embedded devices, hardware attacks must be taken into consideration, as these devices are often 

accessible to adversaries. Hardware attacks pose an enormous threat for electronic devices, as they affect the 

underlying hardware, regardless of any application software. A recent BSI study demonstrated this with an 

analysis of control flow manipulation and read-out protection bypass attacks on COTS microcontrollers [1]. 

In order to allow consumers and OEMs to judge the extent to which embedded devices withstand hardware 

attacks, requirements such as the common criteria for information technology security evaluation (CC) 

were created by various standardization organizations. During a CC evaluation, the evaluated product is 

analyzed by checking if its security properties and functions correspond to the protection profile that is 

necessary for the respective product class. Such an evaluation should be conducted as thoroughly as 

possible, while also taking into account the economic interests of vendors to get innovative products to 

market as fast as possible. This conflict of interest raises the following question: How can the security 

properties and functions of a chip be analyzed thoroughly in as little time as possible? and consequently: What 

does accurately represent a chip’s security properties and functions and can thus be used for verification? 

Digital chip design usually starts with high-level concepts and block designs. Afterwards, the chip’s 

functionality is specified at register transfer level (RTL) in high-level hardware description languages (HDLs) 

such as (System) Verilog and VHDL. During RTL synthesis, this description is compiled to a technology 

specific netlist, which contains only standard cells of the respective process design kit (PDK). At this point, 

design tools can begin to estimate a design’s area requirements, power consumption, and critical paths. 

Designers may define certain constraints in the synthesis procedure, to ensure that requirements on these 

performance criteria are met, or different optimization steps are applied to different modules. This 

concludes the frontend design of a chip. During the backend design flow, the cells in the synthesized netlist 

are placed and routed. Macros such as memories and analog modules can be integrated into the design. At 

this point, a transistor-level description of the design exists and can be verified for correct behavior. 

Finally, all design descriptions are combined into a GDSII file, which is used by the foundry to produce the 

integrated circuit (IC). For more details on the inner workings of the frontend and backend design flow, the 

interested reader is referred to [72], where the open-source OpenLANE1 tape-out flow is introduced. 

For product vendors, it would be desirable to certify the resilience against hardware attacks of their ICs as 

early in the design flow as possible, e.g. by demonstrating the integration of countermeasures in the HDL 

description of a module. The certified module could then be re-used for a complete line of products and 

multiple generations. From the vendor’s perspective, even evaluating the countermeasure once on one 

manufactured IC and then re-using the HDL description for other products would be more desirable than 

evaluating ICs for every product. For certification agencies, this raises the following question: Does RTL 

synthesis and the backend design flow have a negative impact on countermeasures against physical 

adversaries? 

To this end, we provide two case studies, one on the impact of RTL synthesis on fault injection (FI) 

countermeasures and one on the impact of RTL synthesis on side-channel attack (SCA) countermeasures. 

Our investigations are based on the following methodology: 

1. Integrate countermeasures into HDL designs or select designs, which already incorporate 

countermeasures. 

 
1 https://github.com/The-OpenROAD-Project/OpenLane 
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2. Synthesize the design to a netlist with different commercial and open-source tools and FreePDK452, a 

free PDK for research purposes. 

3. Investigate the resulting netlist for the countermeasures and their effectiveness. 

Our FI countermeasures are based on redundancy and fault-resilient encodings. For SCA countermeasures, 

we focus on the popular masking countermeasure [19] [37]. The necessary background on these techniques 

can be found in Chapter 2. The case studies are described in Chapter 3 and Chapter 4, respectively. Each case 

study starts with background on state-of-the-art literature. Subsequently, our practical evaluations and 

their results are laid out. Remarks on open questions (Chapter 5) and a summary of our results and their 

implications (Chapter 6) conclude this report. 

 
2 https://github.com/mflowgen/freepdk-45nm 
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2 Preliminaries 

Within this background chapter, we give a short overview on hardware attacks (Section 2.1), in particular 

fault injection (FI) and side-channel attacks (SCA). A rough understanding of these attacks is sufficient to 

understand the countermeasures, which are introduced subsequently. Key concepts used in hardware 

design synthesis and common EDA tool vendors are introduced in Section 2.2. 

2.1 Hardware Attacks and Countermeasures 

Hardware attacks target the underlying hardware of a chip. Therefore, hardware attacks might work 

independent from any software running on the target, or exploit vulnerabilities caused by physical effects 

that occur when running the software on a chip. Such attacks are often summarized with the term side-

channel attack (SCA), as physical side-channels are exploited. In the following, however, we consider only 

two types of hardware attacks: fault attacks, where an adversary inserts an active fault to compromise a 

target and passive side-channel attacks, where an adversary attempts to extract secret information from the 

power consumption and electromagnetic emanation of a device. As such, we use the term side-channel 

analysis only for passive attacks. 

2.1.1 Fault Attacks 

Fault attacks are active, physical attacks mostly used to extract sensitive information or bypass security 

features of a device by intentionally injecting faults in a design. There are several methods available to inject 

such faults, among others, voltage and clock glitches, electromagnetic pulses and focused laser beams. A 

fault induced by these methods causes several effects at the physical level such as timing violations or 

changes in transient voltage or current. An adversary can exploit these effects to alter the control flow of a 

device or access sensitive information. It is also possible to combine the principle of fault attacks with the 

concept of differential cryptanalysis. The combination of these two ideas is known under differential fault 

analysis (DFA) and is a very effective tool to attack cryptographic implementations. DFA can reduce the key 

space significantly by analyzing the relationship between faulty and non-faulty ciphertexts for the same 

input. The practicality and effectiveness of DFA and fault attacks in general depend on the underlying fault 

model. 

Fault Models A fault model characterizes a fault attack and specifies the location and duration of a fault as 

well as the effect of the fault. The most common fault models are bit-flips and stuck-at effects. A bit-flip 

temporarily changes the value of one bit to its opposite value while stuck-at faults change the value of a bit 

to a either one or zero permanently. Additionally, a fault model includes the spatial and temporal precision 

of an adversary. In [59], the authors present a verification tool which is able to model the effect of injecting 

single or multiple transient faults as well as stuck-at faults into single gates of a netlist. Thus, their tool can 

depict various fault models. 

Active Security From fault models, formal security notions such as active security were derived [28][29]. In 

short, a design is kth-order active secure, if there does not exist a combination of k or less bit-flips that 

corrupt the design. A design is corrupted, if faults produce an incorrect output, which is not detected. In 

recent literature, various verification tools for this security notion were proposed [68][69]. Depending on the 

configuration, the tool in [59] can also verify this notion. 

2.1.2 Fault Injection Countermeasures 

Fault attacks are usually not considered when developing a cipher or cryptographic algorithm. Therefore, 

hardware and software designers have to deploy adequate countermeasures against this kind of attack when 

implementing the cipher or cryptographic algorithm. Most fault injection countermeasures are detection-

based countermeasures [41] [42]. There are also infection-based countermeasures [35] [64] which diffuse the 

effect of a fault and render the faulty ciphertext unexploitable. Such countermeasures are needed to thwart 
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the threat of SIFA, a class of attacks where biased faults (i.e. either setting or resetting a bit are more likely) 

are injected and the adversary uses only the information whether the fault had an effect or not to collect 

secret information. SIFA can also be prevented with correction-based countermeasures, however, they are 

typically found in safety use-cases, where reliability is the most important issue. In the following, we focus 

on detection-based countermeasures. Detection-based countermeasures aim to detect data modification 

caused by injected faults. On that account, detection-based countermeasures rely on redundancy and 

deploy methods from coding and information theory. They can be categorized based on the form of 

redundancy: 

• Hardware redundancy relies on redundant instantiation of a module in hardware. By comparing the 

output of the instantiated modules, faults can be detected. More specifically, if k redundant modules 

are instantiated, up to k − 1 faults can be detected. 

• Information redundancy relies on error detecting codes. To be able to detect k − 1 faults, the 

minimum Hamming distance for the set of codewords must be k. 

• Timing redundancy relies on executing a computation multiple times in a sequential manner and 

comparing the results. In the case of timing redundancy an attacker would need to inject the same 

fault(s) at every execution of the computation. Otherwise, there would be a mismatch between the 

outputs and the faults would be detected. A computation must be repeated k times, to detect all 

possible k − 1 faults. 

2.1.3 Side-Channel Attacks 

The fact that cryptographic implementations can be broken from a chip’s power consumption [48] and 

electromagnetic emanation [66] has been known for a long time. Typically, a side-channel attack consists of 

the trace acquisition, trace processing, leakage assessment, and leakage exploitation phases. During trace 

acquisition, power and EM traces are collected and during trace processing, signal processing methods such 

as alignment, filtering, averaging, etc. are used, s.t. optimal extraction of secret data from the traces is 

possible. During leakage assessment, specific and unspecific methods are used to determine whether secret 

information can be obtained from the traces. To exploit leakage, the adversary must find a way to obtain 

secret information of interest from the leaked information, e.g. Hamming weights or distances of certain 

values. 

2.1.4 Masking 

Masking is a popular countermeasure against side-channel attacks that is based on secret-sharing and 

attributed to the seminal works by Chari et al. [19] and Goubin and Patarin [37]. A dth-order masking scheme 

splits the secret information into at least d + 1 shares. Assume we want to mask a single secret bit s ∈ 𝔽2. For 

boolean masking, this sharing is created as follows: 

d shares are drawn from a uniform distribution, so si ← ℛ ∀ i ∈ [0, d − 1], then sd = s0 + s1 + · · · + sd−1, where 

addition is in 𝔽2, i.e. a XOR operation. 

The rationale behind masking is that, if the shares si instead of s are used for computation, the direct 

correlation of s with the target’s power consumption and electromagnetic emanation is removed. In [65], a 

formal proof that masking increases the complexity of a side-channel attack exponentially with the number 

of shares is given. For linear operations in 𝔽2, an operation can be independently repeated for each si. For 

non-linear operations, information of all input shares is required to compute the output shares correctly. 

Implementing this in a way that side-channel attacks are still as hard as recovering d + 1 shares is a non-

trivial task that early applications of masking to ciphers failed to solve adequately [2] [19] [22] [63]. 

Probing Models In [40], Ishai et al. undertook the first steps towards formalizing the security of masking by 

introducing the d-probing model. This assumes that an adversary has access to any d probes. In this case, a 

probe corresponds to the value a wire in a circuit is carrying at time t. The circuit is called dth-order probing 

secure if the adversary cannot recover secret information from their d probes. The authors also introduced 
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an AND gate that guarantees the security within this model by inserting fresh randomness into the 

computation. Subsequent works discovered, that this simple probing model does not match the leakage of 

actual circuits. The authors of [51] discovered that, in certain masked designs, information is leaked due to 

the fact that inputs arrive asynchronously at logic gates, which leads to temporary changes in the output. 

This behavior is referred to as glitch. Additional effects that are not considered in this simple probing model 

include the transition when memory elements such as registers are overwritten [4] [23] and the coupling of 

adjacent wires [20]. Most recently it was discovered that even in the absence of glitches at the output of a 

gate, delay effects at an input wire might cause leakage [49]. The d-robust probing model [33] can extend an 

adversary’s probes to cover these effects. A glitch-extended probe, for instance, includes the probed wire and 

all wires contributing to it up to the driving synchronization elements, e.g. registers. Similarly, the 

transition-extended probe includes the current probed value and its predecessor value, the coupling-extended 

probe includes values of the adjacent wires, and a delay-extended probe includes all values from all possible 

delay effects. If an adversary with a set containing any d extended probes does only obtain information 

about d shares, the circuit is called d-robust probing secure. Further, to account for the physical reality an 

adversary faces, that is that values are probed with a certain level of noise, random probing models have been 

proposed and evaluated [8] [15] [30]. 

Threshold Implementations (TI) In [62], a first proposal for a generic blueprint to construct masked gadgets 

that comply with the robust probing model was made. The authors come to the conclusion that any 

implementation that fulfills three requirements are correctly masked. The first requirement is the 

incompleteness, stating that every function needs to be independent of at least d shares of each input 

variable. Correctness, the second property, requires that the recombination of all shares should correspond 

to the desired output. The third property is the uniformity and corresponds to the fact that the distribution 

of output shares should be balanced for all possible distributions of the input sharings. 

Domain-oriented Masking (DOM) The authors of [38] proposed a more strict blueprint to implement 

masking. For a d-th order masking scheme, not at least, but exactly d + 1 shares are used. Each share is 

referred to as domain. If domains are crossed, e.g. for non-linear AND operations, intermediates are blinded 

with fresh randomness and synchronized by registers. This makes DOM the more strict blueprint that 

inherently requires fresh randomness, whereas threshold implementations allow more freedom in 

describing masked permutations. 

2.2 Hardware Design 

A design flow describes a set of procedures which are necessary to progress from a specification to the final 

physical chip. A generalized design flow is depicted in Figure 2.1. 

The start of a design flow is typically a set of requirements or a specification. Based on these requirements 

designers will develop HDL code to model the hardware at RTL level. A synthesis tool transforms this HDL 

description into a gate-level netlist. The synthesis step will be explained in more detail in Section 2.2.1. The 

result of the synthesis step is a structural description of the design in form of a gate-level netlist. To actually 

manufacture the chip it is required to obtain a physical representation of the structural description. This 

step is called physical synthesis or layout generation and includes tasks such as floorplanning, placement of 

cells, routing, parasitic extraction, clock tree synthesis, as well as electromagnetic, timing and power 

analysis. For an extensive introduction and more details about the hardware design flow, the reader is 

referred to [75]. 
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2.2.1 Synthesis Flow 

As our experiments investigate the effects of synthesis tools on the effectiveness of countermeasures, we 

will give an overview of the synthesis process in this section. 

In short, synthesis describes the process of transforming a behavioral HDL description into a structural 

representation by the use of standard cells. As input, a synthesis tool takes the HDL description of a design, 

as well as a standard cell library. In the first step, a synthesis tool reads those inputs and parses, analyzes and 

elaborates (constructs hierarchies, etc.) the HDL design. Afterwards, the design environment and design 

constraints are set. These design constraints are additional inputs given by the designer and include certain 

synthesis attributes such as timing or area constraints. 

In the next step the actual synthesis task is done. The behavioral HDL description is mapped to generic logic 

gates and optimized. Afterwards, these generic logic gates are mapped to actual standard cells defined by the 

provided PDK. Then, additional optimizations such as datapath optimizations or state machine 

decomposition are applied to reduce area and improve timing. 

Hierarchies To implement complex designs, it is best practice to decompose one large and complex design 

into smaller pieces. This divide and conquer approach is repeated on each module until it is at an 

appropriate level of abstraction. Using hierarchies within a design has many benefits as it adds structure to 

the design process, enables IP-reusage and provides the means to split the tasks of a design into different 

portions. 

However, EDA tools provide the option to flatten a hierarchical design during the synthesis process in order 

to enable more extensive power, performance, or area optimizations. An example for a hierarchical and 

Figure 2.1: ASIC design flow. 
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flattened design is given in Figure 2.2. The hierarchical design of a CPU shows how the datapath is 

decomposed recursively until the gate-level. In the flattened design all hierarchies are resolved. 

 

Standard Cells The physical design which can be manufactured is built from so called standard cells. The 

idea behind standard cells is to build a whole design with a small amount of basic standardized building 

blocks in order to reduce development costs in comparison to full custom designs. Standard cells are basic 

building blocks and include basic logic elements such as inverters, NAND gates, XOR gates, flip-flops and 

more complicated gates. The job of a synthesis tools is to map an entire design written in HDL code onto 

these standard cells defined in the provided PDK. There are also more complex gates such as AOI or OAI 

gates. Such cells require less transistors in comparison to implementing the AOI functionality from a NAND, 

inverter and NOR gate. Therefore, using these gates leads to smaller area and increased speed as fewer 

transistors are utilized. 

Critical Path Synchronous circuits contain combinational logic blocks, which are segmented by registers. 

For synchronous circuits two conditions must be met to ensure the correct behavior of the circuit: the setup 

and the hold time condition, which are given in Equation (2.1) and Equation (2.2), respectively. 

 Tclk > Tclk2q + Tlogic,max + Tsetup  (2.1) 

 Tclk2q + Tlogic,min > Thold   (2.2) 

The setup time condition is determined by the combinational path with the longest delay Tlogic,max which is 

often called the critical path. The propagation delay Tclk2q describes the time needed for data at the input to 

travel through the register to the output at a rising clock edge. The setup time Tsetup is the time data at the 

input must be stable before a rising edge in order to be read correctly. The setup time condition states that it 

must be ensured that the slowest logic signal must arrive at the next register before the clock edge. A 

design’s maximum frequency (
1

𝑇𝑐𝑙𝑘
) is limited by the setup time condition and the critical path. 

For the hold time condition, it must be ensured that the input of a register does not change after a rising 

clock edge before the hold time Thold. This condition is due to the internal construction of registers. It does 

not influence the maximum frequency of a circuit and can easily be ensured by adding delay buffers to the 

path with minimal delay Tlogic,min. 

Timing Constraints Timing constraints are rules which dictate timing restrictions for the implementation. 

To be more specific, they set boundaries for the propagation time from one logic element to another. 

Timing constraints ensure that the setup and hold time conditions of each single flip-flop in the design are 

not violated for the target clock frequency. 

Figure 2.2: Hierarchical (left) and flattened (right) design. 



2 Preliminaries 

14  Federal Office for Information Security 

Driver Strength and Fan-Out Digital gates have a capacitance which affects the propagation delay of a gate 

and ultimately the timing behavior of a circuit. Furthermore, the load capacitance of a gate also depends on 

the capacitance of subsequent gates to drive. The propagation delay of a gate increases with a higher load 

capacitance. The driver strength characterizes the ability of a gate to drive capacitive loads. By scaling the 

gate, its driver strength increases as a higher current can be drawn from the supply. Consequently, the 

capacitance of subsequent gates can be charged quickly. Standard cell libraries usually include multiple sizes 

of each gate. For example, an AND gate with two inputs may be called AND2_X1 while the same AND gate 

with twice the size is labeled AND2_X2. The fan-out of a gate describes the number of subsequent gates 

driven by the output of the gate. As explained above, a higher fan-out leads to increased load capacitance 

and therefore higher propagation delay. For more details about driver strength and fan-out, the reader is 

referred to [75]. 

Retiming Retiming [50] is a technique which changes the location of registers within a design without 

affecting the input/output behavior of a design. Unlike pipelining, retiming does not increase a circuit’s 

latency. Retiming can be used to transform a given synchronous circuit into a more efficient circuit while 

the functional behavior is preserved. 

The retiming effect can be exemplified with simple gates, e.g. a 2-input XOR. From a designer’s perspective it 

is generally more desirable to place flip-flops on the output of the gate. If placed on the inputs, two flip-

flops would be needed. An example for this is illustrated in Figure 2.3. When placing the flip-flop at the 

output of the circuit just one flip-flop is necessary. Retiming can also be applied to reduce the length of the 

critical path. This is achieved by moving the location of the flip-flop stage. While the critical path contained 

three logic levels before, the critical path in the retimed circuit contains only two logic levels. However, the 

area requirements increased as two flip-flops are necessary instead of one. 

 

NAND Gate Equivalent The NAND gate equivalent (GE) is a metric to measure the area of a circuit 

independent of the technology and used PDK. The area of a two-input unit NAND gate (NAND2_X1) 

constitutes the technology-dependent unit area. A circuit’s area is then represented by dividing its 

technology-dependent area consumption by this unit area. This amounts to a circuit’s NAND-GE. 

2.2.2 Tooling and Vendors 

There are several EDA tool vendors which offer a wide range of software, including tools for RTL synthesis, 

simulation, and physical design. RTL synthesis tools can further be divided into tools for FPGA or ASIC 

development. Table 2.1 gives a short overview over the most popular synthesis tools. However, the most 

popular EDA software vendors and firm market leaders are Cadence and Synopsys. Their combined market 

share comprises over 60% of the global market, as depicted in Figure 2.4. Therefore, we focus on ASIC 

synthesis tools offered by Cadence and Synopsys in the following investigations of this report. Additionally, 

we use the open-source tool Yosys, as it allows us to explore its inner workings and open-source hardware 

toolchains are getting more popular. 

Figure 2.3: Circuit before retiming (left) and after retiming to balance the delay of the circuit (right). 
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Table 2.1: List of popular synthesis tools for FPGA and ASIC synthesis. 

Vendor Tool Technology 

Cadence Genus ASIC 

Synopsys Design Compiler ASIC 

Siemens Oasys-RTL ASIC 

AMD Vivado FPGA 

Intel Quartus Prime FPGA 

Synopsys Synplify FPGA 

Siemens Precision-RTL FPGA 

 

 

Figure 2.4: EDA software market shares, August 2021. Source: 

https://www.trendforce.com/presscenter/news/20220815-11338.html  

https://www.trendforce.com/presscenter/news/20220815-11338.html
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3 Fault Injection Countermeasures 

During the synthesis step of the design flow, synthesis tools perform optimizations on the design to reduce 

area and improve timing. On that account, synthesis tools are able to recognize redundancy and tend to 

optimize redundant structures in favor of reduced area and a shorter critical path. Section 3.1 reviews the 

literature on fault injection countermeasures with respect to synthesis. In particular, literature on hardening 

FSMs is discussed. These publications already highlight certain effects during synthesis and propose 

solutions. Section 3.2 describes pre-silicon fault analysis and focuses on the SYNFI tool as verification 

framework for synthesized gate-level netlists. In Section 3.3, the SYNFI framework is used to conduct six 

case studies. Goal of these case studies is to analyze and evaluate different synthesis tools and settings with 

respect to harmful optimizations applied during RTL synthesis which could weaken countermeasures. Any 

effects which could occur after RTL synthesis are not considered here. However, Chapter 5 discusses the 

questions that are still open. 

3.1 State-of-the-Art 

As discussed in Section 2.1.2, most fault injection countermeasures are based on redundancy. Therefore, it is 

intuitive, that optimizations in the design flow might have negative impacts on the effectiveness of these 

countermeasures. There are various publications in which researchers deal with this problem. In the 

following, we give a short impression of such works. 

Synthesis tools tend to introduce don’t care states and transitions into FSMs to simplify the circuit and 

reduce spent area. A don’t care state is a state which is not specified or does not matter for a particular 

combination of inputs. It means that the FSM can transition to any state for that specific input combination. 

These don’t care states are then used to simplify the design of an FSM by reducing the number of required 

logic gates. These additional states and transitions might introduce vulnerabilities into the design which can 

be exploited by an attacker. For example, a security critical state within a FSM could be bypassed if states can 

be accessed, i.e. by means of fault injection, from unspecified don’t care states and transitions [57]. Nahiyan 

et al. address this issue in [58] and propose a security aware design flow to develop secure finite state 

machines. In their work, they analyze vulnerabilities of FSMs by analyzing the state transitions. Their tool 

checks if a fault can be injected during a state transition such that a critical state can be accessed through an 

unauthorized state. A critical state could bypass security checks or make unauthorized changes to sensitive 

data. As solution to such vulnerabilities, they propose a two-fold approach. First, they propose a security-

aware encoding scheme with a special focus on don’t care states. Second, their presented FSM architecture 

ensures that only authorized states can access critical states. 

In a similar work [60], Nasahl et al. proposed an FSM protection methodology called state-machine control-

flow hardening against fault attacks (SCFI) which detects deviations from the intended control-flow. Their 

tool substitutes the unprotected next-state logic of an FSM with a fault-hardened next-state logic which 

takes the execution history as well as the FSM’s control signals as additional inputs to derive the next state. 

For that purpose, the next-state logic is implemented via a multi-input signature register which compresses 

the execution history and detects control-flow deviations. Furthermore, they extend the open-source 

synthesis tool Yosys with their SCFI tool. As a result, their modified Yosys synthesis toolchain is capable of 

automatically protecting arbitrary FSMs with SCFI. 

The work of Kibria et al. [43] highlights the need for comprehensive security verification in the early stages 

of system-on-chip (SoC) design. In particular, their focus is the control flow implemented in FSMs. The 

authors propose a set of security rules for FSM designs and introduce a verification framework called ARC-

FSM-G to detect violations of these rules at the gate-level netlist abstraction. Their framework maps the 

high-level RTL description onto associated state transitions graphs extracted from a synthesized gate-level 

netlist. With this mapping, the gate-level state transition graphs are validated by checking the proposed 

security rules. 
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3.2 Pre-Silicon Fault Analysis 

The previous section introduced the state-of-the-art on fault injection analysis and hardening of FSMs. The 

literature points out that EDA tools might introduce vulnerabilities into a design or weaken 

countermeasures through optimizations. Therefore, it is not sufficient to consider only an abstract RTL 

representation of a design alone. Rather, a representation of a design which is close to the actual physical 

level, e.g. gate-level netlists, must be considered when performing fault analysis. 

In this context, the work by Nasahl et al. [59] enables us to analyze gate-level netlists and therefore 

investigate the influence of synthesis tools on fault injection hardened designs in a systematic way. They 

propose a formal pre-silicon fault verification framework called SYNFI. This framework takes synthesized 

gate-level netlists as input and verifies the effectiveness of fault injection countermeasures after synthesis. 

Within their work, the authors show various case studies in which they use SYNFI. Their results confirm the 

outcomes of the publications summarized in the previous section [43] [58] [60]. Synthesis tools and the 

respective optimizations can have a negative influence on the effectiveness of countermeasures. However, 

they do not investigate different EDA tools and settings in systematic way and thus leave space for further 

analysis. More concretely, we are interested in the influence of various optimization parameters, differences 

in tools, and best practices for secure hardware design. Therefore, we use the SYNFI framework to analyze 

different synthesis settings and tools with regards to potentially harmful optimizations during synthesis. In 

the following, we describe six case studies. Before discussing these case studies in more detail, the following 

gives an overview of the SYNFI framework and its workflow. 

The workflow of the SYNFI framework is depicted in Figure 3.1. It requires the following inputs: 

• Netlist: The netlist is synthesized independent of SYNFI with an EDA tool such as Cadence Genus, 

Synopsys Design Compiler or Yosys. Internally, this netlist is converted into a graph representation of 

the netlist. 

• Cell Library: The cell library is converted into an internal library. For that purpose, SYNFI extracts the 

names, the boolean functions and the pins of the standard cells. With the help of this cell library the 

netlist is converted to a graph. 

• Specification of Fault Experiment: The specification of the fault experiment contains the specification 

of a target circuit (within the netlist), a fault mapping and the requirements for an effective fault 

including the expected output behavior of a circuit as well as the condition which is fulfilled when the 

error detection/countermeasure is triggered. For a more detailed description of the fault experiment 

specification, the reader is referred to [59]. 

In the pre-processing step (see Phase 0 of Figure 3.1), SYNFI takes the netlists as well as the cell library and 

converts the netlist to a circuit graph. Afterwards (see Phase 1 of Figure 3.1), in the first step of the SYNFI 

framework, the tool takes the fault experiment specification and extracts a subgraph from the circuit graph. 

This subgraph is called target graph and contains only the part of the netlist which is relevant for the fault 

experiment and specified within the fault experiment specification. In the next step, faults are injected into 

Figure 3.1: Block diagram of the SYNFI framework from [59]. 
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the target graph by exchanging cells according to the fault mapping. An example for such a fault mapping is 

converting AND gates to NAND gates (AND=[NAND]) and is illustrated in Figure 3.2. In this example, a 

transient fault injected into the AND gate is modeled by replacing it with a NAND gate for one clock cycle. 

Furthermore, SYNFI is able to model stuck-at faults in a similar manner (e.g. AND=[0]). When providing 

multiple entries (e.g. AND=[NAND,0]), SYNFI is able to analyze a circuit with regards to transient and stuck-

at faults. This means that a wide range of fault models (Section 2.1) can be analyzed. 

If the fault does not have an effect on the input/output relationship of the target circuit the fault is called 

ineffective. Otherwise, the fault is called effective. When the target circuit contains a countermeasure, a fault 

is effective if the input/output relationship of a circuit has changed and the countermeasure is not triggered. 

Otherwise, the fault is an ineffective fault. The tool exhaustively injects faults into all gates and tries every 

possible combination when injecting simultaneous faults. In this process, SYNFI uses a SAT solver to find 

effective fault combinations. For a more detailed description of the SYNFI framework the reader is referred 

to [59]. 

SYNFI workflow and limitations To specify fault experiments with SYNFI it is necessary to examine the 

gate-level netlist to be analyzed. From this gate-level netlist the target circuit must be extracted by hand. 

Depending on a tool’s naming conventions and applied optimizations it is hard and in some cases 

impossible to identify the target circuit’s components within a netlist. Furthermore, when specifying the 

target circuit in the specification of the fault experiment, the target circuit has to be divided into stages 

(paths between flip-flops). For each gate type within the netlist, a fault mapping as explained above must be 

specified. Moreover, input values of the circuit’s input pins, as well as expected output values must be 

provided. If the circuit comprises a countermeasure, it is necessary to specify what signal is set to which 

value when a fault is detected. A fault experiment conducted with SYNFI only takes one clock cycle into 

account. Therefore, analyzing a complete cryptographic algorithm running on fault-hardened hardware 

with SYNFI is a tedious process. Depending on the size of the circuit and the number of bit-flips, the 

verification procedure becomes computationally expensive. As result, SYNFI reports the number of effective 

faults that could be injected into the target circuit. The tool does not report the fault combinations directly. 

However, only slight modifications are necessary to enable SYNFI to do so. 

Fault model and assumptions Within our case studies, we use the findings from SYNFI as metric. We make 

the following assumptions: the more bits must be flipped, and the lower the number of one/two/three bit-

flip combinations to corrupt a design, the more resilient is the design. In the following, we use the term one 

fault equivalent to one-bit fault. It is intuitive that two precise bit-flips are harder to achieve than one 

precise bit-flip. The question of exactly how much harder is still largely unanswered. We revisit this 

question in Chapter 5. 

3.3 Case Studies 

In this section we analyze different synthesis settings and tools with regards to potentially harmful 

optimizations during synthesis. We use SYNFI to assess the resilience of a netlist. 

 

Figure 3.2: Circuit without injected fault (left). Circuit with injected fault into AND gate (red) by mapping AND to 

NAND (right). 
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In the case studies we consider the control module of the AES core of the OpenTitan3. The AES core 

provides encryption and decryption mechanisms for the AES block cipher [61]. It is one of the most crucial 

components of the OpenTitan and hardened against side-channel attacks as well as fault injection. More 

specifically, we focus on the round counter functionality within the so called aes_cipher_control module. 

Depending on the mode of operation a certain number of rounds is performed. The round counter within 

the aes_cipher_control module takes care that the correct number of rounds is executed. Manipulating the 

round counter could weaken the cryptographic strength of AES as shown in [10]. Therefore, the round 

counter within the aes_cipher_control module is highly security-critical. 

The round counter corresponds to a 4-bit register. Its value is controlled by a FSM, which determines when 

a round is completed and increments the value accordingly. To counteract fault attacks, this FSM is 

instantiated three times. An abstract block diagram of this circuit is depicted in Figure 3.3. Each FSM within 

this sub-circuit has its own 4-bit round counter, denoted by fsm[i].rnd_ctr[3:0] for i = 0, 1, 2. These three 

signals are combined to derive the input round counter signal rnd_ctr[3:0] for the FSMs in the next clock 

cycle. If the round counter values fsm[i].rnd_ctr[3:0] for i = 0, 1, 2 differ from each other, the rnd_ctr_err 

signal is triggered which forces the AES to stop all processing. Thus, all faults up to two bit-flips injected into 

the round counter logic should be detected. Injecting three faults should lead to effective faults. Note that 

not all combinations of three simultaneous faults lead to changes in the input/output relationship and thus 

are effective faults. Analyzing the effect of three simultaneous faults serves as sanity check and furthermore, 

provides an additional attest of the circuit’s resilience. Therefore, we use SYNFI to investigate the effect of 

up to three simultaneous faults on the input/output relationship of the target circuit comprising the round 

counter and the corresponding error detection. 

In all following case studies the relative number of effective faults describes the number of effective fault 

combinations in relation to the number of all possible fault combinations. 

Note that within this analysis the aes_cipher_control module is considered standalone. Therefore, effects 

which would occur when integrating this module into a larger design, such as merging logic between 

different modules, are not captured here. 

 
3 https://github.com/lowRISC/opentitan 

Figure 3.3: Sub-circuit comprising three redundant FSMs. The “Combination” block combines the three round counter 

values from the FSMs into one value, which is fed back to the input of the FSMs. The “Detection” block implements the 

error detection. 
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3.3.1 Case Study 1: Synthesis Effort 

In this first case study we analyze the impact of the synthesis effort on the effectiveness of the fault 

detection countermeasure. On that account we synthesize the aes_cipher_control module with Cadence 

Genus and apply different effort levels, namely “low”, “medium” and “high”. According to the reference 

manual [12] these effort levels have the following effects: 

• low: The design is only mapped to gates but barely any optimizations are performed. 

• medium: Timing-driven structuring is applied to restructure critical paths such that delay is reduced. 

Additionally, redundancy identification and removal is performed. 

• high: Timing-driven structuring is applied on larger structures. Additionally, redundancy 

identification and removal is performed more aggressively. 

Figure 3.4 shows the results of the conducted experiments. Although the design is intended to detect up to 

two faults, our results show that there exist fault combinations which have an influence on the 

input/output relationship of the circuit without being detected. These fault combinations are denoted as 

effective faults. It is clear from Figure 3.4 that the synthesis effort - and therefore the applied optimizations - 

have an influence on the effectiveness of the deployed countermeasure. For the effort levels “medium” and 

“high” there are single faults which change the input/output relationship of the circuit without triggering 

the error detection. For the effort level “low”, at least two simultaneous faults are necessary to change the 

input/output relationship of the circuit without triggering the error detection. 

While a low synthesis effort might be beneficial for the effectiveness of fault injection countermeasures, it is 

not a practical solution as the circuit’s area is significantly increased. To emphasize this point, Table 3.1 

provides an overview of the design’s area consumption with regards to synthesis effort. 

Figure 3.4: Number of effective faults for 1, 2 and 3 simultaneous faults injected into a gate-level netlist synthesized 

with Cadence Genus and different effort levels. 
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Table 3.1: Area consumption of the complete circuit and extracted sub-circuit for the netlists in Case Study 1. 

Synthesis Effort Circuit Size (NAND GE) Target Circuit Size (NAND GE) 

high/ medium 756 125 

low 1140 142 

 

In summary, these experiments point out that, although the RTL description of a circuit seems resistant to 

fault attacks, there is no guarantee that the resulting gate-level netlist also provides such fault resistance. 

This highlights that the RTL code alone is insufficient to make guarantees about the security against fault 

injection attacks. The results indicate that there is a relation between synthesis effort and effectiveness of 

fault injection countermeasures. More specifically, with higher synthesis effort and more aggressive 

optimizations, the effectiveness of fault injection countermeasures decreases. 

As the used synthesis tool is not open-source, it is hard to find the exact source for this behavior. However, it 

is obvious that, with a more aggressive synthesis setting, more effort is spent to detect redundancy. 

Consequently, the redundancy will be resolved in favor of lower resource consumption. As redundancy is 

the basis for the described fault injection countermeasure its removal introduces flaws into the fault 

detection capabilities and ultimately weakens the countermeasure. 

 

3.3.2 Case Study 2: Comparison between Hierarchical and Flattened Netlists 
with different Synthesis Tooling 

As mentioned in Section 2.2.1, synthesis tools perform optimizations on a design to reduce area and 

improve timing. By flattening a design, one can enable the synthesis tool to perform optimization across 

hierarchies (as hierarchies are resolved during flattening). For this case study, we use Synopsys Design 

Compiler and resolve all hierarchies within the design before running the synthesis and applying any 

optimizations. 

Figure 3.5 shows the results for this experiment and indicates that resolving the hierarchies within this 

design leads to inferior error detection performance. Considering Table 3.2, this inferior error detection 

performance comes in favor of lower area consumption. These results highlight the findings of Case Study 

1: it is insufficient to consider the RTL code alone as applied constraints and optimizations during synthesis 

have a significant influence on the effectiveness of an implemented countermeasure. A possible explanation 

for this behavior is that flattening hierarchies allows the synthesis tool to detect redundancy across module 

boundaries (as these boundaries are resolved) and enable further optimizations to remove redundancy in 

favor of resource consumption. 
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Table 3.2: Area consumption of the complete circuit and extracted sub-circuit for the netlists generated with Synopsys 

Design Compiler. 

Design Circuit Size (NAND GE) Target Circuit Size (NAND GE) 

Hierarchical 1100 135 

Flattened 816 140 

 

As flattening of hierarchies is an optimization available in most synthesis tools we use this setting to 

conduct additional FI experiments with netlists generated from Yosys and Cadence Genus. This way, we are 

able to consolidate previous findings and exclude (if existing) tool specific effects. 

Figure 3.6 shows the results of the FI experiment when using Yosys for synthesis. In this case the number of 

relative effective faults is higher for two- and three-bit faults when the hierarchy is preserved. However, the 

absolute number of effective faults is higher in the flattened netlists. This is due to the fact that, in this case, 

the extracted sub-circuit is smaller (Table 3.3) with hierarchies. When using Cadence Genus, a flattened 

hierarchy does neither lead to inferior error detection performance nor to reduced area. 

 

Figure 3.5: Number of effective faults for 1, 2 and 3 simultaneous faults injected into hierarchical and flattened gate-

level netlists synthesized with Synopsys Design Compiler. 
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Table 3.3: Area consumption of the complete circuit and extracted sub-circuit for the netlists generated with Yosys. 

Design Circuit Size (NAND GE) Target Circuit Size (NAND GE) 

Hierarchical 1170 136 

Flattened 1160 148 

 

Considering all results derived across all tools, indicates that the effect of optimizations applied to a circuit 

are tool specific. This implies that not only the RTL code and the applied synthesis constraints must be 

taken into account but also the synthesis tool itself. 

Figure 3.6: Number of effective faults for 1, 2 and 3 simultaneous faults injected into hierarchical and flattened gate-

level netlists synthesized with Yosys. 
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Figure 3.7 and Table 3.4 show the results for Cadence Genus. 

 

Table 3.4: Area consumption of the complete circuit and extracted sub-circuit for the netlists generated with Cadence 

Genus (effort level “high”). 

Design Circuit Size (NAND GE) Target Circuit Size (NAND GE) 

Hierarchical 756 125 

Flattened 778 125 

 

3.3.3 Case Study 3: Netlist Analysis and Restriction of Standard Cell Types 

Analyzing the gate-level netlists of Case Study 1 and 2, synthesized with Synopsys Design Compiler, reveals 

that synthesis tools transform circuits in a way such that OAI and AOI standard cells (see Section 2.2.1) can 

be used. Figure 3.8 shows an example of such an error correction circuit within these gate-level netlists for 

synthesis with Synopsys Design Compiler. 

The usage of these more compact standard cells has the advantage of reduced area and improved timing. 

However, this circuit transformation introduces additional effective fault combinations into the design and 

therefore weakens the error detection. For example, faults after the inverter at the output of rnd_ctr[2] or 

rnd_ctr[3] remain undetected as there is no path to the error detection circuit from these inverters. 

Furthermore, the combination of OR and NAND gates (rnd_ctr[0] and rnd_ctr[1]) is unable to detect 1 → 0 

faults. The combination of NOR and AND gates (rnd_ctr[2] and rnd_ctr[3]), in turn, cannot detect 0 → 1  

Figure 3.7: Absolute and relative number of effective faults for 1, 2 and 3 simultaneous faults injected into a gate-level 

netlist synthesized with Cadence Genus (effort level “high”). 
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faults. See Figure A. 1 and Figure A. 2 in the appendix for examples. In order to prevent this circuit 

transformation, we prohibit the synthesis tool from using these kind of standard cells. For this case study we 

focus on Synopsys Design Compiler to explain this effect more detailed. However, we also consider Cadence 

Genus later on in this case study. By restricting the allowed standard cell types, the output netlists comprise 

an error correction circuit similar to Figure 3.9, when using Synopsys Design Compiler. 

The error correction performance of the gate-level netlists synthesized with Synopsys Design Compiler for 

both restricted and non-restricted cell types is summarized in Figure 3.10. Table 3.5 compares the area for 

both cases. 

These results indicate that restricting the standard cell types leads to an increase in area consumption. 

Although the harmful circuit transformation described above is avoided and the error detection 

performance in terms of relative effective faults increases slightly, the circuit is still unable to detect 1 → 0 

faults. However, due to the increased area and the consequently increased gate count, the number of 

absolute effective faults is higher when restricting the usage of these cells (similar to the effect for flattened 

netlists from Case Study 2). From analyzing Figure 3.9 in more detail, one can see that replacing the NAND 

gates, which feed the four inputs of the rnd_ctr_err NAND gate, with XOR gates could fix this flaw. 

We conducted the same experiment with Cadence Genus as synthesis tool. The results for this experiment 

are illustrated by Figure 3.11 for error detection results and Table 3.6 for area results. 

Figure 3.8: Netlist synthesized with Synopsys Design Compiler showing a sub-circuit comprising AOI and OAI 

standard cells. 
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A possible explanation for the usage of AOI and OAI standard cells is the fact that these standard cells enable 

the synthesis tool to implement the same function with fewer area overhead due to the compactness (fewer 

transistors) of these cells. Evidence for this is given by Table 3.5 and Table 3.6. Therefore, synthesis tools 

seem to map functions to these cells whenever possible. However, as pointed out in this case study, using 

these cells in critical spots (see Figure 3.8) might introduce flaws into the error detection capabilities of a 

countermeasure. 

Figure 3.9: Netlist synthesized with Synopsys Design Compiler, restricting the usage of AOI and OAI standard cells. 
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Table 3.5: Area consumption of the complete circuit and extracted sub-circuit for the netlists generated with 

Synopsys Design Compiler. 

Design Circuit Size (NAND GE) Target Circuit Size (NAND GE) 

No Restriction on Cells 1100 130 

Restricted Cells 1240 148 

Figure 3.10: Number of effective faults for 1, 2 and 3 simultaneous faults injected into a gate-level netlist synthesized 

with Synopsys Design Compiler with and without restricted standard cell types. 
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Table 3.6: Area consumption of the complete circuit and extracted sub-circuit for the netlists generated with Cadence 

Genus (effort level “high”). 

Design Circuit Size (NAND GE) Target Circuit Size (NAND GE) 

No Restriction on Cells 758 125 

Restricted Cells 924 167 

 

3.3.4 Case Study 4: Effect of Timing Constraints 

The previous case studies do not investigate the influence of timing constraints, such as the target 

frequency, on the effectiveness of the presented countermeasure. As timing constraints get tighter, 

synthesis tools might have to apply additional optimizations to the circuit to meet these timing constraints. 

Therefore, we investigate their effect in the following. To do so, we apply different synthesis constraints 

with different target clock frequencies (125 MHz, 250 MHz, 500 MHz and 1 GHz) to the design and 

synthesize it with Cadence Genus at effort level “high”. As explained in Section 3.3.1, this effort level enables 

additional timing-driven optimizations. Therefore, it is necessary to select effort level “high” to capture all 

timing-driven effects. Figure 3.12 summarizes the results of the fault analysis and Table 3.7 shows the 

respective area consumption. 

Figure 3.11: Absolute and relative number of effective faults for 1, 2 and 3 simultaneous faults injected into a gate-

level netlist synthesized with Cadence Genus (effort level “high”) with and without restricted standard cell types. 
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Table 3.7: Area consumption of the complete circuit and extracted sub-circuit for the netlists generated with Cadence 

Genus for different target frequencies at effort level “high”. 

Target Frequency Circuit Size (NAND GE) Target Circuit Size (NAND GE) 

125 MHz 756 125 

250 MHz 768 126 

500 MHz 786 124 

1 GHz 1040 130 

 

From Table 3.7 it is evident that increasing the clock frequency results in higher area requirements. This can 

be explained by the fact that synthesis tools use larger cells with higher driver strength to achieve faster 

designs [75]. These cells have the same functionality but switch faster as a higher current can be drawn from 

the supply. The drawback is that they require more area. Moreover, synthesis tools might duplicate certain 

circuit structures to decrease the fan-out of combinational cells in the critical path. Apart from the outlier at 

125 MHz, there is a tendency towards inferior error detection performance when increasing the target 

frequency. While cells with higher driver strength have no influence on the error detection performance, 

the duplication of structures might indeed lead to inferior error detection. For example, if parts of the round 

counter circuit are duplicated, the synthesis tool is free to structure the logic in a way that the round 

counter logic used by the error detection and the round counter used in the FSMs are partly or completely 

independent. This is possible, as - without fault injection - the value used by the error detection circuit and 

Figure 3.12: Number of effective faults for 1, 2 and 3 simultaneous faults injected into a gate-level netlist synthesized 

with Cadence Genus at effort level “high” with different timing constraints. 
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the FSM logic are always identical. In this case, faults inserted into the FSM that affect the AES operation, are 

not detected. It should be noted that, while the driver strength of a cell does not matter to SYNFI, it might be 

important for real-world fault attacks. Cells that can drive more subsequent cells feature more transistors. 

Therefore, an adversary that tries to inject faults by means of laser fault injection could more easily invert 

the output of a cell with a higher driver strength. 

We repeat this experiment for Synopsys Design Compiler. The results of these investigations are 

summarized in Figure 3.13. In contrast to the experiments with Cadence Genus there is no inferior error 

detection performance when increasing the frequency. As the number of effective faults is identical for all 

target frequencies, Synopsys Design Compiler might compile the exact same netlist independent of the 

target frequency. For 125, 250 and 500 MHz, the area consumption (see Table 3.8) of the target circuit 

provides additional evidence for this hypothesis. An explanation for this behavior is that the timing 

constraints alone do not trigger additional optimizations which change the composition of the circuit. 

Synopsys Design Compiler also offers synthesis for high-performance designs. This version is called Design 

Compiler Ultra and requires a separate license. However, details on the inner workings, such as the used 

algorithms or synthesis optimizations are not given by Synopsys. As high-performance designs are typically 

associated with high clock frequencies and the experiment with Synopsys Design Compiler leads to 

unexpected results, this variant of the synthesis tool is also investigated for this case study. The results of 

these experiments are summarized in Figure 3.14. The respective area utilization is given in Table 3.9. 

 

Figure 3.13: Number of effective faults for 1, 2 and 3 simultaneous faults injected into a gate-level netlist synthesized 

with Synopsys Design Compiler for different target frequencies. 
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Table 3.8: Area consumption of the complete circuit and extracted sub-circuit for the netlists generated with Synopsys 

Design Compiler. 

Target Frequency Circuit Size (NAND GE) Target Circuit Size (NAND GE) 

125 MHz 1100 135 

250 MHz 1100 135 

500 MHz 1310 135 

1 GHz 1440 135 

 

 

Table 3.9: Area consumption of the complete circuit and extracted sub-circuit for the netlists generated with Synopsys 

Design Compiler Ultra. 

Target Frequency Circuit Size (NAND GE) Target Circuit Size (NAND GE) 

125 MHz 786 112 

250 MHz 786 112 

500 MHz 799 112 

1 GHz 1180 119 

 

Figure 3.14: Number of effective faults for 1, 2 and 3 simultaneous faults injected into a gate-level netlist synthesized 

with Synopsys Design Compiler Ultra for different target frequencies. 
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For 125, 250 and 500 MHz, the netlists seem to be identical to the previous experiment with Synopsys 

Design Compiler. However, for 1 GHz there is an increase in area, as well as an increase in effective faults. An 

explanation for this could be that for 500 MHz and below, timing constraints are easily met without further 

optimization, but at 1 GHz the timing constraints are too tight for the design. Consequently, the synthesis 

tool activates additional optimizations which weaken the countermeasure. Note that for the target clock 

frequency of 1 GHz the timing analysis fails as the setup time conditions fails for all our conducted 

experiments. Nevertheless, the synthesized netlist is functionally correct and could be clocked with a 

slightly lower frequency (it should be noted that delays at netlist level are only estimates, the actual timing 

depends on the routing during the backend design flow). We report the results for 1 GHz, as the synthesis 

tool activates every possible timing-driven optimization while trying to achieve this target frequency. As a 

result, this setting captures all effects due to tight timing constraints which might occur during synthesis. 

In summary, increasing the target clock frequency might lead to inferior error detection performance as 

additional optimizations might be triggered to achieve tighter timing constraints. As in the preceding case 

studies, the influence on the countermeasure is tool- and setting-specific. 

3.3.5 Case Study 5: Retiming Investigation 

Synthesis tools such as Cadence Genus offer retiming functionality, to further optimize a design. Retiming 

was introduced in Section 2.2.1. Although retiming has no influence on the latency of a design, it may have 

significant influence on the error detection capabilities as internal registers are moved to the benefit of 

either area or timing. To investigate the effect of retiming on fault injection countermeasures, we synthesize 

the aes_cipher_control design with Cadence Genus with effort level “high” and enabled retiming. To 

conduct these experiments we used a slightly different version of the design with an additional register at 

the output of the error detection. This is necessary to ensure that the error detection circuit can be located 

within the netlist (see limitations of SYNFI in Section 3.2). Therefore, the results for the reference designs 

without retiming are not identical to the results of the previous case studies. 
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We conduct experiments and use retiming for different objectives, namely to optimize the design with 

regard to delay and to optimize the area consumption of the design. The results for this experiment (for a 

target frequency of 125 MHz) are shown in Figure 3.15. The area consumption is summarized in Table 3.10. 

 

Table 3.10: Area consumption of the complete circuit and extracted sub-circuit for the netlists generated with Cadence 

Genus (effort level “high”). 

Design Circuit Size (NAND GE) Target Circuit Size (NAND GE) 

No Retiming 760 133 

Retiming for Area 773 139 

Retiming for Delay 804 149 

 

When observing the area results in Table 3.10 it is surprising that retiming for area leads to increased area 

when comparing it with the reference netlist. As in Case Studies 4 and 5 this might be due to selection of 

larger cells with higher driver strengths, as well as due to duplication of structures to reduce fan-outs. 

Another possible explanation for this is that the synthesis tool tries to balance the delays of the critical paths 

before optimizing for area. Further investigation is necessary to explain this behavior. When using retiming 

to optimize the circuit for delay we see an increase in area, as expected. As stated above, this might be due to 

the selection of larger cells with higher drive strengths and the duplication of structures to reduce fan-outs. 

Figure 3.15: Number of effective faults for 1, 2 and 3 simultaneous faults injected into a gate-level netlist synthesized 

with Cadence Genus (effort level “high”) with different retiming objectives. 
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From Figure 3.15 it is evident that retiming decreases the effectiveness of the FI countermeasure. Retiming 

moves registers within the design and therefore changes its internal circuit structure. It is obvious that 

modifications applied to a countermeasure, where - among others - the redundant instantiation of registers 

is of extreme importance, impacts its effectiveness. 

As retiming behavior might differ depending on timing constraints, we also consider clock frequencies of 

125 MHz, 250 MHz, 500 MHz and 1 GHz for this analysis. The results of these experiments are summarized 

in Figure 3.16 for the reference design without retiming, in Figure 3.17 for retiming for area and in Figure 

3.18 for retiming for delay. The respective area consumption is given in Table 3.11, Table 3.12 and Table 3.13. 

 

Table 3.11: Area consumption of the complete circuit and extracted target circuit for the netlists generated with 

Cadence Genus (effort level “high” and retiming disabled). 

Design Circuit Size (NAND GE) Target Circuit Size (NAND GE) 

125 MHz - No Retiming 760 133 

250 MHz - No Retiming 785 132 

500 MHz - No Retiming 789 120 

1 GHz - No Retiming 1030 131 

 

 

Figure 3.16: Number of effective faults for 1, 2 and 3 simultaneous faults injected into a gate-level netlist synthesized 

with Cadence Genus (effort level “high” and retiming disabled). 
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Table 3.12: Area consumption of the complete circuit and extracted target circuit for the netlists generated with 

Cadence Genus and retiming for area (effort level “high”).  

Design Circuit Size (NAND GE) Target Circuit Size (NAND GE) 

125 MHz – Retiming for Area 773 139 

250 MHz – Retiming for Area 779 144 

500 MHz – Retiming for Area 815 133 

1 GHz – Retiming for Area 893 121 

 

Table 3.13: Area consumption of the complete circuit and extracted target circuit for the netlists generated with 

Cadence Genus and retiming for delay (effort level “high”). 

Design Circuit Size (NAND GE) Target Circuit Size (NAND GE) 

125 MHz – Retiming for Delay 804 149 

250 MHz – Retiming for Delay 805 155 

500 MHz – Retiming for Delay 857 146 

1 GHz – Retiming for Delay 980 156 

 

Figure 3.17: Number of effective faults for 1, 2 and 3 simultaneous faults injected into a gate-level netlist synthesized 

with Cadence Genus (effort level “high” and retiming for area). 
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The results from these experiments demonstrate that timing constraints are an important factor when 

applying retiming to a design. There is a coarse tendency for more effective fault combinations when the 

timing constraints get tighter. However, at a certain point this relationship seems to dissolve and we observe 

a drop in effective faults. In case of retiming for area this point occurs at 1 GHz. When applying retiming for 

delay this point is reached at 500 MHz. Due to the vast parameter space and the uncertainty about the inner 

workings of commercial tooling, we are not able to explain this behavior. 

From Table 3.12 and Table 3.13 we see that a higher target frequency leads to higher area consumption of 

the complete circuit. As in the case study in Section 3.3.4 this might be due to the selection of larger cells 

with higher drive strengths due to the duplication of structures to reduce fan-outs. 

In summary, retiming impacts the effectiveness of FI countermeasures. Further, timing constraints seem to 

play an important role when applying retiming. As these two synthesis attributes are inherently 

intertwined, it is complex to thoroughly explain the reasons behind our observations. A more detailed 

analysis would require a huge amount of reverse engineering and is out of scope for this report. 

3.3.6 Case Study 6: Effect of RTL Description on Fault Detection 

Even though we first set out to investigate the influence of synthesis tools on a RTL design, we conduct this 

case study to provide more insights into the inner workings of synthesis tools and their optimizations. 

When considering the results of the case study in Section 3.3.3, one might notice that the effective faults in 

the netlists shown in Figure 3.9 can be avoided by exchanging the NAND gate with a XOR gate. Therefore, 

this case study investigates if we can construct such an error correction circuit through changes in the RTL 

description. 

 

Figure 3.18: Number of effective faults for 1, 2 and 3 simultaneous faults injected into a gate-level netlist synthesized 

with Cadence Genus (effort level “high” and retiming for delay). 
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When analyzing Figure 3.9 in more detail, one can see that replacing the NAND gates which feed the four 

inputs of rnd_ctr_err NAND gate with XOR gates fixes the flaw of not detecting 1 → 0 faults. We analyze if 

RTL changes avoid this flaw. 

As a first step we implement an RTL description of the error detection as shown in Figure 3.19. The RTL 

description uses boolean equations, thus manually replacing NAND gates with XOR gates as described 

above. When synthesizing this design, the actual gate-level netlist is indeed composed in a similar way as the 

circuit in Figure 3.19. 

Additionally, we investigate adding information redundancy to this circuit. To be more specific, we 

investigate the aes_cipher_control module at commit 0975212944. This version of the aes_cipher_control 

module implements three redundant counters similar to Figure 3.3. However, there are some important 

deviations from the structure depicted there. 

• Each FSM contains two counters: one up-counting counter, i.e. its value corresponds to the actual 

AES round and one counter counting downwards, i.e. its value corresponds to the number of 

remaining rounds. The sum of both should always be equal to the total number of AES rounds. 

• The FSMs only comprise the combinational logic for the counter and do not include a register for 

these counters. In each FSM, the upwards and downwards counting round counter values are 

updated. The combination of the round counter values from the FSMs is fed into a register outside 

the FSMs (see Combination block in Figure 3.20). 

• For the combined round counter value, a parity bit is generated before it is fed into the register within 

the combination block. This parity bit is also fed into a register. The parity information of the round 

counter value at the output of the register is subsequently compared to the registered parity bit. 

 
4 https://github.com/lowRISC/opentitan/commit/097521294cd43a3e059bed8c0cd2a710b4f7f73e 

Figure 3.19: Handcrafted error detection circuit implemented in HDL, to investigate the impact of RTL descriptions. 
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• The detection block raises an alert if the sum of the two registered counters does not add up or if the 

parity bit is incorrect. 

A simplified diagram of this circuit is depicted in Figure 3.20. 

A comparison with regards to error detection performance of the different RTL countermeasure 

descriptions is given in Figure 3.21. Table 3.14 shows the respective area consumptions. As reference, the 

design without restrictions on cells from the case study in Section 3.3.3 is used. In particular, the fact that 

the parity bit is stored in a register seems to prohibit potentially harmful optimizations. Further, the 

combination of redundant instances and information redundancy yields better results. However, it is 

important to consider the isolated scope of this case study. For one, the protection of an AES round counter 

cannot be generalized for arbitrary designs. Second, this case study did only investigate simple synthesis 

settings. More advanced optimizations such as retiming could move registers and thus potentially optimize 

the parity logic. Still, we deemed it worthwhile to consider the impact of different RTL descriptions. At the 

least, this case study shows that there are major differences between error detection performance one would 

not necessarily expect, when analyzing the high-level HDL code. In accordance to all previous case studies, 

this emphasizes once more the complexity and inexplicability of synthesis tools. 

 

Table 3.14: Area consumption of the complete circuit and extracted target circuit for the netlists synthesized with 

Synopsys Design Compiler for different RTL countermeasure descriptions. 

Design Circuit Size (NAND GE) Target Circuit Size (NAND GE) 

Reference 1100 130 

Boolean 1100 135 

Parity 1540 154 

 

Figure 3.20: Target circuit comprising three redundant FSMs. The “Combination” block combines the up- and down-

counting counters from the FSMs. The “Detection” block implements the error detection by checking parity 

information and comparing the sum of up- and down-counting counters with the number of AES rounds. 
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Figure 3.21: Number of effective faults for 1, 2 and 3 simultaneous faults injected into a gate-level netlist synthesized 

with Synopsys Design Compiler for different RTL countermeasure descriptions. 
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4 Masking 

For this chapter, we assume that the reader has a basic knowledge of masking, as, for example, conveyed in 

Section 2.1.4 and the literature cited there. Section 4.1 then provides a deeper insight into the design and 

verification of masked circuits and related literature. In particular, the design and composition of modules 

at RTL level and the verification at netlist level - so after RTL synthesis - is discussed. Section 4.2 is dedicated 

to literature on the security evaluation of masked designs, specifically a work by Bronchain and Standaert, 

where a masked implementation is broken with surprisingly few traces [11]. Section 4.3.1 to 4.3.3 describe 

our three case studies on the security of masked designs. For our case studies, we focus on RTL synthesis, so 

any effects during backend design are not considered. Chapter 5 gives a short overview over the effects that 

might occur at this level and related literature. 

4.1 Design and Verification of Masked Circuits 

In Section 2.1.4, the robust probing model was introduced as a solution to formally prove whether a masked 

circuit withstands attacks from certain adversarial models. Further, domain-oriented masking (DOM) and 

threshold implementations (TI) were introduced as blueprints that allow to describe such masked circuits. 

Based on these seminal works, researchers tried to further optimize the construction of masked circuits and 

verification within the robust probing model. 

Interference Notions The robust probing model provides the means to check the security of a synthesized 

netlist within certain adversarial models. This model certainly does not cover all aspects of a realistic 

adversary who can - by means of horizontal attacks - easily acquire thousands to millions of probes. Recall, 

that a probe in this context refers to a single probed value at time t to which multiple wires, and - for 

random probing models - noise, contribute. However, researchers agree that it is the best method to date to 

formally verify the robustness of a masked circuit from just the netlist. 

While dth-order robust probing security is a great metric for a standalone circuit, it has no meaning when it 

comes to the composability of two circuits, which are both also dth -order robust probing secure on their 

own [24]. For this purpose, the notion of probe propagation and simulatability were introduced [7]. Within 

these terms the concept that a probed value in one circuit might expand to probed values in the preceding 

circuit was formalized. These sub-circuits are often referred to as gadgets. From the simulation, interference 

notions such as non-interference (NI), strong non-interference (SNI) [7], and probe-isolating non-interference 

(PINI) [14] were derived. 

Verification The probing models and interference notions that were proposed in recent years allow to 

verify synthesized netlists for unwanted share recombination through glitches and other effects. However, 

the verification of real-world circuits and gadgets is not trivial and is still under active research. Over the last 

years, multiple verification tools were proposed. The approaches differ. Some were designed to verify 

software implementations [5], others were developed for hardware designs [3] [9] [16] [46] [56]. Even the co-

verification of hardware and software was considered [36]. Further, the tools differ in their verification 

approach, representation of the masked implementation, and probing models. Some tools also combine 

automatic construction with verification [47]. 

Randomness Optimizations Masked circuits should be optimized regarding the same metrics as any circuit: 

area, latency, throughput, power consumption and so on. Additionally, the amount of fresh random bits 

that are required is an important metric, which, in turn, translates to the metrics listed above. This is 

because the amount of random data defines the complexity of the PRNG and the TRNG that provides its 

initial seed. Therefore, researchers put a lot of effort into reducing the needs for fresh entropy [26] [34] [44] 

[67]. 

For further information, the reader is referred to a recent systematization-of-knowledge paper on circuit 

masking by Covic et al. [25]. 
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4.2 Security Evaluation of Masked Implementations 

The previous section introduced state-of-the-art research on the design and verification of masked circuits. 

How the security of masked implementations is evaluated by the responsible agencies in practice often 

seems disconnected from this research. In part, this is because security evaluations are done on the 

manufactured IC, which makes sense, as effects during the backend design might make masking more 

prone to attacks, as we will discuss in Chapter 5. The introduced concepts from Section 4.1, however, focus 

on the synthesized netlist, which is only the outcome of the frontend design of a circuit. Further, most of the 

research presented above was published in recent years, and thus could not yet be considered for security 

evaluations. 

Instead, security evaluations often focus on standardized laboratory evaluations such as test vector leakage 

assessment (TVLA) [71]. The gap between these methods and the formal approaches in recent works caught 

the attention of researchers. In [11], Bronchain and Standaert investigate a masked AES software 

implementation that was previously investigated by ANSSI. In a preliminary leakage assessment, following a 

standardized laboratory procedure with 100,000 traces, no first-order leakage was detected. However, the 

authors were able to recover the secret key with less than 2,000 traces. They did not target first-order 

leakage, but instead recovered each share separately. Usually, the underlying assumption in masking is that 

the noise increases exponentially with the number of shares [65]. The authors exploited that the noise of the 

microcontroller itself is rather low, i.e., information on each share could be recovered with a high reliability. 

Further, the authors demonstrated, that a probing model, once configured with the actual noise levels, is 

able to predict such weaknesses and model the cost of an attack realistically. This shows a potential 

advantage of formal verification in comparison to heuristic laboratory evaluation. The low noise level on 

microcontrollers and the resulting weakness of software masking, even when using higher order masking 

with five or more shares, is subject of ongoing research. As countermeasure to this predicament, prime field 

masking was proposed [18]. 

It is important to note that, depending on the evaluating agency and laboratory, more evaluations than 

TVLA are conducted. Thorough investigation includes key-recovery attacks at higher orders than the design 

is protected. This should have also caught the weaknesses in the discussed AES implementation, specifically 

for the microcontroller used in [11]. While a formal analysis in a probing model is simpler and less time-

consuming than running an actual attack, it arguably does not replace it. However, such pre-laboratory 

evaluations can limit the laboratory work to designs that are deemed secure in these models and thus 

streamline laboratory efforts. 

4.3 Case Studies 

The previous sections introduced the state-of-the-art on circuit masking and the gap between this area of 

research and actual security evaluation. The work by [11], discussed in Section 4.2, demonstrated that formal 

approaches have a potential advantage compared to standardized leakage assessment. The major takeaway, 

however, should be the difficulty of judging the effectiveness of a countermeasure during a security 

evaluation. That is, even without considering the black-box behavior of EDA tools and their impact on SCA 

countermeasures, it is hard to assess the resilience of masked designs. To this end, we provide three case 

studies to investigate the impact of hardware design synthesis on the masking countermeasure. After 

studying our experiments, a designer should have a more thorough understanding if and how the 

effectiveness of masking can be evaluated before and after synthesis. 

4.3.1 Case Study 1: Re-timing Investigation of an AES S-box 

The introduction of DOM, TI, and the glitch- and delay-extended probing models in Section 2.1.4 made 

obvious that masked circuits require carefully designed synchronization stages to stop probe propagation. 

Typically, standard synchronous flip-flops are used for this synchronization. During hardware design 

synthesis, retiming (see Section 2.2) is allowed to move registers. The rationale behind retiming a circuit to 
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achieve higher frequencies or lower chip area was laid out in this preliminary section. In this case study, we 

investigate the effect of retiming on an AES S-box with DOM. 

RTL Design The RTL design used as basis for this case study is an AES S-box from the OpenTitan’s5 AES core, 

with first-order DOM. The design is based-on and functionally identical to the S-box design in the seminal 

paper on DOM by Gross et al. [38]. Figure 4.1 shows the design from the original paper. Ax and Bx are the two 

8-bit shares of the input x. Respectively, the output consists of the two 8-bit shares Ay and By. The S-box 

consists of five stages, separated and synchronized by registers. The design in the OpenTitan is not pipelined 

and optional stages6 are not implemented. In order to break down the AES S-box operation S(x) = x−1 + 0x63, 

where x ∈ GF(28), into multiple operations in the sub-fields GF(24) and GF(22), Canright’s approach is used 

[13]. For multiplication in GF(24) and GF(22), DOM multipliers are used. The registers in these multipliers - 

needed to synchronize shares and provide fresh randomness - make up the five register stages. 

Synthesis For synthesis, we use Cadence Genus and Yosys. Genus is one of the most relevant commercial 

synthesis tools available (Section 2.2). It allows to explicitly retime a design with different strategies, e.g. to 

achieve maximum frequency, or to keep the chip area as low as possible. Per default, a design is not retimed. 

For Yosys, retiming is more difficult to implement. Internally Yosys uses the abc tool7 by the Berkeley Logic 

Synthesis and Verification Group to optimize and retime the design. If Yosys is not explicitly configured to 

use a custom script, it applies a default abc script, which includes the dretime command. No retiming 

strategy to prioritize either area consumption or critical path length can be configured. This is only possible 

by ordering abc commands, such that the desired optimization is given priority. It is important to note that 

the dretime command is only effective if abc is allowed to optimize registers. For this, abc must be called 

with the -dff option. Further, abc only recognizes flip-flops from Yosys’s internal cell library. If Yosys maps 

flip-flops to technology specific instances via dfflibmap before abc is invoked, registers will not be retimed. 

Finally - depending on the design and its hierarchies - it must be flattened, to enable retiming. 

Netlist Verification For verification we use the SILVER tool, developed at Ruhr University Bochum [46]. It 

consists of a Verilog parser that processes gate-level netlists, the output of RTL synthesis. For synthesis, any 

desired combination of EDA toolchain and PDK can be used. SILVER only needs a simple wrapper per 

technology-dependent PDK to understand the boolean logic function of the proprietary gates. A reduced-

order binary decision diagram (ROBDD) and the statistical independence of probability distributions is used 

to verify probing security and interference notions. SILVER supports verification regarding probing 

security, robust probing security, non-interference (NI), strong non-interference (SNI), and probe-isolating 

 
5 https://github.com/lowRISC/opentitan 
6 Can be used to reduce the length of the critical path and accordingly increase the maximum frequency. 
7 https://people.eecs.berkeley.edu/~alanmi/abc/ 

Figure 4.1: AES DOM S-box from [38]. Ax and Bx are the two shares of the input x, s.t. x = Ax + Bx , respectively Ay and 

By, are the two output shares. 
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non-interference (PINI). The robust probing model within the tool considers glitches and transitions [56] 

(see Section 2.1.4 for more details on these concepts). The coupling effect is omitted, as a netlist does not 

contain information on the placement of cells and wires. 

SILVER - Usage and Limitations A user needs to manually annotate a netlist to convey to SILVER the 

purposes of the ports of the top-level design. SILVER distinguishes ports into: clock, secret sharing, fresh 

randomness and control ports for both inputs and outputs. Two major limitations became obvious, when 

running synthesis and verification experiments. 

For one, the tool struggles to handle control logic. As mentioned above, the OpenTitan DOM S-box was used 

as basis for experiments. This design uses flip-flops with an enable signal and control logic that enables the 

flip-flop only for the stage, when the register is set to a valid intermediate value. For example, registers in 

the fourth stage are disabled for all but the respective clock cycle. Their value changes only for this stage. 

Parsing this control logic with the SILVER tool resulted in an internal error. The tool uses a custom 

representation of the netlist which is the output of the internal parser. This representation is a simple text-

based annotation of the data flow through a design. Converting complex control flows to such a simple 

representation is challenging. It should be mentioned that a missing intermediate representation in 

hardware design tooling is a general issue. Research tooling such as the SILVER tool, but also other tools 

with a completely different scope, would profit massively from a unified, intermediate representation. For 

this case study, irrelevant control logic was stripped from the design, such that the design could be parsed. 

Regarding verification in a probing model, this does not change the outcome. However, if the tool were to 

be used regularly in a commercial design process, this would introduce both a massive overhead and a 

critical point for errors. 

Second, the SILVER tool needs a description for each standard cell in the netlist. This is due to the fact that 

SILVER can verify netlists synthesized for arbitrary design kits. The mapping between the standard cell’s 

name and its functionality is provided as a simple textual description. For practical adoption, this is a nice 

feature, as it allows to use arbitrary PDKs in the design flow. However, more complex cells (e.g. flip-flops 

with two outputs, the current state and its inverse) would require modifications in the tool’s source code 

and intermediate representation. Yosys’s internal cell library is supported completely, for other design kits, 

the synthesis tool must be configured to not use non-supported cells. This workaround was chosen for the 

synthesis with the FreePDK458 in this case study. 

Results - Utilization Table 4.1 shows the effect retiming has on the synthesis with Cadence Genus and 

Yosys. For Genus, the default retiming strategy was chosen. As stated above, the retiming configuration in 

Yosys is more difficult. Since no custom optimizations before retiming were carried out and abc was 

invoked with standard parameters, the chosen strategy can also be seen as default. The logic optimizer abc 

then uses retiming to balance a small gate count with a shallow circuit depth. 

Originally, the S-box needs 92 flip-flops. Cadence Genus and Yosys arrive at a similar area utilization. The 

synthesis with Genus includes power and timing estimations. The target frequency was set to 500 MHz, 

which was easily met. For Yosys, power and timing estimations would have required additional plugins. The 

reports by Genus show that retiming increases the length of the critical path marginally. The power 

consumption decreases due to a reduced number of gates, in particular flip-flops. 

Table 4.1: Number of flip-flops, area, estimated critical path length and estimated power consumption for a DOM S-

box synthesized with and without retiming. All results are for the FreePDK45 cell library. Yosys does not directly 

report critical path length and power consumption. For Genus, the target frequency was set to 500 MHz. 

Design No. of D-Flip-Flops Area (NAND GE) Critical path length (ns) Power (mW) 

Genus without retiming 92 1649 1.44 1.70 

Genus with retiming 75 1550 1.62 1.63 

 
8 https://github.com/mflowgen/freepdk-45nm 
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Design No. of D-Flip-Flops Area (NAND GE) Critical path length (ns) Power (mW) 

Yosys without retiming 92 1659 - - 

Yosys with retiming 79 1566 - - 

 

Retiming a DOM multiplier The difference between the synthesis with and without retiming shows that 

both Cadence Genus and Yosys see a significant potential for optimizations in the DOM S-box. When 

looking at the structure in Figure 4.1 it is not directly obvious, how retiming affects the DOM S-box. 

Therefore, in the following, an elementary DOM multiplier as shown in Figure 4.2 is used to demonstrate 

optimizations and vulnerabilities caused by retiming. The domain property in DOM requires domains to be 

strictly separated and registers to be placed after a gadget’s resharing logic. The domains are denoted by the 

shares A and B. Figure 4.2 shows that DOM multipliers need a resharing step after calculation of non-linear 

functions, to prevent first-order leakage due to the subsequent integration that combines the two 

intermediate results to two output shares. Further, to prevent such a recombination through temporary 

glitches, it needs to be ensured that the fresh mask (Z0 in Figure 4.2) is valid and propagates in sync with the 

calculation’s outputs. This is achieved by means of a flip-flop placed after resharing. Therefore, the 

multiplier is only secure in a robust probing model, if synthesized exactly as in Figure 4.2. From a designer’s 

perspective, it would be desirable to merge the two flip-flops into the Z0 path, such that only one flip-flop is 

required (see Figure 2.3). This does not change the behavior of the circuit, but it would violate robust 

probing security. If the registers were to be merged into the Z0 path, a glitch-extended probe placed on Aq 

would include [Ax, Ay, AxAy, By, Z0, ...] (see Section 2.1.4 for the concept of glitch-extended probes). Thus, this 

one probe suffices to recover the secret input y from Ay + By. If the register is placed as in Figure 4.2, the 

probe would only include [Ax, Ay, AxAy,(AxBy)+Z0], which does not allow to recover information on x or y. 

Since both Genus and Yosys reduce the number of flip-flops, which are carefully placed in the DOM S-box 

(Figure 4.1), it is almost guaranteed that the retimed design is not robust probing secure. 

 

Results - Verification Running a verification with the SILVER tool confirms this suspicion. For the design 

synthesized without retiming, the tool reports both probing and robust probing security. It is noteworthy 

that the verification for simple probing security takes less than 10 seconds, whereas the verification for 

robust probing security needs more than 36 hours9. The verification of the retimed design yields that it is 

 
9 On a workstation with AMD Ryzen 9 3950X 16-Core Processor, multi-threading enabled, 128 GB of RAM 

Figure 4.2: First-order DOM-indep multiplier from [38]. It computes a masked AND, s.t. x × y = (Ax + Bx) × (Ay + By), i.e. 

Ax and Bx are the two shares of x and Ay and By are the two shares of y. The dotted registers are only required if used in 

a pipelined implementation. 
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probing secure, but not robust probing secure. SILVER reports one probe, where robust probing security 

does not hold (found after less than 10 seconds) and then terminates the analysis. 

Analyzing a retimed Design The output by SILVER provides a starting point for analyzing how the design 

was retimed and what possible vulnerabilities are caused by it. Within a netlist, SILVER reports the wire or 

port where (robust) probing security is violated. Since netlists are difficult to interpret manually, this cannot 

be directly mapped to a high-level representation of the circuit such as the structure in Figure 4.1 or an RTL 

description. Therefore, we conducted a thorough analysis. We limit this investigation to the netlist created 

by Genus, due to two reasons. For one, it is the smaller design. Second, Genus allows to trace retimed 

registers, such that every register that is introduced due to retiming is named according to a custom 

convention and the tool keeps track of which registers in the original design contributed to the placement 

of a retimed register. 

Even with this setup, reverse engineering the retimed netlist to a comprehensible format is a challenging 

task. Therefore, Figure 4.3 shows only partially which registers were modified by retiming, in the Ax path 

and only for Stage 1 and Stage 2. From the Genus reports it is obvious, that the fourth and final register stage 

stays unmodified. At this stage, two 8-bit registers are required. Since this is the width of the output shares, 

no instances can be saved and the tool does not seem to detect any timing advantages by moving the 

registers. The question-mark in Figure 4.3 illustrates that the exact placement of registers is unclear. It is 

important to note that the structure in Figure 4.1 does not match entirely the OpenTitan’s S-box 

implementation. The top- and bottom-most signals can also be realized with one register, if the control 

logic ensures that it holds the correct input value up until stage four. Therefore, the respective registers were 

crossed out in black. It is also important to note that Figure 4.1 does not show fresh randomness needed for 

the computation. The registers in which it is stored are partially retimed, this is shown in Figure 4.3 (see prd 

input and register). 

The first register stage is moved behind the XOR that combines the square-scaler’s and GF(24) outputs. It was 

found that the (extended) probe reported by SILVER as one location, where first-order robust probing 

security does not hold, corresponds to wires after where the register should be placed. The GF(24) multiplier 

is a non-linear permutation for which both domains A and B are needed. It is implemented with a more 

general version of the DOM multiplier shown in Figure 4.2. For this simple DOM multiplier, an exemplary 

probing security violation was given above. Considering this example, it is obvious that the GF(24) multiplier 

is not robust probing secure. Without the registers, a glitch-extended probe on one of the output shares 

includes all input shares. In the following, the robust probing violation is discussed in more detail and 

evaluated in a laboratory setup. 

Laboratory Analysis For a detailed analysis, an excerpt of the masked S-box from Figure 4.1 is shown in 

Figure 4.4. It depicts the inputs and the GF(24) multiplier in the S-box’s first stage. For more details on the S-

box implementation, the reader is referred to [38]. As stated above, it follows Canright’s approach [13], by 

Figure 4.3: AES DOM S-box from [38] after retiming with Cadence Genus. 
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expressing GF(28) elements as multiple elements in lower sub-fields. The initial linear map creates the 

corresponding mapping. The following GF(24) multiplier is a version of a DOM multiplier, adapted to 

multiply within a Galois field. In contrast to the simple design shown in Figure 4.2, it does not require the 

inputs to be independently shared. This refers to the composability of DOM multipliers, however it is not 

relevant for the subsequent analysis. 

If the S-box is synthesized with retiming, the registers are not placed as in Figure 4.4, but they are merged 

with registers in the square-scaler output as depicted in Figure 4.3. As stated above, it is obvious that the 

design is no longer robust probing secure. Figure 4.4 shows this in detail. Without the registers, a glitch-

extended probe on the outputs of the final XOR gates includes bits of both shares Ax and Bx due to the linear 

mapping. Related work such as [54] shows that a glitch-extended, i.e. robust, probing model is required and 

security in the simple probing model is not sufficient to prevent leakage. In the following, a more thorough 

analysis to what extent their findings apply to retimed designs is conducted. 

 

Target Platform The laboratory investigation is conducted with the ChipWhisperer CW310 Bergen Board10. 

It features a Kintex FPGA target and is a supported platform for the OpenTitan project. It should be noted 

that the physical behavior of the ASIC differs from an FPGA implementation in terms of power 

consumption, noise, and electromagnetic emanation. However, it is common practice to evaluate designs 

on FPGAs, before manufacturing the integrated circuit. The production of an ASIC involves enormous 

effort. Measures were taken to ensure that the netlist that was synthesized and retimed by Genus maps the 

behavior of the FPGA implementation as closely as possible. The netlist was synthesized for a subset of the 

FreePDK45 design kit, to ensure that verification with SILVER is possible. For each gate, a mapping to the 

look-up table (LUT) architecture of the Kintex technology was created. Instead of a cell from the PDK, a 

single LUT that is configured to behave as this cell is instantiated. Further optimizations of this mapping are 

prevented with DONT_TOUCH and KEEP_HIERARCHY constraints. Our mapping ensures that FPGA specific 

effects that could occur by merging multiple gates into one LUT are circumvented. 

 
10 https://rtfm.newae.com/Targets/CW310%20Bergen%20Board/ 

Figure 4.4: Excerpt of the AES DOM S-box showing the input shares of x, Ax and Bx , the linear input map, the Galois 

field GF(24) multiplier and its outputs Ay1y0 and By1y0. Fresh randomness is provided by r. The crossed rectangles 

correspond to an unmasked multiplication in a Galois field GF(24) without registers, consisting of three 

multiplications and two scalings in GF(22). 
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Laboratory Setup Figure 4.5 shows the measurement setup. The Bergen Board features connectors to a 

Shunt resistor, to measure the FPGA’s main powerline. We connect a ChipWhisperer CW1200 Pro capture 

device to this connector to record power traces. Further, we placed a Langer RF3 near-field probe11 on the 

die to record electromagnetic emanation traces. 

 

Unspecific Leakage Assessment Laboratory assessment typically starts with an unspecific leakage 

assessment according to the methodology from [71]. In short, a fix-versus-random t-test can be used to 

check for leakage. Operations are conducted at random order, either with a fixed or random operand. In this 

case, either a fixed or a random key is used to encrypt a random plaintext with the AES design. Before the 

test, the null hypothesis is formulated: “Traces recorded with a fixed key and traces recorded with a random 

key belong to the same set”. The t-values can be calculated according to [71]. Usually |t| > 4.5 is used as 

threshold, where the null hypothesis can be confidently - with a probability of 0.99999 - rejected. In this 

case, a fixed key can be distinguished from random keys in the power trace. One can deduce that certain 

effects, e.g. Hamming weight or distance leakage occur, which allow to recover secret information from 

power traces. For a first order masked design, |t| < 4.5 should hold for a basic t-test. The t-test can be 

conducted for higher statistical orders, or in a multivariate fashion, where sample points are combined, to 

evaluate higher-order masked designs. 

Figure 4.6 shows a mean power trace and t-traces for the S-box with and without retiming. The power trace 

is shown for the S-box without retiming, but looks indistinguishable from the power trace for the S-box that 

was synthesized with retiming. For this experiment, the ChipWhisperer Pro capture device is used. It can be 

purchased for less than 4,000 USD. It allows to connect its measurement circuit to the FPGA’s clock, 

multiply it by a factor of four, and use it for sampling. The FPGA design is clocked with 100 MHz. The ten 

AES rounds are roughly recognizable in the mean trace. If the S-box is synthesized without retiming, the 

fixed-key set is not distinguishable from the random-key set. For the retimed design, the t-trace contains 

multiple peaks with |t| > 4.5. The glitches discussed above seem to cause distinct effects in the fixed-key 

power traces. These effects make the fixed key distinguishable from a random key for individual sample 

points and first-order t-values. This is a clear indication that the first-order masking scheme does not work 

as expected and does not provide sufficient protection. 

 

 
11 https://www.langer-emv.com/en/product/side-channel-analysis/69/rf3-mini-set-near-field-probes-30-mhz-up-to-3-

ghz/855 

Figure 4.5: Laboratory setup for side-channel measurements on the ChipWhisperer CW310 Bergen Board. 
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Specific Leakage Assessment After an unspecific leakage assessment, a specific leakage assessment is 

conducted to establish a leakage model. Typical leakage models include Hamming weight and distance 

leakage. For such an investigation, the AES core is provided with random - but known - keys and plaintexts. 

Traces are divided into subsets according to an intermediate result and the respective leakage model, for 

example, the Hamming weight of a state byte at a certain round. The subsets can be composed as fix-versus-

random or fix-versus-fix. Figure 4.7 shows the results of a fix-versus-random investigation. The Hamming 

weight of the unmasked key word going into the key schedule was selected for the fixed data set. According 

to the AES key schedule, the word is rotated, substituted with four parallel S-boxes, and a round constant is 

added. The spike in the t-trace in Figure 4.7 shows that the retimed S-box leaks information on the 

Hamming weight of the unmasked key. For the S-box without retiming, the same hypothesis fails to show 

significant leakage. 

However, twenty million traces are required to detect this effect. For this experiment, the traces were 

recorded with a LeCroy WavePro oscilloscope with a sample rate of 1 GS/s. The FPGA’s clock is set to 100 

MHz. The identification of 8-bit Hamming weights within the 32-bit key word or fix-versus-fix hypotheses 

did not work reliably. This can be partly attributed to the parallel operation of the AES core, where key 

schedule and round operation are executed simultaneously. Furthermore, the actual leakage is more 

complex than a direct Hamming weight leakage. 

The leakage of the GF(24) multiplier discussed above does not directly correspond to a Hamming weight 

leakage of the unmasked inputs. Depending on the signal propagation, the final XOR gates in Figure 4.4 leak 

a pattern that depends on the unmasked inputs. The linear maps at the inputs are responsible for this, but 

also cause the leakage not to be directly related to the unmasked inputs. However, the linear dependency 

should be exploitable for an attack. To demonstrate the feasibility of such an analysis, relevant paths in the 

FPGA design are analyzed with Xilinx Vivado. The signals arrive at the XOR gate with differences from 0.6 to 

0.1 ns. For a sampling rate of 10 GS/s and higher, such glitches can be recorded. 

Figure 4.6: Results of an unspecific test-vector leakage assessment of the AES DOM S-box with and without retiming 

for one million traces. 
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As part of this project, investigations toward the discussed attack approach were started. As first step, the 

AES’s random number interface for fresh randomness was changed to use a software provided seed. This 

allows to investigate intermediate values and evaluate the measurability of effects in general. With the setup 

displayed in Figure 4.5, confirming hypotheses below 16-bit data words was not possible. Further, no 

glitching patterns in intermediate results could be identified. With a more advanced laboratory setup, these 

issues could be overcome. In particular, more localized measurements have the potential to measure the 

emanation of a single S-box, instead of the complete AES design. Related works such as [39][73][74] show the 

potential of measurements with a high spatial and temporal resolution. Attacking flawed masking schemes 

should work in a similar fashion. 

Conclusion Within this case study, we established that retiming a design during synthesis could prove fatal. 

Using a real-world AES design, we showed that such a design is guaranteed to be modified during retiming 

in a way that robust probing security does no longer hold. The SILVER tool can catch such vulnerabilities, 

however it is not trivial to apply to real-world designs. The fact that robust probing security is needed to 

avoid leakage in a laboratory investigation was proven in [54]. We substantiate this with our own laboratory 

analysis. Further, we discuss practical attacks and undertake first steps towards such attacks. 

4.3.2 Case Study 2: Composite Designs 

The first case study revealed a fundamental problem in the verification flow of masked designs. That is, the 

compute intensive verification. Even verifying a single AES S-box took more than 36 hours. To this end, 

researchers proposed interference notions. In short, these notions allow to verify basic building blocks, so 

called gadgets. For more detail, the reader is referred to Section 4.1 and the papers listed there. The claim is 

that circuits which are composed of these gadgets, are automatically robust probing secure. This saves the 

effort of running a compute-expensive robust probing security verification. Within this case study, we show 

the benefits and pitfalls of composite designs. 

State-of-the-Art Interference Notions The state-of-the-art interference notion is probe-isolating non-

interference (PINI). 

Definition 4.3.1. Probe-isolating non-interference according to [14]. Let G be a gadget over d shares with 

inputs xi,j and outputs yi,j, where i ∈ [0, d − 1] is the share index and j the bit-index of the shared input vectors 

Figure 4.7: Results of specific leakage assessment of retimed S-box for twenty million traces. The t-test distinguishes 

traces according to the Hamming weight of the unmasked key schedule’s 32-bit input word. A fix-versus-random 

approach was chosen, where traces with the fixed Hamming weight of 14 were separated from all other traces. 
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x and y. Further, let P be a set of t1 probes on wires of G (called internal probes). Let A be a set of t2 share 

indices. G is t-probe-isolating non-interfering (t-PINI) if and only if for all P and A such that t1 + t2 ≤ t, there 

exists a set B of at most t1 share indices such that probes on the set of wires 𝑃 ∪ 𝑦𝐴,∗
𝐺   can be simulated with 

the wires 𝑥𝐴∪𝐵,∗
𝐺 . 

Put into simple words, PINI ensures that an adversary does not learn more than t secret variables from her 

probes, for all possible combinations to choose the sets P and A. By the notion of simulation, composability 

is ensured. If simulatability is not given, the adversary learns additional information, since the wires 𝑥𝐴∪𝐵,∗
𝐺  

are no longer sufficient to simulate the probes. In this instance, depending on the gadgets that drive inputs 

of the gadget G, glitches might occur that combine secret shares. These glitches are similar to the ones 

caused by retiming in the previous case study (Section 4.3.1). PINI promises trivial composability at 

minimum overhead. The preceding notion of NI was not trivially composable. The SNI notion offered 

gadgets that could be placed such that arbitrary gadgets are composable, however its overhead in hardware 

footprint and fresh randomness is immense. PINI gadgets exist in different versions, optimized for area-

efficiency, randomness consumption, throughput and latency. These gadgets are typically called hardware 

private circuit (HPC). They are used in tools for the automatic generation of masked hardware designs [47], 

and different designs [45] [53], e.g. the AES design that was the target of the 2023 CHES challenge12. 

Composition and Verification Figure 4.8 shows a simple example of securing an arbitrary operation by 

replacing basic boolean operations with the respective PINI gate. In this case, the operation corresponds to a 

first-order masked, i.e. two shares, calculation of y = ((a × b) + c) × a, where multiplication is a Boolean AND 

and addition is a boolean XOR. The trivial composition promised by PINI amounts to “connecting the 

output share with index i always with the input share with index i”. A violation of this is shown in Figure 4.8 

in red. The twisted connection leads to a combination of the input shares a0 and a1 in the last AND gate. 

While this seems trivial to avoid, it is important that such an implementation mistake is not caught with 

functional tests, as the result y is still correct. Dedicated verification tools such as SILVER are required to 

detect such a flaw. We verified that the faulty composition in Figure 4.8 is recognized by SILVER. Further, in 

an RTL description multiple ways to represent and index shared variables exist. Special care must be taken 

to compose implementations correctly. This does also apply to the composition of more complex gadgets 

such as Galois-field multipliers. 

 

An interesting research direction is the automatic generation of masked hardware designs. In [47], the 

authors propose to synthesize an arbitrary design, which is annotated for its secrets, and replace each 

standard cell such as NAND, XOR, etc. with its HPC equivalent. Since this is done automatically, there is no 

 
12 https://smaesh-challenge.simple-crypto.org/ 

Figure 4.8: PINI composition of masked gadgets. 
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risk of incorrect composition. This approach is promising for parallel designs, but the authors of [53] report 

that serial designs can be massively improved by handcrafting. 

Since verification of handcrafted designs is important, even when provably secure gadgets are used, the 

efficiency of this verification is critical. In the first case study, the SILVER tool was used, as it can verify 

netlists for arbitrary synthesis tools. Its ROBDD approach makes it computationally expensive. The 

verification of a single AES S-box is feasible, but anything larger is deemed unrealistic. The fullVerif [16] tool 

follows a different approach. It divides the circuit into gadgets. In a recursive fashion, each instantiated 

module within a gadget is also assumed to be a gadget. Once a gadget cannot be divided into sub-gadgets, it 

is verified for PINI. Since each gadget is verified on its own, the tool only needs to check the correct 

composition for the complete circuit. This allows the verification of real-world co-processors. A limitation 

of the tool is that it takes high-level HDL code as input and uses the open-source tool Yosys to synthesize it. 

Thus, a direct usage of the tool with commercial EDA tooling as allowed by SILVER is not possible. If 

fullVerif reports a design as secure, engineers must carefully enforce that the commercial synthesis tool 

does not apply optimizations such as retiming, which would make the design insecure. 

We tested the fullVerif tool with the example from Figure 4.8. It correctly assesses the HPC gates to be 

probe-isolating non-interferent at the first order and correctly reports the composition flaw. For such a 

simple example it is easy to see that the netlist generated by Yosys is similar to the one generated with 

Cadence Genus. For more complex circuits, this is a challenging task. 

Conclusion This case study presented interference notions and basic HPC gadgets as promising approaches 

to design efficient and secure hardware. A simple example emphasized that circuits must be composed 

correctly, which can only be detected with dedicated verification tools. The fullVerif tool uses interference 

notions for efficient verification, such that real-world co-processors can be investigated. In contrast to the 

SILVER tool, however, it cannot be used with commercial EDA tools. 

4.3.3 Case Study 3: Higher-order Masking Effects in Synthesis 

The first two case studies leave open, whether there are synthesis optimizations beyond retiming which 

violate the security of masked hardware designs. For this, a CMS AND gate for 2nd-order masking is analyzed. 

Second-order CMS AND In Figure 4.9, a 2nd-order secure CMS AND gate is shown. The scheme was 

originally proposed for arbitrary order masking. The authors based their claim on the circular structure of 

the AND gate. However, the authors of [54] discovered flaws for d > 2. This circular structure is also 

investigated here. The output share c1 can be written as boolean equation as follows: 

c1 = (a1b1 + R1 + R2) + (a1b2 + R2 + R3) + (a1b3 + R3 + R4) (4.1) 

Every term in brackets is stored in a register before the final 3-input XOR is evaluated. If the registers are 

ignored, the equation can be simplified to: 

c1 = a1b1 + R1 + a1b2 + a1b3 + R4      (4.2) 
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This is due to the fact that xor’ing a variable twice first applies and then removes the variable, such that it 

ultimately has no influence on the result. In contrast to Equation (4.1), this is insecure, as a1b1 and a1b2 are 

not sufficiently blinded. However, the two XOR gates are separated by a register. This raises the question, if 

optimizations on two sides of a register require retiming, or if this is not considered retiming as the location 

of the register does not change, only its value. 

Logic Optimization in Yosys We use Yosys to check which optimizations are applied depending on the 

configuration. Since it is an open-source tool, we can access the implementation and trace its optimization 

features. Yosys itself applies optimizations to replace flip-flops with constant values, optimize multiplexer 

trees, detect redundant and unused logic, and optimize FSMs13. These optimizations can be triggered 

independently. The generic opt command applies them iteratively, until the result is stable. For the bulk of 

logic optimizations - among others retiming - the abc tool can be called from Yosys. It performs generic 

optimization based on an and-inverter graph (AIG) approach and directed acyclic graph (DAG) based 

technology mapping. The abc tool distinguishes its optimization passes into two categories, sequential and 

combinational. For sequential synthesis, the following transforms exist: 

• lcorr: Detects and merges sequentially equivalent registers according to [52]. 

• retime: Different variations of retiming (most forward, most backward, minimum register, etc.). 

• scleanup: Sequential cleanup by removing nodes and latches that do not fan-out into primary 

outputs. 

• ssw: Implements signal-correspondence using K-step induction [52]. Detects and merges sequentially 

equivalent nodes. 

• undc, zero: Register initialization commands. 

As described in Case Study 1 (Section 4.3.1), retiming and sequential synthesis in Yosys requires in-depth 

knowledge of the tool. Within Yosys, abc is invoked with a default script, unless a dedicated script is 

specified. This script applies the retime command, however it can only make changes to the design, if the 

registers are passed to abc with the -dff flag and were not yet mapped to their technology-specific instances 

 
13 https://blog.eowyn.net/Yosys/CHAPTER_Optimize.html 

Figure 4.9: Second-order CMS AND gate. The variables ai and bi are the input shares, where a = a1+a2+a3, so i is the 

share index (analog for b). For the output c = a × b = c1 + c2 + c3 holds. Rj denotes fresh random bits. The bold circle 

corresponds to a register stage. 
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with dfflibmap. The lcorr and ssw commands are not part of the default script. To check, if they apply 

optimizations across registers as described above, scripts with the respective commands were used. 

However, the ssw command is not available in Yosy’s internal version of abc. The lcorr command did not 

apply the discussed optimization. Its purpose is to merge equivalent registers, not optimize the data path for 

one register. The retime command merges all three registers in the path of c1, eliminating the randomness as 

in Equation (4.2). 

Logic Optimization in Cadence Genus The experiment with the CMS 2nd-order AND gate was repeated with 

Cadence Genus. As Genus is a commercial tool and its source code is not publicly available, it is unclear 

which optimizations it uses internally. However, it could be verified experimentally, that the optimization 

as in Equation (4.2) is only applied, when retiming is allowed. 

Conclusion Within this case study it could be verified, that only retiming applied critical optimizations, 

such that the CMS 2nd-order AND gate is synthesized with a flaw in the masking scheme. More research is 

needed to check this claim for general applicability. For commercial tools such as Cadence Genus, because 

we can never know its inner workings, for the open-source tools Yosys and abc, because the optimizations 

could not be fully investigated. However, when all commands for sequential synthesis are removed from 

the abc script, one can be sure that the netlist is synthesized without flaws such as probing violations, as, in 

this case, it can be ruled out that registers are optimized. The registers then serve as anchors, preventing 

harmful optimizations also to the combinational logic between register stages and inherently constraining 

the synthesis. 
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5 Open Questions in the Hardware Design Flow 

With this report, we can confidently say that frontend synthesis can have a negative impact on hardware 

attack countermeasures. For fault injection, we justify this with the observation, that - depending on the 

synthesis settings - single bit-flips are more likely to suffice to corrupt the design. For masked designs, we 

showed that retiming violates security assumptions. These results do not cover all aspects of the hardware 

design flow, e.g. whether backend synthesis also impacts the resilience. Further, our investigations are 

mainly based on established, but theoretical, models such as the number of bit-flips in a netlist or (robust) 

probing security. We discuss these open questions in this chapter. 

5.1 Fault Injection Modeling 

We based our analysis of fault injection countermeasures mainly on the outcomes of the SYNFI tool, which 

reports the number of bit-flips and possible combinations that are needed to corrupt a design. For this, 

SYNFI uses the netlist after RTL synthesis. So far, we did not yet consider or discuss the difficulty of flipping 

a single bit or up to n bits. Contemporary work on fault models and attacks such as [6] [21] [31] [70] provide 

more insights. In general it can be said, that inserting two or three bit-flips is more challenging than a single 

bit-flip. The authors of [6] show that their laser fault injection attacks are less likely to succeed, the more bit-

flips are required. They investigate information-redundant designs. However, there exists no general 

investigation that provides a clearer connection between the number of bit-flips required and the 

complexity of attacks, e.g. if it is better to have one single bit-flip vulnerability than three two bit-flip 

vulnerabilities. Further, the influence of information that does not exist at netlist level, e.g. the transistor 

layout of standard cells, the placement, the routing and clock/reset trees, was not yet evaluated in a formal 

setting such as SYNFI. For example, the impact of standard cells with different driver strengths was already 

discussed in Section 3.3.4. While SYNFI does not distinguish between cells with the same boolean behavior 

but different driver strengths, this might be important for real world fault attacks. Cells that can drive more 

subsequent cells require more transistors and thus expose more attack surface. Such an analysis, however, 

could only be conducted at the transistor level of a circuit. 

5.2 Side-channel Leakage 

For masking, the case studies in this report are built on verification in the robust probing model. This 

model’s mapping to actual resilience against real-world side-channel attacks has seen more attention than 

fault injection models. However, it remains an open question how hard side-channel attacks on a verified 

implementation actually are. Further, similar to fault injection modelling, all efforts in this report were 

focused on the netlist. In [27], the authors demonstrate that placement and routing have a significant impact 

on a design’s leakage. They discuss that operating conditions such as a high supply voltages, high 

temperatures and high frequencies amplify the influence of placement and routing. Crosstalk, i.e. 

electromagnetic coupling, and power supply noise are cited as reasons for this leakage. An extreme case for 

vulnerabilities in the backend design flow is shown in [32]. The authors showcase, that a malicious party 

could modify the routing, such that the length of the path violates the target’s clock frequency and leakage 

occurs. This amounts to a hardware trojan, purely based on modified routing. As of now, there is no other 

way than laboratory investigation of the integrated circuit, to include these backend effects into the security 

evaluation. Recall, that the concept of coupling-extended probes in the robust probing model exists (Section 

2.1.4). However, there is no verification tool, that can put it into practice. The information on the placement 

of wires, and thus which wires are adjacent to one another, exists only after floor-planning and routing and 

not yet after RTL synthesis in the gate-level netlist. 

An important aspect beyond the backend design flow is the generation of fresh randomness for the masked 

design. The authors of [17] show, that it is not enough to use LFSRs to generate randomness and linear 

dependence between pseudo-random data can cause leakage. For this effect, dedicated verification tooling 

exists [34] [55]. 
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6 Conclusion 

As motivation for this report we raised the question: Does RTL synthesis and the backend design flow have a 

negative impact on countermeasures against physical adversaries? To this end, we investigated fault injection 

and side-channel attack countermeasures. 

Most fault injection countermeasures are built on redundancy, such that faults are detected with a high 

probability. Synthesis tools are built to detect redundant components and remove them, to keep the area 

consumption of integrated circuits low. Therefore, it is not surprising that synthesis tools remove 

redundant structures required to guarantee resilience against fault injection. This deficiency was explored 

previously in literature [43] [58] [59] [60]. However, hardware design engineers are still largely left alone with 

the question of how designs must be synthesized to ensure secure implementation. We identified the 

verification framework from [59] as useful to analyze netlists after RTL synthesis. To allow engineers to 

judge the effects of synthesis appropriately, we conducted six case studies. In summary, our experiments 

highlight once more that considering the RTL code alone is insufficient to make a statement on the security 

against fault injection attacks. Furthermore, we identified the following relations between the synthesis 

process and the effectiveness of fault injection countermeasures: With higher synthesis effort and more 

aggressive optimizations, there is a tendency towards decreased effectiveness of fault injection 

countermeasures. Increasing the target clock frequency might lead to inferior error detection performance 

as additional optimizations might be triggered to achieve tighter timing constraints. Optimizations such as a 

resolving of hierarchies or retiming must be taken into account. We found that different RTL 

implementations, which serve the same purpose, yield different results regarding the effectiveness of fault 

injection countermeasures. While these rough correlations could be shown for all tools, we made many tool 

specific and incomprehensible observations. 

For countermeasures against side-channel attacks, we explored the synthesis of masked designs. We showed 

that contemporary masked designs are typically verified in a robust probing model that includes effects 

such as glitches due to differences in signal propagation and transitions of memory elements. Within a case 

study, we demonstrated that retiming reorders registers of a masked AES S-box such that robust probing 

security does no longer hold. Verification tools such as [46] can catch this violation, but are not trivial to use. 

Further, we demonstrated that the violation of robust probing security leads to detectable leakage in an 

unspecific and specific leakage assessment. The roadmap towards exploiting this leakage in an actual attack 

was sketched. While retiming can be disabled, it is not always directly obvious if a design is retimed. Further, 

design engineers might be tempted to retime a design, due to the improved area cost. The second case study 

addressed a recent trend in masking. That is the verification of small sub-circuits, of which larger circuits 

such as S-boxes can be composed. We demonstrated that this facilitates the verification of real-world 

designs. However, we also demonstrated that the complete design must be verified again to avoid 

composition pitfalls. The framework from [16] can verify composite designs, but is hard to integrate with 

commercial EDA tools. Finally, we investigated if retiming is the only potential threat to masked designs. To 

this end, we investigated the consolidated masking scheme (CMS), where randomness is added to the flip-

flop’s input and removed from its output. For the Yosys tool, we could show that only the retiming 

configuration allows such optimizations. This does also seem to hold for commercial tools such as Cadence 

Genus. In this case, the registers in a masked design serve as anchors that - if not optimized themselves - 

seem to prevent further critical optimizations. 

With our case studies from Chapter 3 and Chapter 4 we can answer the question whether RTL synthesis has 

a negative impact on countermeasures with a clear yes. A short overview of state-of-the art literature in 

Chapter 5 showed that the backend design flow is critical for the effectiveness of countermeasure as well 

and many questions in and around the hardware design flow are still left open. 

The findings of this report thus emphasize, that it is not sufficient to verify countermeasures on the RTL 

level. We showed that the synthesized netlist must be investigated to judge the effectiveness of 
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countermeasures appropriately. However, the references in Chapter 5 suggest that analyzing the netlist is 

also not sufficient. Thus, an actual laboratory evaluation of devices seems inevitable. 

Still, we want to promote the usage of tools such as SYNFI [59], SILVER [46], and fullVerif [16] in the design 

flow. They allow to catch possible vulnerabilities early in the design flow, before putting the design through 

the extensive backend flow, or producing prototypes. Further, a laboratory assessment could still miss 

vulnerabilities that these tools can spot. However, as described in our case studies, the tools are not trivial to 

use and impose constraints on the design flow. Therefore, we encourage the hardware design community to 

improve these tools and make their integration into the design flow as seamless as running a functional 

verification. The SCFI integration into Yosys is a good example for such a seamless workflow [60]. This effort 

needs the support of design kit and EDA tool vendors. Open and standardized interfaces and intermediate 

representations of the synthesized circuit could facilitate the verification flow significantly. 
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Figure A. 1: Fault experiment with netlist synthesized with Synopsys Design Compiler 

showing a sub-circuit comprising AOI and OAI standard cells. For a rnd_ctr[0] value of 1, 

one fault (1 → 0) is injected into the OR gate of the rnd_ctr[0] path. The second input of the 

AND gate within the AOI22 cell marked in red is 0 and therefore masks the injected fault 

at the first input such that it has no effect on the rnd_cnt_err signal. Consequently, the 

injected fault changes the value of rnd_ctr[0] but cannot be detected. 
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Figure A. 2: Fault experiment with netlist synthesized with Synopsys Design Compiler 

showing a sub-circuit comprising AOI and OAI standard cells. For a rnd_ctr[3] value of 1, 

one fault (0 → 1) is injected into the NOR gate of the rnd_ctr[3] path. The first input of the 

NOR gate within the OAI22 cell marked in red is 1, and therefore masks the injected fault 

at the second input such that it has no effect on the rnd_cnt_err signal. Consequently, the 

injected fault changes the value of rnd_ctr[3] but cannot be detected. 
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Figure A. 3: Fault experiment with netlist synthesized with Synopsys Design Compiler 

showing a sub-circuit without AOI and OAI standard cells. For a rnd_ctr[0] value of 1, one 

fault (1 → 0) is injected into the OR gate of the rnd_ctr[0] path. The second input of the 

NAND gate marked in red is 1, and therefore masks the injected fault at the first input 

such that it has no effect on the rnd_cnt_err signal. Consequently, the injected fault 

changes the value of rnd_ctr[0] but cannot be detected. 
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