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Abstract

In this report, we address the following question: to what extent can machine learning 
assist a human with traditional text analysis, such as content analysis or grounded theory 
in the social sciences? In practice, such tasks require humans to review and categorize 
(e.g., by manually annotating the text with labels) a large sample of documents. We do 
not expect nor necessarily desire the machine to automate the tasks the human would 
otherwise perform, but rather want to find ways to help the human to perform the tasks 
more efficiently. We present a modular implementation of a system that incorporates su-
pervised (active learning) and unsupervised (topic modeling) methods to assist humans 
with technical document annotation. The implemented system allows us to conduct user 
studies to evaluate the usefulness of machine assistance. We present results from two 
such user studies and highlight directions for future research.

Keywords

Text analysis; text mining; natural language processing; machine learning; human-in-the-

loop; social science; content analysis.

Acknowledgments

We are grateful to Christina Gore (NIST), Timothy Blattner (NIST), David Butry (NIST), and 
Nicos Martys (NIST) for their review and feedback. All errors are our own.

i



NIST TN 2287
May 2024

Table of Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Terminology and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Motivating Example: RAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1. Scaling? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2. Summary of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3. Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1. Computational methods in social science . . . . . . . . . . . . . . . . . . . . 10

3.2. Domain-specific applications: RAS . . . . . . . . . . . . . . . . . . . . . . . . 13

4. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1. Machine Learning Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1. Topic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.2. Topic Model Variations . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.3. Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.4. Combination of Topic Modeling and Active Learning . . . . . . . . . 19

4.2. Human-in-the-loop implementation . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1. Overall Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3. User Study Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4. Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4.1. Annotator Label Quality Measurement . . . . . . . . . . . . . . . . . 22

4.5. User Study Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.6. User Study Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5. Expert Validation: Resilience, Adaptation, and Sustainability (RAS) Planning . . . . 26

5.1. Expert Validation: Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2. Expert Validation: Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2.1. Generalizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2.2. User experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2.3. Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3. Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

ii



Appendix A. Implementing a Modular System for Testing Human-in-the-loop Docu-
ment Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.1. Overall Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.1.1. Login . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.1.2. Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A.1.3. Document List with active learning . . . . . . . . . . . . . . . . . . . 39

A.1.4. Document List without active learning . . . . . . . . . . . . . . . . . 39

A.1.5.  Labeling with active learning . . . . . . . . . . . . . . . . . . . . . . 39

A.1.6. Labeling without active learning (Non-active label) . . . . . . . . . . 41

A.1.7. Document re-labelling . . . . . . . . . . . . . . . . . . . . . . . . . . 42

A.1.8. Authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

A.1.9. Time Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A.1.10.App tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Appendix B. List of Symbols, Abbreviations, and Acronyms . . . . . . . . . . . . . . . 46

iii



List of Tables

Table 1. Examples of plan types and their purpose in a community. Source: “Plan 
Integration for Resilience Scorecard Guidebook.”[1] . . . . . . . . . . . . . . . 8

List of Figures

Fig. 1. Example content analysis for RAS . . . . . . . . . . . . . . . . . . . . . . . . . 6

Fig. 2. Annotation itself is an iterative process. . . . . . . . . . . . . . . . . . . . . . 7

Fig. 3. Example illustrating how a topic model can automatically group a set of com-

munity resilience documents with a pre-defined number of topics. Topic 
models automatically group similar documents together and suggest a com-

mon theme for group of documents. . . . . . . . . . . . . . . . . . . . . . . . 16

Fig. 4. By repeating the process of active learning to manually label at least 30 doc-
uments, the classifier starts predicting accurate labels for the rest of the doc-
uments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Fig. 5. The document annotation process in a human-in-the-loop system. . . . . . . 21

Fig. 6. User study evaluation metrics gain for each group. The left shows the me-

dian evaluation metric gain, from minute 5 to minute 60, in the user study. 
The right shows the metric gain, from 2 documents labeled to 80 documents 
labeled, for each group. CTM combined with active learning helps annota-
tors create the labels with the best quality, on average, compared to the 
other groups. The bands, which represent group variance around the me-

dian, suggest consistency in evaluation metric values across users. . . . . . . 25

Fig. 7. We track the expert users’ purity, adjusted Rand Index, and adjusted nor-
malized mutual information on the number of documents labeled with 3 ex-
perts in each group. CTM (contextualized neural topic model) does better 
than LDA overall on the three metrics. The bands, which represent group 
variance around the median, suggest consistency in evaluation metric val-
ues across users. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Fig. 8. The annotation process encoded within the interface. . . . . . . . . . . . . . 37

Fig. 9. The instructions page provides detailed instructions on the user study and 
navigating the interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Fig. 10. The active learning document list shows a list of recommended documents 
for annotation, with the current recommendation at the top. . . . . . . . . . 39

Fig. 11. The non-active learning document list shows documents within each docu-
ment cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Fig. 12. The active learning page for annotating (labeling) documents showing doc-
ument ID and text, with suggested labels at the bottom. . . . . . . . . . . . . 41

Fig. 13. The document annotation page in an environment without active learning, 
including top topics and associated keyword suggestions for labels on the right. 42

Fig. 14. This page displays documents that have already been labeled and allows the 
user to reassign labels to previously annotated documents by clicking on the 
document to re-enter the relevant document-annotation page. . . . . . . . . 43

iv



Fig. 15. At any time, users can click through an optional tutorial to learn how to nav-
igate and use the interface. The tutorial is shown upon entering the applica-
tion and exiting the instructions page. . . . . . . . . . . . . . . . . . . . . . . 45

v



NIST TN 2287
May 2024

1. Introduction

Not all data is numerical. Unstructured text in a variety of media potentially contain hid-
den treasure troves of information. This observation is obvious across a broad array of 
domains and applications, including the analysis of maintenance work orders to improve 
manufacturing operations;[2] analysis of legal documents and case-law decisions;[3] and 
the analysis of open-ended survey responses.[4] The common problem across these and 
many similar applications is how best to transform the text found “in the wild” into struc-
tured data for analysis.

While the information age has resulted in an explosion of unstructured text, the analy-
sis of text as data is not new and there exist many well-established methods in the social 
sciences for this task. Content analysis is the study of documents to examine patterns in 
media in a replicable and systematic manner.[5] The process gives meaning to unstruc-
tured documents, such as text or pictures, and allows researchers to quantify and analyze 
the presence, meanings, and relationships of certain words, themes, or concepts. As such, 
content analysis is often described as deductive, beginning with a set of research questions 
that guide the extraction of information from text. Grounded theory shares many similar-

ities to content analysis, but is inductive. Grounded theory represents a set of methods 
for iteratively developing a theory from the source material to provide a meaningful rep-
resentation of the observed patterns.[6]

What such methods have in common is that they are labor intensive and, therefore, very 
time consuming. This presents a limiting factor in the modern era where the availability of 
text as data is potentially unbounded, as existing social science methods are not scalable. 
On the other hand, a key advantage of such methods is that they embed domain expertise 
into the analysis in order to derive meaningful insights from the text.

It is reasonable to wonder whether computational methods offer an advantage over tradi-
tional social science methods. A key takeaway from the computational social science liter-
ature is that computational methods initially offered the promise of scalability, but did not 
provide an “objective” or even transparent alternative to traditional social science meth-

ods. This led many social science researchers to either adopt the use of “off-the-shelf” 
methods (for instance, topic modeling with Latent Dirichlet Allocation, or LDA, using de-
fault parameterizations) or else to remain skeptical of computational methods.[7–9]

There has been an increasing recognition among both social scientists and computer scien-
tists that the key to computational methods is to blend them with social science methods. 
In other words, we should not expect that machine learning can replace a human but rather 
we should strive to use machine learning to assist a human in domain-specific tasks.[8] 
This paradigm shift is characterized as human-in-the-loop, or mixed-initiative, Natural Lan-
guage Processing (NLP),[10] or sometimes as Technical Language Processing (TLP).[2]

In this report, we address the following question: to what extent can machine learning as-
sist a human with traditional text analysis, such as content analysis or grounded theory? In 
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practice, such tasks require humans to review and categorize (e.g., by manually annotating 
the text with labels) a large sample of documents. We do not expect nor necessarily desire 
the machine to automate the tasks the human would otherwise perform, but rather want 
to find ways to help the human to perform the tasks more efficiently (with respect to time 
spent on annotation).1

It is worth noting that in terms of human-in-the-loop frameworks, machine assistance can 
come in many forms, including: curating raw data; processing raw data for computation; 
labeling raw data; and analyzing data.[10] While document labeling is but one task, we 
focus on it both to illustrate how machine learning can assist humans as well as because it 
is an integral task to many social science methods, including content analysis and grounded 
theory. Thus, it is a realistic case study for human-in-the-loop social science research.

The report is structured as follow. In Sec. 2, we discuss the motivating example of analyzing 
community planning documents within the domains of Resilience, Climate Adaptation, and 
Sustainability (RAS).[11] In particular, researchers at NIST studied a corpus of guidance 
documents aimed at providing communities with best practices for developing particular 
planning documents. The goal was to explore similarities and differences across different 
guidance documents and the approach used content analysis. As we discuss, this approach 
is very labor intensive. Framing the problem as one of knowledge extraction, we explore 
to what extent a human-in-the-loop approach can be used for this problem.

In Sec. 3, we review the literature on applications of human-in-the-loop computational 
social science as well as applications of text mining and natural language processing (NLP) 
to the domain for our motivating example (community planning). We then summarize 
takeaways for the generic problem of knowledge extraction from technical text as well as 
for our motivating example of community planning documents.

In Sec. 4, we present the methodology we developed for the generic problem of extracting 
knowledge from technical documents. Specifically,

• We use supervised and unsupervised methods, combining active learning with topic 
models to suggest labels for clusters and recommend documents for labeling

• We develop a modular human-in-the-loop system that allows us to “plug in“ machine 
learning methods for testing and validation (through user studies)

One of the key contributions of this research is demonstrating the value of human-centered 
model evaluation relative to relying on standard “automated” evaluation metrics. Our re-
sults show how human-in-the-loop task-based evaluation can provide a more complete 
picture of the value of different topic models for assisting with text analysis tasks such as 
document annotation for content analysis.

1This integration is variously characterized as human-computer interaction (HCI), human-in-the-loop, or 
human-machine teaming and requires broader interdisciplinary collaboration,[10] as discussed in Sec. 3.

2
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In Sec. 5, we return to our motivating example of analyzing community planning docu-
ments. We present results from a mini-study to validate the results from Sec. 4. In particu-
lar, a set of experts in community resilience use the tool on “real data” (the RAS data from 
the motivating example content analysis). The validation study focuses on two competing 
models and the results are consistent with the user study results, which suggests that the 
results from Sec. 4 generalize to “real data.” Moreover, we review expert feedback on the 
tool deployed for the user study, as well as an efficiency gains (in terms of time to label 
documents) relative to manually hand-annotating text for content analysis.

Finally, Sec. 6 outlines gaps and next steps for future research. We note that the advent 
of large language models (LLMs) has changed the landscape of machine assistance, espe-
cially for text analysis. As the field is rapidly evolving, we are working on evaluating LLMs 
to support humans in the analysis of technical text. Finally, additional details on the im-

plementation of a human-in-the-loop interface for user studies is provided in Appendix A.

1.1. Terminology and definitions

Before we proceed, it is important to discuss the range of terminology across disciplines 
and to provide consistent terminology and definitions for what follows. One of the key 
differences in terminology is the use of the word “document.” For instance, an urban plan-
ner studying a community’s climate adaptation plan would consider the entire (potentially 
hundred-pages long) plan as a “document.” In contrast, computational approaches to text 
analysis often refer to the unit of analysis as a “document.” For instance, if the unit of anal-
ysis is a paragraph, then the hundred-pages long climate adaptation plan is broken down 
to a collection of paragraphs and each paragraph would be a “document.”

Our goal is not to debate the merits of any particular use of terminology, but rather to 
select a clear set of terms and to be consistent in our use throughout the report, in order to 
avoid confusion. In the process, we highlight potential terms that may create confusion or 
introduce ambiguity across domains. Future research might look to establishing consistent 
terminology to enable interdisciplinary collaboration.

The following terms are presented in order of complexity, to the extent possible, rather 
than alphabetically. In addition to the key terminology listed below, acronyms are defined 
in Appendix B.

Text Written human (natural) language in structured or unstructured form.

Document Text unit of analysis (e.g., sentence, paragraph, social media post).

Note 1: Alternatives include segment, chunk, or example.

Note 2: Not to be confused with the unit of observation in text analysis, which is 
often ambiguous. Tidy text principles suggest that the unit of observation (e.g., 
the row in a data frame) is a term (e.g., word, n-gram, or sentence).[12]

3
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Source Original source of document example (e.g., essay, community plan, webpage).

Corpus Collection of documents.

Sample A subset of a corpus.

Label Metadata assigned to document to provide context, meaning, or other information 
(e.g., “cat” or “dog”).

Note: Alternative terms include code or annotation.

Annotation The process of adding a label to a document.

Note: Alternatively referred to as “coding” in social science.

Annotator The human conducting document annotation.

Note: Alternatively referred to as “coder” in social science.

Term Document-level unit of analysis (e.g., word, n-gram, or sentence) used to build a 
lexicon (or vocabulary) for a corpus.

Cluster A group of documents that are similar with respect to some metric.

Topic A cluster of documents that share latent semantic structure (e.g., similar terms).

Theme Often used interchangeably with topic, but refers to latent semantic structure; 
typically, a human will attach meaning to a topic to identify the underlying theme.

Keyword Relevant terms in documents that tend to co-occur within a topic.

4
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2. Motivating Example: RAS

As a motivating example, consider the process of planning for resilience to natural haz-
ards within a community. Communities facing natural hazard risk are often concerned 
with other risks as well, including sea-level rise, resource depletion, and pandemics. Thus, 
community resilience planning occurs in the context of multiple, potentially competing 
objectives, such as adaptation, sustainability, and public health. However, much of the 
existing guidance on community resilience planning is formulated independently of other 
objectives that compete for a community’s limited resources.

Clavin et al. [13] examine the literature on the often technical and administratively compli-

cated planning processes undertaken to address community objectives, focusing on plan-
ning for resilience, climate adaptation, and sustainability (RAS). 2 Their review is focused 
on developing a methodology for assessing the quality of resulting plans. In the process, 
the authors highlight areas of overlap, including similarities and differences in terminology, 
as well as opportunities for synergy across planning processes.

Clavin et al. [17] take this a step further by conducting a rigorous content analysis of RAS 
planning guidance, which are typically reports produced by government or non-governmental 
organization with the purpose of providing communities with a “recipe” for conducting the 
planning process. Figure 8 illustrates the steps in the RAS annotation workflow for conduct-
ing content analysis.

2Resilience is the ability to prepare for anticipated hazards, adapt to changing conditions, and withstand and 
recover rapidly from disruptions.[14] Adaptation is the process of adjustment to actual or expected climate 
and its effects to moderate harm or exploit beneficial opportunities.[15] Sustainability refers to “develop-
ment that meets the needs of the present without compromising the ability of future generations to meet 
their own needs.[16]
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Fig. 1. Example content analysis for RAS

As shown in Fig. 1, the primary research goal is to “systematically identify and label goals 
and policies in community plans.” In particular, one of the research questions is to what 
extent planning guidance can provide insight into the themes generally found in actual 
community plans. The RAS content analysis allows the authors to quantify, in terms of 
term frequencies, areas of similarities and differences across the different objectives that 
might be addressed by resilience, adaptation, and sustainability planning. In the process, 
the authors carefully developed and iterated on a codebook that was used to annotate the 
planning guidance documents chosen for the study. The result is a rigorously validated, 
hand-annotated corpus specific to the domain of RAS planning guidance.

Of course, this requires significant human labor, and in our RAS example, estimated in total 
to be around five months of annotation, review, and validating labels through intercoder 
checks. In particular, Fig. 2 shows that Step 3 in Fig. 1 is not a linear process. “Anno-
tate data” is an iterative process that includes: development as well as updating of the 
codebook used for annotation, based on periodic check-ins with annotators, in addition to 
training and potential re-training of annotators.

Moreover, data checking and validation in Step 4 is almost as time consuming as the ini-
tial annotation process itself: four annotators spent three months adding labels to the 
documents, and roughly two additional months on validation. The final, complete corpus 
consists of 2625 labeled documents, representing roughly 25 source planning guidance 
reports.
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- Train annotators by adding 
labels to a sample of 
documents together. 
- Resolve differences and 
refine codebook

Annotator Training

- Initial codebook developed 
through literature review, 
expert solicitation. 
- Check labels against sample 
of documents for fit; add or 
edit as needed

Develop Codebook

- Periodic checks to resolve 
differences, re-train 
annotators, or edit codebook

Updates

- Annotate documents based 
on latest codebook

Annotation

Fig. 2. Annotation itself is an iterative process.

2.1. Scaling?

Recall that the hand-annotated corpus corresponds to planning guidance. It would be 
straightforward, though labor-intensive, to hand annotate additional passages of text from 
similar source guidance.

But what about community plans themselves? Ultimately, the goal of these studies is to 
extract actionable intelligence for communities planning for RAS. Specifically, if we look 
at actual community plans for existing approaches to RAS objectives, what can communi-

ties learn in the future for their own planning processes? For instance, for streamlining 
planning across resilience, adaptation, and sustainability.

Moreover, consider that communities conduct planning processes for many other objec-
tives. In addition to resilience, sustainability, and climate-adaptation plans, communities 
often develop other plans. Table 1 presents examples of community plan types. These 
range from very high level plans such as comprehensive plans that almost all communities 
develop from time to time, to more specialized plans such as small area or neighborhood 
plans that tend to be tailored to the community.
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Table 1. Examples of plan types and their purpose in a community. Source: “Plan 
Integration for Resilience Scorecard Guidebook.”[1]

Plan Type Purpose

Comprehensive/General Plan Main community planning document

Hazard Mitigation Plan Reduce long-term risk to human life and infrastruc-
ture

Disaster Recovery Plan Address disaster recovery related needs

Area Plans: Address planning issues pertaining to a portion of 
the community

  •  Downtown (Redevelopment)

  •  Small Area/Neighborhood/District
  •  Waterfront

  •  Corridor Plan

Functional or Sector-specific Plans: Focus on individual or related functions or sectors 
in need of specialized planning

  •  Transportation/Transit
  •  Parks/Open Space
  •  Economic Development

  •  Environmental Management

  •  Resilience
  •  Sustainability
  •  Climate Adaptation and/or Mitigation

  •  Housing (Consolidated/Strategic)
  •  Wildlife Management

  •  Wildfire Protection

Scaling the content analysis workflow in Fig. 1 for each of these scenarios introduces in-
creasing complexity, in addition to requiring significant time and resources.

2.2. Summary of the problem

The RAS content analysis is an example of the more generic problem of transforming text 
found “in the wild” into structured data for analysis, as described in Sec. 1. Community 
plans, or even planning guidance reports, do not adhere to a particular format, so there is 
a great deal of variation in the amount of information as well as in how that information is 
presented across plans—even within a single community.

Annotating source text is one way to organize unstructured data into a meaningful rep-
resentation that is suitable for analysis. Moreover, human expertise is critical to the or-
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ganization, as the source text is often technical and domain-specific. If we want a large 
quantity of text to analyze, we need more efficient tools than manual human annotation.

As this example highlights, and the literature review in Sec. 3 shows, the ultimate goal is 
not to fully automate such tasks but rather to incorporate machine learning methods in a 
process that remains human-centered in order to leverage technical expertise.

The question we address in this report is whether we can use machine learning to assist 
humans in research tasks such as content analysis. In particular, we wish to reduce the 
time required to annotate text while maintaining confidence in the resulting labels.
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3. Literature

Recall the motivating question we posed in Sec. 1: to what extent can machine learning as-
sist a human with traditional text analysis, such as content analysis or grounded theory? In 
particular, to what extent can machine learning assist humans in efficiently and effectively 
reviewing, labeling, categorizing, and analyzing a large sample of technical documents.

We first review the literature on computational methods in social science, which tackles 
such tasks. We then review applications of machine learning specific to the domains of 
our motivating example (Sec. 2): resilience, climate adaptation, and sustainability (RAS) 
planning.

3.1. Computational methods in social science

As we alluded to in Sec. 1, the analysis of text is a typical problem encountered in the 
social sciences. For instance, political scientists that want to compare political candidate 
ideologies, based on speeches they give; psychologists that are interested in mapping pa-
tient intake forms to latent personality types; and communications researchers examining 
trends in public discourse before and after a disruptive event through the analysis of social 
media posts. The common thread is that there is a wealth of data embedded in a broad 
variety of texts and the ultimate problem is how to operationalize that text into data suited 
to answering any number of research questions. The literature offers several potential op-
tions for integrating computational methods into social science research.

DiMaggio [18] compares approaches to text analysis in social science and computer sci-
ence, while noting the differences between the fields is not massive. One key difference 
is what DiMaggio [18] terms “social scientists’ unhealthy obsession” with model-based 
inference, as opposed to computer science’s focus on model utility for specified tasks.3 
The result is a relatively higher prioritization of corpus curation in social science. On the 
other hand, DiMaggio points out that computer scientists tend to place more trust in hu-
man judgment as the “gold standard” for benchmarking machine learning algorithms. In 
contrast, social scientists are much more aware of and comfortable with the fact that hu-
mans are prone to systematic biases and logical fallacies. One thing both fields have in 
common, DiMaggio argues, is that both humans and algorithms are equally bad at nu-
ance. These similarities and differences suggest potential common ground for collabora-
tion on cognitively similar tasks such as document annotation. Moreover, as DiMaggio 
points out: “topic-modeling programs require lots of decisions that most social scientists 
are ill-equipped to make,” which argues for an interdisciplinary, human-in-the-loop ap-
proach as we propose in this report.

3This contrast was famously observed more generally between “model-based” statistics and “algorithmic” 
machine learning by Leo Breiman in 2001 [19].
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Within political science, Grimmer and Stewart [7] may be the definitive introductory re-
view of computational methods for content analysis.4 Grimmer and Stewart [7] begin with 
an overview of computational methods for automated text analysis, covering supervised 
and unsupervised learning, scaling methods, and validation (semantic, including predic-
tive, and convergent validity). In the process, Grimmer and Stewart [7] address common 
misconceptions, errors, and potential pitfalls (e.g., the “best model” is typically application-
specific). Given the breadth of methods and potential for misuse, the authors provide four 
guiding principles as a framework for automatic content analysis, the most relevant of 
which is that computational methods for “text amplify resources and augment humans.”5 
Finally, it is worth noting that much has changed since 2013: while Grimmer and Stewart 
[7] conclude by urging political scientists to contribute rather just consume algorithms, this 
has already happened in political science specifically as well as across many fields in the 
social sciences more broadly.6

Lucas et al. [23] review supervised, unsupervised, and scaling methods for analyzing text 
in multiple languages within comparative politics, for the analysis of blogs, newspaper ar-
ticles, speeches, deliberations, and political-party manifestos.7 Multilingual text analysis 
presents unique challenges, most importantly validating the alignment of topics across lan-
guages, and the authors propose can be addressed by using Structured Topic Models (STM) 
to incorporate metadata as document-level covariates to pool information and compare 
across documents.8 Lucas et al. [23] illustrate the use of STMs with a case study of Arabic 
and Chinese text. The key takeaway is that “automated text analysis... amplifies human 
effort,” similarly to Grimmer and Stewart.[7]

Wilkerson and Casas [24] discuss the use of text as data in political science research, de-
lineating four areas of advancement and opportunity for research: classification, scaling, 
text reuse (which focuses on “discovering instances of similar language usage”), and us-
ing syntax and semantics to understand political relationships. Given the extensive use of 
topic models in political science, Wilkerson and Casas [24] discuss the particular problem 
of topic instability (where multiple runs of the same topic model may result in topics with 
little overlap) and the challenge of validation in the absence of gold labels across many 
applications. Moreover, typical validation is often focused on a single model, with varying 
numbers of topics, rather than exploring results from multiple models. The methodol-

4Based on 3733 citations on Google Scholar as of 2024-04-15: https://scholar.google.com/scholar?lookup=

0&q=grimmer+stewart+2013&hl=en&as_sdt=0,21
5The first is a restatement of George Box’s famous quip that “all models are wrong, but some are useful.” 
The third stresses that the best model is context and application specific, whereas social scientists tend to 
think in terms of “global” best. The final principle highlights the importance of validation.
6See for instance the use of Exploratory Graph Analysis (EGA) in psychology [20, 21] and the development 
of metrics to measure partisanship in congressional speeches in economics [22].
7In particular, the Manifesto Project, which supports “policy preferences covers over 1000 parties from 1945 
until today in over 50 countries on five continents:” https://manifesto-project.wzb.eu/
8In addition, multilingual analysis presents preprocessing challenges, from integrating many potential en-
codings of the source text to translating the raw text to a single language.
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ogy we present in this report approaches text analysis problems agnostic to the model, 
with the goal of allowing users to “plug and play“ into a modular system. Moreover, the 
user study we present in Sec. 4.3 is focused specifically on validation across different topic 
models. Finally, a human-in-the-loop system as we present in this report can support an 
additional level of quality control by allowing users to hand-annotate a small set of docu-
ments and then validate the output with machine assistance against such gold labels. We 
demonstrate this in an additional validation study we conduct using the gold labels from 
our motivating example in Sec. 2.

In the domain of communications, Zamith and Lewis [25] compare traditional content anal-
ysis (which they call the “human coder”) and computational approaches (which they call 
the “algorithmic coder”). Much of what Zamith and Lewis [25] discuss involves leveraging 
computational methods to curate or parse large data sets down to something a human can 
easily and quickly process/validate on a second pass. They propose a “hybrid” approach to 
blend the best of both human and algorithmic coders: in other words, to leverage human 
expertise “contextual sensitivity and validity” and the scalability and reliability of compu-

tational approaches. The hybrid approach of Zamith and Lewis [25] sounds a lot like the 
human-in-the-loop approach we propose in this report and their paper provides some jus-
tification for using human-in-the-loop for domain-specific, technical documents.

Similarly, Boumans and Trilling [26] review the literature on automated content analysis 
in journalism and other domains, as well as methods used for digital journalism. The rec-
ommendations for conducting machine-assisted content analysis include: interdisciplinary 
teams; code literacy; developing new methods and tools (echoing Grimmer and Stewart 
[7]; and, importantly, sharing code.

Baumer et al. [8] compare grounded theory and topic modeling from the lens of commu-

nications and information science. Using a motivating case study of social media behavior, 
they explore similarities and differences in analyzing survey responses, highlight trade-
offs in choosing between methods, and make recommendations for combining the two 
approaches (a “mixed-methods” approach). The main similarity (“convergence”) is a cor-
respondence between grounded theory themes and topic model results (i.e., the topics). 
As Baumer et al. [8] observe, both facilitate meaningful discourse on the data and while 
terminology may differ, both follow a similar analytical process that requires a significant 
amount of expert judgment. On the other hand, the main difference (“divergence”) is that 
a topic model can align pretty well with grounded theory themes even without the use of 
contextual information (as the authors state, the “model does not need to understand”). 
More obviously, qualitative methods such as grounded theory require much greater time 
commitment.

Building on these convergences and divergences, Baumer et al. [8] provide a framework 
for human-in-the-loop text analysis. The authors see computational methods as comple-

menting human-driven qualitative research. Thus, topic models should be used to facilitate 
document organization and prioritization by thematic coherence, which is the approach we 
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propose in this report (see Sec. 4). Muller et al. [27] further explore convergence in ap-
proaches (both are iterative and require human input) and potential hybrid approaches. 
An open question posed is what metrics are best suited for “detecting concepts, themes, 
or constructs grounded in text.”

In light of increasing interest and use of Natural Language Processing (NLP) in cognitive 
science, Lake and Murphy [9] compare human and algorithmic approaches to psychological 
semantics (i.e., how humans represent the meaning of words and how humans interpret 
language based on those mental models). While NLP shows great promise as a theory of 
psychological semantics, Lake and Murphy [9] observe a few key shortcomings that must 
be addressed. In particular, they find that model performance is often strongly tied to 
existing corpora. This works well for tasks such as word similarity but less so for domain-

specific meaning, e.g., psychological judgement. The authors argue for the development 
of more complex word representations, potentially through multimodal models such as 
visual-language models that receive human feedback.

Kjell et al. [28] explore the use of NLP to measure psychological constructs based on open-
ended survey responses. Psychological constructs (such as attitudes and emotions) are 
typically measured based on close-ended responses, often on a Likert scale. However, as 
Kjell et al. [28] observe, respondents can encode deep psychological meaning in qualitative 
responses. Traditional NLP methods do not work “off the shelf” for such a technical text. 
Thus, the authors propose the use of semantic measures to “statistically measure, differen-
tiate and describe subjective psychological states.” The authors benchmark this approach 
with traditional methods and find comparable validity. While not explicitly human-in-the-

loop, developing semantic measures requires domain expertise to conduct latent semantic 
analysis (that is, it requires significant human expertise).

3.2. Domain-specific applications: RAS

We now turn to the domain of our motivating example: resilience, climate adaptation, and 
sustainability (RAS). While the literature in these domains is nascent and promising, many 
of the applications are “mechanical” uses of computational methods (e.g., off the shelf 
topic models and word embeddings, as well as classification). The preceding literature 
review offers a potential roadmap for future research in RAS that embraces a more human-

centric approach as we propose in this report.

Biesbroek et al. [29] train a neural network to classify text passages (or “blocks”) from pol-
icy documents in order to predict if a passage is about ‘Adaptation’, ‘Mitigation’, or ‘Non-
climate.’ The authors collected and scraped text from documents tagged “policy papers” 
in the United Kingdom’s collection of ‘gov.uk’ Ministerial websites, hand-selecting a small 
subset pertaining to each category to annotate (10 each for Adaptation and Mitigation, 
20 for Non-climate). Each block roughly corresponded to a paragraph, with some addi-
tional pre-processing and a maximum block length of 200 words. The result was a corpus 
consisting of nearly 14 000 blocks of text, with about 3800 corresponding to Adaptation 
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and 5500 to Mitigation. The ultimate trained model performed fairly well at classification, 
based on the usual metrics (precision and recall) as well as expert review, and the authors 
demonstrate potential use to scale the size of the labeled corpus.

Berrang-Ford et al. [30] conducted a machine-assisted literature review of the academic cli-
mate adaptation literature. Specifically, the authors systematically collected over 48 000 
articles through bibliometric search to learn what adaptation responses are observed in 
practice. The authors adopt a process that combines machine learning with human exper-
tise in order to sift through a large amount of technical text. First, the authors developed 
predetermined inclusion criteria to screen articles for further study. Second, the authors 
used a classifier to assist with screening with respect to the inclusion criteria. This step 
required a team of four researchers to manually screen and annotate a small subset of 
articles based on the criteria. The hand-annotated articles were then used to train the 
classifier to predict whether an article is relevant to the study. The result was about 2000 
articles selected for further study by teams of humans to confirm whether the article sat-
isfied the inclusion criteria as well as to draw further insights on adaptation practices. The 
final corpus consisted of almost 1700 articles that allowed the authors to not only assess 
the “global stocktake” of implemented adaptation but to also identify priorities for future 
research.

Brinkley and Stahmer [31] use topic modeling on a corpus of 461 California planning docu-
ments. The goal is to identify common themes across communities through “automated” 
document annotation and thus the task is closer to the one we are concerned with in this 
report. Unsurprisingly, while the authors talk about “automating” content analysis, the 
approach implemented in the paper requires significant human input. In that sense, Brik-
ley and Stahmer [31] implicitly leverage a human-in-the-loop approach to provide domain 
expertise. Interestingly, the authors use an “off-the-shelf” package for LDA to cluster doc-
uments by themes, but use the underlying plan’s geographic information to plot variation 
in themes across communities.

Finally, Saheb et al. [32] review the academic literature on sustainable artificial intelligence, 
AI, which they define as the use of AI in support of sustainability and sustainable energy 
goals. In particular, “the term sustainable AI describes how AI can be used to enable so-
cieties to achieve their sustainability goals.” The authors combine clustering, LDA, and a 
contextual topic model (based on BERT) with a cluster-based content analysis to identify 
eight themes in the field, which highlight research gaps and lead to recommendations for 
further research (ie, based on expert human judgment of the topics). The authors are able 
to explore each of the discovered topics, associated topics, and evolution of topics over 
time. The ‘mixed method” approach taken by Saheb et al. [32] is a hybrid computational 
approach that fundamentally relies on human expertise for the content analysis.
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4. Methodology

In this section, we present the methodology we developed for the generic problem of 
extracting knowledge from technical documents. Specifically, we describe:

1. Sec. 4.1: Machine learning methods for assisting humans in the document labeling 
problem described in the motivating example (Sec. 2).

2. Sec. 4.2: A human-in-the-loop system developed to implement machine-assistance 
for the use of document labeling

3. Sec. 4.3: User study results to validate the use of different models for machine-

assisted document labeling.

4.1. Machine Learning Techniques

First, we describe the machine learning methods we consider for the task of document 
annotation. In particular, we summarize theoretical, simulation, and user study results 
comparing the use of various topic models in a system that provides active learning as a 
baseline.[33]

The methods combine supervised and unsupervised learning as follows:

• Unsupervised: Topic models automatically group documents thematically and present 
potential labels to the user

• Supervised: Active learning takes user labels as feedback and provides recommen-

dations on similar documents for labeling

The value of using active learning with topic models has been shown by Poursabzi et al. 
[34], in a system they call Active Learning with Topic Overviews (ALTO). Thus, we focus on 
comparing different classes of topic models under the assumption that active learning is 
valuable for the user’s task.

4.1.1. Topic Modeling

As the literature review in Sec. 3 shows, topic modeling has been a popular machine tech-
nique for conducting text analysis in the social sciences for instance, for semi-automated 
content analysis or machine-assisted grounded theory. The classical and most popular 
topic model technique is Latent Dirichlet Allocation (LDA), which has over 50 000 cita-
tions.[35] Figure 3 shows a simple example of automatic document clustering using topic 
models, which can allow a social scientist to quickly grasp the most popular topics within 
a massive number of documents.

When conducting content analysis, a researcher can develop a codebook of themes (and 
consequently labels) for investigation within a corpus.[5] Given a large set of unstructured 
documents, a topic model can automatically discover the latent semantic themes for the 
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Fig. 3. Example illustrating how a topic model can automatically group a set of community 
resilience documents with a pre-defined number of topics. Topic models automatically 
group similar documents together and suggest a common theme for group of documents.

documents. The researcher can then explore the topics for alignment with the hypothe-
ses (the initial codebook developed before looking at the data) and potentially use the 
emergent themes from the topic model to update the codebook in an iterative process.

Grounded theory treats annotation as an iterative and complicated process where human 
annotators have to wander around a massive number of unstructured documents and as-
sign them to human created categories.[8] Topic models can assist with the initial anno-
tation process by providing annotators a global overview of potent categories in a set of 
documents.

4.1.2. Topic Model Variations

In this section, we introduce various topic models and compare their differences and ad-
vantages. Different topic models have quite different ways of automatically clustering doc-
uments, and the generated topics are quite diverse for different topic modeling methods.

The most popular topic model is classical LDA, first introduced by Blei, Ng, and Jordan [35] 
in 2003. The model treats each document as a distribution of words, and uses probabilistic 
Bayesian inference to automatically cluster documents based on their word distributions. 
Classical LDA is a simple algorithm that requires less computational resources to run rela-
tive to more modern topic models.

A variation of LDA is supervised LDA (sLDA).[36] Unlike classical LDA, sLDA requires a set of 
known response variables in advance prior to automatic clustering. Suppose we have a set 
of movie reviews with star ratings, and we want to analyze what people talk most about 
for each level of star rating. In this case, LDA cannot directly relate the generated topics 
with star ratings, and it can only generate very general topics and review clustering where 
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people talk most about for all star levels. However, sLDA can generate topics that correlate 
with the star levels, where the generated topics are more representative to a particular 
star level and the reviews are clustered more based on similar star ratings. Thus, sLDA can 
effectively incorporate response variables to generate topics that are more representative 
of the corpus as a whole. In the case of our motivating example, the response variables 
are the annotator inputs.

With the resurgence of neural networks, neural topic models (NTM) have become a quite 
popular research direction for computer science researchers. NTMs take advantage of 
pre-trained neural networks, where the network is trained on a large amount of text cor-
pora and have already learned mass word relationships and associations from the cor-
pora. NTMs take the pre-trained network’s embedding that contains rich contextual in-
formation to encode a set of documents and perform automatic topic model clustering 
on them. Different NTMs have quite different pipelines to cluster documents and gener-
ate topics, and the quality of generated topics are quite diverse across different NTMs. 
Current popular NTMs include the contextualized topic model (CTM),[37] embedded topic 
model (ETM,)[38] and Bertopic.[39]

4.1.3. Active Learning

Merely having a set of topics and themes is not sufficient for a researcher to conduct 
thorough data analysis on a corpus of technical text. For instance, social scientists us-
ing grounded theory are interested in exploring on the contents of specific documents to 
come up with labels for the documents. To support more efficient exploration of topic 
model outputs, we use active learning. Active learning is a machine learning technique 
to continuously guide users’ attention to individual documents based on users’ previously 
input labels.[34]

To illustrate how active learning can support data analysis, consider the following ideal-
ized document annotation process. Suppose we have a set of documents without any 
categories, titles, or labels. Mimno et al. [40] define the annotation (or “coding”) process 
as attaching meaning to the set of documents by assigning documents into groups or clus-
ters, where each cluster is assigned a particular meaning, also referred to as a ‘label’ (or 
‘code‘).

In this idealized annotation process, traditional approaches to assigning labels are labor-
intensive and complicated. Researchers or annotators usually assign labels to documents 
by manually going through each document in the corpus, either in order or randomly, as 
illustrated in our motivating RAS example in Sec. 2. In addition, due to the complexity and 
diversity of annotator-selected documents, and the limitations of human working mem-

ory, annotators can quickly lose track of the labels they have previously created as they 
annotate more and more documents. There is a danger of creating redundant or repeti-
tive labels that may be covered by the existing label set or of creating labels that are much 
too detailed. For example, if an annotator creates 100 labels for 2000 documents, and 
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the annotator reads a new document and creates a label ‘water infrastructure and natural 
development’ but there is an existing label ‘public infrastructure and natural resource de-
velopment’ that is more general and can cover the newly created label, then the annotator 
inadvertently creates duplicate or over-specific labels during the annotation process.

Thus, a process of refinement of labels is often needed to merge or replace labels with very 
similar labels, which is itself a long and tedious process. Another way to combat annotators 
creating over-specific labels is for the annotator to explore the list of existing labels they 
created and try to pick a suitable label for each document. If no suitable label exists to 
represent the summary meanings of the current document, the annotator creates a new 
label and adds it to the list of existing labels. However, as the number of existing labels 
grows, this process requires much more mental effort from the annotator.

Active learning solves the challenges presented by this idealized annotation process, as 
illustrated in Fig. 4:

1. It can continuously redirect the user by recommending the most beneficial docu-
ment for the annotator to read next, based on their existing inputs.

2. It can provide a ranked list of existing labels based on the probability a label belongs 
to the new document, reducing the cognitive burden of going through existing label 
list to create or assign labels.

3. It can reduce the number of documents needed to label by predicting labels for the 
set of documents, based on existing labels and labeled documents. As the annotator 
labels more documents, active learning can usually predict reasonable labels for the 
remaining documents.

Unlabeled 
documents

A classifier 
picks one 
document

Human provides a 
label to the 
document

Document Content: Flood and storm in Texas..
Label: Natural Hazards-Flood Management

Train the classifier on 
the human labeled 
documents

Remove the 
labeled document 
from the unlabeled 
set

Unlabeled Labeled

Repeat the process

Preference 
function

Fig. 4. By repeating the process of active learning to manually label at least 30 
documents, the classifier starts predicting accurate labels for the rest of the documents.
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As we discuss in Sec. 4.3, we conduct a user study to approximate a plausible threshold 
for the number of documents needed to be labeled within an hour for active learning to 
predict labels for all the documents, where the quality of user created labels and active 
learning predictions for all the documents in an hour is comparable to the ground-truth 
labels created by human annotators and through an inter-annotator agreement process 
that can be time-consuming to complete.

4.1.4. Combination of Topic Modeling and Active Learning

Active Learning provides local direction to annotators by guiding them towards documents 
to annotate next based on their previous inputs. However, merely focusing on individual 
documents to come up with a label that can not only represent the meaning of a specific 
document, but can also take a broader view of possible themes in the set of documents 
is challenging. With active learning alone, annotators do not have access to the set of 
potential topics in a document corpus.

Topic models can automatically cluster the set of documents into various topics at the be-
ginning of the analysis, while providing a set of popular keywords for each topic. When 
using topic modeling in the process of content analysis and document annotation, anno-
tators can take the broad view of the topics into account to create more general topics 
for individual documents and are more likely to create better label groups to categorize 
documents. In addition, for each document, a topic model generates a list of probabilities 
the document belongs to each topic. The list of probabilities also acts as part of inputs of 
active learning, where active learning can:

1. Constantly pick diverse documents from various topics in the process to maximize 
the label categories annotators create with a minimal number of documents needed 
to be labeled, thus reducing the chance annotators label documents with the same 
theme consecutively, which can be inefficient.

2. Improve the active learning classifier’s ability to accurately predict labels for the set 
of documents while requiring fewer annotator label inputs.

Finally, for analysis of technical text such as content analysis, it is important for a human 
to be able to provide context and guide the topic model toward meaningful rather than 
spurious topics. This is the captured in the third requirement: human-in-the-loop.

4.2. Human-in-the-loop implementation

Next, we describe the human-in-the-loop system we developed to evaluate the use of 
various topic models and active learning to assist humans with document annotation.

Our requirements for the system are as follows:

• Focus on human-in-the-loop and user-input;
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• Modular architecture that supports “plugging in” machine learning models;

• Deployable for validation through general public user study and expert pilot study.

The overall methodology decouples the machine learning methods from the implementa-

tion for computer-human interaction and provides a roadmap for interdisciplinary collab-
orations.

As previously discussed, we do not seek to automate human tasks but rather to assist 
humans in performing tasks more effectively. In the case of social science research, for 
instance, human input is crucial to the analysis of technical text and the literature on com-

putational social science is increasingly recognizing the need for human-in-the-loop work-
flows that allow domain experts to guide and provide feedback to machine learning mod-

els.

Modularity is critical and has become more so with the explosion in large language models 
(LLMs), and it will be useful to be able to compare LLMs to more “traditional” methods such 
as topic models in the future. As such, the system is independent of the actual machine 
learning methods used for text analysis tasks.

To achieve modularity, a standard data structure is agreed upon. The data structure de-
fines the communication between the models and the deployed system. The defined data 
structure grants the system the ability to work with different models and allows compari-

son of results across models.

This modularity allows us the flexibility to test the use of different models, as we discuss 
below in Sec. 4.3. Not only can we create different experimental conditions for testing 
the models, we can easily ingest different data sets. This allows us to validate the mod-

els through both large scale user studies, in which we crowdsource participants without 
any particular domain expertise, as well as more tailored validation studies with domain 
experts, as we describe in Sec. 5.

4.2.1. Overall Process

Figure 8 illustrates the document-annotation process in our human-in-the-loop implemen-

tation. Additional details are provided in Appendix A.9

The process features are grouped as follows:

• Log-in and Instructions: Once a user is selected to take part in the user study, a 
unique ID is issued. An unauthorized ID will be denied access. After successfully 
logging in, the set of instructions for the study are displayed for the user’s perusal.

9The source code for the human-in-the-loop system, which we call annotune (Annotation with the Text Un-
derstanding and Navigation Engine), can be found at https://github.com/usnistgov/annotune.
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Fig. 5. The document annotation process in a human-in-the-loop system.

• Documents List: After proceeding from the instructions, a list of documents is pre-
sented to the user to annotate. The list provides a preview (i.e., the first few char-
acters) of each document. The first document in the list is the document recom-

mended by the current model assigned to the user in their experimental condition. 
Users have the freedom to select which document to annotate and can select any 
document in the list.

• Document Annotation: This feature allows users to read the entire document and 
annotate as deemed fit. Some models have keyword clusters displayed that can be 
highlighted to provide contextual meaning of the words in the documents, based 
on the topic model. Users can also view previously labeled documents and relabel. 
Older labels are saved and can be reused.

• Other Miscellaneous Features: The annotation app shows the user the elapsed time 
while logging the times spent on each page. Each session is saved so the user can 
stop and return to the task as needed.

4.3. User Study Validation

Given our interest in active learning and topic modeling to support document annotation, 
we form the following set of hypotheses:

1. Active learning combined with topic model can help annotators more efficiently cre-
ate labels for documents.

2. Neural topic models combined with active learning can help annotators create higher 
quality labels than classic LDA combined with active learning.
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3. Supervised LDA can update and generate new topics and clusters that correlate with 
annotator inputs, which can improve annotators’ overall experience on reading the 
updated generated topics.

We then incorporate active learning and topic modeling in our modular human-in-the-loop 
implementation to conduct a user study to validate our hypotheses. We conduct a 60 user 
user-study on the Congressional Bills dataset.10 The user study is important as it provides 
a systematic approach to evaluating the usefulness of these methods with actual humans 
in the loop.

4.4. Experimental Design

We separate our user study into four groups based on the following experimental condi-
tions used to test our hypotheses:

1. Active Learning Only (NONE)

2. Contextualized Topic Model with Active Learning (CTM)

3. Latent Dirichlet Allocation with Active Learning (LDA)

4. Supervised Latent Dirichlet Allocation with Active Learning (sLDA)

Building on Poursabzi et al. [34], our baseline condition assumes active learning is valuable 
for document annotation. Note that the Contextualized Topic Model (CTM) is the specific 
neural topic model tested in the user study. Further simulation results for alternative neu-
ral topic models are provided in Li et al.[33] As the combination of neural topic models 
with active learning builds on ALTO,[34] we call this combination Topic-Enabled Neural Or-
ganization and Recommendations, or TENOR.[33]

Prior to the user study, we conduct a power analysis to determine the minimum number 
of annotators needed per group in order to detect statistical differences across the four 
experimental conditions. As a result, we assign 15 annotators to each group.

In addition, we conducted several pilot sessions to test the interface, collecting feedback 
on user experience and debugging to ensure successful deployment in the full user study.

4.4.1. Annotator Label Quality Measurement

Measuring the quality of labels created by different annotators is an impossible task,[41] 
where there are no right or wrong labels and each annotator can come up with their own 
definition of labels. To combat this issue, we introduce three machine learning clustering 
metrics to evaluate the quality of annotator labels from our user study. The three metrics 
reflect a comparison of annotator clustering against the official expert clustering in the 
Congressional Bills dataset.

10http://www.congressionalbills.org/codebooks.html
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Purity: Purity evaluates how pure an induced cluster is. It measures what proportion of 
documents are placed in a cluster that is not commingled with documents with another 
gold label.[42] Purity can easily fail if each document is placed into a unique cluster that 
has no other documents.

Adjusted Normalized Mutual Information (ANMI): Normalized Mutual Information [43] 
assesses clustering quality by measuring the interdependence between true and predicted 
labels. ANMI [44], an enhancement of NMI, corrects for the chance alignment of clusters.

Adjusted Rand Index (ARI): ARI [45] measures the similarity between two clusters by eval-
uating the agreement between them while also accounting for random cluster agreement.

All of the above metrics range from 0 to 1, where a higher value of the metric is “better.” 
Any one of the above clustering metrics is not perfect on its own, but if all of three are 
higher for one experimental condition than another, we can say that we feel more confi-
dent that one group creates labels more similar to the official expert labels than the other 
group.

4.5. User Study Ethics

Our user study details including the process, experimental design, payment, maximum 
number of users, potential risks, and privacy were submitted and approved by the Univer-
sity of Maryland Institutional Review Board. To best of our knowledge, our study did not 
contain any risks to the users. To ensure privacy, we assigned a unique identifier to each 
user to protect anonymity. We did not collect any personal information from the users. 
Users were allowed to withdraw from the study at any time if they did not agree with our 
user study requirements.

4.6. User Study Results

We solicit users from the crowdworking site Prolific,11 where each user is paid $20 an hour 
to complete our one-hour study. Each annotator is required to sit for one hour to complete 
the study. Users are instructed to read the task instructions and to get familiar with the 
user interface page first, then they proceed to read documents and create labels for them. 
After their time is up, they will complete a set of feedback questions on their experience, 
where the questions measure their mental effort, reliance on the topic model, and reliance 
on active learning to label documents.

Given that our user study is sampled from a general population, rather than domain ex-
perts from a specific discipline, we use a more user-friendly (though still somewhat tech-
nical) corpus: the Congressional Bills data set. One advantage of using this corpus for our 
user study is that it has been used extensively coded by trained annotators with years of 
refinement of the labels. The corpus has hierarchical labels and includes popular topics 

11https://www.prolific.com/
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about general public policies that users of any background can understand. We keep track 
of the evaluation metrics for every minute passed in the study for all the users. Within 
each group of 15 users, we take the median from the 15 users’ purity, ARI, ANMI metrics 
per minute as our group-level evaluation metric. In addition, we also take the median of 
the metric values for each document the annotators labeled, for each of the four groups. 
We present the results of the evaluations for all the groups in Fig. 6.

Users create labels more similar to the official labels when using contextualized topic 
model. Figure 6 shows that the CTM group users have the highest gain of purity, ARI, 
and ANMI as both a function of minutes elapsed and number of documents labeled. A 
higher score for all three metrics indicates that the user-created labels are more similar 
to the Congressional Bills ground truth assigned categories. Although users in the study 
have different backgrounds, the CTM group still makes higher quality labels than users 
in the other three groups. In the next section, we describe a follow-up user study we 
conducted to validate the generalization of our conclusion that CTM is better than LDA in 
a setting where users have similar backgrounds (in fact, users are domain experts) on the 
RAS guidance document corpus.[17]

Discussion and implications. Within the context of advancing computational methods for 
text analysis, and in particular for social science research tasks such as content analysis, 
our results address both and model selection and evaluation.

With respect to model selection, the results show that using CTM with an active learning 
classifier can help annotators produce high quality label sets quickly, according to cluster 
metrics and human ratings, suggesting that the right choice of NTMs can be better than 
LDA for content analysis. However, simulation results show that classical topic models (i.e., 
LDA) remain competitive with NTMs. Thus, the question is not about NTM versus LDA but 
rather the right choice of NTM for specific tasks.

Moreover, the results show that current automated metrics do not provide a complete 
picture of topic modeling capabilities. Our study demonstrates how human-in-the-loop 
task-based evaluation can be used to compare neural, supervised, and classical topic mod-

els for content analysis and label set creation.

In the next section, we explore how these results may generalize when annotators have 
domain expertise with the text. 
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Fig. 6. User study evaluation metrics gain for each group. The left shows the median 
evaluation metric gain, from minute 5 to minute 60, in the user study. The right shows 
the metric gain, from 2 documents labeled to 80 documents labeled, for each group. CTM 
combined with active learning helps annotators create the labels with the best quality, on 
average, compared to the other groups. The bands, which represent group variance 
around the median, suggest consistency in evaluation metric values across users.
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5. Expert Validation: Resilience, Adaptation, and Sustainability (RAS) Planning

In this section, we return to our motivating example from Sec. 2. Recall that Clavin et 
al. [17] created a hand-annotated corpus based on planning guidance for resilience, cli-
mate adaptation, and sustainability (RAS) community planning. The documents were hand-
annotated through a rigorous content analysis, but the process was a time and labor in-
tensive effort.

Given the user study results presented in Sec. 4.3, a natural question is whether the results 
generalize to data found “in the wild.” The goal is to determine to what extent the com-

bination of active learning with topic models (and in particular the Contextualized Topic 
Model, or CTM), is useful to domain experts for real-world document-annotation tasks. 
We explore the tradeoff between efficiency gain, in terms of time spent annotating doc-
uments, and label quality, in terms of the evaluation metrics from Sec. 4.3 (Purity, ANMI, 
and ARI).

Leveraging the Clavin et al. [17] hand-annotated RAS guidance corpus for ground truth, we 
conducted a validation study with domain experts at NIST. Specifically, we recruited eight 
staff members within the NIST Community Resilience Program (CRP) to use our human-in-

the-loop implementation to annotate documents from the RAS corpus. The participants 
who volunteered have expertise ranging across the domains of resilience, adaptation, and 
sustainability and included both early career and senior staff.

5.1. Expert Validation: Purpose

For the validation study with RAS domain experts, the three main questions we ask are:

1. Generalizability: To what extent do evaluation metrics from domain experts corre-
late with user study results?

2. User experience: What do domain experts think of using the human-in-the-loop 
implementation for document-annotation tasks?

3. Value: What is the tradeoff between efficiency gain (speed) and label quality (relia-
bility)?

For the first question, we focus on comparing LDA with CTM, both with active learning, 
splitting the participants into two groups (four per group). The volunteers were asked to 
annotate documents for up to one hour.

For the second question, we assess responses from the post-study questionnaire we used 
for the user study. In addition, we obtain informal feedback from our colleagues on their 
overall experience.
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For the third question, we extrapolate how long it would take, on average, for humans 
to annotate the entire RAS guidance corpus (roughly 2600 documents) and balance that 
against the potential loss in label quality.

Finally, it is worth noting the estimated number of labeled documents per hour is a lower 
bound since (a) experts in the validation study did not have access to the codebook, as 
it would have taken too long to train the volunteers; and (b) potentially, human learning 
and active learning both reduce time to annotate as more documents are annotated. In 
principle, a codebook should reduce time to annotate documents, though in practice it may 
be a lot more interactive and iterative. Our assumption therefore is that, as the number of 
labeled documents increases, using a codebook should not decrease the rate of document 
annotation.

5.2. Expert Validation: Results

We had six expert volunteers to validate our results on the RAS guidance document cor-
pus.12 We pick the top two winning conditions from the last user study– CTM and LDA—
and assign three users to each group. Aside from the domain-specific data, the expert val-
idation study setup is identical to the user study we described in Sec. 4.3. Figure 7 shows 
results from the domain expert validation study.

5.2.1. Generalizability

CTM users create higher quality labels than LDA users, when users have similar domain-

specific expertise on the dataset. The results are largely consistent with our user study 
results: as the number of labeled documents increases, CTM performs better than LDA 
on all three evaluation metrics. This set of results from our expert validation study are 
encouraging, as they suggest that the results from the user study generalize to “real” data 
used for content analysis, providing additional confidence in using our proposed human-

in-the-loop approach for applications that require the analysis of technical text.

5.2.2. User experience

At the end of the annotation session, we collected qualitative user feedback on the ex-
perience with our human-in-the-loop system. Specifically, we see more positive and more 
detailed feedback from CTM users, relative to LDA users, about improving the usability and 
experience of the human-in-the-loop interface.

Overall, LDA users did not pay attention to the keywords generated by LDA. Upon observing 
the topic keywords, we see that LDA generates too broad and general keywords that do 
not help users in interpreting and understanding the contents of a specific document. On 

12While we had eight total volunteers, two of the volunteers did not spend the required time annotating 
documents.
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Fig. 7. We track the expert users’ purity, adjusted Rand Index, and adjusted normalized 
mutual information on the number of documents labeled with 3 experts in each group. 
CTM (contextualized neural topic model) does better than LDA overall on the three 
metrics. The bands, which represent group variance around the median, suggest 
consistency in evaluation metric values across users.
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the other hand, CTM generates compact and specific keywords that might serve as labels 
for specific documents.

One user in the CTM group thinks the tool has a bit of learning curve, “but once you get 
used to it is easy to use.” With regard to the guidance document corpus, the lack of a 
codebook did introduce additional challenges to the users: “I do think it is so hard to label 
things without knowing the research question or why I am labeling items since I could be 
looking for very different things depending on the purpose and most text could be labeled 
in lots of different ways.”

Finally, a summary of the recommendations from the CTM users include:

1. Incorporating a method to evaluate the performance of user and providing feedback 
on how they are doing (maybe after 15 minutes). This can be a training step.

2. It would be nice if the tool provides an estimated number of passages that should 
be labeled within one hour.

3. It would be useful if the tool provides an estimated time that needs to be spent on 
each passage to assign a label.

5.2.3. Value

Based on the results of the expert validation study, we extrapolate how long it would take, 
on average, for humans to annotate the entire RAS guidance corpus.

• Assuming 50 documents per hour implies 1.2 minutes per document, for a total of 
52.5 hours to annotate 2625 documents.

• We can round that up to 60 hours of labor required per annotator.

• Let’s assume the annotator spends 4 hours a day, for 3 days a week, actually an-
notating (in the case of the RAS content analysis, the annotators had more focused 
time on annotation but did not spend all of their time on annotation).

• At these assumed rates, an annotator will require 5 weeks to annotate all 2625 doc-
uments.

That’s a bit over a month, compared to the three months that were actually required in the 
original, purely human RAS content analysis. In other words, machine assisted annotation 
improves productivity by about (at minimum) 58%.

How do we value that productivity gain? Suppose our annotators are paid the prevailing 
minimum wage ($15 per hour in Maryland as of January 1, 2024).13 At the new rate of 
productivity, we only need 5 weeks to produce the same amount of output (which was 
initially worth $15 × 12 weeks = $7200 in total wages, assuming 40 hours of work per 

13https://www.montgomerycountymd.gov/humanrights/min-wage.html. Accessed: 2024-02-09.
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week). The value of time savings is $15 × (12 - 5) = $4200. Moreover, the same annotator’s 
effective wage is now $7200 / 5 weeks = $36 per hour, which is an indirect way of obtaining 
higher skill labor at a lower cost. In our RAS example, this is a lower bound. The real 
value arguably comes from the time savings to the senior researchers who participated 
in the content analysis, who would either spend less time on annotating text on average 
or altogether delegate annotation fully to the junior researchers while focusing on higher-
level tasks such as coordination and planning.

An important caveat, as stated above, is that the volunteers in our expert validation study 
did not have access to the codebook. If we assume annotators use a codebook, rather 
than building a label set from scratch, the time savings should be much greater.

Of course, there is no free lunch! The efficiency gain comes with a potential loss in label 
quality. As Fig. 7 shows, none of the three metrics appear close to 1 and this loss in label 
quality could represent substantial risk to the research objectives. How does a researcher 
evaluate that risk against the reward of higher efficiency (which could translate the same 
total amount of labor into significantly more labeled data)? This is not straightforward and 
depends on the subjective value of label quality (rather than just the wage rate), assuming 
one could place a dollar value on label quality, as well as what that loss in label quality 
translates to in practice.

In an actual content analysis, the time saved to annotate documents can be used for more 
frequent intercoder checks, codebook updates, and data validation steps, which could im-

prove label quality over the baseline. Moreover, a researcher would need to track the 
metrics beyond the hour shown in Fig. 7 to see if label quality increases over time or stabi-
lizes, whether the observed loss in label quality is acceptable (is the researcher concerned 
about type I or type II errors), and whether additional human input can improve the eval-
uation metrics (and weigh that against how much effort is required to do so). We leave 
these as open questions for future research.

5.3. Implications

We began with the premise that machine assistance can improve the efficiency and pro-
ductivity of experts in conducting labor-intensive tasks such as document annotation for 
content analysis. Our user studies support this premise. However, as we highlight in our 
discussion on the value of machine assistance, the potentially larger productivity gains 
come from freeing experts from tedious tasks (such as manually annotating text) while 
“upskilling” non-experts (e.g., students are potentially able to lead and conduct a content 
analysis that typically requires substantial domain expertise).[46, 47] This is an example 
of how artificial intelligence has the potential to improve labor market outcomes for the 
middle class by extending the reach of expertise, as hypothesized by Autor: “For workers 
with foundational training and experience, AI can help to leverage expertise so they can 
do higher-value work.”[48]
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6. Conclusion

While the user study and expert validation study are encouraging, much work remains in 
order to have a process that can be integrated into a text analysis pipeline such as con-
tent analysis. As we described in Sec. 4, the machine-assisted process we propose is not 
specific to any one topic model. Though our user study results suggest that the contextual-
ized topic model (CTM) may be preferable to LDA for enhancing the document annotation 
workflow, the user study did not compare alternative neural topic models. Moreover, as 
large language models (LLMs) have come to dominate natural language processing, we are 
exploring how LLMs compare with traditional topic models for human-in-the-loop docu-
ment annotation.

Additionally, while our human-in-the-loop implementation was largely developed to en-
able user studies, it also serves as a proof of concept for a modular system for conducting 
research. Though we are sharing the source code for other researchers and for trans-
parency,14 we are working on refining the system so that in principle it can be deployed 
for actual research.

Finally, we have only focused so far on the “annotation” part of the pipeline but as Fig. 1 in 
Sec. 2 illustrates, the text analysis workflow has several time-consuming steps that could 
be bottlenecks in efficiently analyzing a large corpus. For instance, we assume that the 
documents to be analyzed are in already in an easily ingestible, plain-text format. However, 
the RAS content analysis Clavin et al. [17] conducted required

• Data curation: Gathering source text through a combination of careful internet search 
and knowledge of the domain; and

• Data pre-processing: Converting the source text, most often large PDF files, into 
plain-text “snippets” (i.e., the documents) for analysis.

It remains to be seen to what extent machine learning could assist in these and other steps 
in the pipeline, and which steps would still require significant human labor.

The key message for future applications from is that collaborative, truly interdisciplinary 
research is needed to advance the use of machine learning to assist humans with the anal-
ysis of technical text. 

14https://github.com/usnistgov/annotune
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Appendix A. Implementing a Modular System for Testing Human-in-the-loop Document 
Annotation

This appendix provides details on the implementation of the modular system we devel-
oped to conduct user studies of human-in-the-loop document annotation using different 
methods, which we call annotune (Annotation with the Text Understanding and Navigation 
Engine).15

Appendix A.1. Overall Process

The aim of the app is to aid in annotation of topics, track all saved labels, and track the 
times used to label each documents for the user study. Figure 1 shows the process.

Fig. 8. The annotation process encoded within the interface.

Appendix A.1.1. Login

The first page the user sees is the login page where users are required to enter their unique 
user ID (UUID). When the user enters the UUID and submits the login form via a post re-
quest, the submitted name is extracted from the form and validated to see if the name 
exists in the dictionary of allowed user names. Once it is validated, session variables are 
set for the particular user. The session variables are username, labels, user_id, and la-
beled_document.

• username: the UUID of the user

• Labels: All past labels created by the user

• user_id: The id assigned to this user by the model

• labeled_document: The ids of documents that have already been labeled.

15See source code at: https://github.com/usnistgov/annotune.
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Fig. 9. The instructions page provides detailed instructions on the user study and 
navigating the interface.

If a user is a new user or starting their session for the first time, a post request is sent to the 
model to create a new user. If user is valid, this information is then saved in a users.json 
file in the static/users/ directory. If the user is a returning user, the session data are 
extracted from the users.json and they may return to the where they left off. Usernames 
that are not validated are redirected back to the login page

Appendix A.1.2. Instructions

Upon the login, instructions for the user study are shown to the user, as seen in Fig. 9. 
After users read the instructions, they may click on start and the user study session begins. 
When the start button is selected, a post request is sent to the model to get the topic list. 
There are different sets of models, some with active learning and others without active 
learning. When the start button is selected, a get request is sent to the model and a list 
of documents, their keywords, and topic clusters are requested. The check active function 
checks whether the model assigned to this user has active learning or not. It does so by 
checking the number of topic clusters that the model sends. If it is just one, it is active 
learning, else, its not. Once the decision is made, the appropriate route is selected and 
routed to.

38



NIST TN 2287
May 2024

Appendix A.1.3. Document List with active learning

Before annotating, the app offers two options that depend on the type of model being 
used. When the model includes active learning, there is no clustering and all the docu-
ments are listed together. A model-recommended document is selected and presented at 
top of the list. When a document is selected, the user is redirected to the /get_label/ 
route to label. Fig. 10 shows how the active list page is displayed by the app.

Fig. 10. The active learning document list shows a list of recommended documents for 
annotation, with the current recommendation at the top.

Appendix A.1.4. Document List without active learning

When an active learning model is not being used, the model generates a list of document 
clusters. Keywords are associated with each cluster to enhance the user’s understanding 
of the document’s context. The user interface is designed to facilitate the user experience 
by isolating the recommended topic on the top and displaying six documents within each 
cluster.

Appendix A.1.5.  Labeling with active learning

The active function in the annotation app manages the active list functionality for users 
engaged in the active learning process. The function takes two parameters: name, which 
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Fig. 11. The non-active learning document list shows documents within each document 
cluster.

represents the user’s name extracted from the URL, and document_id, which represents 
the ID of the document being labeled.

The document annotation page with active learning is shown in Fig. 12. Relevant infor-
mation about the document, such as its text and previous labels, is fetched from the 
all_texts dictionary based on the provided document_id. The function also selects a 
random document ID from the remaining recommended block to serve as a skip option. 
In case of a POST request (when the user submits labels), the function records the user’s 
response time and saves the labeled data. It then sends a request to the model to rec-
ommend the next document for annotation. The user’s session data, including labeled 
documents and labels, are updated, and the user is redirected to label the next document. 
The function uses these parameters and data to dynamically generate the active learning 
interface (activelearning.html) where users can interact with the document, provide 
labels, and navigate through the active learning process. Flash messages are used to no-
tify users when their response has been successfully submitted. It is important to note 
that the function relies on the model and helper functions (save_time, save_response, 
save_labels, and all_texts) for complete functionality.
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Fig. 12. The active learning page for annotating (labeling) documents showing document 
ID and text, with suggested labels at the bottom.

Appendix A.1.6. Labeling without active learning (Non-active label)

The non_active_label function in the Flask application manages the annotation process 
for documents shown in an environment without active learning. It handles both GET 
and POST requests, allowing users to view and annotate specific documents. It displays 
keywords according to a rank giving by the model. These keywords help a user to get the 
context of the topic by highlighting the keywords present in the text. The user interface 
presents the document’s text, along with suggestions for annotation. Users can select 
a label from the provided suggestions or enter a custom label. Additionally, users can 
skip the current document and proceed to the next one. When the user submits a label, 
the function processes the input, records the response time, and communicates with the 
model recommend the next document for labeling. The function then redirects the to the 
non-active label page with updated information about the next document to annotate. 
Throughout the process, the function keeps track of various metrics, such as elapsed time, 
the number of labeled documents, and the total number of documents to be annotated. 
These metrics are displayed on the user interface, providing users with real-time feedback 
on their progress.
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Fig. 13. The document annotation page in an environment without active learning, 
including top topics and associated keyword suggestions for labels on the right.

Appendix A.1.7. Document re-labelling

Users have the flexibility to edit labels for previously annotated documents through a 
straightforward process. The system presents a user-friendly interface where labeled doc-
uments are grouped by assigned labels. When users choose to edit responses, they are 
seamlessly guided to the relevant annotation page designed for the selected document. 
Users can then select the document to view the whole document text and its associated 
label. If a user wants to modify the labels, there is an edit response option that can be 
selected. Upon selecting “Edit response,” users are then redirected to the appropriate 
document label page to assign a new label to the document.

Appendix A.1.8. Authorization

The authorization process in the annotation application is designed to secure user access 
and ensure that only authenticated individuals can interact with the system. The process 
begins when a user attempts to log in by providing their credentials, typically a username. 
This credential is then verified against stored user data, which includes information such 
as usernames. If the provided credential matches an entry in the system, the user is suc-
cessfully authenticated, and the authorization process proceeds. Upon successful authen-
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Fig. 14. This page displays documents that have already been labeled and allows the user 
to reassign labels to previously annotated documents by clicking on the document to 
re-enter the relevant document-annotation page.

tication, the application initializes a user session. A session is a way to track and manage 
the state of interactions by a user with the application during a specific period. During this 
session initiation, critical information about the user is stored in the session variables. This 
information may include the user’s name, a unique user ID, labels associated with the user, 
and a record of previously labeled documents. The user’s identity and session information 
are then stored securely to maintain the user’s context and permissions as they navigate 
through different parts of the application.

Appendix A.1.9. Time Tracking

Time tracking in the annotation app plays a crucial role in monitoring and recording the 
user’s interactions and activities throughout their session. It involves capturing and stor-
ing timestamps at various points during the user’s engagement with the application, pro-
viding valuable insights into the time spent on specific tasks. The tasks may be selecting 
documents to annotate, finding the right label for a document, and editing labels.

The following are the key aspects of time tracking in the document annotation app:
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• Session Start: The time tracking process begins when a user initiates a session by 
logging into the application. The moment of login is recorded as the starting point 
for tracking the user’s activity.

• Task Duration Measurement: During the session, the app records the time spent on 
different tasks, such as viewing documents, labeling, and navigating between pages. 
This helps researchers understand how much time is dedicated to each activity. The 
system records the time taken to annotate a document, view a topic, or complete 
an annotation task. This data assists in evaluating efficiency and productivity under 
specific experimental conditions in our user studies.

• Elapsed Time Calculation: The application calculates the elapsed time by comparing 
the current timestamp with the session start time. This information is often dis-
played to users, providing a real-time view of their session duration.

Appendix A.1.10. App tutorial

For first-time users logging into the annotation application, the on-boarding process is en-
hanced through the integration of ‘intro.js‘. This feature serves as a guided tour, system-

atically introducing users to the various functionalities and buttons within the application. 
By providing informative highlights and tool tips, ‘intro.js‘ ensures a user-friendly and navi-
gable experience, offering valuable insights into the diverse actions that can be performed 
within the application. This on-boarding mechanism significantly contributes to user en-
gagement and understanding, empowering users to make the most of the app’s features 
right from the start.
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Fig. 15. At any time, users can click through an optional tutorial to learn how to navigate 
and use the interface. The tutorial is shown upon entering the application and exiting the 
instructions page.
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Appendix B. List of Symbols, Abbreviations, and Acronyms

The following acronyms are used in this report.

ALTO Active Learning with Topic Overviews.

ANMI Adjusted Normalized Mutual Information.

ARI Adjusted Rand Index.

CTM Contextualized Topic Model.

HCI Human-Computer Interaction.

LDA Latent Dirichlet Allocation.

LLM Large Language Model.

NLP Natural Language Processing.

NTM Neural Topic Model.

RAS Resilience, Adaptation, and Sustainability.

sLDA Supervised LDA.

TENOR Topic-Enabled Neural Organization and Recommendations.
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