
NIST Series Technical Note

NIST TN 2311

Blueprint for Deploying 5G O-RAN

Testbeds: A Guide to Using Diverse O-RAN

Software Stacks
Peng Liu

Kyehwan Lee

Fernando J. Cintrón

Simeon Wuthier

Bhadresh Savaliya

Douglas Montgomery

Richard Rouil

This publication is available free of charge from:

https://doi.org/10.6028/NIST.TN.2311

https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.TN.2311

NIST Series Technical Note

NIST TN 2311

Blueprint for Deploying 5G O-RAN

Testbeds: A Guide to Using Diverse O-RAN

Software Stacks
Peng Liu

Associate, Wireless Networks Division
Communications Technology Laboratory

Prometheus Computing LLC, Bethesda, Maryland

Kyehwan Lee
Fernando J. Cintrón
Bhadresh Savaliya

Douglas Montgomery

Richard Rouil
Wireless Networks Division

Communications Technology Laboratory

Simeon Wuthier

Associate, Wireless Networks Division
Communications Technology Laboratory
Georgetown University, Washington, D.C.

This publication is available free of charge from:

https://doi.org/10.6028/NIST.TN.2311

October 2024

U.S. Department of Commerce

Gina M. Raimondo, Secretary

National Institute of Standards and Technology
Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology

Certain equipment, instruments, software, or materials, commercial or non-commercial, are identified in
this paper in order to specify the experimental procedure adequately. Such identification does not imply
recommendation or endorsement of any product or service by NIST, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

NIST Technical Series Policies
Copyright, Use, and Licensing Statements

NIST Technical Series Publication Identifier Syntax

Publication History
Approved by the NIST Editorial Review Board on 2024-10-09

How to cite this NIST Technical Series Publication:
Liu P, Lee K, Cintrón FJ, Wuthier S, Savaliya B, Montgomery D, Rouil R (2024) Blueprint for Deploying 5G
O-RAN Testbeds: A Guide to Using Diverse O-RAN Software Stacks. (National Institute of Standards and
Technology, Gaithersburg, MD), NIST TN 2311. https://doi.org/10.6028/NIST.TN.2311

Author ORCID iDs
Peng Liu: 0000-0001-8237-5807
Kyehwan Lee: 0009-0002-0649-4235
Fernando J. Cintrón: 0000-0002-5602-1068
Simeon Wuthier: 0000-0003-4088-7518
Bhadresh Savaliya: 0009-0007-9407-4287
Douglas Montgomery: 0000-0002-5364-9474
Richard Rouil: 0000-0003-0387-0880

Contact Information

richard.rouil@nist.gov

Public Comment Period
Sep. 19, 2024 – Oct. 09, 2024

Submit Comments

richard.rouil@nist.gov

Mailing Address
100 Bureau Dr, Stop 6730
Gaithersburg, MD 20899

https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/nist-research-library/nist-technical-series-publications-author-instructions#pubid
mailto:richard.rouil@nist.gov
mailto:richard.rouil@nist.gov

NIST TN 2311
October2024

Abstract

This documentation serves as a blueprint for new researchers, offering a comprehensive
guide on establishing an Open Radio Access Network (O-RAN) testbed from scratch. It
details the O-RAN architecture and the supporting software stacks required for each com-

ponent, and provides both aggregated and disaggregated deployment scenarios tested on
our testbeds. The guide provides thorough installation instructions for each software stack
we tested. In addition, a testbed example of a disaggregated scenario is used to demon-

strate proper configurations and practical operations to test the connection and interop-
eration between the deployed O-RAN components. Moreover, this documentation intro-
duces our innovative automation tool, designed to streamline the installation and config-
uration of some O-RAN components, ensuring a more efficient deployment process. This
publication aims to equip researchers with the foundational knowledge and practical steps
needed to initiate and manage their own O-RAN testbeds effectively.

Keywords

5G New Radio; FlexRIC; O-RAN SC Near-RT RIC; Open RAN; Open5GS; srsRAN 4G; srsRAN
Project; Testbed; USRP.

i

NIST TN 2311
October2024

Table of Contents

Abbreviations . vii

1. Introduction . 1

1.1.O-RAN Architecture . 1

1.2. Software Stacks for O-RAN Components . 2

2. System Requirements . 4

2.1. Software . 4

2.2. Hardware and System Prerequisites . 4

3. RAN Components . 7

3.1. gNodeB: srsRAN Project Setup . 7

3.1.1. Installation . 7

3.1.2. Configuration . 8

3.2. 5G UE: srsRAN 4G . 10

3.2.1. Installation . 10

3.2.2. Configuration . 11

3.3. E2 Simulator . 11

3.3.1. Build and Installation . 11

3.3.2. Running E2 Simulator . 12

3.3.3. E2 Connection Check from RIC Cluster 12

4. 5G Core . 14

4.1. Installation with Package Manager . 14

4.1.1.MongoDB . 14

4.1.2.Open5GS . 15

4.1.3.WebUI . 15

4.2. Configuration . 15

4.2.1. AMF and UPF Configurations in 5G SA Mode 15

4.2.2.NRF Configurations in Open5GS v2.7.0 17

4.2.3. Register Subscriber . 17

4.2.4. Enable UE Access to Internet . 17

4.3. Installation from Sources . 19

4.3.1.MongoDB . 19

ii

4.3.2. TUN Device . 19

4.3.3.Open5GS . 19

4.3.4.WebUI . 20

4.3.5. Register Subscriber . 21

4.3.6. Enable UE Access to Internet . 21

4.4. Installation with Docker . 21

4.4.1. Access Dockerized Open5GS from gNB 21

4.4.2. Enable UE access to Internet . 21

5. Near-RT RIC . 22

5.1. FlexRIC Setup . 22

5.1.1. FlexRIC Installation for srsRAN Project v23.10.1 22

5.1.2. FlexRIC Installation for srsRAN Project v23.5 and v23.10 23

5.2.OSC Near-RT RIC Setup . 24

5.2.1. Software Source and Dependency . 24

5.2.2. Kubernetes, Docker, Helm Chart Installation 24

5.2.3.Modify Service Platform Configuration File 25

5.2.4. Install Common Template to Helm . 25

5.2.5. Installing Near RT-RIC . 26

5.2.6. RIC Application, xApps . 27

5.2.6.1.Onboarding of xApp Using dms_cli tool 27

5.2.6.2.Chartmuseum . 27

5.2.6.3.Onboarder (dms_cli) Installation 28

5.2.6.4.hw-go xApp Build and Preparation 29

5.2.6.5.Onboarding hw-go xApp and Install 29

5.2.6.6.Checking xApp’s Deployment Status 30

5.2.7. Interoperation with E2 Simulator . 31

6. Testbed Deployments . 34

6.1. Aggregated Deployments . 34

6.1.1. Installations on a Single Bare Metal Server, ZMQ Connection 35

6.1.2. Installations with gNB and UE on different bare metal servers, ZMQ
or USRP Connections . 36

6.1.2.1. ZMQ Connection . 37

iii

6.1.2.2.USRP Connection . 38

6.1.3. Installations on a Single Bare Metal Server, Multiple UEs and One gNB,
ZMQ Connection . 39

6.1.4.Deployment with Kubernetes OSC Near-RT RIC, Containerized Open5GS,
E2 Simulator, and ZMQ Connection between gNB and UE 42

6.2. Disaggregated Deployments . 43

6.2.1. Installations on Bare Metal Servers, with ZMQ or USRP Connection . 43

6.2.1.1. ZMQ Connection . 45

6.2.1.2.USRP Connection . 45

6.2.2. Installations on Bare Metal Servers, USRP Connection, Multiple UEs
via Channel Emulator . 46

6.2.3.Deployment with Containerized Open5GS 47

7. Automation Tool . 49

8. Test Setup . 51

8.1. Testbed . 51

8.2. Scripts and Configurations . 51

8.3. Running Testbed . 55

8.4. Tests . 59

8.4.1. Ping . 59

8.4.2. Iperf3 . 62

8.4.3. xApp . 64

9. Conclusion and Future Work . 66

References . 67

List of Tables

Table 1. Installation Guide for Aggregated Scenario on One Server. 35

Table 2. Installation Guide for Aggregated Scenario on Two Servers. 37

Table 3. UE Configuration Information. 41

Table 4. Installation Guide for Aggregated Scenario on a Single Server with OSC Near-
RT RIC. 42

Table 5. Installation Guide for Disaggregated Scenario. 43

Table 6. Installation Guide for Disaggregated Scenario with Multiple UEs. 47

Table 7. Installation Guide for Disaggregated Scenario with Dockerized Open5GS. . . 48

Table 8. Installation Guide Followed by Automation Tool. 49

iv

List of Figures

Fig. 1. O-RAN Architecture [1] . 1

Fig. 2. Open5GS running modules. 16

Fig. 3. Create Subscriber window in WebUI. 18

Fig. 4. Aggregated deployment: srsRAN gNB and UE, Open5GS, and FlexRIC. All com-

ponents are installed on a bare metal server. 35

Fig. 5. Aggregated deployment: srsRAN gNB and UE, Open5GS, and FlexRIC. All com-

ponents are installed on bare metal servers. 37

Fig. 6. Aggregated deployment with multiple UEs: srsRAN gNB and UEs, ZMQ con-
nection, Open5GS, and FlexRIC. All components are installed on bare metal
servers. 39

Fig. 7. GNURadio channel model for the aggregated multi-UE scenario with ZMQ. . 40

Fig. 8. Deployment with aggregated srsRAN gNB and UE, E2 Simulator, Kubernetes
OSC Near-RT RIC, and Dockerized Open5GS 5G Core 42

Fig. 9. Disaggregated deployments . 44

Fig. 10.Disaggregated deployment with multiple UEs and RF connection. 46

Fig. 11.Deployment with dockerized Open5GS: single-UE, USRP connection 48

Fig. 12.Deployment Scenario from Automation Tool 49

v

NIST TN 2311
October2024

Acknowledgments

This work is partially funded by the Department of Homeland Security’s Science and Technology
Directorate (S&T).

vi

Abbreviations

3GPP the Third Generation Partnership Project

AMF Access and Mobility Management Function

CLI Command Line Interface

CPU Central Processing Unit

DL Downlink

E2AP E2 Application Protocol

E2SM E2 Service Model

E2SM-KPM E2 Service Model - Key Performance Measurement

FDD Frequency Division Duplex

GTP-U GPRS Tunneling Protocol User Plane

HSS Home Subscriber Server

IP Internet Protocol

LTE Long Term Evolution

ML Machine Learning

NAT Network Address Translation

near-RT RIC near-real-time RAN intelligent controller

NF Network Function

NGAP Next Generation Application Protocol

non-RT RIC non-real-time RAN intelligent controller

NR New Radio

NRF Network Repository Function

O-CU O-RAN Central Unit

vii

O-DU O-RAN Distributed Unit

O-RAN Open Radio Access Network

O-RU O-RAN Radio Unit

OAI OpenAirInterface

OS Operating System

OSC O-RAN Software Community

PCF Policy Control Function

PCRF Policy and Charging Rules Function

PLMN Public Land Mobile Network

PPS Pulse Per Second

RAN Radio Access Network

RF Radio Frequency

RIC RAN Intelligent Controller

RRM Radio Resource Management

RSRP Reference Signal Receive Power

RX Receiver

SA Standalone

SCTP Stream Control Transmission Protocol

SMO Service Management and Orchestration

TX Transmitter

UDR Unified Data Repository

UE User Equipment

UL Uplink

UPF User Plane Function

USIM Universal Subscriber Identity Module

USRP Universal Software Radio Peripheral

VM Virtual Machine

ZMQ Zero Message Queue

viii

NIST TN 2311
October2024

1. Introduction

Before the advent of Open Radio Access Network (O-RAN), Radio Access Networks (RANs)
were typically dominated by proprietary, monolithic systems from individual vendors. This
often resulted in high costs and limited flexibility. O-RAN addresses these challenges through
open standards that enable interoperability between components from different vendors
while adhering to the specifications defined by 3GPP.

In advancing O-RAN research and implementation, the development of testbeds is crucial.
These testbeds provide controlled and replicable environments for validating and enhanc-
ing O-RAN technologies and network performance. They serve as platforms to test various
deployment scenarios, assess interoperability between O-RAN components and software
stacks from different vendors, and evaluate research outcomes for specific O-RAN tasks.
Testbeds offer invaluable insights for large-scale deployments, ensuring that O-RAN solu-
tions are robust, efficient, and ready for real-world applications. In this documentation,
we provide a blueprint for new researchers, with a comprehensive guide on establishing
an O-RAN testbed from scratch.

1.1. O-RAN Architecture

Fig. 1. O-RAN Architecture [1]

The O-RAN architecture was defined by O-RAN Alliance in [1], as shown in Fig. 1. Its key
elements include

• Service Management and Orchestration (SMO), which is responsible for RAN domain
management;

1

NIST TN 2311
October2024

• non-real-time RAN intelligent controller (non-RT RIC), which runs in SMO and pro-
vides intelligent RAN optimization with service and policy management, Machine
Learning (ML) model management, and enrichment information for near-real-time
RAN intelligent controller (near-RT RIC) functions. The response interval is greater
than 1 s. It provides the non-RT RIC applications, i.e., the rApps, to realize the func-
tionality;

• near-RT RIC, which controls the E2 nodes (O-RAN Central Unit (O-CU), O-RAN Dis-
tributed Unit (O-DU)) with a response time between 10 ms and 1 s. The control is
steered via the policies and enrichment data from non-RT RIC. Radio Resource Man-

agement (RRM) is a main function provided by near-RT RIC and is realized by means
of E2 Service Models (E2SMs) on near-RT RIC Applications (xApps);

• O-CU, O-DU, and O-RAN Radio Unit (O-RU). The gNB functions defined by the Third
Generation Partnership Project (3GPP) are disaggregated and distributed into these
O-RAN components and the 3GPP defined interfaces are terminated as shown in
Fig. 1. In addition, each of these O-RAN components can be managed to combine
with one or more of the others.

In addition, O-Cloud provides a cloud computing platform that can host some of the O-RAN
Network Functions (NFs) as mentioned above.

Some of the key connections between the above O-RAN components are realized by the
interfaces defined as follows:

• A1 Interface, which exchanges information between non-RT and near-RT RICs to sup-
port the services of policy management, enrichment information, and ML model
management;

• O1 Interface, which connects SMO with near-RT RIC and E2 nodes for NF manage-

ment and orchestration;

• E2 Interface, which connects near-RT RIC with E2 nodes and provides near-RT ser-
vices using E2 Application Protocol (E2AP) and E2SMs.

1.2. Software Stacks for O-RAN Components

The O-RAN participating organizations and researchers have been actively providing standard-
compliant solutions to some of the O-RAN components. Some of the open-source options
include:

non-RT RIC:

• non-RT RIC from O-RAN Software Community (OSC), which provides both non-RT
RIC framework and rApps. It can be deployed in Kubernetes containers.

near-RT RIC:

2

NIST TN 2311
October2024

• near-RT RIC from OSC, which provides both near-RT RIC framework and xApps. It
can be deployed in Kubernetes clusters;

• FlexRIC, which provides both near-RT RIC framework and xApps. It can be deployed
on a bare metal server/workstation or on a Virtual Machine (VM);

• near-RT RIC from SRS, which is built on the Release I of OSC near-RT RIC to support
quick deployment and control over srsRAN gNB with xApps programmed in Python.
It can be deployed in a docker container.

E2 Nodes and User Equipments (UEs):

• OpenAirInterface (OAI), which supports CU/DU split, E2 connection to near-RT RIC,
and connection to OAI UEs. OAI gNB also supports Split 7.2 fronthaul interfaces
to RUs, whereas some implementations also support Split 8. OAI gNB and UE can
be deployed on a bare metal server/workstation, and users have found success in
deployment in Kubernetes clusters;

• srsRAN, which includes srsRAN Project for 5G O-RAN gNB, and srsRAN 4G for 5G UE.
In addition to gNB-UE connection, srsRAN gNB also supports CU/DU split, E2 con-
nection to near-RT RIC, and Split 7.2 and Split 8 fronthaul interfaces to RUs. srsRAN
supports deployments on Kubernetes, docker, and on a bare metal server/worksta-
tion, or VM.

In addition, 5G core network supports O-RAN architecture by providing NFs such as Access
and Mobility Management Function (AMF), User Plane Function (UPF), etc. Some available
options include Open5GS, Free5GC, Open5GCore, OAI 5G CN, etc.

This document aims to guide readers through the process of deploying a 5G O-RAN testbed,
covering essential aspects such as hardware requirements, software installation of the
tested software stacks for the O-RAN components, and deployment scenarios. We start
with an introduction to the hardware specifications in our testbed deployments. Follow-
ing this, we delve into the installation procedures for the software stacks associated with
O-RAN components as well as 5G core network, where detailed configurations are dis-
cussed. Additionally, various deployment scenarios are documented, which includes both
aggregated scenarios, where all or most of the O-RAN components are deployed in one
server or workstation, and disaggregated scenarios, where each O-RAN component is de-
ployed in an individual server/workstation and their communications are via a dedicated
network. Among the various deployment scenarios, we present how we realize connec-
tions between UE and gNB via digital connection (Zero Message Queue (ZMQ)), direct ca-
ble connection, and Radio Frequency (RF) channel emulator. Furthermore, we facilitate
the seamless deployment of the entire O-RAN testbed by introducing our automation tool.
This tool enables automatic installation and configuration of various O-RAN components,
as detailed in this documentation, significantly reducing the potential for human error and
greatly accelerating deployment times. Finally, we will provide a detailed test example to
demonstrate the practical application of a deployed testbed.

3

NIST TN 2311
October2024

2. System Requirements

This section introduces the open-source software for the components of the deployed 5G
O-RAN testbed, the deployment scenarios that have been tried, and the hardware and
system prerequisites for the radios and servers/workstations.

2.1. Software

• 5G gNB: srsRAN Project,

• 5G UE: srsUE from srsRAN 4G.

• 5G Core: Open5GS,

• RAN Intelligent Controller (RIC): FlexRIC and OSC near-RT RIC

It is important to note that srsRAN 4G supports 5G Standalone (SA) in srsUE by modifying
the srsUE configuration file.

2.2. Hardware and System Prerequisites

We use Ettus B210 and X310 for gNB, and Ettus B210 for srsUE. We are also in progress
of validating X310 for srsUE, and exploring X410 for both gNB and srsUE. The Universal
Software Radio Peripherals (USRPs) share the same Pulse Per Second (PPS) time source
and 10 MHz frequency source from an octoclock.

The Central Processing Units (CPUs) in the servers and workstations include:

• Intel Xeon Gold 6246R with 16 cores @ 3.4 GHz,

• Intel Xeon Gold 6334 with 8 Cores @ 3.6 GHz,

• Intel Core i9-12900K with 16 Cores @ 2.4 GHz.

The OSC near-RT RIC can operate on Ubuntu 20.04 (preferred) or Ubuntu 22.04, whereas
the other software are installed on Ubuntu 22.04. The servers/workstations on which the
gNB and srsUE run have low-latency kernels, and the systems and BIOS are configured to
achieve optimal performance [2]:

Low-latency kernel is installed by

$ sudo apt-get -y install linux-lowlatency

After rebooting the Operating System (OS), make sure uname -r indicates that low-latency
kernel is successfully deployed:

$ uname -r

5.15.0-102-lowlatency

4

NIST TN 2311
October2024

For power management:

• In /etc/default/grub, disable c-state by:

GRUB_CMDLINE_LINUX_DEFAULT="quiet processor.max_cstate=1
intel_idle.max_cstate=0 idle=poll"

Followed by,

$ sudo update-grub2

• In /etc/modprobe.d/blacklist.conf, add the following line to the end of the
file:

blacklist intel_powerclamp

Then reboot the system.

• When rebooting, change the following items in BIOS:

– Disable secure booting option,

– Disable hyperthreading,

– Enable virtualization,

– Disable c-state power management functions, and

– Enable real-time tuning and Intel Turbo boost.

Although [2] indicates that p-state power management should also be disabled,
we experience issues when running srsran_performance script provided by [3].
Hence it is excluded from this user manual.

• Set the scaling governor to performance by installing cpufrequtils

$ sudo apt-get install cpufrequtils

and add the following line to /etc/default/cpufrequtils

GOVERNOR="performance"

Next,

$ sudo systemctl disable ondemand.service

$ sudo /etc/init.d/cpufrequtils restart

• Verify power management configuration and CPU frequency using i7z

$ sudo apt install i7z

$ sudo i7z

5

NIST TN 2311
October2024

All cores should have C0 % as 100 and Halt(C1) % as 0.

As the connections between gNB, Open5GS and FlexRIC use the Stream Control Transmis-

sion Protocol (SCTP), it should be enabled on the corresponding servers by:

• installing libsctp-dev

$ sudo apt install libsctp-dev

• using lsmod | grep 'sctp' to check if SCTP is enabled, and if nothing is returned,
comment out the lines in /etc/modprobe.d/sctp.conf:

#install sctp /bin/true

and load the SCTP module by:

$ sudo modprobe sctp

To make sure ZMQ or UHD can be used, each server/workstation that runs gNB or srsUE
shall install the packages by:

$ sudo apt-get install libzmq3-dev libuhd-dev uhd-host

After that, download the UHD images by

$ sudo uhd_images_downloader

6

NIST TN 2311
October2024

3. RAN Components

3.1. gNodeB: srsRAN Project Setup

3.1.1. Installation

The installation procedures below were tested on the srsRAN Project versions 23.5 and
23.10. We also had a successful test with version 23.10.1 with the updates until 12/22/2023
in GitHub repository. It is important to note that this latest updates required some ac-
commodations on the FlexRIC and Open5GS versions/installations. For more information,
please refer to Sections 4 and 5.

The supporting packages of the srsRAN Project gNB need to be installed [4]:

$ sudo apt-get install cmake make gcc g++ pkg-config libfftw3-dev
libmbedtls-dev libsctp-dev libyaml-cpp-dev libgtest-dev

The srsRAN Project code can be downloaded and installed using the following commands [5].
It is important to note that to enable ZMQ, -DENABLE_EXPORT=ON -DENABLE_ZEROMQ=ON
needs to be included when running cmake:

$ git clone https://github.com/srsran/srsRAN_Project.git

$ cd srsRAN_Project

$ mkdir build

$ cd build

$ cmake ../ -DENABLE_EXPORT=ON -DENABLE_ZEROMQ=ON

During cmake, it is important that ZMQ is found:

-- FINDING ZEROMQ.
-- Checking for module 'ZeroMQ'
-- No package 'ZeroMQ' found
-- Found libZEROMQ: /usr/local/include, /usr/local/lib/libzmq.so

If not, follow the instructions in Section 2.2 to enable SCTP.

Next,

$ make -j 8nproc8

$ make test -j 8nproc8

$ sudo make install

Make sure it passes all the tests.

7

NIST TN 2311
October2024

3.1.2. Configuration

The gNB configuration file we used is based on the script in [6]. The corresponding changes
are made accordingly as follows:

amf:
addr: 5G core bind address
bind_addr: gNB bind address

The addr is the Internet Protocol (IP) address that the 5G core binds to. In Open5GS,
this address is configured at Next Generation Application Protocol (NGAP) address in AMF
and GPRS Tunneling Protocol User Plane (GTP-U) address in UPF. The bind_addr is a local
IP address that the gNB binds to. Users should make sure the interfaces with these IP
addresses are accessible between each other, for example, they can be in the same subnet.

The RF front-end of the radio can be configured as follows:

When using Ettus B210, it shall be configured as

ru_sdr:
device_driver: uhd
device_args: type=b200
clock: external
sync: external
srate: 11.52
tx_gain: 75
rx_gain: 35

When using Ettus X310, it shall be configured as

ru_sdr:
device_driver: uhd
device_args:type=x300,addr=x310_ip_addr,dboard_clock_rate=11.52e6,

time_source=external,clock_source=external
clock: external
sync: external
srate: 11.52
tx_gain: 30
rx_gain: 5

where x310_ip_addr is the IP address configured for X310.

When ZMQ is used, the RF front-end shall be configured as

8

NIST TN 2311
October2024

ru_sdr:
device_driver: zmq
device_args: tx_port=tcp://tx_ip:tx_port,rx_port=tcp://rx_ip:

rx_port,base_srate=11.52e6
srate: 11.52
tx_gain: 75
rx_gain: 35

where tx_ip and tx_port are the IP of the interface and its port that gNB uses to transmit
the digital samples, and rx_ip and rx_port are where gNB expects the digital samples are
from.

The 5G cell configuration is as follows

cell_cfg:
dl_arfcn: 368500
band: 3
channel_bandwidth_MHz: 10
common_scs: 15
plmn: "00101"
tac: 7
pdcch:

dedicated:
ss2_type: common
dci_format_0_1_and_1_1: false

common:
ss0_index: 0
coreset0_index: 6

prach:
prach_config_index: 1

It is important that tac and plmn should align with those in AMF of Open5GS.

The configuration for RIC connection is as follows:

e2:
enable_du_e2: true
addr: RIC bind address
bind_addr: gNB bind address for RIC connection
e2sm_kpm_enabled: true

where addr is the IP address where RIC binds to, and bind_addr is the local IP address
where the gNB binds to for RIC connection. Users should also make sure the interfaces
with these IP addresses are accessible between each other.

E2AP packet captures can be enabled using:

9

NIST TN 2311
October2024

pcap:
e2ap_enable: true
e2ap_filename: /tmp/gnb_e2ap.pcap

3.2. 5G UE: srsRAN 4G

3.2.1. Installation

The srsUE is a part of srsRAN 4G. It is a 4G Long Term Evolution (LTE) UE with prototype
5G New Radio (NR) features [7]. It can be installed using packages or from source. As we
experienced issues when installing with packages, in this section, we introduce how it is
installed from source in our deployments.

The dependencies are installed with the following command

$ sudo apt-get install build-essential cmake libfftw3-dev libmbedtls-dev
libboost-program-options-dev libconfig++-dev libsctp-dev

Next,

$ git clone https://github.com/srsRAN/srsRAN_4G.git

$ cd srsRAN_4G

$ mkdir build

$ cd build

$ cmake ../

During cmake, it is important that ZMQ is found:

-- FINDING ZEROMQ.
-- Checking for module 'ZeroMQ'
-- No package 'ZeroMQ' found
-- Found libZEROMQ: /usr/local/include, /usr/local/lib/libzmq.so

If not, follow the instructions in Section 2.2 to enable SCTP.

Finally,

$ make

$ make test

$ sudo make install

$ srsran_install_configs.sh user

Make sure it passes all the tests.

10

NIST TN 2311
October2024

3.2.2. Configuration

The srsUE configuration file we used is based on the script in [8]. This script can be used
with Ettus B210 when tx_gain and rx_gain are correctly configured. When ZMQ is used,
the following changes need to be made:

device_name = zmq
device_args = tx_port=tcp://tx_ip:tx_port,rx_port=tcp://rx_ip:rx_port,
base_srate=11.52e6

where tx_ip and tx_port are the IP address of the interface and its port that srsUE uses
to transmit the digital samples, and rx_ip and rx_port are where srsUE expects the digital
samples are from.

3.3. E2 Simulator

The E2 simulator from the OSC’s E2 simulator repository can be used to test the E2 interface
on the installed OSC near-RT RIC. Users can easily implement E2 simulator using a docker
container and build Dockerfile to generate the image.

3.3.1. Build and Installation

First check out e2-interface git source file from the repository, then build the docker
image.

$ git clone https://gerrit.o-ran-sc.org/r/sim/e2-interface

$ apt-get install cmake g++ libsctp-dev

$ cd e2-interface/e2sim

$ vi Dockerfile_kpm ### modify last line to "CMD sleep 100000000"

$ mkdir build

$ cd build

$ cmake .. && make package && cmake .. -DDEV_PKG=1 && make package

$ cp *.deb ../e2sm_examples/kpm_e2sm/

$ cd ../

$ docker build -t oransim:0.0.999 . -f Dockerfile_kpm

The E2 simulator can be run in a docker container and execute with the commands below.

$ docker run -d -it --name oransim oransim:0.0.999

11

NIST TN 2311
October2024

In the middle of building procedures, there was sleeping command into the Dockerfile, so
E2 simulator should be run manually. The execution command is “kpm_sim <IP address
of SCTP> 36422”, however, it needs to know the IP address of the E2 termination point
inside the near-RT RIC. This IP address can be found inside the Kubernetes service, service-
ricplt-e2term-sctp-alpha.

$ Kubectl get svc -n ricplt | grep e2term-sctp

ricplt service-ricplt-e2term-sctp-alpha NodePort 10.96.147.226 sctp-
alpha:36422→32222�SCTP

3.3.2. Running E2 Simulator

The next table shows the execution result from running kpm_sim. It shows the connection
was established successfully.

root@ /e2-interface/e2sim∼$ docker exec -it oransim /bin/bash
root@44623223b91a:/playpen∼$ kpm_sim 10.96.147.226 36422
[kpm_callbacks.cpp:63] Starting KPM simulator
[encode_kpm.cpp:49] short_name: ORAN-E2SM-KPM, func_desc: KPM Monitor,
e2sm_odi: OID123
[encode_kpm.cpp:72] Initialize event trigger style list structure
[encode_kpm.cpp:91] Initialize report style structure
%%about to register e2sm func desc for 0
%%about to register callback for subscription for func_id 0
Start E2 Agent (E2 Simulator
… </successfulOutcome>
</E2AP-PDU>
[E2AP] Unpacked E2AP-PDU: index = 2, procedureCode = 1
[e2ap_message_handler.cpp:80]
[E2AP] Received SETUP-RESPONSE-SUCCESS

3.3.3. E2 Connection Check from RIC Cluster

The connection status between the E2 simulator and the RIC cluster can be viewed by a sim-

ple curl command to one of the running pods in the RIC cluster, whose name is service-
ricplt-e2mgr-http service point.

$ Kubectl get service -n ricplt | grep service-ricplt-e2mgr-http

ricplt service-ricplt-e2mgr-http ClusterIP 10.96.90.98 http:3800→0

Then, use curl command to verify the connection.

12

NIST TN 2311
October2024

root@∼$ curl -X GET http://10.96.90.98:3800/v1/nodeb/states
2>/dev/null|jq
 [

{
 "inventoryName": "gnb_734_373_16b8cef1",
 "globalNbId": {

 "plmnId": "373437",
 "nbId": "10110101110001100111011110001"

 },
 "connectionStatus": "CONNECTED"

}
]

13

NIST TN 2311
October2024

4. 5G Core

We utilize Open5GS to deliver 5G Core network functionalities. Open5GS can be installed
with a package manager, or it can be built from sources [9]. In addition, srsRAN Project also
provides a dockerized version to simplify the deployment [10]. In this section, we use these
three installation methods to introduce the installation and configuration procedures we
have tried in our 5G testbed.

When Open5GS is installed using a package manager, version v2.6.4 and v2.6.6 are com-

patible with srsRAN Project v23.5 and v23.10, whereas Open5GS v2.7.0 supports srsRAN
Project v23.10.1 with additional required steps. When Open5GS v2.7.0 is installed from
source, it has been tested to be compatible with srsRAN Project v23.10.1. The docker-
ized Open5GS provided by srsRAN Project has been tested to be working with all the three
versions of srsRAN Project mentioned above.

4.1. Installation with Package Manager

Following the guidelines in [11], we tried installing Open5GS v2.6.4, v2.6.6, and v2.7.0
with package manager. V2.6.4 and v2.6.6 follow the identical steps as follows, whereas
some updates in v2.7.0 require additional steps in order to function properly with the other
O-RAN components and configurations, such as WebUI access and Network Repository
Function (NRF) configuration. These steps will be addressed in this section.

4.1.1. MongoDB

MongoDB is used as database for NRF/Policy Control Function (PCF)/Unified Data Reposi-
tory (UDR) and Policy and Charging Rules Function (PCRF)/Home Subscriber Server (HSS) [9].
It needs to be installed before Open5GS.

$ sudo apt update

$ sudo apt install gnupg

$ curl -fsSL https://pgp.mongodb.com/server-6.0.asc | sudo gpg -o
/usr/share/keyrings/mongodb-server-6.0.gpg --dearmor

$ echo "deb [arch=amd64,arm64 signed-by=/usr/share/keyrings/mongodb
-server-6.0.gpg] https://repo.mongodb.org/apt/ubuntu jammy/mongodb-
org/6.0 multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-
6.0.list

$ sudo apt update

$ sudo apt install -y mongodb-org

$ sudo systemctl enable --now mongod

14

NIST TN 2311
October2024

4.1.2. Open5GS

$ sudo add-apt-repository ppa:open5gs/latest

$ sudo apt update

$ sudo apt install open5gs

4.1.3. WebUI

WebUI can be used to add and modify subscriber information to Open5GS using a web
browser. Because of its interactive nature, it is more user friendly than the other subscriber
editing methods, such as using a command line tool. To use WebUI, Ubuntu Desktop must
be available on the server/workstation.

First, the dependency of WebUI, Nodejs, can be installed by:

$ sudo apt update

$ sudo apt install -y ca-certificates curl gnupg

$ sudo mkdir -p /etc/apt/keyrings

$ curl -fsSL https://deb.nodesource.com/gpgkey/nodesource-repo.gpg.key |
sudo gpg --dearmor -o /etc/apt/keyrings/nodesource.gpg

$ NODE_MAJOR=20

$ echo "deb [arch=amd64,arm64 signed-by=/etc/apt/keyrings/
nodesource.gpg] https://deb.nodesource.com/node_$NODE_MAJOR.x nodistro
main" | sudo tee /etc/apt/sources.list.d/nodesource.list

$ sudo apt update

$ sudo apt install nodejs -y

Then, install WebUI by:

$ curl -fsSL https://open5gs.org/open5gs/assets/webui/install | sudo -E
bash -

4.2. Configuration

4.2.1. AMF and UPF Configurations in 5G SA Mode

Once Open5GS is successfully installed, systemctl shows the running modules, and the
status of each module should be active and running, as shown in Fig. 2.

Their configuration files can be found in /etc/open5gs/ directory with extension .yaml.

15

NIST TN 2311
October2024

Fig. 2. Open5GS running modules.

For 5G SA mode, to setup the 5G core, AMF and UPF bind addresses should align with
the 5G core bind address as specified in Section 3.1.2. For example, when Open5GS
is deployed in the same server as the gNB, 127.0.0.5 can be used as the bind address for
5G core. Hence, the following configurations need to be made:

In /etc/open5gs/amf.yaml,

ngap:
- addr: 127.0.0.5

guami:
- plmn_id:

mcc: 001
mnc: 01

tai:
- plmn_id:

mcc: 001
mnc: 01

tac: 7
plmn_support:

- plmn_id:
mcc: 001
mnc: 01

In /etc/open5gs/upf.yaml,

gtpu:
- addr: 127.0.0.5

Next, restart AMF and UPF modules

$ sudo systemctl restart open5gs-amfd

$ sudo systemctl restart open5gs-upfd

16

NIST TN 2311
October2024

Users should run systemctl and check if all the modules are in active and running status.
If not, some configurations may need to be revisited.

4.2.2. NRF Configurations in Open5GS v2.7.0

It is important to note that the NRF configuration in Open5GS v2.7.0 does not update
the Public Land Mobile Network (PLMN) information following the changes in AMF. When
v2.7.0 is installed with package manager, PLMN needs to be manually updated in /etc/
open5gs/nrf.yaml:

nrf:
serving:

- plmn_id:
mcc: 001
mnc: 01

4.2.3. Register Subscriber

We use the subscriber information as provided by srsRAN Project [5]:

opc = 63BFA50EE6523365FF14C1F45F88737D
k = 00112233445566778899aabbccddeeff
imsi = 001010123456780

and the APN is:

apn = srsapn
apn_protocol = ipv4

To register the subscriber, open a web browser and connect to http://localhost:3000
(Note: In Open5GS v2.7.0, the port number is 9999.). Login with Username admin and
Password 1423 . Once logged in, click on the + button at the bottom right corner of the
browser to open the Create Subscriber window. As shown in Fig. 3, add the informa-

tion above to the corresponding fields. All the other fields can be left unchanged.

4.2.4. Enable UE Access to Internet

To enable the UE access to the Internet, IP forwarding should be enabled and Network
Address Translation (NAT) rules should be added:

17

NIST TN 2311
October2024

(a) USIM info

(b) APN info

Fig. 3. Create Subscriber window in WebUI.

$ sudo sysctl -w net.ipv4.ip_forward=1

$ sudo sysctl -w net.ipv6.conf.all.forwarding=1

$ sudo iptables -t nat -A POSTROUTING -s 10.45.0.0/16 ! -o ogstun -j
MASQUERADE

$ sudo ip6tables -t nat -A POSTROUTING -s 2001:db8:cafe::/48 ! -o ogstun
-j MASQUERADE

18

NIST TN 2311
October2024

It is important to note that these rules will be reset upon reboot unless they are saved
using a command like iptables-save.

In addition, firewall should also be disabled:

$ sudo ufw disable

Firewall stopped and disabled on system startup

$ sudo ufw status

Status: inactive

4.3. Installation from Sources

In this section, we build Open5GS from sources following most of the instructions in [9].
The version we tried was v2.7.0 with updates until 01/03/2024, as the source code has
been actively updated.

4.3.1. MongoDB

Please follow the instructions in Section 4.1.1 to install MongoDB.

4.3.2. TUN Device

When building from sources, the interface for TUN device needs to be added manually,
and after each reboot, the IP addresses need to be configured:

$ sudo ip tuntap add name ogstun mode tun

$ sudo ip addr add 10.45.0.1/16 dev ogstun

$ sudo ip addr add 2001:db8:cafe::1/48 dev ogstun

$ sudo ip link set ogstun up

4.3.3. Open5GS

Install the dependencies:

$ sudo apt install python3-pip python3-setuptools python3-wheel ninja-
build build-essential flex bison git cmake libsctp-dev libgnutls28-
dev libgcrypt20-dev libssl-dev libidn11-dev libmongoc-dev libbson-
dev libyaml-dev libnghttp2-dev libmicrohttpd-dev libcurl4-gnutls-dev
libnghttp2-dev libtins-dev libtalloc-dev meson

Please note the version of libgcrypt20-dev is used.

19

NIST TN 2311
October2024

Git clone Open5GS source code and install:

$ git clone https://github.com/open5gs/open5gs

$ cd open5gs

$ meson build --prefix=8pwd8/install

$ ninja -C build

Check if 5G core is compiled successfully:

$./build/tests/registration/registration

Run all tests:

$ cd build

$ meson test -v

If without issue, install Open5GS:

$ ninja install

$ cd ..

[9] introduced executing the NFs either individually or all together. When executed indi-
vidually, the NF configuration files in install/bin/ are used. amf.yaml and upf.yaml
shall be modified as discussed in Section 4.2.1, and each NF shall be executed in a separate
terminal by following ”Running Open5GS” section in [9].

When executing the NFs together, the configuration file in build/configs/sample.yaml
is used. The amf and upf sections of this file shall be modified for 5G SA mode following
the corresponding configurations in Section 4.2.1. After that, run the following command:

$./build/tests/app/5gc

4.3.4. WebUI

To install WebUI, nodejs can be installed following the instructions in Section 4.1.3. After
that, in open5gs directory:

$ cd webui

$ npm ci

And WebUI can be executed by

$ npm run dev

20

NIST TN 2311
October2024

4.3.5. Register Subscriber

Please follow the instructions in Section 4.2.3 to register subscriber.

4.3.6. Enable UE Access to Internet

Please follow the instructions in Section 4.2.4 to give UE access to the Internet.

4.4. Installation with Docker

Both Open5GS and srsRAN Project provide the options to build Open5GS into a docker con-
tainer. As srsRAN Project provides a stable version to better fit the srsRAN gNB execution,
we deployed the srsRAN option and it is thus introduced here.

The dockerized Open5GS provided by srsRAN Project uses the Open5GS v2.6.1. It has been
configured with the default AMF IP address of 10.53.1.2, which is also the IP address of the
docker container. It also uses the PLMN and UE information as introduced in Section 4.2.

To install Open5GS into the docker container, first install docker-compose:

$ sudo apt install docker-compose

You may need to add your user to docker group:

$ sudo gpasswd -a $USER docker

$ newgrp docker

After that, build the dockerized Open5GS by

$ cd docker

$ docker-compose up --build 5gc

4.4.1. Access Dockerized Open5GS from gNB

As dockerized Open5GS uses IP address of 10.53.1.2, the configuration file for gNB, as dis-
cussed in Section 3.1.2, needs to be updated by replacing the 5G core bind address in amf
with 10.53.1.2. In addition, IP rules may be added on the gNB server.

4.4.2. Enable UE access to Internet

The default deployment of the docker container does not grant the UE access to the Inter-
net. To give UE access to the Internet, log in to the docker container while it is running:

$ docker exec -t open5gs_5gc /bin/bash

Follow the steps in Section 4.2.4 to enable IP forwarding and edit iptables.

21

NIST TN 2311
October2024

5. Near-RT RIC

5.1. FlexRIC Setup

As srsRAN Project is actively updated, it may not be compatible with all versions/branches
of FlexRIC. A FlexRIC installation guideline is provided by srsRAN Project in [10], where the
e2ap-v2 branch of [12] is used, and a patch file is created to ensure E2 node is correctly
connected to gNB. This installation was tested to be working with srsRAN Project v23.5 and
v23.10, but failed when working with srsRAN Project v23.10.1. The master branch of the
FlexRIC provides an installation that is compatible with srsRAN Project v23.10.1. In this
section, we first introduce how to install the FlexRIC that is compatible with the current
version of srsRAN Project (v23.10.1). In addition, the FlexRIC e2ap-v2 branch installation
is also provided.

5.1.1. FlexRIC Installation for srsRAN Project v23.10.1

[12] provides a guideline for FlexRIC installation. To make it compatible with srsRAN Project
v23.10.1, the versions of E2AP and KPM need to be specified at cmake [13].

Before installing FlexRIC, the dependencies for SWIG and FlexRIC may need to be installed:

$ sudo apt install autotools-dev automake libpcre2-dev bison byacc

$ sudo apt install libsctp-dev python3.8 cmake-curses-gui libpcre2-dev
python3-dev gcc-10 g++-10

If a newer version of Python is already installed, python3.8 may not be needed.

Next, version v4.1 or greater of SWIG needs to be installed:

$ git clone https://github.com/swig/swig.git

$ cd swig

$ git checkout release-4.1

$./autogen.sh

$./configure --prefix=/usr/

$ make -j`nproc`

$ sudo make install

Clone FlexRIC:

22

NIST TN 2311
October2024

$ git clone https://gitlab.eurecom.fr/mosaic5g/flexric.git

$ git checkout master

$ cd flexric

$ mkdir build

The IP address that FlexRIC binds to can either be changed in flexric/flexric.conf
before installation, or it can be changed after installation in /usr/local/etc/flexric/
flexric.conf. The default IP address is 127.0.0.1. It can be used when FlexRIC is de-
ployed in the same server as the gNB. However, if FlexRIC is to be disaggregated from gNB,
the IP address of the interface assigned for FlexRIC should be typed in here. For example, if
the IP of the interface to be used by FlexRIC is 192.168.10.2, in flexric/flexric.conf,
it should be assigned to NEAR_RIC_IP as follows:

[NEAR-RIC]
NEAR_RIC_IP = 192.168.10.2 # An IP example

To build FlexRIC, we will use gcc-10 compiler, E2AP version 3 and KPM SM version 3 [13]:

$ cd build

$ CC=gcc-10 CXX=g++-10 cmake .. -DE2AP_VERSION=E2AP_V3 -
DKPM_VERSION=KPM_V3_00

$ sudo make install

$ cd ..

If the IP address for nearRT-RIC was not changed before installation, it can be edited now
in /usr/local/etc/flexric/flexric.conf:

[NEAR-RIC]
NEAR_RIC_IP = 192.168.10.2 # An IP example

5.1.2. FlexRIC Installation for srsRAN Project v23.5 and v23.10

Before downloading and installing FlexRIC, its dependencies need to be installed by:

$ sudo apt-get update

$ sudo apt-get install swig libsctp-dev cmake-curses-gui libpcre2-dev
python3 python3-dev

and the patch file can be downloaded from https://docs.srsran.com/projects/project/en

/latest/_downloads/d0bb1100d471824e1f5536ddd0765d0d/flexric.patch.

Next, download FlexRIC code and apply the patch file:

23

NIST TN 2311
October2024

$ git clone https://gitlab.eurecom.fr/mosaic5g/flexric.git

$ cd flexric

$ git checkout e2ap-v2

$ git apply -v ./flexric.patch

As discussed in Section 5.1.1, the IP address for FlexRIC can either be changed before or
after the installation. Refer to that section for additional information.

Next, as FlexRIC can only be built with gcc-10, CC=gcc-10 CXX=g++-10 needs to be spec-
ified at cmake. FlexRIC can be built and installed by:

$ mkdir build

$ cd build

$ CC=gcc-10 CXX=g++-10 cmake ../

$ make

$ sudo make install

5.2. OSC Near-RT RIC Setup

5.2.1. Software Source and Dependency

This section introduces the 5G open-source implementation of RAN solution from OSC.
First it needs to have the latest version of git software. Then, it will be able to download
OSC’s RIC implementation.

• Install the latest version of git

$ sudo apt install git

• RIC source download with J-release

$ git clone "https://gerrit.o-ran-sc.org/r/ric-plt/ric-dep” -b
j-release

5.2.2. Kubernetes, Docker, Helm Chart Installation

First go to the directory, ric-dep/bin, to prepare Kubernetes and Docker software envi-
ronments, run the installation file, install_k8s_and_helm.sh to install OSC’s basic in-
stallation. This file installs Kubernetes control, administration, proxies, and more. Also the
helm chart will be downloaded and installed as well as the docker container runtime.

24

NIST TN 2311
October2024

∼/ric-dep/bin∼$./install_k8s_and_helm.sh
+ KUBEV=1.28.11
+ HELMV=3.14.4
+ DOCKERV=20.10.21
+ echo running ./install_k8s_and_helm.sh
running ./install_k8s_and_helm.sh
…

After running the installation file, check the status of the Kubernetes installation which
should be similar to the next table. Ensure that the STATUS column displays “Running”
status without errors for each component.

$ kubectl get po -A

NAMESPACE NAME READY STATUS RESTARTS AGE
kube-flannel kube-flannel-ds-6bhtg 1/1 Running 0 59s
kube-system coredns-76f75df574-ggzrk 1/1 Running 0 59s
kube-system coredns-76f75df574-kvhb7 1/1 Running 0 59s
kube-system etcd-ric 1/1 Running 0 73s
kube-system kube-apiserver-ric 1/1 Running 0 73s
kube-system kube-controller-manager-ric 1/1 Running 0 76s
kube-system kube-proxy-f277s 1/1 Running 0 59s
kube-system kube-scheduler-ric 1/1 Running 0 74s

5.2.3. Modify Service Platform Configuration File

Next step, it needs to modify a configuration file in ric-dep/RECIPE_EXAMPLE/example
_recipe_latest_stable.yaml, or example_recipe_oran_j_release. Change the fol-
lowing section to the host node’s real IP address.

extsvcplt:
riccp:"10.0.0.1" --> main internet interface ip
auxip:"10.0.0.1" --> main internet interface ip

5.2.4. Install Common Template to Helm

In the ric-dep/bin directory run the common template for helm chart and chartmuseum
installation.

$ cd ric-dep/bin

$./install_common_templates_to_helm.sh

This command installs the following components:

• chartmuseum into helm with ”helm servecm”

• ric-common template into helm by chartmuseum

25

NIST TN 2311
October2024

The result should be similar to the following:

∼/ric-dep/bin∼$./install_common_templates_to_helm.sh
Installing servecm (Chart Manager) and common templates to helm3
Installed plugin: servecm
/root/.cache/helm/repository

% Total % Received % Xferd Average
Dload

Speed
Upload

Time
Total

Time
Spent

Time
Left

Current
Speed

100 15.0M 100 15.0M 0 0 28.8M 0 --:--:-- --:--:-- --:--:-- 28.8M

linux-386/
linux-386/chartmuseum
linux-386/LICENSE
linux-386/README.md
servecm not yet running. sleeping for 2 seconds
nohup: appending output to 'nohup.out'
servcm up and running
/root/.cache/helm/repository
Successfully packaged chart and saved it to: /tmp/ric-common-3.3.2.tgz
Error: no repositories configured
"local" has been added to your repositories
checking that ric-common templates were added
 NAME CHART VERSION APP VERSION DESCRIPTION
 local/ric-common 3.3.2 Common templates for inclusion in other charts

5.2.5. Installing Near RT-RIC

In the ric-dep/bin directory, the next step is to install RIC components with helm chart.
OSC’s install script provides a shell script for installation of each version of helm chart.

∼/ric-dep/bin∼$./install -f ../RECIPE_EXAMPLE/example_recipe_latest_stable.yaml
namespace/ricplt created
namespace/ricinfra created
namespace/ricxapp created
Deploying RIC infra components [infrastructure dbaas appmgr rtmgr e2mgr e2term a1mediator submgr
vespamgr o1mediator alarmmanager]
Note that the following optional components are NOT being deployed: influxdb jaegeradapter. To
deploy them add them with -c to the default component list of the install command
configmap/ricplt-recipe created
Add cluster roles
Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "local" chart repository
Update Complete. ~Happy Helming!~
Saving 7 charts
Downloading ric-common from repo http://127.0.0.1:8879/charts
Deleting outdated charts
NAME: r4-infrastructure
LAST DEPLOYED: Fri Aug 9 14:55:20 2024
NAMESPACE: ricplt
STATUS: deployed
REVISION: 1
TEST SUITE: None
…

After installation, the result can be checked with the ”kubectl get pods -A” command
to look into the overall status. (-A : all name spaces)

26

NIST TN 2311
October2024

∼/ric-dep/bin∼$ kubectl get pods -A
 NAMESPACE NAME READY STATUS
 kube-flannel kube-flannel-ds-2xhvq 1/1 Running
 kube-system coredns-5dd5756b68-n5pxv 1/1 Running
 kube-system coredns-5dd5756b68-zs4km 1/1 Running
 kube-system etcd-ric 1/1 Running
 kube-system kube-apiserver-ric 1/1 Running
 kube-system kube-controller-manager-ric 1/1 Running
 kube-system kube-proxy-qsx2t 1/1 Running
 kube-system kube-scheduler-ric 1/1 Running
 ricinfra deployment-tiller-ricxapp-676dfd8664-vzhgh 1/1 Running
 ricplt deployment-ricplt-a1mediator-64fd4bf64-dv8bx 1/1 Running
 ricplt deployment-ricplt-alarmmanager-7d47d8f4d4-xwdph 1/1 Running
 ricplt deployment-ricplt-appmgr-79848f94c-fbgtf 1/1 Running
 ricplt deployment-ricplt-e2mgr-856f655b4-vnqbj 1/1 Running
 ricplt deployment-ricplt-e2term-alpha-d5fd5d9c6-454zr 1/1 Running
 ricplt deployment-ricplt-o1mediator-76c4646878-qff7k 1/1 Running
 ricplt deployment-ricplt-rtmgr-6556c5bc7b-kdh5z 1/1 Running
 ricplt deployment-ricplt-submgr-66485ccc6c-p96d4 1/1 Running
 ricplt deployment-ricplt-vespamgr-786666549b-6w5f8 1/1 Running
 ricplt r4-infrastructure-kong-5986fc7965-zrzss 2/2 Running
 ricplt r4-infrastructure-prometheus-alertmanager-64f9876d6d-vf8v6 2/2 Running
 ricplt r4-infrastructure-prometheus-server-bcc8cc897-5t5tz 1/1 Running
 ricplt statefulset-ricplt-dbaas-server-0 1/1 Running

5.2.6. RIC Application, xApps

5.2.6.1. Onboarding of xApp Using dms_cli tool

dms_cli offers a rich set of command line utilities to onboard one of example xApps, hw
-go, to chartmuseum.

5.2.6.2. Chartmuseum

Using docker, chartmuseum can be easily run with the following command.

$ docker run --rm -u 0 -it -d -p 8090:8080 -e DEBUG=1 -e STORAGE=local
-e STORAGE_LOCAL_ROOTDIR=/charts -v $(pwd)/charts:/charts
chartmuseum/chartmuseum:latest

It will start downloading chartmuseum docker image from github and run the docker con-
tainer afterwards.

The status of running docker container can be checked with the following “docker ps”
command.

root@ric: /ric-dep/bin∼$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
9499fdeea733 chartmuseum/chartmuseum:latest "/chartmuseum" 4 minutes ago
Up 4 minutes 0.0.0.0:8090->8080/tcp, :::8090->8080/tcp stupefied_lamport

Set up the environment variables for Command Line Interface (CLI) connection using the
same port as used above.

27

NIST TN 2311
October2024

#Set CHART_REPO_URL env variable
export CHART_REPO_URL=http://0.0.0.0:8090

5.2.6.3. Onboarder (dms_cli) Installation

First, check out onboader from OSC’s git repository.

#Git clone appmgr

$ git clone "https://gerrit.o-ran-sc.org/r/ric-plt/appmgr"

Next, configure and install.

#Change dir to xapp_onboarder

$ cd appmgr/xapp_orchestrater/dev/xapp_onboarder

#If pip3 is not installed, install using the following command

$ apt install python3-pip

#In case dms_cli binary is already installed, it can be uninstalled using
following command

$ pip3 uninstall xapp_onboarder

#Install xapp_onboarder using following command

$ pip3 install ./

#(followings commands are optional)

$ chmod 755 /usr/local/bin/dms_cli

$ chmod -R 755 /usr/local/lib/python3.8 (←it might be different version
number depending on user’s python version, maybe python3.6 etc)

Check the installation and running status with health check.

root: /ric-dep/bin/appmgr/xapp_orchestrater/dev/xapp_onboarder∼$ dms_cli
health
True

If the result is ‘true’, it means dms_cli process is ready to run. Otherwise, if you get failed
or connection error such as “Caused by: ConnectionError”, this is due to CHART_REPO
_URL not set correctly or set to Null when the user left the shell and returned back again

28

NIST TN 2311
October2024

without this environment variable set. Setting this variable into bash resource file, bashrc
or bash profile, would help with this issue.

5.2.6.4. hw-go xApp Build and Preparation

In order to test the xApp, first check out hw-go test file from the git repository.

$ git clone https://gerrit.o-ran-sc.org/r/ric-app/hw-go

Go to hw-go inside and build a docker image with the provided Dockerfile. In order to
load a docker image from the local repository where chartmuseum is running, the docker
images should be stored locally, then Kubernetes will retrieve this image from the repo of
chartmuseum. The images will be used by Kubernetes to access and load into the clusters.

$ cd hw-go

$ docker build -t example.com:80/hw-go:1.2 .

$ export CHART_REPO_URL=http://0.0.0.0:8090

Edit config-file.json for dms_cli (xApp onboader) to get information in order for dms
_cli to generate helm chart. Because we made the docker image in the name of “example
.com:80/hw-go:1.2”, we need the config-json file to match accordingly.

$ vi config/config-file.json

1. modify tag = 1.2, under containers.image

2. modify registry with example.com:80 under containers.image

3. modify name with hw-go, under containers.image

$ docker save -o hw-go.tar example.com:80/hw-go:1.2

$ ctr -n=k8s.io image import hw-go.tar

5.2.6.5. Onboarding hw-go xApp and Install

In hw-go directory, two config files are needed to onboard the xApp. One is config-
file.json and the other is schema.json file. The following table shows the xApp on-
boarding commands with dms_cli application and the output messages. The onboarding
process is making helm chart yaml files, which are used for installing into the clusters.

29

NIST TN 2311
October2024

$ dms_cli onboard ./config/config-file.json ./config/schema.json

httpGet:
 path: ' index .Values "readinessProbe" "httpGet" "path" | toJson '
 port: ' index .Values "readinessProbe" "httpGet" "port" | toJson '

initialDelaySeconds: ' index .Values "readinessProbe"
"initialDelaySeconds" | toJson '
periodSeconds: ' index .Values "readinessProbe" "periodSeconds" | toJson
'

$ dms_cli onboard ./config/config-file.json ./config/schema.json

httpGet:
 path: ' index .Values "livenessProbe" "httpGet" "path" | toJson '
 port: ' index .Values "livenessProbe" "httpGet" "port" | toJson '

initialDelaySeconds: ' index .Values "livenessProbe"
"initialDelaySeconds" | toJson '
periodSeconds: ' index .Values "livenessProbe" "periodSeconds" | toJson '

{
"status": "Created"
}

To deploy the hw-go image into the RIC cluster as a running pod, the install command will
be used.

$ dms_cli install hw-go 1.0.0 ricxapp

status: OK

In case of uninstalling the previous installed xApp, hw-go pod in the ricxapp namesapce,

$ dms_cli uninstall hw-go ricxapp

status: OK

5.2.6.6. Checking xApp’s Deployment Status

In the near RT RIC cluster, you will be able to check whether hw-go xApp is properly on-
boarded or not by sending a curl query to “service-ricplt-appmgr” service.

First, in order to verify “service-ricplt-appmgr” service is running without problem,
we need to check the RIC Kubernetes cluster.

$ kubectl get services -n ricplt | grep service-ricplt-appmgr

 service-ricplt-appmgr-http ClusterIP 10.109.23.238 <none> 8080/TCP
 service-ricplt-appmgr-rmr ClusterIP 10.111.218.86 <none> 4561/TCP,4560/TCP

30

NIST TN 2311
October2024

There are two “service-ricplt-appmgr” related services. We need to pick up the name
of “service-ricplt-appmgr-http” to check the xApp status.

$ curl http://service-ricplt-appmgr-http.ricplt:8080/ric/v1/xapps | jq .
Or use ip address in case of service name is not found
$ curl http://10.110.206.238:8080/ric/v1/xapps | jq .

% Total % Received % Xferd Average
Dload

Speed
Upload

Time
Total

Time
Spent

Time
Left

Current
Speed

100 333 100 333 0 0 16650 0 --:--:-- --:--:-- --:--:-- 16650
 [
 {
 "instances": [
 {

 "ip": "service-ricxapp-hw-go-rmr.ricxapp",
 "name": "hw-go",
 "policies": [
 1

],
 "port": 4560
 "rxMessages": [
 "RIC_SUB_RESP",
 "A1_POLICY_REQ",
 "RIC_HEALTH_CHECK_REQ"

],
 "status": "deployed",
 "txMessages": [
 "RIC_SUB_REQ",
 "A1_POLICY_RESP",
 "A1_POLICY_QUERY",
 "RIC_HEALTH_CHECK_RESP"

]
 }

],
 "name": "hw-go",
 "status": "deployed",
 "version": "1.0.0"
 }

]

In the RIC Kubernetes, hw-go xApp can be observed by getting pods status as shown in the
following table using ricxapp namespace. (-n ricxapp)

$ kubectl get po -n ricxapp

 NAME READY STATUS RESTARTS AGE
 ricxapp-hw-go-7c8945ccb6-tldk8 1/1 Running 0 9d

5.2.7. Interoperation with E2 Simulator

When the xApp is connected to the RIC cluster, xApp’s initial configuration message, xApp
register, and subscription request message will be transferred to the E2 simulator through
the E2 functions in the cluster pods. Those message transactions are shown in the E2
simulator’s logs described in the table below.

31

NIST TN 2311
October2024

[e2sim.cpp:237] [SCTP] Received new data of size 47
in e2ap_handle_sctp_data()
decoding...
full buffer

length of data 47
result 0
index is 1
showing xer of data
<E2AP-PDU>
 <initiatingMessage>
 <procedureCode>8</procedureCode>
 <criticality><ignore/></criticality>
 <value>
 <RICsubscriptionRequest>
 <protocolIEs>
 <RICsubscriptionRequest-IEs>
 <id>29</id>
 <criticality><reject/></criticality>
 <value>
 <RICrequestID>
 <ricRequestorID>123</ricRequestorID>
 <ricInstanceID>4</ricInstanceID>

 </RICrequestID>
 </value>

 </RICsubscriptionRequest-IEs>
 <RICsubscriptionRequest-IEs>
 <id>5</id>
 <criticality><reject/></criticality>
 <value>
 <RANfunctionID>1</RANfunctionID>

 </value>
 </RICsubscriptionRequest-IEs>
 <RICsubscriptionRequest-IEs>
 <id>30</id>
 <criticality><reject/></criticality>
 <value>
 <RICsubscriptionDetails>
 <ricEventTriggerDefinition>01 02 03 04</ricEventTriggerDefinition>
 <ricAction-ToBeSetup-List>
 <ProtocolIE-SingleContainer>
 <id>19</id>
 <criticality><ignore/></criticality>
 <value>
 <RICaction-ToBeSetup-Item>
 <ricActionID>1</ricActionID>
 <ricActionType><report/></ricActionType>
 <ricActionDefinition>01 02 03 04</ricActionDefinition>
 <ricSubsequentAction>
 <ricSubsequentActionType><continue/></ricSubsequentActionType>
 <ricTimeToWait><w20ms/></ricTimeToWait>

32

NIST TN 2311
October2024

 </ricSubsequentAction>
 </RICaction-ToBeSetup-Item>

 </value>
 </ProtocolIE-SingleContainer>

 </ricAction-ToBeSetup-List>
 </RICsubscriptionDetails>

 </value>
 </RICsubscriptionRequest-IEs>

 </protocolIEs>
 </RICsubscriptionRequest>

 </value>
 </initiatingMessage>

</E2AP-PDU>
initiating message
[E2AP] Unpacked E2AP-PDU: index = 1, procedureCode = 8
...

33

NIST TN 2311
October2024

6. Testbed Deployments

The software stacks for O-RAN components mentioned in Section 1.2 can be installed in
several styles, such as installing from source or package manager on a bare metal machine,
or installing in a docker container or kubernetes pods. Each installation style may require
customized software or IP configurations on some or all the software to ensure that con-
nections can be established between O-RAN components.

As each of the 5G testbed components can be deployed separately, they can either be
deployed on the same server/workstation, or some/all components can be deployed on
individual machines. In addition, the connection between gNB and UE can be

1. digital connection, where digital samples of the base band signals can be exchanged
without being converted into RF signals,

2. RF connection using radio devices.

We use ZMQ messaging library for digital connection, and use USRPs for radio connection.

In this section, we introduce several deployment scenarios that were implemented and
tested successfully on our testbeds. Each scenario is a combination of different software
stacks, installation styles, and connection types. It is worth mentioning that of all the de-
ployment scenarios in this section, we use the following RAN configurations:

• Frequency band: n3;

• Duplexing method: Frequency Division Duplex (FDD);

• Uplink center frequency: 1747.5 MHz;

• Downlink center frequency: 1842.5 MHz;

• Bandwidth: 10 MHz.

6.1. Aggregated Deployments

In the aggregated scenarios we have tried, the 5G Core, near-RT RIC, and gNB are installed
on the same server, whereas the UE can be on the same server or on a different server.
Both digital and RF connection have been tested.

In the following scenarios that uses FlexRIC as near-RT RIC, when FlexRIC is installed from
source and Open5GS is installed from source or package manager, we can use the following
local IP addresses for each component:

• Open5GS: 127.0.0.5,

• FlexRIC: 127.0.0.1,

• srsRAN gNB: 127.0.0.1.

34

NIST TN 2311
October2024

User can install Open5GS from package manager following Section 4.1, or from sources
following Section 4.3. The configurations in these sections use the above IP addresses as
examples.

FlexRIC can be installed following Section 5.1.1 or 5.1.2, and the 127.0.0.1 local IP was
default at flexric/flexric.conf so no IP configuration is needed for aggregated sce-
narios.

6.1.1. Installations on a Single Bare Metal Server, ZMQ Connection

Server 1 (Ubuntu 22.04)

E2 N2

N3

ZMQ

Fig. 4. Aggregated deployment: srsRAN gNB and UE, Open5GS, and FlexRIC. All
components are installed on a bare metal server.

As illustrated in Fig. 4, the aggregated deployment on one server includes

• gNB: srsRAN Project,

• UE: srsRAN 4G,

• 5G core: Open5GS,

• near-RT RIC: FlexRIC,

and the connection between gNB and UE is via ZMQ. Because of its simplicity in config-
uration, a user can use this scenario as a test setup before more complicated function or
network layout is introduced. The O-RAN components in this scenario can be installed
following the Sections in Table 1.

Table 1. Installation Guide for Aggregated Scenario on One Server.

 Software Installation Guide Server
 srsRAN gNB Section 3.1 Server 1
 srsUE Section 3.2 Server 1
 FlexRIC Section 5.1.1 or 5.1.2 Server 1
 Open5GS Section 4.1 or 4.3 Server 1

srsRAN gNB and UE can be installed following Sections 3.1 and 3.2, respectively. In srsRAN
gNB’s configuration file, Open5GS can be bound to gNB by

35

NIST TN 2311
October2024

amf:
addr: 127.0.0.5 # 5G core bind address
bind_addr: 127.0.0.1 # gNB bind address

and FlexRIC can be bound to gNB by

e2:
enable_du_e2: true
addr: 127.0.0.1 # RIC bind address
bind_addr: 127.0.0.1 # gNB bind address for RIC connection
e2sm_kpm_enabled: true

To establish connection via ZMQ, we use 127.0.0.1:2000 as the interface between gNB
Transmitter (TX) and UE Receiver (RX), and 127.0.0.1:2001 between UE TX and gNB RX.
In gNB configuration file:

ru_sdr:
device_driver: zmq
device_args: tx_port=tcp://127.0.0.1:2000,rx_port=tcp://127.0.0.1:

2001,base_srate=11.52e6
srate: 11.52
tx_gain: 75
rx_gain: 35

and in UE configuration file:

device_name = zmq
device_args = tx_port=tcp://127.0.0.1:2001,rx_port=tcp://127.0.0.1:2000,
base_srate=11.52e6

6.1.2. Installations with gNB and UE on different bare metal servers, ZMQ or USRP Con-
nections

As illustrated in Fig. 5, the aggregated deployment has

• UE: srsRAN 4G

on Server 1, and

• gNB: srsRAN Project,

• 5G core: Open5GS,

• near-RT RIC: FlexRIC

on Server 2. The O-RAN components in this scenario can be installed following the Sections
listed in Table 2.

36

NIST TN 2311
October2024

Server 1 (Ubuntu 22.04)

ZMQ

192.0.13.1 192.0.13.2

(a) with ZMQ connection

Server 1 (Ubuntu 22.04) Server 2 (Ubuntu 22.04)

E2
N2

N3

RF coaxial cables

with a�enuators

(b) with USRP connection

Fig. 5. Aggregated deployment: srsRAN gNB and UE, Open5GS, and FlexRIC. All
components are installed on bare metal servers.

Table 2. Installation Guide for Aggregated Scenario on Two Servers.

 Software Installation Guide Server
 srsRAN gNB Section 3.1 Server 2
 srsUE Section 3.2 Server 1
 FlexRIC Section 5.1.1 or 5.1.2 Server 2
 Open5GS Section 4.1 or 4.3 Server 2

The Open5GS and FlexRIC can connect to the gNB as described in Section 6.1.1.

6.1.2.1. ZMQ Connection

In the scenario shown in Fig. 5a, ZMQ connection can be used to validate installations and
connections between O-RAN components, before radio units are added, where RF config-
urations can lead to more complicated system calibration. ZMQ connection is established
across a dedicated subnet of 192.0.13.x. A simple ping function can be used to verify
the connectivity between Server 1 and Server 2.

To establish ZMQ connection, the following changes need to be made on gNB and UE con-
figuration files:

37

NIST TN 2311
October2024

1. srsRAN gNB on Server 2 sends digital signal samples via 192.0.13.2:2000 and lis-
tens for samples from 192.0.13.1:2001. The configuration file ru_sdr section can
be configured as

ru_sdr:
device_driver: zmq
device_args: tx_port=tcp://192.0.13.2:2000,rx_port=tcp://

192.0.13.1:2001,base_srate=11.52e6
srate: 11.52
tx_gain: 75
rx_gain: 35

2. srsRAN UE on Server 1 sends digital signal samples via 192.0.13.1:2001 and listens
for samples from 192.0.13.2:2000. The following lines in UE configuration file
needs to be changed:

device_name = zmq
device_args = tx_port=tcp://192.0.13.1:2001,rx_port=tcp://
192.0.13.2:2000,base_srate=11.52e6

6.1.2.2. USRP Connection

Fig. 5b provides the first deployment we tested with Ettus B210 USRPs. It is important to
note that 50 dB attenuation is added between the TX and RX ports.

The USRP connection can be established as follows:

1. srsRAN gNB configuration file on Server 2:

ru_sdr:
device_driver: uhd
device_args: type=b200
clock: external
sync: external
srate: 11.52
tx_gain: 75
rx_gain: 35

2. srsRAN UE configuration file on Server 1:

38

NIST TN 2311
October2024

[rf]
freq_offset = 0
tx_gain = 80
rx_gain = 35
srate = 11.52e6
nof_antennas = 1

device_name = uhd
device_args = clock=external
time_adv_nsamples = 300

6.1.3. Installations on a Single Bare Metal Server, Multiple UEs and One gNB, ZMQ Con-
nection

Server 1 (Ubuntu 22.04)

ZMQ

ZMQ

ZMQ

ZMQ

Fig. 6. Aggregated deployment with multiple UEs: srsRAN gNB and UEs, ZMQ connection,
Open5GS, and FlexRIC. All components are installed on bare metal servers.

The O-RAN components can be installed following Table 1. Following the srsRAN instruc-
tion in [5], we connect more than one srsRAN UEs to the gNB with ZMQ (Fig. 6). The
channel model is created using GNURadio, as shown in Fig. 7, where the TX samples from
the UEs are added to form one data stream and is then sent to gNB RX, and the TX samples
from gNB are duplicated and sent to each UE.

To have multiple UE instances running on the same machine, each UE shall be isolated
within its own network namespace, with its unique Universal Subscriber Identity Module
(USIM). Their USIM shall also be registered in Open5GS, following the steps in Section 4.1.3.
Table 3 provides the USIMs and network namespaces of the UEs that are used in our de-
ployment, and the changes we made to UE1 configuration file is as follows:

39

NIST TN 2311
October2024

F
ig
. 7
. G

N
U
R
a
d
io ch

a
n
n
e
l m

o
d
e
l fo

r th
e a

g
g
re
g
a
te
d m

u
lti
-U
E sce

n
a
rio w

ith Z
M
Q
.

40

NIST TN 2311
October2024

Table 3. UE Configuration Information.

 UE UE1 UE2 UE3
 OPc 63bfa50ee6523365ff14c1f45f88737d
 K 00112233445566778899aabbccddeeff ...f00 ...f01
 IMSI 001010123456780 ...90 ...91
 IMEI 353490069873319 ...8 ...2
 netns ue1 ue2 ue3
 TX Port 2101 2201 2301
 RX Port 2100 2200 2300

[rf]
......
device_name = zmq
device_args = tx_port=tcp://127.0.0.1:2101,rx_port=tcp://127.0.0.1:2100,
base_srate=11.52e6
......
[pcap]
enable = none
mac_filename = /tmp/ue1_mac.pcap
mac_nr_filename = /tmp/ue1_mac_nr.pcap
nas_filename = /tmp/ue1_nas.pcap

[log]
......
filename = /tmp/ue1.log
......
[usim]
mode = soft
algo = milenage
opc = 63BFA50EE6523365FF14C1F45F88737D
k = 00112233445566778899aabbccddeeff
imsi = 001010123456780
imei = 353490069873319
......
[gw]
netns = ue1
ip_devname = tun_srsue
ip_netmask = 255.255.255.0
......

The configuration files for the other UEs shall change accordingly based on Table 3. Changes
are depicted as underlined text.

41

NIST TN 2311
October2024

6.1.4. Deployment with Kubernetes OSC Near-RT RIC, Containerized Open5GS, E2 Simu-

lator, and ZMQ Connection between gNB and UE

Fig. 8. Deployment with aggregated srsRAN gNB and UE, E2 Simulator, Kubernetes OSC
Near-RT RIC, and Dockerized Open5GS 5G Core

For testing 5G core and 5G RAN components within a single server, it is very efficient to
modularize each part as a docker container or cluster pod as it can reduce the compatibility
issues that might happen in the middle of compilation and installation.

As shown in Fig. 8, We are using Kubernetes cluster for near-RT RIC, xApps as well as xApp-
Onboarder, and docker or docker compose are used for 5G RAN, 5G core components. The
O-RAN components in this scenario can be installed following the Sections in Table 4.

Table 4. Installation Guide for Aggregated Scenario on a Single Server with OSC Near-RT
RIC.

 Software Installation Guide Server
 srsRAN gNB Section 3.1 Server 1
 srsUE Section 3.2 Server 1
 E2 Simulator Section 3.3 Server 1
 OSC Near-RT RIC Section 5.2 Server 1
 Open5GS Section 4.4 Server 1

For 5G core solution in our testbed, the docker compose is used to deploy Open5GS soft-
ware without having to install from the source code. Additionally, gNB and UE might also
be deployed by being instantiated as docker containers. gNB and srsrUE compilation from

42

NIST TN 2311
October2024

the source code normally require somewhat intricate and strict CPU requirements and
specific environments in the middle of compiling procedures. This often leads to failures
in compiling procedures. To easily duplicate the installation procedures without any issues
and difficulties for the same testbed environment and configuration, it is recommended to
make docker container instances of the gNB and the srsUE.

The northbound interfaces of the gNB and E2 Simulator are connected to e2term-sctp
pod in RIC cluster with SCTP protocol by the port number 32222. The southbound interface
of the gNB is connected to srsUE southbound with ZMQ driver that is able to send a traffic
without using RF hardware equipment.

6.2. Disaggregated Deployments

In this section, we provide several scenarios where each O-RAN component is deployed
on a separate server/workstation. We first introduce the single-UE scenarios, including
ZMQ and USRP connections. Next, we discuss how we use a channel emulator to provide
RF connections between a gNB and multiple UEs. Finally, we discuss how we make gNB
communicate with an open5GS in a docker container.

Fig. 9 and Fig. 10 illustrate the system setups of the testbeds. The servers for srsRAN gNB,
FlexRIC, and Open5GS are physically connected via Ethernet cables and a switch on the
192.0.13.x subnet. Specifically, their IP addresses are as follows

• Open5GS Server: 192.0.13.3

• srsRAN gNB Server: 192.0.13.4

• FlexRIC Server: 192.0.13.7

6.2.1. Installations on Bare Metal Servers, with ZMQ or USRP Connection

These scenarios have srsRAN gNB and UE, FlexRIC, and Open5GS installed on the bare
metal servers/workstations, where we successfully installed and configured Open5GS with
either package manager or from source. The O-RAN components in this scenario can be
installed following the Sections in Table 5.

Table 5. Installation Guide for Disaggregated Scenario.

 Software Installation Guide Server
 srsRAN gNB Section 3.1 Server 1
 srsUE Section 3.2 Workstation 1
 FlexRIC Section 5.1.1 or 5.1.2 Server 3
 Open5GS Section 4.1 or 4.3 Server 2

43

NIST TN 2311
October2024

Server 2 (Ubuntu 22.04)

N2

N3
192.0.13.3

Server 3 (Ubuntu 22.04) E2

192.0.13.7

ZMQ

Server 1 (Ubuntu 22.04)

192.0.13.4

192.0.13.1

Worksta�on 1

(Ubuntu 22.04)

(a) with ZMQ

RF coaxial cables

with a�enuators

Worksta�on 1

(Ubuntu 22.04)

Server 2 (Ubuntu 22.04)

N2

N3
192.0.13.3

Server 3 (Ubuntu 22.04) E2

192.0.13.7

Server 1 (Ubuntu 22.04)

192.0.13.4

(b) with USRP

Fig. 9. Disaggregated deployments

To configure Open5GS, after it is installed, follow instructions in Section 4.2.1 and replace
127.0.0.5 with 192.0.13.3 in amf.yaml: ngap: addr and upf.yaml: gtpu: addr.

Follow Section 5.1.1 to change FlexRIC’s IP address to 192.0.13.7: it can either be added
to flexric.conf before installation, or replace in /usr/local/etc/flexric/flexric
.conf after it is installed.

Finally, srsRAN gNB can be bound to 192.0.13.4 and communicate with Open5GS and
FlexRIC by

44

NIST TN 2311
October2024

amf:
addr: 192.0.13.3 # 5G core bind address
bind_addr: 192.0.13.4 # gNB bind address

......
e2:

enable_du_e2: true
addr: 192.0.13.7 # RIC bind address
bind_addr: 192.0.13.4 # gNB bind address for RIC connection
e2sm_kpm_enabled: true

6.2.1.1. ZMQ Connection

To establish ZMQ connection, the following changes need to be made on gNB and UE con-
figuration files:

1. srsRAN gNB on Server 1 sends digital signal samples via 192.0.13.4:2000 and lis-
tens for samples from 192.0.13.1:2001. The configuration file ru_sdr section can
be configured as:

ru_sdr:
device_driver: zmq
device_args: tx_port=tcp://192.0.13.4:2000,rx_port=tcp://

192.0.13.1:2001,base_srate=11.52e6
srate: 11.52
tx_gain: 75
rx_gain: 35

2. srsRAN UE on Workstation 1 sends digital signal samples via 192.0.13.1:2001 and
listens for samples from 192.0.13.4:2000. The following lines in UE configuration
file needs to be changed:

device_name = zmq
device_args = tx_port=tcp://192.0.13.1:2001,rx_port=tcp://
192.0.13.4:2000,base_srate=11.52e6

6.2.1.2. USRP Connection

Fig. 9b provides the first disaggregated deployment we tested with Ettus B210 USRPs. The
attenuation between TX and RX ports is 50 dB.

The USRP connection can be established following the same configuration changes in Sec-
tion 6.1.2.2.

45

NIST TN 2311
October2024

6.2.2. Installations on Bare Metal Servers, USRP Connection, Multiple UEs via Channel
Emulator

Server 2 (Ubuntu 22.04)

N2

N3192.0.13.3

Server 3 (Ubuntu 22.04) E2

192.0.13.7

Server 1 (Ubuntu 22.04)

192.0.13.4

Work Sta�on 1

(Ubuntu 22.04)

Ch. Emulator

Work Sta�on 2

(Ubuntu 22.04)

Work Sta�on 3

(Ubuntu 22.04)

(a) Multi-UE deployment scenario

(b) Channel emulator model for 3-UE deployment.

Fig. 10. Disaggregated deployment with multiple UEs and RF connection.

In addition to the one-UE scenarios, we were able to realize multi-UE connections to a
single gNB (Fig. 10a). Each srsRAN UE is installed on a separate workstation, as listed in
Table 6. The gNB and UE establish connections using Ettus B210 USRPs and a Propsim F32
channel emulator. The channel model (Fig. 10b) can be programmed to support designated
uplink and downlink frequencies, and each channel’s bandwidth can be configured up to
40 MHz. Additionally, each uplink or downlink channel provides 43 dB total attenuation to
the input RF signal.

46

NIST TN 2311
October2024

Table 6. Installation Guide for Disaggregated Scenario with Multiple UEs.

 Software Installation Guide Server
 srsRAN gNB Section 3.1 Server 1
 srsUE1 Section 3.2 Workstation 1
 srsUE2 Section 3.2 Workstation 2
 srsUE2 Section 3.2 Workstation 3
 FlexRIC Section 5.1.1 or 5.1.2 Server 3
 Open5GS Section 4.1 or 4.3 Server 2

To realize this deployment, we use the same USIMs for the UEs as listed in Fig. 3. These
USIMs will need to be registered in Open5GS following Section 4.1.3 instructions. We pro-
vide the necessary changes to UE1 configuration file as an example here:

[rf]
freq_offset = 0
tx_gain = 75
rx_gain = 35
srate = 11.52e6
nof_antennas = 1

device_name = uhd
device_args = clock=external
time_adv_nsamples = 398
......
[usim]
mode = soft
algo = milenage

opc = 63BFA50EE6523365FF14C1F45F88737D
k = 00112233445566778899aabbccddeeff
imsi = 001010123456780
imei = 353490069873319
......

and the configuration files for UE2 and UE3 shall change accordingly.

6.2.3. Deployment with Containerized Open5GS

Besides installing Open5GS on a bare metal server, a dockerized Open5GS is provided in
srsRAN Project to simplify the installation. The O-RAN components as well as the docker-
ized Open5GS in this scenario can be installed following the Sections in Table 7.

47

NIST TN 2311
October2024

RF coaxial cables

with a�enuators

Worksta�on 1

(Ubuntu 22.04)

Server 3 (Ubuntu 22.04) E2

192.0.13.7

Server 1 (Ubuntu 22.04)

192.0.13.4

Server 2 (Ubuntu 22.04)

192.0.13.3

Fig. 11. Deployment with dockerized Open5GS: single-UE, USRP connection

Table 7. Installation Guide for Disaggregated Scenario with Dockerized Open5GS.

 Software Installation Guide Server
 srsRAN gNB Section 3.1 Server 1
 srsUE Section 3.2 Workstation 1
 FlexRIC Section 5.1.1 or 5.1.2 Server 3
 Open5GS Section 4.4 Server 2

As the dockerized Open5GS uses the default IP address of 10.53.1.2, we focus on how
to configure gNB and its server’s IP rules so that connection can be established between
srsRAN gNB and Open5GS.

As shown in Fig. 11, the deployment has the same system setup as the disaggregated de-
ployment in Fig. 9b, except that the Open5GS uses the same server but is encapsulated in
a docker container and is using 10.53.1.2 as its IP address.

Server 2 should have access to 10.53.1.2 upon successful installation of the dockerized
Open5GS. A user can verify the connectivity using ”ping 10.53.1.2” on Server 2 termi-

nal.

srsRAN gNB binds to Open5GS by configuring amf: addr in gNB configuration file:

amf:
addr: 10.53.1.2 # 5G core bind address
bind_addr: 192.0.13.4 # gNB bind address

In addition, gNB server (Server 1) can gain access to 10.53.1.2 in Server 2 by

$ sudo ip route add 10.53.1.0/24 via 192.0.13.3

The other configurations shall align with those for Fig. 9b scenario.

48

NIST TN 2311
October2024

7. Automation Tool

Fig. 12. Deployment Scenario from Automation Tool

The automation tool, O-RAN-Testbed-Automation, is based on the deployment scenario in-
troduced in Section 6.1.4 and installs Open5GS from source. It streamlines the installation
of components listed in Table 8 and automatically configures IP addresses, as illustrated in
Fig. 12. The repository is available in [14].

Table 8. Installation Guide Followed by Automation Tool.

 Software Installation Guide
 srsRAN gNB Section 3.1
 srsUE Section 3.2
 E2 Simulator Section 3.3
 OSC Near-RT RIC Section 5.2
 Open5GS Section 4.3

The testbed deployment is packaged as an executable set of Bash shell scripts designed
to run on a fresh Ubuntu-based Linux operating system. The full_install.sh script in
each component directory installs dependencies, clones the repository, builds the source
code, and deploys the respective application on the host machine. After installation, the
generate_configurations.sh script modifies the default configuration files (.yaml or
.conf) to set IP addresses, ports, and other settings necessary for proper application op-
eration. The run.sh script starts the application, stop.sh halts it, and is_running.sh
outputs the application’s running status to stdout.

49

NIST TN 2311
October2024

The automation example of the deployment scenario in Fig. 12 provides ZMQ connection
between the gNB and the UE. Users can also enable additional functionalities, such as
connecting to USRPs, by modifying the configuration files in the configs directory.

Additionally, [14] offers a comprehensive installation guide for deploying a fully disaggre-
gated testbed.

50

NIST TN 2311
October2024

8. Test Setup

8.1. Testbed

The test was performed using the deployment scenario in Fig. 9b, where Ettus B210 USRPs
and RF cabled connections are used and 50 dB attenuation is added between each TX and
RX pair. The servers are on the 192.0.13.x subnet:

• gNB Server: 192.0.13.4

• Open5GS Server: 192.0.13.3

• FlexRIC Server: 192.0.13.7

8.2. Scripts and Configurations

The script for each testbed component is configured as follows:

gNB.yaml:

amf:
addr: 192.0.13.3
bind_addr: 192.0.13.4

ru_sdr:
device_driver: uhd
device_args: type=b200
clock: external
sync: external
srate: 11.52 tx_gain: 75
rx_gain: 35

cell_cfg:
dl_arfcn: 368500
band: 3
channel_bandwidth_MHz: 10
common_scs: 15
plmn: "00101"
tac: 7
pdcch:

dedicated:
ss2_type: common
dci_format_0_1_and_1_1: false

common:
ss0_index: 0
coreset0_index: 6

51

NIST TN 2311
October2024

prach:
prach_config_index: 1

log:
filename: /tmp/gnb.log
all_level: info
hex_max_size: 0

pcap:
mac_enable: false
mac_filename: /tmp/gnb_mac.pcap
ngap_enable: false
ngap_filename: /tmp/gnb_ngap.pcap
e2ap_enable: true
e2ap_filename: /tmp/gnb_e2ap.pcap

e2:
enable_du_e2: true
addr: 192.0.13.7
bind_addr: 192.0.13.4
e2sm_kpm_enabled: true

Note: The gnb.yaml above can be used when Open5GS is installed on the bare metal
Server 3, either with package manager or from source. When Open5GS is installed in a
docker container, 10.53.1.2 is the IP address that Open5GS binds to, as discussed in Sec-
tion 4.4.1. Thus amf->addr in the above configuration file shall be changed to 10.53.1.2.
The user should also ping 10.53.1.2 from Server 2 to check if the dockerized Open5GS
is accessible. If not, IP rules shall be added to Server 2, which, in this deployment scenario,
shall be:

$ sudo ip route add 10.53.1.0/24 via 192.0.13.3

ue.conf:

[rf]
freq_offset = 0
tx_gain = 80
rx_gain = 35
srate = 11.52e6
nof_antennas = 1

device_name = uhd
device_args = clock=external
time_adv_nsamples = 300

[rat.eutra]
dl_earfcn = 2850
nof_carriers = 0

52

NIST TN 2311
October2024

[rat.nr]
bands = 3
nof_carriers = 1
max_nof_prb = 52
nof_prb = 52

[pcap]
enable = none
mac_filename = /tmp/ue_mac.pcap
mac_nr_filename = /tmp/ue_mac_nr.pcap
nas_filename = /tmp/ue_nas.pcap

[log]
all_level = info
phy_lib_level = none
all_hex_limit = 32
filename = /tmp/ue.log
file_max_size = -1
[usim]
mode = soft
algo = milenage
opc = 63BFA50EE6523365FF14C1F45F88737D
k = 00112233445566778899aabbccddeeff
imsi = 001010123456780
imei = 353490069873319

[rrc]
release = 15
ue_category = 4

[nas]
apn = srsapn
apn_protocol = ipv4

[gui]
enable = false

Open5GS:

If Open5GS is installed with Package Manager:

In /etc/open5gs/amf.yaml,

53

NIST TN 2311
October2024

ngap:
- addr: 192.0.13.3

guami:
- plmn_id:

mcc: 001
mnc: 01

tai:
- plmn_id:

mcc: 001
mnc: 01

tac: 7
plmn_support:

- plmn_id:
mcc: 001
mnc: 01

In /etc/open5gs/upf.yaml,

gtpu:

- addr: 192.0.13.3

In /etc/open5gs/nrf.yaml, check if mcc is 001 and mnc is 01. If not, make the changes.
If mcc and mnc are not defined, it is not necessary to add the configuration.

nrf:
serving:

- plmn_id:
mcc: 001
mnc: 01

If changes are made in NRF configuration file, restart NRF module by

$ sudo systemctl restart open5gs-nrfd

Next, restart AMF and UPF modules

$ sudo systemctl restart open5gs-amfd

$ sudo systemctl restart open5gs-upfd

Run systemctl and check if all the modules are in active and running status. Complete
the rest of the configuration as discussed in Section 4.

If Open5GS is installed from source:

All the NFs can be started simultaneously using the configurations in open5gs/build/
configs/sample.yaml. To do this, user should modify the amf, upf, and nrf sections in
this file, using the configuration information above.

54

NIST TN 2311
October2024

If Open5GS is installed with Docker provided by srsRAN Project:

Follow the instructions in Section 4.4 to complete the installation.

FlexRIC:

After FlexRIC is installed, check /usr/local/etc/flexric/flexric.conf and make sure
192.0.13.7 is assigned to NEAR_RIC_IP:

[NEAR-RIC]
NEAR_RIC_IP = 192.0.13.7

Next, follow the instructions in Section 5 and finish the installation.

8.3. Running Testbed

Open5GS

If Open5GS is installed with Package Manager:

All the NFs are in running state automatically. Nothing needs to be done.

If Open5GS is installed from source:

Run the following commands:

$ cd open5gs

$./build/tests/app/5gc

If Open5GS is installed with Docker provided by srsRAN Project:

$ cd srsRAN_Project/docker/

$ docker-compose up 5gc

FlexRIC

To run the testbed, users should first start NearRT-RIC in FlexRIC on Server 4 by

$./flexric/build/examples/ric/nearRT-RIC

The following logs should be displayed:

Setting the config -c file to /usr/local/etc/flexric/flexric.conf
Setting path -p for the shared libraries to /usr/local/lib/flexric/
[NEAR-RIC]: nearRT-RIC IP Address = 192.0.13.7, PORT = 36421
[NEAR-RIC]: Initializing
[NEAR-RIC]: Loading SM ID = 144 with def = PDCP_STATS_V0
[NEAR-RIC]: Loading SM ID = 147 with def = ORAN-E2SM-KPM
[NEAR-RIC]: Loading SM ID = 142 with def = MAC_STATS_V0

55

NIST TN 2311
October2024

[NEAR-RIC]: Loading SM ID = 145 with def = SLICE_STATS_V0
[NEAR-RIC]: Loading SM ID = 146 with def = TC_STATS_V0
[NEAR-RIC]: Loading SM ID = 143 with def = RLC_STATS_V0
[NEAR-RIC]: Loading SM ID = 148 with def = GTP_STATS_V0
[iApp]: Initializing ...
[iApp]: nearRT-RIC IP Address = 192.0.13.7, PORT = 36422
fd created with 6

gNB

Next, log in to Server 2, in the directory that contains gnb.yaml:

$ sudo gnb -c gnb.yaml

The following log will be displayed if gNB is launched successfully:

Lower PHY in quad executor mode.

--== srsRAN gNB (commit 5e6f50a20) ==--

Connecting to AMF on 192.0.13.3:38412
Available radio types: uhd and zmq.
[INFO] [UHD] linux; GNU C++ version 7.5.0; Boost_106501; UHD_4.4.0.0-
0ubuntu1∼bionic1
[INFO] [LOGGING] Fastpath logging disabled at runtime.
Making USRP object with args 'type=b200'
[INFO] [B200] Detected Device: B210
[INFO] [B200] Operating over USB 3.
[INFO] [B200] Initialize CODEC control...
[INFO] [B200] Initialize Radio control...
[INFO] [B200] Performing register loopback test...
[INFO] [B200] Register loopback test passed
[INFO] [B200] Performing register loopback test...
[INFO] [B200] Register loopback test passed
[INFO] [B200] Setting master clock rate selection to 'automatic'.
[INFO] [B200] Asking for clock rate 16.000000 MHz...
[INFO] [B200] Actually got clock rate 16.000000 MHz.
[INFO] [MULTI_USRP] Setting master clock rate selection to 'manual'.
[INFO] [B200] Asking for clock rate 11.520000 MHz...
[INFO] [B200] Actually got clock rate 11.520000 MHz.
Connecting to NearRT-RIC on 192.0.13.7:36421
Cell pci=1, bw=10 MHz, dl_arfcn=368500 (n3), dl_freq=1842.5 MHz,
dl_ssb_arfcn=368410, ul_freq=1747.5 MHz

==== gNodeB started ===
Type <t> to view trace

56

NIST TN 2311
October2024

If connected to NearRT-RIC and Open5GS successfully, NearRT-RIC logs will display

Setting the config -c file to /usr/local/etc/flexric/flexric.conf
Setting path -p for the shared libraries to /usr/local/lib/flexric/
[NEAR-RIC]: nearRT-RIC IP Address = 192.0.13.7, PORT = 36421
[NEAR-RIC]: Initializing
[NEAR-RIC]: Loading SM ID = 144 with def = PDCP_STATS_V0
[NEAR-RIC]: Loading SM ID = 147 with def = ORAN-E2SM-KPM
[NEAR-RIC]: Loading SM ID = 142 with def = MAC_STATS_V0
[NEAR-RIC]: Loading SM ID = 145 with def = SLICE_STATS_V0
[NEAR-RIC]: Loading SM ID = 146 with def = TC_STATS_V0
[NEAR-RIC]: Loading SM ID = 143 with def = RLC_STATS_V0
[NEAR-RIC]: Loading SM ID = 148 with def = GTP_STATS_V0
[iApp]: Initializing ...
[iApp]: nearRT-RIC IP Address = 192.0.13.7, PORT = 36422
fd created with 6

Received message with id = 411, port = 30397
[E2AP] Received SETUP-REQUEST from PLMN 1. 1 Node ID 411 RAN type
ngran_gNB
[NEAR-RIC]: Accepting RAN function ID 147 with def = `0ORAN-E2SM-KPM
[NEAR-RIC]: Accepting interfaceType 0

and on Server 3, the following logs will be added to the end of AMF logs in /var/log
/open5gs/amf.log:

10/30 11:33:58.139: [amf] INFO: gNB-N2 accepted[192.0.13.4]:46777 in
ng-path module (../src/amf/ngap-sctp.c:113)
10/30 11:33:58.139: [amf] INFO: gNB-N2 accepted[192.0.13.4] in master_sm
module (../src/amf/amf-sm.c:741)
10/30 11:33:58.139: [amf] INFO: [Added] Number of gNBs is now 1
(../src/amf/context.c:1185)
10/30 11:33:58.139: [amf] INFO: gNB-N2[192.0.13.4] max_num_of_ostreams :
30 (../src/amf/amf-sm.c:780)

srsUE

To start srsUE, log in to Server 1, in the directory that contains ue.conf:

$ sudo srsue ue.conf

If srsUE starts and connection between gNB and srsUE is established, the following logs
will be displayed with RRC NR reconfiguration successful, and an IP address with
10.45.x.x is assigned to srsUE.

57

NIST TN 2311
October2024

Active RF plugins: libsrsran_rf_uhd.so libsrsran_rf_zmq.so
Inactive RF plugins:
Reading configuration file ue_usrp_disaggregated_test_from_sdrd4.conf...

Built in Release mode using commit fa56836b1 on branch master.

Opening 1 channels in RF device=uhd with args=clock=external
Supported RF device list: UHD zmq file
[INFO] [UHD] linux; GNU C++ version 11.2.0; Boost_107400; UHD_4.1.0.5-3
[INFO] [LOGGING] Fastpath logging disabled at runtime.
[INFO] [B200] Loading firmware image: /usr/share/uhd/images/usrp
_b200_fw.hex...
Opening USRP channels=1, args: type=b200,master_clock_rate=23.04e6
[INFO] [UHD RF] RF UHD Generic instance constructed
[INFO] [B200] Detected Device: B210
[INFO] [B200] Loading FPGA image: /usr/share/uhd/images/usrp_b210
_fpga.bin...
[INFO] [B200] Operating over USB 3.
[INFO] [B200] Detecting internal GPSDO....
[INFO] [GPS] No GPSDO found
[INFO] [B200] Initialize CODEC control...
[INFO] [B200] Initialize Radio control...
[INFO] [B200] Performing register loopback test...
[INFO] [B200] Register loopback test passed
[INFO] [B200] Performing register loopback test...
[INFO] [B200] Register loopback test passed
[INFO] [B200] Asking for clock rate 23.040000 MHz...
[INFO] [B200] Actually got clock rate 23.040000 MHz.
Setting manual TX/RX offset to 300 samples
Waiting PHY to initialize ... done!
Attaching UE...
Random Access Transmission: prach_occasion=0, preamble_index=0, ra-
rnti=0x39, tti=2574
Random Access Complete. c-rnti=0x4601, ta=0
RRC Connected
PDU Session Establishment successful. IP 10.45.0.33
RRC NR reconfiguration successful.

and in the AMF logs, the following recordings will be added to the end of /var/log/open5gs
/amf.log:

58

NIST TN 2311
October2024

10/30 13:11:03.707: [amf] INFO: InitialUEMessage (../src/amf/ngap-
handler.c:401)
10/30 13:11:03.707: [amf] INFO: [Added] Number of gNB-UEs is now 1
(../src/amf/context.c:2523)
10/30 13:11:03.707: [amf] INFO: RAN_UE_NGAP_ID[0] AMF_UE_NGAP_ID[4]
TAC[7] CellID[0x19b0] (../src/amf/ngap-handler.c:562)
10/30 13:11:03.707: [amf] INFO: [suci-0-001-01-0000-0-0-0123456780] known
UE by SUCI (../src/amf/context.c:1787)
10/30 13:11:03.707: [gmm] INFO: Registration request (../src/amf/gmm-
sm.c:1061)
10/30 13:11:03.707: [gmm] INFO: [suci-0-001-01-0000-0-0-0123456780] SUCI
(../src/amf/gmm-handler.c:157)
10/30 13:11:03.709: [amf] INFO: [imsi-001010123456780:1] Release SM
context [204] (../src/amf/amf-sm.c:491)
10/30 13:11:03.709: [amf] INFO: [imsi-001010123456780:1] Release SM
Context [state:31] (../src/amf/nsmf-handler.c:1027)
10/30 13:11:03.709: [amf] INFO: [Removed] Number of AMF-Sessions is now 0
(../src/amf/context.c:2551)
10/30 13:11:03.940: [gmm] INFO: [imsi-001010123456780] Registration
complete (../src/amf/gmm-sm.c:1993)
10/30 13:11:03.940: [amf] INFO: [imsi-001010123456780] Configuration
update command (../src/amf/nas-path.c:612)
10/30 13:11:03.940: [gmm] INFO: UTC [2023-10-30T17:11:03]
Timezone[0]/DST[0] (../src/amf/gmm-build.c:558)
10/30 13:11:03.940: [gmm] INFO: LOCAL [2023-10-30T13:11:03] Timezone[-
14400]/DST[1] (../src/amf/gmm-build.c:563)
10/30 13:11:03.940: [amf] INFO: [Added] Number of AMF-Sessions is now 1
(../src/amf/context.c:2544)
10/30 13:11:03.940: [gmm] INFO: UE SUPI[imsi-001010123456780] DNN[srsapn]
S_NSSAI[SST:1 SD:0xffffff] (../src/amf/gmm-handler.c:1247)
10/30 13:11:03.965: [gmm] INFO: [imsi-001010123456780] No GUTI allocated
(../src/amf/gmm-sm.c:1323)
10/30 13:11:04.093: [amf] INFO: [imsi-001010123456780:1:11][0:0:NULL]
/nsmf-pdusession/v1/sm-contexts/smContextRef/modify (../src/amf/nsmf-
handler.c:837)

8.4. Tests

Once connection between srsUE and gNB is established, tests can be performed on the
testbed.

8.4.1. Ping

In this test setup, the IP addresses are

59

NIST TN 2311
October2024

• 5G Core: 10.45.0.1,

• UE: 10.45.0.33 (Note UE’s IP address changes every time srsUE restarts).

As IP route is created on 5G Core’s and UE’s servers once connection is established, the
ping packets between these two nodes go through the assigned tunnel interface:

On Open5GS server:

$ ip route

10.45.0.0/16 dev ogstun proto kernel scope link src 10.45.0.1

On srsUE server:

$ ip route

10.45.0.0/24 dev tun_srsue proto kernel scope link src 10.45.0.33

To ping UE from 5G Core, on the Open5GS server,

$ ping 10.45.0.33 -c 10

PING 10.45.0.33 (10.45.0.33) 56(84) bytes of data.
64 bytes from 10.45.0.33: icmp_seq=1 ttl=64 time=22.4 ms
64 bytes from 10.45.0.33: icmp_seq=2 ttl=64 time=21.8 ms
64 bytes from 10.45.0.33: icmp_seq=3 ttl=64 time=40.8 ms
64 bytes from 10.45.0.33: icmp_seq=4 ttl=64 time=39.8 ms
64 bytes from 10.45.0.33: icmp_seq=5 ttl=64 time=38.8 ms
64 bytes from 10.45.0.33: icmp_seq=6 ttl=64 time=36.7 ms
64 bytes from 10.45.0.33: icmp_seq=7 ttl=64 time=36.8 ms
64 bytes from 10.45.0.33: icmp_seq=8 ttl=64 time=35.7 ms
64 bytes from 10.45.0.33: icmp_seq=9 ttl=64 time=34.7 ms
64 bytes from 10.45.0.33: icmp_seq=10 ttl=64 time=32.7 ms

--- 10.45.0.33 ping statistics ---
10 packets transmitted, 10 received, 0% packet loss, time 9009ms
rtt min/avg/max/mdev = 21.806/34.017/40.800/6.366 ms

To ping 5G Core from UE, on srsUE server,

$ ping 10.45.0.1 -c 10

PING 10.45.0.1 (10.45.0.1) 56(84) bytes of data.
64 bytes from 10.45.0.1: icmp_seq=1 ttl=64 time=42.5 ms
64 bytes from 10.45.0.1: icmp_seq=2 ttl=64 time=41.4 ms
64 bytes from 10.45.0.1: icmp_seq=3 ttl=64 time=39.3 ms
64 bytes from 10.45.0.1: icmp_seq=4 ttl=64 time=39.4 ms
64 bytes from 10.45.0.1: icmp_seq=5 ttl=64 time=38.4 ms
64 bytes from 10.45.0.1: icmp_seq=6 ttl=64 time=37.3 ms

60

NIST TN 2311
October2024

64 bytes from 10.45.0.1: icmp_seq=7 ttl=64 time=35.3 ms
64 bytes from 10.45.0.1: icmp_seq=8 ttl=64 time=35.3 ms
64 bytes from 10.45.0.1: icmp_seq=9 ttl=64 time=34.3 ms
64 bytes from 10.45.0.1: icmp_seq=10 ttl=64 time=33.3 ms

--- 10.45.0.1 ping statistics ---
10 packets transmitted, 10 received, 0% packet loss, time 9009ms
rtt min/avg/max/mdev = 33.338/37.642/42.454/2.907 ms

User can also ping a website’s hostname (for example, Google) by

$ ping www.google.com -I tun_srsue -c 10

PING www.google.com (142.250.72.4) from 10.45.0.14 tun_srsue: 56(84)
bytes of data.
64 bytes from den08s06-in-f4.1e100.net (142.250.72.4): icmp_seq=1 ttl=104
time=66.0 ms
64 bytes from den08s06-in-f4.1e100.net (142.250.72.4): icmp_seq=2 ttl=104
time=63.3 ms
64 bytes from den08s06-in-f4.1e100.net (142.250.72.4): icmp_seq=3 ttl=104
time=64.4 ms
64 bytes from den08s06-in-f4.1e100.net (142.250.72.4): icmp_seq=4 ttl=104
time=60.4 ms
64 bytes from den08s06-in-f4.1e100.net (142.250.72.4): icmp_seq=5 ttl=104
time=61.3 ms
64 bytes from den08s06-in-f4.1e100.net (142.250.72.4): icmp_seq=6 ttl=104
time=80.3 ms
64 bytes from den08s06-in-f4.1e100.net (142.250.72.4): icmp_seq=7 ttl=104
time=79.3 ms
64 bytes from den08s06-in-f4.1e100.net (142.250.72.4): icmp_seq=8 ttl=104
time=78.3 ms
64 bytes from den08s06-in-f4.1e100.net (142.250.72.4): icmp_seq=9 ttl=104
time=77.3 ms
64 bytes from den08s06-in-f4.1e100.net (142.250.72.4): icmp_seq=10
ttl=104 time=76.5 ms

--- www.google.com ping statistics ---
10 packets transmitted, 10 received, 0% packet loss, time 9009ms
rtt min/avg/max/mdev = 60.439/70.725/80.340/7.817 ms

It is important to note that to force the ping packets go through the tunnel interface for
srsUE (tun_srsue), -I tun_srsue has to be added to the command.

If ping cannot reach a host name, refer to Section 4.2.4 for troubleshooting.

61

NIST TN 2311
October2024

8.4.2. Iperf3

Iperf3 can be used to test the Uplink (UL) and Downlink (DL) throughput. To set up the UL
test, on Open5GS server

$ iperf3 -s -i 1

and on srsUE server

$ iperf3 -c 10.45.0.1 -b 15M -i 1 -t 60

where the bandwidth -b and time duration -t in seconds can be specified as needed.

Uplink Test

An iperf3 test result for UL is shown here:

On Open5GS Server:

$ iperf3 -s -i 1

Server listening on 5201

Accepted connection from 10.45.0.33, port 44714
[5] local 10.45.0.1 port 5201 connected to 10.45.0.33 port 44728
 [ID] Interval Transfer Bitrate
 [5] 0.00-1.00 sec 1.51 MBytes 12.7 Mbits/sec
 [5] 1.00-2.00 sec 1.70 MBytes 14.3 Mbits/sec
 [5] 2.00-3.00 sec 1.69 MBytes 14.2 Mbits/sec
 [5] 3.00-4.00 sec 1.40 MBytes 11.7 Mbits/sec
 [5] 4.00-5.00 sec 2.02 MBytes 17.0 Mbits/sec
 [5] 5.00-6.00 sec 1.74 MBytes 14.6 Mbits/sec
 [5] 6.00-7.00 sec 1.71 MBytes 14.4 Mbits/sec
 [5] 7.00-8.00 sec 1.71 MBytes 14.4 Mbits/sec
 [5] 8.00-9.00 sec 1.73 MBytes 14.5 Mbits/sec
 [5] 9.00-10.00 sec 1.74 MBytes 14.6 Mbits/sec
 [5] 10.00-10.17 sec 295 KBytes 4.5 Mbits/sec
- -
 [ID] Interval Transfer Bitrate
 [5] 0.00-10.17 sec 17.2 MBytes 14.2 Mbits/sec

On srsUE Server:

$ iperf3 -c 10.45.0.1 -b 15M -i 1 -t 10

Connecting to host 10.45.0.1, port 5201
[5] local 10.45.0.33 port 44728 connected to 10.45.0.1 port 5201
 [ID] Interval Transfer Bitrate Retr Cwnd
 [5] 0.00-1.00 sec 1.75 MBytes 14.7 Mbits/sec 0 129 KBytes

62

NIST TN 2311
October2024

 [5] 1.00-2.00 sec 1.88 MBytes 15.7 Mbits/sec 0 216 KBytes
 [5] 2.00-3.00 sec 1.75 MBytes 14.7 Mbits/sec 0 303 KBytes
 [5] 3.00-4.00 sec 1.62 MBytes 13.6 Mbits/sec 12 261 KBytes
 [5] 4.00-5.00 sec 2.00 MBytes 16.8 Mbits/sec 0 296 KBytes
 [5] 5.00-6.00 sec 1.75 MBytes 14.7 Mbits/sec 0 333 KBytes
 [5] 6.00-7.00 sec 1.75 MBytes 14.7 Mbits/sec 0 355 KBytes
 [5] 7.00-8.00 sec 1.75 MBytes 14.7 Mbits/sec 4 263 KBytes
 [5] 8.00-9.00 sec 1.75 MBytes 14.7 Mbits/sec 0 286 KBytes
 [5] 9.00-10.00 sec 1.75 MBytes 14.7 Mbits/sec 0 298 KBytes
- -
 [ID] Interval Transfer Bitrate Retr
 [5] 0.00-10.00 sec 17.8 MBytes 14.9 Mbits/sec 16 sender
 [5] 0.00-10.17 sec 17.2 MBytes 14.2 Mbits/sec receiver

iperf Done.

To test the DL throughput, on srsUE server

$ iperf3 -s -i 1

and on Open5GS server

$ iperf3 -c 10.45.0.33 -b 15M -i 1 -t 60

Another approach to reversing the direction of data transmission is to simply add -R at the
end of the command at the client side.

Downlink Test

An iperf3 test result for DL is shown here:

On srsUE Server:

$ iperf3 -s -i 1

Server listening on 5201

Accepted connection from 10.45.0.1, port 41844
[5] local 10.45.0.33 port 5201 connected to 10.45.0.1 port 41850
 [ID] Interval Transfer Bitrate
 [5] 0.00-1.00 sec 1.70 MBytes 14.3 Mbits/sec
 [5] 1.00-2.00 sec 1.84 MBytes 15.4 Mbits/sec
 [5] 2.00-3.00 sec 1.65 MBytes 13.9 Mbits/sec
 [5] 3.00-4.00 sec 1.90 MBytes 15.9 Mbits/sec
 [5] 4.00-5.00 sec 1.79 MBytes 15.0 Mbits/sec
 [5] 5.00-6.00 sec 1.81 MBytes 15.2 Mbits/sec
 [5] 6.00-7.00 sec 1.77 MBytes 14.8 Mbits/sec
 [5] 7.00-8.00 sec 1.80 MBytes 15.1 Mbits/sec

63

NIST TN 2311
October2024

 [5] 8.00-9.00 sec 1.79 MBytes 15.0 Mbits/sec
 [5] 9.00-10.00 sec 1.67 MBytes 14.0 Mbits/sec
 [5] 10.00-10.07 sec 256 KBytes 30.1 Mbits/sec
- -
 [ID] Interval Transfer Bitrate
 [5] 0.00-10.07 sec 17.9 MBytes 15.0 Mbits/sec

On Open5GS Server:

$ iperf3 -c 10.45.0.33 -b 15M -i 1 -t 10

Connecting to host 10.45.0.33, port 5201
[5] local 10.45.0.1 port 41850 connected to 10.45.0.33 port 5201
 [ID] Interval Transfer Bitrate Retr Cwnd
 [5] 0.00-1.00 sec 1.82 MBytes 15.3 Mbits/sec 0 151 KBytes
 [5] 1.00-2.00 sec 1.88 MBytes 15.7 Mbits/sec 0 154 KBytes
 [5] 2.00-3.00 sec 1.75 MBytes 14.7 Mbits/sec 0 170 KBytes
 [5] 3.00-4.00 sec 1.62 MBytes 14.7 Mbits/sec 12 216 KBytes
 [5] 4.00-5.00 sec 1.75 MBytes 14.7 Mbits/sec 0 244 KBytes
 [5] 5.00-6.00 sec 1.88 MBytes 15.7 Mbits/sec 0 259 KBytes
 [5] 6.00-7.00 sec 1.75 MBytes 14.7 Mbits/sec 0 259 KBytes
 [5] 7.00-8.00 sec 1.75 MBytes 14.7 Mbits/sec 4 280 KBytes
 [5] 8.00-9.00 sec 1.88 MBytes 15.7 Mbits/sec 0 299 KBytes
 [5] 9.00-10.00 sec 1.75 MBytes 14.7 Mbits/sec 0 299 KBytes
- -
 [ID] Interval Transfer Bitrate Retr
 [5] 0.00-10.00 sec 17.9 MBytes 15.1 Mbits/sec 16 sender
 [5] 0.00-10.07 sec 17.9 MBytes 15.0 Mbits/sec receiver

iperf Done.

8.4.3. xApp

[10] provides an example of xApp from FlexRIC, xapp_kpm_moni, which connects to NearRT-
RIC and uses O-RAN E2 Service Model - Key Performance Measurement (E2SM-KPM) to
monitor the Reference Signal Receive Power (RSRP).

To start E2SM-KPM xApp, the following app shall start on the FlexRIC server while the
testbed is running

$./flexric/build/examples/xApp/c/monitor/xapp_kpm_moni

When the connection to NearRT-RIC is established, similar logs as follows will be added to
the NearRT-RIC terminal:

64

NIST TN 2311
October2024

[iApp]: E42 SETUP-REQUEST received
[iApp]: E42 SETUP-RESPONSE sent
[iApp]: SUBSCRIPTION-REQUEST xapp_ric_id->ric_id.ran_func_id 147
[E2AP] SUBSCRIPTION REQUEST generated
[NEAR-RIC]: nb_id 411 port = 26268

Some of the logs displayed on the terminal of E2SM-KPM xApp is shown here:

......
 [xApp]: E42 SETUP-REQUEST sent
adding event fd = 8 ev-> 4
[xApp]: E42 SETUP-RESPONSE received
[xApp]: xApp ID = 8
Registered E2 Nodes = 1
Pending event size before remove = 1
Connected E2 nodes = 1
Registered node 0 ran func id = 147
 Generated of req_id = 1
[xApp]: RIC SUBSCRIPTION REQUEST sent
adding event fd = 8 ev-> 5
[xApp]: SUBSCRIPTION RESPONSE received
Pending event size before remove = 1
[xApp]: Successfully SUBSCRIBED to ran function = 147
Received RIC Indication:
---Metric: RSRP: Value: 32 Received RIC Indication:
---Metric: RSRP: Value: 34
Received RIC Indication:
---Metric: RSRP: Value: 33
Received RIC Indication:
---Metric: RSRP: Value: 32
Received RIC Indication:
---Metric: RSRP: Value: 32
Received RIC Indication:
---Metric: RSRP: Value: 34
......

65

NIST TN 2311
October2024

9. Conclusion and Future Work

This documentation presents a foundational blueprint for new researchers embarking on
the journey of setting up an O-RAN testbed from the ground up. We have provided an
overview of the O-RAN architecture and its associated software stacks, alongside an in-
troduction to the various deployment scenarios that have been tested on our testbeds,
including both aggregated and disaggregated setups. We introduced the automation tool
that significantly enhances the deployment process of the O-RAN testbed by streamlining
installations and configurations, ultimately improving efficiency and reducing the poten-
tial for errors. The installation instructions for each software stack are outlined to facili-
tate seamless deployment, and a testbed example of a disaggregated deployment scenario
demonstrates the configuration and operation of 5G O-RAN testbed towards successful ap-
plication and interoperation.

This guide is designed to be a comprehensive starting point for researchers, offering essen-
tial insights and practical guidance towards successful testbed implementation and oper-
ation. By following these instructions, researchers can effectively replicate and build upon
our testbed framework, paving the way for further exploration and development in O-RAN
control, application, and use cases.

In the future updates, we will expand this blueprint to include additional deployment sce-
narios and software integrations, further enhancing its utility for researchers. Specifically,
we will provide instructions for incorporating the OSC near-RT RIC provided by srs, includ-
ing its RAN Control functions and xApp modules, as well as the OSC non-RT RIC. We will
also incorporate the instructions for OAI gNB and UE when higher-end USRPs of X410 are
used. These additions will offer a broader perspective on O-RAN testbed deployment and
extend the availability and interoperability of the O-RAN software stacks.

In addition, we plan to extend the deployment and test automation to include other soft-
ware stack options. This enhancement will further improve deployment efficiency, reduce
manual operation errors, and enable extensive testing on our O-RAN testbeds. Moreover,
it will offer repeatable and rapid deployment solutions with diverse software stack choices
for new researchers.

66

NIST TN 2311
October2024

References

[1] O-RANWG1OAD (2024) O-RAN Work Group 1 (Use Cases and Overall Architecture):
O-RAN Architecture Description (O-RAN Alliance), Standard.

[2] Open Networking Foundation (2023) ”Hardware Installation - Prerequisites”. Ac-
cessed: 2023-10-24. Available at https://docs.sd-ran.org/master/sdran-in-a-box

/docs/HW_Installation_prereq.html.

[3] srsRAN (2023) ”Running srsRAN Project”. Accessed: 2023-10-24. Available at https:
//docs.srsran.com/projects/project/en/latest/user_manuals/source/running.html.

[4] srsRAN (2023) ”srsRAN Project - Installation Guide”. Accessed: 2023-10-24. Available
at https://docs.srsran.com/projects/project/en/latest/user_manuals/source/install

ation.html.

[5] srsRAN (2023) ”srsRAN Project - srsRAN gNB with srsUE”. Accessed: 2023-10-24.
Available at https://docs.srsran.com/projects/project/en/latest/tutorials/sou

rce/srsUE/source/index.html.

[6] srsRAN (2023) ”gnb_rf_b210_fdd_srsue.yml”. Accessed: 2023-10-24. Available at ht
tps://github.com/srsran/srsRAN_Project/blob/main/configs/gnb_rf_b210_fdd_srs

UE.yml.

[7] srsRAN (2023) ”srsRAN 4G Features”. Accessed: 2023-10-26. Available at https://do
cs.srsran.com/projects/4g/en/latest/feature_list.html.

[8] srsRAN (2023) ”ue_rf.conf”. Accessed: 2023-10-26. Available at https://docs.srsran.
com/projects/project/en/latest/_downloads/900a04eeabbe80c1bb9f3e571afaa8

04/ue_rf.conf.

[9] Open5GS (2023) ”Building Open5GS from Sources”. Accessed: 2023-10-25. Available
at https://open5gs.org/open5gs/docs/guide/02-building-open5gs-from-sources/.

[10] srsRAN (2023) ”O-RAN NearRT-RIC and xApp”. Accessed: 2023-10-25. Available at ht
tps://docs.srsran.com/projects/project/en/latest/tutorials/source/flexric/source/i

ndex.html.

[11] Open5GS (2023) ”Quickstart”. Accessed: 2023-10-25. Available at https://open5gs.
org/open5gs/docs/guide/01-quickstart/#:~:text=restart%20open5gs%2Dsgwud-,Se

tup%20a%205G%20Core,-You%20will%20need.

[12] EURECOM (2024) ”Flexric”. Accessed: 2024-01-09. Available at https://gitlab.eurec
om.fr/mosaic5g/flexric.

[13] srsRAN (2023) ”Unknown RAN Function ID”. Accessed: 2023-12-21. Available at https:
//github.com/srsran/srsRAN_Project/discussions/368#discussioncomment-79097

75.

[14] Simeon Wuthier (2024) ”O-RAN-Testbed-Automation”. Accessed: 2024-10-04. Avail-
able at https://github.com/usnistgov/O-RAN-Testbed-Automation.

67

https://docs.sd-ran.org/master/sdran-in-a-box/docs/HW_Installation_prereq.html
https://docs.sd-ran.org/master/sdran-in-a-box/docs/HW_Installation_prereq.html
https://docs.srsran.com/projects/project/en/latest/user_manuals/source/running.html
https://docs.srsran.com/projects/project/en/latest/user_manuals/source/running.html
https://docs.srsran.com/projects/project/en/latest/user_manuals/source/installation.html
https://docs.srsran.com/projects/project/en/latest/user_manuals/source/installation.html
https://docs.srsran.com/projects/project/en/latest/tutorials/source/srsUE/source/index.html
https://docs.srsran.com/projects/project/en/latest/tutorials/source/srsUE/source/index.html
https://github.com/srsran/srsRAN_Project/blob/main/configs/gnb_rf_b210_fdd_srsUE.yml
https://github.com/srsran/srsRAN_Project/blob/main/configs/gnb_rf_b210_fdd_srsUE.yml
https://github.com/srsran/srsRAN_Project/blob/main/configs/gnb_rf_b210_fdd_srsUE.yml
https://docs.srsran.com/projects/4g/en/latest/feature_list.html
https://docs.srsran.com/projects/4g/en/latest/feature_list.html
https://docs.srsran.com/projects/project/en/latest/_downloads/900a04eeabbe80c1bb9f3e571afaa804/ue_rf.conf
https://docs.srsran.com/projects/project/en/latest/_downloads/900a04eeabbe80c1bb9f3e571afaa804/ue_rf.conf
https://docs.srsran.com/projects/project/en/latest/_downloads/900a04eeabbe80c1bb9f3e571afaa804/ue_rf.conf
https://open5gs.org/open5gs/docs/guide/02-building-open5gs-from-sources/
https://docs.srsran.com/projects/project/en/latest/tutorials/source/flexric/source/index.html
https://docs.srsran.com/projects/project/en/latest/tutorials/source/flexric/source/index.html
https://docs.srsran.com/projects/project/en/latest/tutorials/source/flexric/source/index.html
https://open5gs.org/open5gs/docs/guide/01-quickstart/#:~:text=restart%20open5gs%2Dsgwud-,Setup%20a%205G%20Core,-You%20will%20need
https://open5gs.org/open5gs/docs/guide/01-quickstart/#:~:text=restart%20open5gs%2Dsgwud-,Setup%20a%205G%20Core,-You%20will%20need
https://open5gs.org/open5gs/docs/guide/01-quickstart/#:~:text=restart%20open5gs%2Dsgwud-,Setup%20a%205G%20Core,-You%20will%20need
https://gitlab.eurecom.fr/mosaic5g/flexric
https://gitlab.eurecom.fr/mosaic5g/flexric
https://github.com/srsran/srsRAN_Project/discussions/368#discussioncomment-7909775
https://github.com/srsran/srsRAN_Project/discussions/368#discussioncomment-7909775
https://github.com/srsran/srsRAN_Project/discussions/368#discussioncomment-7909775
https://github.com/usnistgov/O-RAN-Testbed-Automation

	Abbreviations
	Introduction
	O-RAN Architecture
	Software Stacks for O-RAN Components

	System Requirements
	Software
	Hardware and System Prerequisites

	RAN Components
	gNodeB: srsRAN Project Setup
	Installation
	Configuration

	5G UE: srsRAN 4G
	Installation
	Configuration

	E2 Simulator
	Build and Installation
	Running E2 Simulator
	E2 Connection Check from RIC Cluster

	5G Core
	Installation with Package Manager
	MongoDB
	Open5GS
	WebUI

	Configuration
	AMF and UPF Configurations in 5G SA Mode
	NRF Configurations in Open5GS v2.7.0
	Register Subscriber
	Enable UE Access to Internet

	Installation from Sources
	MongoDB
	TUN Device
	Open5GS
	WebUI
	Register Subscriber
	Enable UE Access to Internet

	Installation with Docker
	Access Dockerized Open5GS from gNB
	Enable UE access to Internet

	Near-RT RIC
	FlexRIC Setup
	FlexRIC Installation for srsRAN Project v23.10.1
	FlexRIC Installation for srsRAN Project v23.5 and v23.10

	OSC Near-RT RIC Setup
	Software Source and Dependency
	Kubernetes, Docker, Helm Chart Installation
	Modify Service Platform Configuration File
	Install Common Template to Helm
	Installing Near RT-RIC
	RIC Application, xApps
	Onboarding of xApp Using dms_cli tool
	Chartmuseum
	Onboarder (dms_cli) Installation
	hw-go xApp Build and Preparation
	Onboarding hw-go xApp and Install
	Checking xApp’s Deployment Status

	Interoperation with E2 Simulator

	Testbed Deployments
	Aggregated Deployments
	Installations on a Single Bare Metal Server, ZMQ Connection
	Installations with gNB and UE on different bare metal servers, ZMQ or USRP Connections
	ZMQ Connection
	USRP Connection

	Installations on a Single Bare Metal Server, Multiple UEs and One gNB, ZMQ Connection
	Deployment with Kubernetes OSC Near-RT RIC, Containerized Open5GS, E2 Simulator, and ZMQ Connection between gNB and UE

	Disaggregated Deployments
	Installations on Bare Metal Servers, with ZMQ or USRP Connection
	ZMQ Connection
	USRP Connection

	Installations on Bare Metal Servers, USRP Connection, Multiple UEs via Channel Emulator
	Deployment with Containerized Open5GS

	Automation Tool
	Test Setup
	Testbed
	Scripts and Configurations
	Running Testbed
	Tests
	Ping
	Iperf3
	xApp

	Conclusion and Future Work
	References

