

NIST Internal Report
NIST IR 8505

A Data Protection Approach for
Cloud-Native Applications

Ramaswamy Chandramouli

Wesley Hales

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8505

https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.IR.8505

NIST Internal Report
NIST IR 8505

A Data Protection Approach for
Cloud-Native Applications

Ramaswamy Chandramouli
Computer Security Division

Information Technology Laboratory

Wesley Hales
Leak Signal Inc.

This publication is available free of charge from:

https://doi.org/10.6028/NIST.IR.8505

September 2024

U.S. Department of Commerce
Gina M. Raimondo, Secretary

National Institute of Standards and Technology
Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology

NIST IR 8505 A Data Protection Approach for
September 2024 Cloud-Native Applications

Certain equipment, instruments, software, or materials, commercial or non-commercial, are identified in this
paper in order to specify the experimental procedure adequately. Such identification does not imply
recommendation or endorsement of any product or service by NIST, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST in
accordance with its assigned statutory responsibilities. The information in this publication, including concepts and
methodologies, may be used by federal agencies even before the completion of such companion publications.
Thus, until each publication is completed, current requirements, guidelines, and procedures, where they exist,
remain operative. For planning and transition purposes, federal agencies may wish to closely follow the
development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback
to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at
https://csrc.nist.gov/publications.

NIST Technical Series Policies
Copyright, Use, and Licensing Statements
NIST Technical Series Publication Identifier Syntax

Publication History
Approved by the NIST Editorial Review Board on 2024-09-24

How to Cite this NIST Technical Series Publication
Chandramouli R, Hales W (2024) A Data Protection Approach for Cloud-Native Applications. (National Institute of
Standards and Technology, Gaithersburg, MD), NIST Interagency Report (IR) NIST IR 8505.
https://doi.org/10.6028/NIST.IR.8505

Author ORCID iDs
Ramaswamy Chandramouli: 0000-0002-7387-5858

Contact Information
nistir-8505-comments@nist.gov

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930

Additional Information
Additional information about this publication is available at https://csrc.nist.gov/pubs/ir/8505/final, including
related content, potential updates, and document history.

All comments are subject to release under the Freedom of Information Act (FOIA).

https://csrc.nist.gov/publications
https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/nist-research-library/nist-technical-series-publications-author-instructions#pubid
mailto:nistir-8505-comments@nist.gov
https://csrc.nist.gov/pubs/ir/8505/final

NIST IR 8505 A Data Protection Approach for
September 2024 Cloud-Native Applications

i

Abstract

This document addresses the need for effective data protection strategies in the evolving realm
of cloud-native network architectures, including multi-cloud environments, service mesh
networks, and hybrid infrastructures. By extending foundational data categorization concepts,
it provides a framework for aligning data protection approaches with the unknowns of data in
transit. Specifically, it explores service mesh architecture, leveraging and emphasizing the
capabilities of WebAssembly (WASM) in ensuring robust data protection as sensitive data are
transmitted through east-west and north-south communication paths.

Keywords

data governance; data privacy; data protection; data security; in-transit data categorization;
WASM.

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof of concept implementations, and technical analyses to advance
the development and productive use of information technology. ITL’s responsibilities include
the development of management, administrative, technical, and physical standards and
guidelines for the cost-effective security and privacy of other than national security-related
information in federal information systems.

NIST IR 8505 A Data Protection Approach for
September 2024 Cloud-Native Applications

ii

Patent Disclosure Notice

NOTICE: ITL has requested that holders of patent claims whose use may be required for
compliance with the guidance or requirements of this publication disclose such patent claims to
ITL. However, holders of patents are not obligated to respond to ITL calls for patents and ITL has
not undertaken a patent search in order to identify which, if any, patents may apply to this
publication.

As of the date of publication and following call(s) for the identification of patent claims whose
use may be required for compliance with the guidance or requirements of this publication, no
such patent claims have been identified to ITL.

No representation is made or implied by ITL that licenses are not required to avoid patent
infringement in the use of this publication.

NIST IR 8505 A Data Protection Approach for
September 2024 Cloud-Native Applications

iii

Table of Contents

1. Introduction ..1

2. Web Assembly Background ..4

2.2.1. Development and Deployment Process ... 4

2.4.1. Role of WASM in Different Service Mesh Architectures .. 7

3. Data Protection in Transit ... 10

3.2.1. Web Traffic Data Protection ... 10

3.2.2. API Security ... 11

3.2.3. Microsegmentation .. 11

3.2.4. Log Traffic Data Protection ... 12

3.2.5. LLM Traffic Data Protection .. 12

3.2.6. Credit Card-Related Data Protection .. 13

3.2.7. Monitoring Tools to Visualize Sensitive Data Flows ... 13

4. Security Analysis of WASM Modules ... 14

4.1.1. User-Level Security Features .. 15

4.1.2. Security Primitives for Developers ... 15

NIST IR 8505 A Data Protection Approach for
September 2024 Cloud-Native Applications

iv

5. Summary and Conclusions .. 19

References ... 20

Appendix A. Execution Model for Web Assembly in Browsers ... 22

Appendix B. Comparison of Execution Models for Containers and WASM Modules 23

NIST IR 8505 A Data Protection Approach for
September 2024 Cloud-Native Applications

1

1. Introduction

In the constantly evolving landscape of cloud-native application architectures, where data
reside in multiple locations (i.e., on-premises and on the cloud), ensuring data security involves
more than simply specifying and granting authorization during service requests. It also involves
a comprehensive strategy to categorize and analyze data access and leakage as data travel
across various protocols (e.g., gRemote Procedure calls (gRPC), Representational State Transfer
(REST)-based), especially within ephemeral and scalable microservices applications.

Data in-transit is one of the three states of digital data, according to the NIST Cyber Security
Framework (CSF) 2.0. It refers to structured and unstructured human-readable text that is
actively moving from one location to another, such as across the internet, through a private
network, or between devices and systems. This can include data being transferred from a client
to a server, between servers, or from one part of a network to another.

1.1. Existing Approaches to Data Protection and Their Limitations

Traditionally, regular expressions (regex) have been widely used for data categorization to
identify patterns that match predefined categories or data classes with the aid of keywords and
validators for enhanced precision. Despite its wide adoption and usage, the approach has
notable limitations. The processing time scales linearly with data volume, making it impractical
for very large datasets. Regex also lacks the capability for logical computations, which are
necessary for complex validations like checksums in credit card numbers. Its effectiveness
heavily relies on the correct proximity to specific keywords, leading to potential false positives
and considerable noise if not managed correctly.

Machine learning (ML) offers a promising enhancement to data categorization by learning from
data patterns and improving over time, thus providing a scalable and adaptable solution. ML
algorithms can handle both structured and unstructured data, predict data categories based on
historical data, and adjust to new patterns without explicit reprogramming. This adaptability
significantly reduces the time and computational resources required to manage complex
datasets and is effective for both data at rest and in motion.

To address and compensate for the limitations of traditional data-at-rest inventory, in-transit
data categorization has recently come to light as the next logical step in data protection. Unlike
the former, which only secures stored information, in-transit categorization actively monitors
and secures data as they move across services and network protocols. This shift to real-time
data analysis within the network brings new observability capabilities, eliminating the need for
traffic mirroring and data duplication.

1.2. In-Proxy Application for Data Protection

To address the need for data categorization during travel across services, a relatively new class
of in-proxy applications called the WebAssembly [1] program (also called a WASM module) has

NIST IR 8505 A Data Protection Approach for
September 2024 Cloud-Native Applications

2

been increasingly deployed. A WASM module is a lightweight executable compiled to low-level
bytecode. This bytecode can be:

(a) Generated from code written in any language using their associated WebAssembly
compilers, including C, C++, and Rust

(b) Run using a WASM runtime in an isolated virtual machine (VM) within the proxy, which
allows developers to enhance applications with necessary functionality and run them as
efficiently as native code in the proxies.

Over the last few years, the Envoy WASM VM as enabled new types of compute and traffic
processing capabilities and allowed for custom WASM modules to be built and deployed in a
sandboxed and fault-tolerant manner.

 [3] h

Additionally, the following features of WebAssembly modules make them particularly effective
for data protection:

• Data Discovery and Categorization: WASM modules can dynamically identify and
categorize data as they traverse the network, ensuring that sensitive information is
recognized and handled appropriately.

• Dynamic Data Masking (DDM): WASM modules can apply DDM techniques to redact or
mask sensitive information in transit, enhancing privacy and security.

• User and Entity Behavior Analytics (UEBA): WASM modules can analyze user and entity
behaviors in real time, detecting anomalies and potential security threats.

• Data Loss Prevention (DLP): WASM modules can enforce DLP policies by monitoring and
controlling data transfers to prevent unauthorized data exfiltration.

1.3. Objective and Scope of This Document

All services (e.g., networking, security, monitoring) for microservices-based applications are
provided by a centralized infrastructure called the service mesh, and the data plane for this
service mesh — which performs all runtime tasks — consists of proxies. This document outlines
a practical framework for effective data protection and highlights the versatile capabilities of
WebAssembly (WASM) within service mesh architectures, multi-cloud environments, and
hybrid (i.e., a combination of on-premises and cloud-based) infrastructures. By focusing on in-
line, network traffic analysis at layers 4–7, organizations can enhance security, streamline
operations, and utilize adaptive data protection measures.

1.4. Organization of This Document

This document is organized as follows:

• Section 2 describes the execution environment for WASM modules in detail, including
the application infrastructure (i.e., service mesh) under which it runs, the specific host
environment (i.e., proxies), the process for generating bytecodes and executables, the
processes for executing the modules using a WASM runtime, and an application

NIST IR 8505 A Data Protection Approach for
September 2024 Cloud-Native Applications

3

programming interface (API) (i.e., WebAssembly System Interface (WASI) for accessing
operating system (OS) resources of the underlying platform.

• Section 3 introduces the concept of data categorization and the use of various data
protection techniques (e.g., data masking, redaction) to ensure the security of data in
different domains or application scenarios using WASM modules, such as web traffic
data protection, API Security, microsegmentation, log traffic data protection, Large
Language Model (LLM) traffic data protection, and integration with monitoring tools for
the visualization of sensitive data flows.

• Section 4 presents a detailed security analysis of a WASM module by examining its
development, deployment, and execution environment to ensure that the module
satisfies the properties of a security kernel and can provide the necessary security
assurance.

• Section 5 provides a summary of the topics covered in this document and discusses how
WASM module functionality must continuously evolve to provide the security assurance
needed to protect against data breaches and exfiltration in the context of increasingly
sophisticated attacks on data.

NIST IR 8505 A Data Protection Approach for
September 2024 Cloud-Native Applications

4

2. Web Assembly Background

WebAssembly modules are deployed to protect data on microservices-based architectures in
which the entire application (also called a cloud-native application because of its ubiquitous
deployment in cloud and hybrid environments) consists of several distributed, loosely coupled,
and independently scalable components called microservices. All services for this class of
application (e.g., networking, security policies enforcement, state monitoring, configuration of
runtime parameters) are provided by a centralized application-independent service
infrastructure called the service mesh. This service mesh consists of a data plane that is
primarily made up of proxies that house the various service modules. Using the family of APIs
provided by the proxies, relevant service modules (e.g., network path determination) are
implemented using the management/control plane of the service mesh. The WebAssembly is
one such service module ecosystem implemented in the data plane proxies of a service mesh.

2.1. Origin

WASM modules originated in browser environments and were designed to run in memory-safe
sandboxes, making them more secure than running client-side JavaScript. The execution model
for running WebAssembly code in browsers is given in Appendix A. In addition to security,
WASM modules have the following advantages [1]:

• Performance: Due to its low-level binary format targeted for modern processors, WASM
modules provide near-native performance. Hence, it is considered the “fourth language”
for the web alongside HTML, Cascading Style Sheets (CSS), and JavaScript and is
designed to enable high-performance applications in browsers.

• Broad support: It has broad accessibility and is supported in popular browsers, such as
Chrome, Firefox, Edge, and Safari.

2.2. Progression Into Server-Side Environments

WASM modules progressed from browser to server environments when Mozilla introduced an
open-source project called the WebAssembly System Interface (WASI) that provided a
framework for WebAssembly apps to access operating system resources [4]. This allowed for
content delivery networks (CDNs) to use WebAssembly to deploy customers’ apps without
giving them access to the underlying CDN infrastructure.

2.2.1. Development and Deployment Process

The emergence of WASM compilers for several languages enabled developers to use their
preferred languages to create server-side applications. Additionally, server-side WASM code
could run inside containers as well as VMs. It is a potential candidate for SaaS-based offerings,
just like VMs and containers. Its portability allows applications to run anywhere, making it an
attractive option for various use cases.

NIST IR 8505 A Data Protection Approach for
September 2024 Cloud-Native Applications

5

The steps involved in developing a WASM module and running it using WASM runtime are [6]:

• Source code writing: Programs are written in languages (e.g., C++, C#, Rust) that have
target WASM compilers available.

• Parsing: The code is parsed into an abstract syntax tree (AST) structure.

• Compiling: The code in Abstract Syntax (AST) structure is then compiled into a WASM
module using Ahead-of-Time (AOT) or Just-in-Time (JIT). The WASM module is
generated in a binary format that can be executed by WASM runtime.

• WASM runtime loading: The WASM runtime loads the WASM module (with file name
extension .wasm). If JIT is used, the compilation takes place after loading into WASM
runtime.

• Preparation for execution (i.e., instantiation): The WASM runtime creates an
executable instance from the WASM module by allocating memory, importing functions
and objects, and establishing the execution environment for the module.

• Code optimization: During execution of the byte code, profiling is employed to identify
frequently executed code, and a progressive optimization/re-optimization process takes
place to gradually enhance performance until the code runs efficiently.

Figure 1 shows the ability to develop programs in different languages, convert them into WASM
code, and run them under different processor architectures [4]. The execution model for WASM
modules in the server environment and their comparison with the container execution model
are described in Appendix B.

Fig. 1. Generating WASM modules and their execution [4]

NIST IR 8505 A Data Protection Approach for
September 2024 Cloud-Native Applications

6

2.3. Proxies as WASM Platforms

Proxies are increasingly being used as platforms for executing WASM modules. In cloud-native
and microservices-based applications, proxies mediate inter-service communication. Open-
source projects in proxies, such as Envoy, have extended their filter chain to allow for calling
and executing WASM modules. These WASM modules can enforce policy-based authorizations
or implement network resiliency measures, providing essential security controls for such
applications. Additionally, the capabilities of these modules can be leveraged for data
protection purposes.

The advantages of network-based WASM modules include:

1. Extensibility: Proxies like Envoy can be extended with WASM modules, allowing
developers to introduce custom logic and functionality without modifying the proxy’s
core codebase. This extensibility allows for the seamless integration of new features and
capabilities.

2. Security and isolation: WASM modules run in a sandboxed environment, providing
isolation from the host system and other modules. This isolation enhances security by
preventing unauthorized access to system resources and mitigating the impact of
potential vulnerabilities.

3. Portability: WebAssembly’s portability ensures that WASM modules can run
consistently across different proxy implementations and platforms, promoting a write-
once, run-anywhere approach.

4. Performance: WASM modules can potentially offer better performance compared to
the traditional scripting languages used for proxy extensions since they can be compiled
to efficient machine code.

5. Policy enforcement and network resiliency: By executing WASM modules in proxies,
organizations can enforce policies, implement authorization controls, and introduce
network resiliency measures at the proxy level, ensuring consistent and centralized
enforcement across distributed applications.

6. Data protection: WASM modules in proxies can be used to implement data filtering,
transformation, or encryption mechanisms and ensure sensitive data protection as they
flow through the proxy.

7. Ecosystem and community: The growing WebAssembly ecosystem and community
provide libraries, tools, and resources that foster collaboration and accelerate the
development of proxy extensions and data protection solutions.

As WASM continues to mature, its role in proxies will expand, enabling proxies to act as robust
platforms for security and application logic execution. This evolution is particularly pertinent to
data protection, which stands as a central theme of contemporary application development.

NIST IR 8505 A Data Protection Approach for
September 2024 Cloud-Native Applications

7

2.4. Proxy-WASM

Envoy Proxy, an open-source edge and service proxy, plays a pivotal role in managing the flow
of traffic between microservices in many service mesh deployments. The collection of
extensible APIs that it provides for various services is designated as xDS. An extension API that
leverages the extensibility of these basic, foundational APIs of Envoy Proxy is the WebAssembly
for Proxies (Proxy-WASM) runtime.

Proxy-WASM extends the adaptability of Envoy Proxy by enabling the deployment of
WebAssembly modules within the proxy server. This integration allows for the execution of
custom code directly within the proxy, providing a platform-independent and secure
environment. The modularity of WebAssembly makes it an ideal choice for extending the
functionalities of Envoy Proxy without the need for recompilation or significant changes to the
existing infrastructure.

The architecture of Proxy-WASM within Envoy Proxy allows for the seamless integration and
execution of custom logic at various stages of the request-response cycle. For example, a
WASM module can intercept requests, inspect payload data, apply data categorizations, and
redact data before proceeding. This level of granular control enhances the security posture of
microservices architectures while maintaining performance and scalability.

Thus, we see that Proxy-WASM can be leveraged to implement robust security measures for
microservices communication by performing tasks, such as data categorization and mitigation
directly within the proxy.

2.4.1. Role of WASM in Different Service Mesh Architectures

Service mesh architectures have traditionally utilized sidecar proxies, which are implemented as
containers and deployed alongside each service within a Kubernetes pod. These sidecar
proxies manage both inbound and outbound traffic for their respective services, creating an
ideal WASM-based insertion point for in-transit categorization.

[5]

Additionally, newer architectural patterns (e.g., proxy implementation/deployment models)
recognize that sidecar proxies are excessive because many services do not have L7-level
services. The ambient waypoint proxy pattern seeks to simplify the sidecar model by
centralizing and simplifying traffic management and policy enforcement. In this pattern,
waypoint proxies are deployed at the node level, which provides application services either per
namespace or per service account. They manage all ingress and egress traffic for the services
within their designated scope. In both proxy deployment models, the WebAssembly VM
intercepts and analyzes traffic in the exact same way, providing a transparent deployment for
WASM-based data categorization policies and modules.

Outside of traditional Envoy-based service mesh proxies, there are several runtime
environments where WASM modules can be deployed to classify sensitive data in transit. Many
API gateways now support WASM along with commercial content delivery network (CDN)
platforms, such as Fastly’s WASM Compute Platform and Cloudflare’s WASM Workers [17]. [16]

NIST IR 8505 A Data Protection Approach for
September 2024 Cloud-Native Applications

8

2.5. WASI-HTTP

With its application binary interface (ABI), Proxy-WASM facilitates communication between
WebAssembly modules and host environments, specifically proxies. It has a mature
specification adopted by various proxy servers and traces its origins to efforts within the Envoy
project to extend the capabilities of proxy servers using WebAssembly. Proxy-WASM ensures
that extensions written for one proxy can be reused in others, promoting a write-once, run-
anywhere approach. Proxy-WASM’s ABI and event-driven streaming APIs have been
incorporated into several production-level proxies, demonstrating the project’s practical
application and influence.

In contrast, WASI-HTTP — a WASM-based API — has evolved through iterations to define
interfaces for handling Hyper-Text Transfer Protocol (HTTP) requests and responses directly
within WASM modules. It aims to provide a minimal and streamlined execution environment
for WebAssembly-based HTTP proxies and is designed to seamlessly integrate with existing web
infrastructure, such as service workers and reverse proxies, without requiring a complex
runtime system. WASI-HTTP is already in production in some environments and supports
scalable and dynamic WASM instance creation in response to web traffic, laying the
groundwork for future innovations like linking HTTP intermediaries through the component
model.

Both WASI-HTTP and Proxy-WASM are shaping the landscape of WebAssembly in networked
and distributed systems. While WASI-HTTP is allowing for simplified HTTP communication
within WebAssembly applications, Proxy-WASM exemplifies the successful implementation of a
standardized interface across multiple proxy implementations. Their collaborative development
highlights a symbiotic relationship, with WASI-HTTP potentially leveraging Proxy-WASM’s
Application Binary Interface (ABI)to further enhance the capabilities and reach of WebAssembly
in networking scenarios.

2.6. eBPF

Using WASM to parse human-readable text in Layers 4–7 offers several advantages over
technologies like extended Berkeley Packet Filter (eBPF), particularly regarding handling
complex application-layer data, such as HTTP. While eBPF is powerful for data capture and
manipulation directly within the kernel, its use for parsing detailed HTTP traffic can be complex
and potentially excessive for some applications. This complexity stems from the need to handle
the intricacies of HTTP within the kernel — a task that can restrict performance and introduce
security concerns if not managed correctly. Additionally, eBPF imposes numerous restrictions
and requires extra effort for data processing and general-purpose computation.

WASM provides a secure, sandboxed environment that is suitable for efficiently executing code
across multiple platforms and parsing application-layer protocols. WASM can be used in user
spaces and server environments, allow easier integration with existing parsing libraries and
tools, reduce complexity, and potentially enhance the reliability of parsing operations. Its
portability and ability to embed in various runtime environments make it a practical choice for

NIST IR 8505 A Data Protection Approach for
September 2024 Cloud-Native Applications

9

network traffic analysis tasks, including those involving protocols that handle human-readable
text.

NIST IR 8505 A Data Protection Approach for
September 2024 Cloud-Native Applications

10

3. Data Protection in Transit

One of the first and most fundamental tasks in data protection is classifying data to identify the
need for further operations (e.g., sanitization, filtering).

3.1. Data Categorization Techniques

Data in transit can vary wildly between structured and unstructured formats. For real-time
categorization and protection, care must be taken to formulate the right approach. The
performance of each categorization event is critical to ensuring that minimal latency is added as
the process takes place. By executing WASM modules in proxies, organizations can implement
data categorization and filtering mechanisms at the proxy level. This approach allows for the
identification and protection of sensitive data as they flow between services.

Regex and ML models can be used within these WASM modules to detect patterns and classify
data in real time, enabling the implementation of appropriate data protection measures, such
as redaction, encryption, or access control policies. Regex matching can identify complex
patterns for nuanced categorization schemes, and ML tools can detect patterns that signify
categorization attributes. This latter process involves classifying a set of example data and
training one or more models to analyze and classify future data. Though it is potentially the
most effective automatic categorization method, it requires significant setup and management.
The training data sets must be comprehensive to provide ample information for accurate
categorization detection.

Unlike other data categorization techniques that operate on data at rest, in-transit
categorization provides the added dimension of time as traffic is analyzed. When combining
data categorization with the time they were accessed or sent, data flows can be visualized and
understood. Once models have been trained on normal data flow patterns, it becomes clear
when a violation in data access has occurred or when an unpermitted data flow has been
established. By leveraging the capabilities of WASM modules in proxies, organizations can gain
visibility into data flows, detect anomalies, and take proactive measures to protect sensitive
data as they move between services in cloud-native and microservices-based applications.

3.2. Techniques for Data Protection

This section describes the practical uses of the data protection techniques dynamic data
masking (DDM), user and entity behavior analytics (UEBA), and data loss prevention (DLP)
within WASM modules in various application scenarios with a focus on the domain data that
pertain to each application scenario.

3.2.1. Web Traffic Data Protection

In-transit data categorization across web protocols like HTTP/2 and gRPC-enable the
observability of data flows between services and clients. By classifying data in motion,
organizations can monitor how sensitive information is accessed by both unauthenticated and

NIST IR 8505 A Data Protection Approach for
September 2024 Cloud-Native Applications

11

authenticated identities. WASM modules can use regex and ML models to identify sensitive
data patterns in HTTP payloads and redact, mask, or block classified data transmissions based
on configured policies. Example applications include:

• E-commerce websites: Monitoring credit card details and personal information during
transactions to ensure that they are properly encrypted and masked, preventing
unauthorized access.

• Healthcare applications: Protecting patient data by detecting and encrypting sensitive
information, such as medical records and personal identifiers before they are
transmitted between systems.

• Corporate communications: Scanning and securing internal emails and messages to
prevent data breaches and ensure compliance with internal data protection policies.

3.2.2. API Security

APIs are critical conduits for sensitive data and are often targeted for attacks. Monitoring data
transmitted to and from APIs is essential for detecting vulnerabilities, such as application-level
DDoS attacks, SQL injection, or data exfiltration. Many API gateways and service meshes
support running WASM modules for enhanced security. These modules can implement
authentication, rate limiting, and payload inspection for API traffic. Example applications
include:

• Financial services: Protecting API endpoints that handle financial transactions by
detecting and blocking SQL injection attempts and unauthorized access attempts.

• Social media platforms: Monitoring data flow through APIs to prevent the exfiltration of
user data and ensure that sensitive information, such as login credentials and personal
messages, is protected.

• IoT devices: Securing data transmitted from IoT devices to backend systems and
detecting anomalies in data patterns that might indicate a security breach.

3.2.3. Microsegmentation

In microsegmentation, in-transit data categorization enhances asset inventory reporting. This
advanced categorization enables organizations to identify and track critical assets and their
data flows to ensure alignment with data protection policies. This granular insight is especially
valuable for assets that handle PII or financial data, bolstering data governance and compliance
efforts.

While Kubernetes (K8s) networking policies offer segmentation, managing and testing these
policies can be resource intensive. Traditional network policies rely on static rule sets that
require meticulous configuration and maintenance. Comprehensive testing across dynamic
environments poses operational challenges, and these policies lack granular visibility into data
content, making it difficult to accurately differentiate between legitimate and malicious traffic.

NIST IR 8505 A Data Protection Approach for
September 2024 Cloud-Native Applications

12

In contrast, in-transit data categorization offers a dynamic and granular approach. By analyzing
data flows in real time, organizations gain actionable insights into the content and context of
network traffic. This enables the precise enforcement of security controls based on data
attributes, such as sensitivity levels or compliance requirements. Example applications include:

• Financial institutions: Implementing microsegmentation to protect critical systems that
handle transaction processing to ensure that only authorized services can access
sensitive financial data.

• Healthcare providers: Segregating networks within a hospital to ensure that medical
devices and patient data systems are isolated from less secure administrative networks.

• Retail chains: Using real-time data categorization to manage data flows between point-
of-sale systems and backend inventory systems to prevent unauthorized access to sales
data and customer information.

3.2.4. Log Traffic Data Protection

Regulated organizations often face the challenge of sensitive data leaking into log streams.
Since all log protocols operate at Layer 4 and traverse service proxies within a service mesh,
addressing potential leaks at their source allows organizations to secure data before they
disperse into various storage systems, effectively mitigating the risk of exposure.

Example applications include:

• Financial services: Ensuring that transaction logs do not contain unmasked credit card
numbers or personal identification information to prevent accidental leaks.

• Healthcare providers: Protecting patient data in system logs by redacting sensitive
information before it is stored or transmitted to logging systems.

• E-commerce platforms: Monitoring and sanitizing log data to prevent the exposure of
customer order details and personal information.

3.2.5. LLM Traffic Data Protection

Due to their scalability needs, large language models (LLMs) typically operate within service
mesh architectures. Classifying both prompt and response data in transit is crucial for
governance. This enables organizations to maintain visibility over the data flows of deployed
LLMs and ensure compliance with regulatory standards and organizational policies for data
protection.

Example applications include:

• Customer support systems: Monitoring interactions between customers and automated
support bots to ensure that sensitive customer data are not inadvertently exposed or
logged.

NIST IR 8505 A Data Protection Approach for
September 2024 Cloud-Native Applications

13

• Content Moderation: Ensuring that data processed by LLMs for content moderation are
handled in compliance with privacy regulations to protect user information.

• Data Analysis Services: Classifying and securing data used by LLMs in analytics platforms
to prevent unauthorized access to sensitive business insights and customer data.

3.2.6. Credit Card-Related Data Protection

WASM modules are also used to protect data related to credit card transactions, as laid out in
PCI DSS 4.0 specifications. This is achieved by incorporating the following functions into WASM
modules:

• Clearly identify and document all areas in which sensitive data (e.g., cardholder data,
authentication values, encryption keys) are stored, processed, or transmitted. This
includes databases, servers, applications, and network segments that handle cardholder
data.

• Generate data-flow diagrams or other technical or topological solutions that identify
flows of account data across systems and networks.

• Identify all data flows for the various stages of payment transactions (e.g., authorization,
capture settlement, chargebacks, and refunds) and acceptance channels (e.g., card
present, card not present, and e-commerce).

3.2.7. Monitoring Tools to Visualize Sensitive Data Flows

WASM modules can also be programmed to collect and emit metrics and telemetry data in
various formats to monitoring tools that are used to visualize the flow of sensitive data (e.g.,
Prometheus, Grafana). By examining the normal rate of sensitive data flow over time, visual
indicators, such as spikes, can be used to identify data leakage incidents and unauthorized data
exposures. Subsequent investigations can then ensure compliance with data protection
regulations and reduce the risk of continued data breaches.

NIST IR 8505 A Data Protection Approach for
September 2024 Cloud-Native Applications

14

4. Security Analysis of WASM Modules

To realize the security goals for which the WASM modules are deployed, the whole ecosystem
under which these modules execute must obey the properties of a security kernel:

1. It is always invoked (i.e., non-bypassable).

2. It is small and verifiable.

Consider the satisfaction of the first property in the context of two proxy implementation
models in a service mesh. In the sidecar proxy model, a proxy is implemented as a container
that coexists with each microservice in the same pod and runs in the same network space as
the service. All traffic coming into and emanating from the microservice must pass through the
proxy and the applications running inside of the proxy. Hence, the WASM module that provides
the data protection function deployed inside the proxy will always be invoked.

In the ambient proxy implementation model, the network link to a service or group of services
associated with a namespace has to pass through the node hosting the waypoint proxy serving
that service or group of services for a designated namespace. No direct network paths to the
service or group of services exists. Again, the WASM module provides data protection for
services under the scope of the proxy has to be invoked.

To meet the second property of the security kernel (i.e., the security is verifiable), a security
analysis of the entire execution environment for the WASM modules must be performed. The
life cycle of a WASM module begins with a source code in some supported language (e.g., C,
C++, or Rust) that is then compiled using a target compiler (e.g., using LLVM) into a binary byte
code that is run by a runtime module (i.e., WASM runtime). Access to the operating system or
host resources is enabled by calling a module that implements an API called WASM System
Interface (WASI).

The security analysis of the WebAssembly ecosystem can be considered in terms of the
following topics:

1. WASM security goals and security feature sets

2. Memory model and memory safety

3. Execution model and control flow integrity

4. Security of API access to OS/host resources

5. Protection against side-channel attacks

6. Protection against injection attacks

7. Deployment and operating safety

4.1. WASM Security Goals and Security Feature Sets

The WASM security model has two important goals: (1) protect users from buggy or malicious
modules, and (2) provide developers with useful primitives and mitigations for developing safe
applications within the constraints of (1)[8].

NIST IR 8505 A Data Protection Approach for
September 2024 Cloud-Native Applications

15

4.1.1. User-Level Security Features

Each WASM module executes within a sandboxed environment that is separated from the host
runtime using fault isolation techniques. This implies that:

• Applications execute independently and cannot escape the sandbox without going
through appropriate APIs.

• Applications generally execute deterministically with limited exceptions.

Additionally, each module is subject to the security policies of its embedding. Within a web
browser, this includes restrictions on information flow through same-origin policy. On a non-
web platform, this could include the POSIX security model.

4.1.2. Security Primitives for Developers

The design of WebAssembly promotes safe programs by eliminating dangerous features from
its execution semantics while maintaining compatibility with programs written for C/C++.
Modules must declare all accessible functions and their associated types at load time, even
when dynamic linking is used. This allows for the implicit enforcement of control-flow
integrity (CFI) through structured control flow. Since compiled code is immutable and not
observable at runtime, WebAssembly programs are protected from control flow hijacking
attacks.

• Function calls must specify the index of a target that corresponds to a valid entry in
the function index space or table index space.

• Indirect function calls are subject to a type of signature check at runtime, and the type
of signature of the selected indirect function must match the type of signature specified
at the call site.

• A protected call stack that is invulnerable to buffer overflows in the module heap
ensures safe function returns.

• Branches must point to valid destinations within the enclosing function.

4.2. Memory Model and Memory Safety

As there are only four primary data types defined by WASM, compilers targeting WASM
implement their own stack in an area called linear memory, which becomes the main memory
of a WASM program. A linear memory is a contiguous, byte-addressable range of memory that
can be considered as an untyped array of bytes. This enables the program to store non-scalar
data and any variable whose address needs to be taken by the module [10]. In addition to linear
memory, there is the code space, execution stack, and runtime data structure [11]. The
execution stack mainly stores local variables, global variables, and return addresses.

Compilers that target WASM also create an area for the heap in the linear memory. This area is
reserved at the end of the linear memory so that it can dynamically grow when additional space
is allocated for the linear memory. This linear memory is sandboxed — disjointed from code

NIST IR 8505 A Data Protection Approach for
September 2024 Cloud-Native Applications

16

space, execution stack, and runtime data structure [11] — and prevents WASM modules from
accessing other memory areas. These other memory regions are isolated from the internal
memory of the runtime and are set to zero by default unless otherwise initialized. However,
modules can access the data stored on the execution stack via dedicated instructions. The
actual data address on the execution stack is never shown to the module. A compliant runtime
ensures that the module does not break WASM's memory model [12]. This is done by bounds-
checking access to the linear memory at the region level. If the module accesses the memory
outside of the linear memory, the program traps and prevents modules from accessing data
outside of their allocated memory [11].

Another common class of memory safety error involves unsafe pointer usage and undefined
behavior. This includes dereferencing pointers to unallocated memory (e.g., NULL) or freed
memory allocations. In WebAssembly, the semantics of pointers have been eliminated for
function calls and variables with a fixed static scope, allowing references to invalid indexes in
any index space to trigger a validation error at load time or — at worst — a trap at runtime.

However, the bounds-checking process is performed at the level of the linear memory, and
modules can access the entire linear memory without restriction. Linear memory is not
protected by standard techniques like stack canaries or guard pages. Therefore, buffer
overflows — which occur when data exceed the boundaries of an object and accesses adjacent
memory regions — cannot affect local or global variables stored in index space. Data stored in
linear memory can also overwrite adjacent objects since bounds-checking is performed at linear
memory region granularity and is not context-sensitive.

4.3. Execution Model and Control Flow Integrity

WASM code is executed when instantiating a module or when an exported function is invoked
on a given instance [12]. The execution behavior of a WASM module is defined in terms of an
abstract machine that models the program state. This abstract machine includes a stack that
records the operand values and control constructs as well as an abstract store that contains the
global state.

WASM primarily achieves control flow integrity through the execution semantics of the
language itself. The definition of the WASM bytecode [12] limits the constructs that are
possible to express. It defines valid code constructs and how control flow may only jump to the
beginning of a valid construct. Arbitrary jumps (e.g., goto statements) are not allowed; only
structured control flow is provided. Consequently, a grammatically valid WASM module can
only jump to the beginning of valid constructs (e.g., conditional constructs or functions) [11].

An additional factor contributing to the control flow integrity is the prevention of call
redirection through restrictions on indirect function calls. Restrictions are applied regarding
functions that the module can indirectly call. To indirectly call a function, the module provides a
runtime index to a table. This table holds the signatures of the functions that the module
defines or imports and that can be indirectly called. When an indirect call is made, the runtime
checks that the calling signature and the signature of the called function match. If there is a
type mismatch or an out-of-bounds table access, a trap occurs [11] .

NIST IR 8505 A Data Protection Approach for
September 2024 Cloud-Native Applications

17

4.4. Security of API Access to OS and Host Resources

By default, WASM does not have access to the resources of the host (e.g., file system, network,
system calls). Modules can import externally defined functions provided by the host or other
modules. APIs common to many use cases are currently being standardized in the WASI [13].
The capability-based security model of WASI enables the introduction of a verified secure
runtime system, as shown in [14].

4.5. Protection From Side-Channel Attacks

The WASM language specification [12] clearly states that side-channel attacks are to be
addressed by the runtime. Currently, Wasmtime implements a few forms of Spectre
mitigations. Bounds checks for the runtime index used in indirect calls and some other
instructions are mitigated to ensure that speculation goes to a deterministic place [15].
However, some side-channel attacks can occur, such as timing attacks against modules.

In the future, additional protections may be provided by runtimes or the toolchain, such as
code diversification or memory randomization like addressing space layout
randomization (ASLR) or bounded pointers (i.e., “fat” pointers).

4.6. Protection Against Code Injection and Other Attacks

Control-flow integrity and protected call stacks prevent direct code injection attacks. Thus,
common mitigations, such as data execution prevention (DEP) and stack smashing
protection (SSP), are not needed by WASM programs. Nevertheless, other classes of bugs are
not obviated by the semantics of WebAssembly. Although attackers cannot perform direct code
injection attacks, it is possible to hijack the control flow of a module using code reuse attacks
against indirect calls. However, conventional return-oriented programming (ROP) attacks using
short sequences of instructions (i.e., “gadgets”) are not possible in WebAssembly because
control-flow integrity ensures that call targets are valid functions declared at load time.
Likewise, race conditions, such as time-of-check to time-of-use (TOCTOU) vulnerabilities, are
possible in WebAssembly since no execution or scheduling guarantees are provided beyond in-
order execution. Yet another security limitation is that there are no audit tools to track the
changes made by WASM modules.

4.7. Deployment and Operating Security

The security features described so far pertaining to run time security. The following capabilities
relate to the controls that are present for deployment and integrity of operations.

• The ability to create the WASM filter in the proxy can be controlled through the native
access mechanism in the service mesh (e.g., RBAC).

• Only calls using HTTP and gRPC protocols are allowed.

NIST IR 8505 A Data Protection Approach for
September 2024 Cloud-Native Applications

18

• Even for making those calls, only clusters known to the proxy can be used. Similarly,
responses coming from clusters already known to the proxy are examined.

NIST IR 8505 A Data Protection Approach for
September 2024 Cloud-Native Applications

19

5. Summary and Conclusions

This document describes how WASM modules can be developed and deployed in service mesh
proxies for the real-time protection of data in transit in cloud-native application architectures.
Various data protection techniques can also be used to protect data in different domains of
various application scenarios. WASM modules can provide telemetry data for monitoring tools
that provide visual images of sensitive data flows. A detailed security analysis of the WASM
module development, deployment, and execution environment can ensure that necessary
security assurances are obtained by running the modules as part of the application
infrastructure environment (e.g., in service mesh proxies).

The data categorization and protection techniques built into WASM modules must continuously
evolve to keep pace with increasingly sophisticated attacks on data that result in new forms of
data breaches, data leakages, and other forms of data exfiltration.

NIST IR 8505 A Data Protection Approach for
September 2024 Cloud-Native Applications

20

References

[1] Doerrfeld B (2023) Wasm: The Next Generation Beyond Kubernetes? Available at
https://cloudnativenow.com/features/wasm-the-next-generation-beyond-kubernetes/

[2] Krasnov M (2020) Web Assembly is the End of Internet as we know it. Available at
https://betterprogramming.pub/webassembly-is-the-end-of-the-internet-as-we-know-
it-9085a49cbc7b

[3] WebAssembly (2024) WebAssembly Concepts. Available at
https://developer.mozilla.org/en-US/docs/WebAssembly/Concepts#see_also

[4] TechTarget (2022) Server-side WebAssembly prepares for takeoff in 2023. Available at
https://www.techtarget.com/searchitoperations/news/252527414/Server-side-
WebAssembly-prepares-for-takeoff-in-2023

[5] Medium (2023) WASM and Kubernetes – A new era of application development.
Available at https://medium.com/@seifeddinerajhi/wasm-and-kubernetes-a-new-era-
of-cloud-native-application-deployment-b3c59b39f640

[6] Podobnik TJ (2023) WASM Runtimes Vs Containers: Cold Start Delays (Part 1). Available
at https://levelup.gitconnected.com/wasm-runtimes-vs-containers-performance-
evaluation-part-1-454cada7da0b

[7] ITPro (2024) WASM Today, AI Tomorrow: KubeCon Extends its Reach. Available at
https://www.itprotoday.com/ai-machine-learning/wasm-today-ai-tomorrow-kubecon-
expands-its-reach

[8] Security.md (2018) WebAssembly Security. Available at
https://github.com/WebAssembly/design/blob/main/Security.md

[9] Huang W, Paradies M (2021) An Evaluation of WebAssembly and eBPF as Offloading
Mechanisms in the Context of Computational Storage. Available at
https://marcusparadies.github.io/files/ebpf_vs_wasm_report.pdf

[10] Lehmann D, Kinder J, Pradel M (2020) Everything Old is New Again: Binary Security of
WebAssembly. 29th USENIX Security Symposium (USENIX Security 20), pp. 217-234.
Available at
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann

[11] Haas A, Rossberg A, Schuff DL, Titzer BL, Holman M, Gohman D, Wagner L, Zakai A,
Bastien JF (2017). Bringing the web up to speed with WebAssembly. PLDI 2017:
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation (ACM, Barcelona), pp. 185-200.
https://doi.org/10.1145/3062341.3062363

[12] WebAssembly Community Group (2023). WebAssembly Specification. Draft Release 2.0
(Draft 2023-04-24). Available at https://webassembly.github.io/spec/

[13] WebAssembly Community Group (2023). WebAssembly System Interface. Available at
https://github.com/WebAssembly/WASI

[14] Johnson E, Laufer E, Zhao Z, Gohman D, Narayan S, Savage S, Stefan D, Brown F (2023)
WaVe: A verifiably secure WebAssembly sandboxing runtime. 2023 IEEE Symposium on
Security and Privacy (SP) (IEEE, San Francisco), pp. 2940-2955.
https://doi.org/10.1109/SP46215.2023.10179357

https://cloudnativenow.com/features/wasm-the-next-generation-beyond-kubernetes/
https://betterprogramming.pub/webassembly-is-the-end-of-the-internet-as-we-know-it-9085a49cbc7b
https://betterprogramming.pub/webassembly-is-the-end-of-the-internet-as-we-know-it-9085a49cbc7b
https://developer.mozilla.org/en-US/docs/WebAssembly/Concepts#see_also
https://www.techtarget.com/searchitoperations/news/252527414/Server-side-WebAssembly-prepares-for-takeoff-in-2023
https://www.techtarget.com/searchitoperations/news/252527414/Server-side-WebAssembly-prepares-for-takeoff-in-2023
https://medium.com/@seifeddinerajhi/wasm-and-kubernetes-a-new-era-of-cloud-native-application-deployment-b3c59b39f640
https://medium.com/@seifeddinerajhi/wasm-and-kubernetes-a-new-era-of-cloud-native-application-deployment-b3c59b39f640
https://levelup.gitconnected.com/wasm-runtimes-vs-containers-performance-evaluation-part-1-454cada7da0b
https://levelup.gitconnected.com/wasm-runtimes-vs-containers-performance-evaluation-part-1-454cada7da0b
https://www.itprotoday.com/ai-machine-learning/wasm-today-ai-tomorrow-kubecon-expands-its-reach
https://www.itprotoday.com/ai-machine-learning/wasm-today-ai-tomorrow-kubecon-expands-its-reach
https://github.com/WebAssembly/design/blob/main/Security.md
https://marcusparadies.github.io/files/ebpf_vs_wasm_report.pdf
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://doi.org/10.1145/3062341.3062363
https://webassembly.github.io/spec/
https://github.com/WebAssembly/WASI
https://doi.org/10.1109/SP46215.2023.10179357

NIST IR 8505 A Data Protection Approach for
September 2024 Cloud-Native Applications

21

[15] Wasmtime (2023). Security - Wasmtime. Available at
https://docs.wasmtime.dev/security.html

[16] Fastly Documentation (2023). Compute. Available at
https://docs.fastly.com/products/compute

[17] WebAssembly (Wasm) (2024) Workers. Available at
https://developers.cloudflare.com/workers/runtime-apis/webassembly/

https://docs.wasmtime.dev/security.html
https://docs.fastly.com/products/compute
https://developers.cloudflare.com/workers/runtime-apis/webassembly/

NIST IR 8505 A Data Protection Approach for
September 2024 Cloud-Native Applications

22

Appendix A. Execution Model for Web Assembly in Browsers

WASM runtime originated with browsers that enabled the running of native code (i.e., code
written in low-level languages such as C, C++, Rust, etc.).

Fig. 2. WASM Module Development & Execution in Browsers

The WebAssembly program is run through a compiler (also called a WebAssembly target
compiler) that inputs code into an LLVM-compliant language and produces a binary .wasm file.
That file is loaded onto the existing JavaScript code by the JavaScript Interop layer and executed
by the WebAssembly runtime [2]. The .wasm file is a low-level assembly language file in binary
format.

The WASM compiler for C, C++, and Rust takes the source code written in those languages and
compiles it into a WASM module. Then the necessary JavaScript “glue” code is generated for
loading and running the module and an HTML document is used to display the results of the
code. The details of this process are explained in [3].

NIST IR 8505 A Data Protection Approach for
September 2024 Cloud-Native Applications

23

Appendix B. Comparison of Execution Models for Containers and WASM Modules

Fig. 3. Comparison of Execution Stack for Containers & WASM Modules

Container images are created by combining the program containing the application logic with
its dependencies (e.g., runtime libraries) in a container runtime (e.g., docker). The container is a
full file system (i.e., utilities, binary), and the generated image should be for a designated OS
kernel and processor architecture (e.g., Intel, Arm). For example, if a Raspberry Pi OS is running
a docker image, then an image for the C/C++ application based on a Linux image must be
created and compiled for the ARM processor architecture. Otherwise, then container will not
run as expected [5].

In contrast, WASM modules and binaries are precompiled C/C++ applications that do not rely
on being coupled with a host OS or system architecture because they do not contain a
precompiled file system or low-level OS primitives. Every directory and system resource is
attached to a WASM module during runtime facilitated by WASI and then run using WASM
runtime. In other words, WASI is used to access all resources under the control of the OS,
essentially decoupling the code from its dependency on the platform architecture.

	1. Introduction
	1.1. Existing Approaches to Data Protection and Their Limitations
	1.2. In-Proxy Application for Data Protection
	1.3. Objective and Scope of This Document
	1.4. Organization of This Document

	2. Web Assembly Background
	2.1. Origin
	2.2. Progression Into Server-Side Environments
	2.2.1. Development and Deployment Process

	2.3. Proxies as WASM Platforms
	2.4. Proxy-WASM
	2.4.1. Role of WASM in Different Service Mesh Architectures

	2.5. WASI-HTTP
	2.6. eBPF

	3. Data Protection in Transit
	3.1. Data Categorization Techniques
	3.2. Techniques for Data Protection
	3.2.1. Web Traffic Data Protection
	3.2.2. API Security
	3.2.3. Microsegmentation
	3.2.4. Log Traffic Data Protection
	3.2.5. LLM Traffic Data Protection
	3.2.6. Credit Card-Related Data Protection
	3.2.7. Monitoring Tools to Visualize Sensitive Data Flows

	4. Security Analysis of WASM Modules
	4.1. WASM Security Goals and Security Feature Sets
	4.1.1. User-Level Security Features
	4.1.2. Security Primitives for Developers

	4.2. Memory Model and Memory Safety
	4.3. Execution Model and Control Flow Integrity
	4.4. Security of API Access to OS and Host Resources
	4.5. Protection From Side-Channel Attacks
	4.6. Protection Against Code Injection and Other Attacks
	4.7. Deployment and Operating Security

	5. Summary and Conclusions
	References
	Appendix A. Execution Model for Web Assembly in Browsers
	Appendix B. Comparison of Execution Models for Containers and WASM Modules

