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Linking Excess Entropy and Acentric Factor

Introduced by Pitzer in 1955, the acentric factor (ω) has been used to evaluate a

molecule’s deviation from the corresponding state principle. Pitzer devised ω based

on a concept called perfect liquid (or centric fluid), a hypothetical species perfectly

adhering to this principle. However, its physical significance remains unclear. This

work attempts to clarify the centric fluid from an excess entropy perspective. We

observe that the excess entropy per particle of centric fluids approximates −kB at

their critical points, akin to the communal entropy of an ideal gas in classical cell

theory. We devise an excess entropy dissection and apply it to model fluids (square-

well, Lennard-Jones, Mie n-6, and the two-body ab initio models) to interpret this

similarity. The dissection method identifies both centricity-independent and depen-

dent entropic features. Regardless of the acentric factor, the attractive interaction

contribution to the excess entropy peaks at the density where local density is most

enhanced due to the competition between the local attraction and critical fluctua-

tions. However, only in centric fluids does the entropic contribution from the local

attractive potential become comparable to that of the hard sphere exclusion, making

the centric fluid more structured than acentric ones. These findings elucidate the

physical significance of the centric fluid as a system of particles where the repul-

sive and attractive contributions to the excess entropy become equal at its gas-liquid

criticality. We expect these findings to offer a way to find suitable intermolecular

potentials and assess the physical adequacy of equations of state.

a)Electronic mail: tyoon124@snu.ac.kr
b)Electronic mail: ian.bell@nist.gov
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Linking Excess Entropy and Acentric Factor

I. INTRODUCTION

The principle of corresponding states, initially proposed by van der Waals in 1873,1

describes that all fluids have approximately the same deviation from the ideal gas behavior

at the same reduced temperature (Tr ≡ T/Tcrit) and pressure (pr ≡ p/pcrit). Although this

approach helped outline the universality of critical phenomena and has been widely used

to correlate thermophysical properties of fluid systems, it does not quantitatively reproduce

the non-ideal behavior of all fluids. Hence, pioneers in theoretical chemistry and chemical

thermodynamics extensively explored the non-corresponding state behavior of molecular

fluids.2–4

One of the pioneers, Kenneth Pitzer, suggested a conceptual species called perfect liquid3

obeying the corresponding state principle. He proposed that this species should satisfy the

following hypotheses.3

H1 The molecules obey classical statistical mechanics.

H2 Molecules are spherically symmetrical. This statement does not necessarily exclude

polyatomic species. A molecule is considered spherically symmetrical if it rotates

rapidly and freely.

H3 Intramolecular vibration does not change depending on thermodynamic conditions.

H4 The potential energy of a molecule depends only on the intermolecular distances be-

tween the molecule and its neighbors.

H5 The potential energy for a pair of molecules is written as ϕ = Aφ(r/r0) where φ is

a universal function, r is the intermolecular distance, and r0 and A are molecular

parameters.

To avoid the impression that perfect liquid denotes a liquid state, we will refer to it as

a centric fluid throughout this work. Based on experimental observations, Pitzer expected

that the vapor pressure of centric fluids should be higher than acentric ones. He then defined

the acentric factor to quantify the deviation from the corresponding state principle in terms

of the vapor pressure, which is given as5

ω = − log10 pr(Tr = 0.7)− 1.0 (1)
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Linking Excess Entropy and Acentric Factor

where the reduced saturation pressure is determined at the reduced temperature of Tr = 0.7.

The acentric factor becomes approximately zero for centric fluids (e.g., argon, krypton, and

xenon). For its convenience of calculation (based on readily accessible experimental data),

ω has been widely utilized as a standard thermophysical property for modeling the behavior

of fluid systems.

Despite its usefulness, however, understanding the physical significance of centric fluid is

still elusive from a physical point of view. Guggenheim has already criticized some ambi-

guities in the ansatzes H1–H5 in defining the centric fluid.4 However, it would be helpful to

re-examine these statements carefully. Hypothesis H1 excludes quantum fluids (e.g., hydro-

gen and helium), but some molecules (e.g., neon) are located at the boundary between the

quantum fluid and the classical one. Guggenheim states that Hypothesis H2 allows some di-

atomic and polyatomic molecules in gas and liquid states to be included as centric fluids. In

his later work,6 Pitzer also states that a molecule is considered centric if the intermolecular

forces induced by non-centric parts are insignificant. For instance, CH4 is considered centric,

while n-propane is not; the spherical symmetry is determined not by the molecular shape

but by a complex effect of both molecular shape and interatomic forces, which is challeng-

ing to quantify. Hypotheses H3, H4, and H5 rule out strongly polar or hydrogen bonding

substances. However, as Guggenheim states, no a priori justification exists for hypothesis

H5. Pitzer expected that no real molecule would exactly satisfy the last condition. However,

he speculated that the interatomic potential ϕ(r) of a centric fluid would follow the inverse

sixth power law ϕ(r) = Cr−6, while its repulsive part would not affect the corresponding

state behavior significantly.

Indeed, hypothesis H5 raises several questions regarding the nature of centric fluids.

A number of studies published after the introduction of ω demonstrate that the nature

of ϕ(r) significantly impacts the thermophysical properties of fluid systems. For instance,

classical perturbation theory states that the repulsive part dominantly determines the liquid

structure.7 Then, why is the inverse sixth power law necessary to satisfy ω = 0? How does

the steepness (or reach) of the repulsive (or attractive) interactions affect the acentric factor?

All things considered, Pitzer’s hypotheses are helpful in ruling out some molecules from the

list of centric fluids and getting an inkling of what the centric fluid should be, but cannot

be used to derive a solid definition.

In addition to these questions, understanding the physical significance of the centric fluid

4

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

02
16

12
6



Linking Excess Entropy and Acentric Factor

based on Eq. 1 is challenging. The reference temperature Tr = 0.7 was arbitrarily chosen

considering the data availability while avoiding the critical anomalies; the absolute magni-

tude of the acentric factor does not have a physical significance.6 Moreover, the reference

temperature is problematic for some substances, such as SF6 and CO2, as their reference

temperatures (Tr = 0.7) are below their triple points.8 Lastly, no structural insight is ob-

tained from Eq. 1.

This work tests if the excess entropy can work as a key to elucidate the physical nature

of the centric fluid. Excess entropy per particle is defined as the extent of deviation from its

ideal gas state at the same density and temperature (sex = [S(ρ, T )− Sig(ρ, T )] /N).9 This

term is also called as the residual entropy in physical chemistry.10 Since most systems are

more ordered than the ideal gas, sex is negative in most fluids, except for exotic systems like

Fermi-Dirac fluids. For brevity, we use a dimensionless variable s+ defined as s+ ≡ −sex/kB

so that the order parameter s+ is positive and converges to zero at the low-density limit. The

dimensionless quantity s+ has been linked with transport properties,11,12 thermodynamic

properties13, dynamic crossover,14,15 and phase equilibria.16–18

Although not systematically performed, several earlier studies explored an empirical (or

semi-empirical) link between sex and ω. By examining the attractive tail of the Kihara po-

tential, Pitzer expected that the magnitude of excess entropy should be lowest in the centric

molecule compared to acentric ones.19 Bell showed that the critical excess entropy calculated

using the Peng-Robinson equation of state (EOS) is a linear function of the acentric factor.20

Using the density scaling approach, which is closely related to the excess entropy scaling

approach,21 Fragiadakis and Roland22 showed that the density scaling exponent γ matches

with the scaling exponent for the melting point Γ only in the centric fluids. Lastly, some

(semi-)empirical correlations were proposed to calculate transport properties combining the

excess entropy scaling approach and thermodynamic EOSs.23,24

II. EMPIRICAL OBSERVATIONS

Our curiosity about the relationship between ω and sex stems from an empirical observa-

tion that the dimensionless quantity s+ at the gas-liquid critical point (s+crit ≡ −sex,crit/kB)

is close to unity for noble gases, except for helium-4 (4He), and to a lesser extent for neon

(Figure 1a). Although real 4He is influenced by strong quantum effects at its critical point,
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Linking Excess Entropy and Acentric Factor

FIG. 1. Empirical observations about the relationship between s+ at the critical point (s+crit) and

ω from the NIST thermophysical properties database. a The values of s+ of noble gases at their

gas-liquid critical points. As the molecular weight increases, the quantum effect is reduced, and

s+crit converges to unity. When the quantum effect is excluded, the s+crit becomes close to unity. b

Correlation between the acentric factors (ω) and s+crit. When a simple linear relation is assumed,

s+crit becomes 1.00 ± 0.04 at ω = 0 when non-polar or weakly polar substances are used for the

regression (61 fluids). For 135 fluids in the NIST REFPROP, the empirical linear model yields

s+crit(ω = 0) = 1.02± 0.05.

thermophysical properties of classical 4He without the nuclear quantum effect are avail-

able.25,26 When the virial coefficients are used, s+crit = 1.0 ± 0.02 is obtained for classical

4He; quantum effects reduce s+crit (See Sec. S1 in Supplementary Material for the detailed

calculation results). Hence, the excess entropy of all noble gases becomes close to −kB at

their gas-liquid critical points when the quantum effect is excluded.

We further examine the relationship between ω and s+crit for 135 fluids in the NIST
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Linking Excess Entropy and Acentric Factor

REFPROP library.8 The fluids covered in NIST REFPROP are well-measured molecules for

which high-accuracy EOSs are available, covering a variety of chemical species. Following

hypotheses H3–H5 and the Peng-Robinson EOS behavior,20 we first apply a simple linear

model (s+crit = aω + b) to 61 non-polar fluids whose dipole moments are less than 0.5 D,

although this threshold is somewhat arbitrary. The model yields s+crit = 1.00±0.04 at ω = 0

(R2 = 0.98). (Figure 1b) Interestingly, when the model is applied to all 135 fluids, the

goodness of fit is decreased from 0.98 to 0.95, but the s+crit value of the centric fluid is still

close to unity (s+crit = 1.02± 0.05).

III. THEORETICAL INTERPRETATIONS

The link between s+crit = 1 and ω = 0 discovered in Sec. II reminds us of the classical

cell theory, one of the earliest models to understand liquid thermodynamics.27 In the cell

theory, the thermophysical properties of a system are calculated, assuming that molecules

independently move inside their cells. This hypothesis makes it easy to calculate the thermo-

physical properties of liquids but causes an artifact called communal entropy.28 For instance,

in an ideal gas system where molecules freely move, the dimensionless entropy per particle

is calculated as

Sig

NkB
=

5

2
+ ln

(
V

NΛ3

)
(2)

where N is the number of particles, V is the system volume, and Λ is the thermal de Broglie

wavelength. When ideal gas molecules are only allowed to move in their cells, the entropy

per particle is obtained as

Scell

NkB
=

3

2
+ ln

( v

Λ3

)
(3)

Here, the cell size is assumed to be v = V/N = ρ−1. By subtracting Eq. 2 from Eq. 3, the

dimensionless entropy change is obtained as −(Scell − Sig)/NkB = −scomm/kB = 1.

Suppose the agreement between −sex,crit/kB = 1 and −scomm/kB = 1 is not just a co-

incidence. In that case, our empirical observation might suggest that the centric fluid at

the gas-liquid critical point should be thermodynamically equivalent to a system of ideal

gas (point-like) particles moving in their cells. It should be stressed that molecules are not

actually confined in their cells. Instead, the system entropy should be equally (or similarly)

decreased by the repulsive and attractive forces so that the effective volume explored by
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Linking Excess Entropy and Acentric Factor

a particle is comparable to the cell volume v. In other words, the number of microstates

should be reduced, satisfying the following two postulates.

P1 The effective cell size v explored by a molecule should be equal to (or at least compa-

rable to) V/N at the critical temperature; it should be vcrit at the gas-liquid critical

point.

P2 The effective volume is equally (or similarly) determined by repulsive and attractive

interaction; the decrease in the number of microstates by the hard-core (repulsive)

interaction and the attractive potential well should be comparable.

To test proposition P1, we need to define the (imaginary) cell size v. Since the second

virial coefficient at the critical temperature B2,crit approximately represents the effective

range of interatomic potentials,29 we see if the magnitude of B2,crit is similar to vcrit.

In the case of the fluids covered in NIST REFPROP, the second virial coefficient at

the critical temperature is proportional to the critical volume. The average ratio between

−B2(Tcrit) and vcrit is 1.28±0.12. The heavy noble gases, including argon, krypton, and

xenon, show B2 ≈ −1.15vcrit. The comparability between B2(Tcrit) and −vcrit can also be

illustrated using a truncated virial EOS. When the high-order terms of the virial EOS (Bi

where i ≥ 4) are ignored, the compressibility factor Z is expressed as follows.

Z =
p

ρkBT
= 1 +B2ρ+B3ρ

2 (4)

Using the van der Waals’ definition of the gas-liquid critical point, the EOS should satisfy

the following condition at the critical density ρcrit.(
∂p

∂ρ

)
Tcrit

=

(
∂2p

∂ρ2

)
Tcrit

= 0 (5)

Inserting Eq. 4 to Eq. 5, we obtain

1 + 2B2ρcrit + 3B3ρ
2
crit = 0 and (6)

3B3ρcrit = −B2, (7)

which leads to B2,crit = −vcrit = −ρ−1
crit.

To test proposition P2, we devise an alchemical transformation process to dissect excess

entropy based on the Widom insertion formula.30 In the Widom insertion, the dimensionless
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Linking Excess Entropy and Acentric Factor

excess chemical potential per particle βµex (β−1 ≡ kBT ) is obtained as

βµex = − lnBi = − ln ⟨exp (−βϕi)⟩ (8)

where kB is the Boltzmann constant, Bi is the insertion parameter, and ϕi is the interaction

energy of an inserted particle i with all preexisting particles in the system. Provided that

the particle is perfectly hard (impenetrable), Eq. 8 is transformed into

βµex = − lnPins − ln ⟨exp (−βϕatt,i)⟩. (9)

where Pins is the probability of inserting a hard-core particle into the system without over-

lapping preexisting hard-core particles. Two hard-core particles are regarded as overlapped

when their distance is shorter than the sum of their radii.

By using the fundamental relation of thermodynamics (µ ≡ G/N = (U + pV − TS)/N)

and the definition of excess properties (Pex = P − Pig), the right-hand side (RHS) of Eq. 9

becomes

− lnPins − ln ⟨exp (−βϕatt,i)⟩ = βuex + Z − 1− sex/kB. (10)

where the definition of the compressibility factor Z = βpv is introduced. Moving all terms

in the RHS of Eq. 10 except s+ = −sex/kB, we obtain

s+ = − lnPins − ln (⟨exp (−βϕatt,i)⟩)− βuex + 1− Z (11)

We further dissect each term into repulsive (hard-core) and attractive contributions. First,

the insertion term Pins is given as P hs
ins(Pins/P

hs
ins) where P hs

ins is the probability of inserting a

hard-core particle to the system where no attractive interaction exists. Second, the com-

pressibility factor Z is dissected into Zhs and Zatt. Lastly, since no attractive interaction

exists in a hard sphere (purely repulsive) system, uex = uatt. Considering all these relations,

the following expression is obtained.

s+ = ςhs + ςper = ςhs + (ςstr + ςenergy) (12)

In Eq. 12, ςhs is the hard-core contribution. The perturbative (attractive) potential contri-

bution ςper is dissected into structural (ςstr) and energetic (ςenergy) ones. They are given as

follows.

ςhs = s+hs = 1− lnP hs
ins − Zhs (13)
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Linking Excess Entropy and Acentric Factor

FIG. 2. A schematic diagram of the alchemical transformation to dissect excess entropy into

different contributions. This alchemical transformation process consists of three stages. In the first

stage (hard-core exclusion), we let N hard spheres (red balls) freely move in the system. The excess

entropy of the hard sphere system is a function of the probe-occupiable volume (white mesh) and

the hard-sphere compressibility factor. In the second stage (structuralization), we let the hard-core

molecules move but turn on the attractive interaction between them. Note that ςstr is calculated

by averaging all configurations, although only a single configuration is shown in the diagram. The

attractive interaction between the preexisting particles results in local cluster(s) formation, which

usually increases the probe-occupiable volume. This structural change increases the total entropy

(ςstr < 0). In the last stage (attraction stage), the entropy decrement due to the local attractive

potential (colored mesh) induced by the preexisting particles is considered. This effect is denoted

as an energetic term ςenergy. The sum of ςstr and ςenergy is denoted as ςper.

ςstr = − ln
(
Pins/P

hs
ins

)
(14)

ςenergy = − ln ⟨exp (−βϕatt,i)⟩ − βuatt − Zatt (15)

It would be instructive to compare the proposed method to classical perturbation theory.

In perturbation theory, an interatomic potential is dissected into the repulsive (hard-core)

and perturbative (attractive) parts. Perturbation theory states that the repulsive interaction

dominantly determines the structural characteristics of liquids.7 However, this proposition

does not hold in gases and dilute supercritical fluids, as Toxvaerd demonstrated.31 Since
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Linking Excess Entropy and Acentric Factor

there is enough space in a dilute system, local clusters are easily formed by the attractive

interaction. As a result, P hs
ins is not equal to Pins in low- to intermediate-density conditions

(ςstr ̸= 0).

In contrast to classical perturbation theory, Eq. 12 does not dissect the interatomic po-

tential between particles. Rather, it dissects the entropic contribution at the system level

(Figure 2). In this dissection method, we first consider a system of N ideal gas particles.

Since neither repulsion nor attraction exists in the ideal gas system, the system entropy is

calculated as given in Eq. 2. The ordering of particles due to the excluded volume effect, also

called as entropic force,32 is included by calculating the excess entropy of the hard sphere

system; s+hs should be equal to ςhs. Since the hard-core interaction always decreases the

probe-available volume in a system, ςhs is positive and approaches zero at the low-density

limit (ρ → 0). This hard sphere contribution is calculated using the Carnahan-Starling

EOS.33

The remaining term ςper is dissected into structural and energetic components (ςper = ςstr+

ςenergy). As shown in Eq. 14, the structural term corresponds to the configurational change

from a purely repulsive system to a full potential system. Note that ςstr is usually negative,

which might seem counter-intuitive at first glance. Recall that the local attractive potential

pulls hard spheres together, securing a space for a hard-core particle (probe-occupiable

volume) to be inserted. As a result, Pins becomes higher than P hs
ins, leading ςstr to be negative.

At the low-density limit (ρ → 0), ςstr converges to zero since particles become too far apart.

As ρ increases, its magnitude would increase. However, at the high-density limit (ρ → ∞), it

would converge to zero again since particles do not have enough space to move; the solution

structure is dominated by the repulsion.

The attractive potential energy term ςenergy denotes the influence of the local attractive

interactions between the inserted particle and the preexisting ones. Identical to ςstr and ςhs,

ςenergy goes to zero as ρ approaches zero. Since the attractive potential is always negative,

ςenergy is positive at ρ > 0. Note that the sign of ςhs and ςenergy is positive; repulsive and

attractive interactions decrease the number of microstates in a system, compared to the

ideal gas state. Going back to the similarity between s+ = 1 and −Scomm/NkB = 1, we

now have a means to test proposition P2; ςhs would be equal or comparable to ςenergy in the

centric fluid system if postulate P2 holds.
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Linking Excess Entropy and Acentric Factor

IV. COMPUTATIONAL DETAILS

A. Model Potentials

We perform a series of molecular simulations of particles interacting via spherically

isotropic pair potentials, including the square-well, Lennard-Jones (LJ), Mie n-6, and two-

body ab initio pair potentials. The square-well potential is one of the simplest models

considering attractive and hard-core interactions, which is given as

ϕ(r) =


∞ r ≤ σ

−ϵ σ < r ≤ λσ

0 λσ < r

(16)

where λ is the attractive well width parameter. The LJ potential is given as

ϕLJ(r) = 4ϵ

[(σ
r

)12

−
(σ
r

)6
]

(17)

where ϵ and σ are energy and size parameters, respectively. The Mie n–6 potential is given

as

ϕM(r) =

(
n

n− 6

)(n
6

)6/(n−6)

ϵ

[(σ
r

)n

−
(σ
r

)6
]

(18)

where n is the repulsive exponent. The repulsive exponent (n) in the Mie model is changed

from 12 to 14. These values have been used to model the phase behavior of noble gases

in earlier works.34 In all model potentials, we set σ and ϵ to unity (σ = ϵ = 1.0). These

quantities are dimensionless and used to calculate thermodynamic quantities. For instance,

the energy is calculated as E∗ = E/ϵ, and force is computed as f ∗ = fσ/ϵ.

The two-body ab initio model proposed by Jäger, Hellmann, Bich, and Vogel35–37 uses

the Tang-Toennies potential form to represent the interatomic potential between noble gas

molecules. It is given as

ϕ(r) =A exp
(
a1r + a2r

2 +
a−1

r
+

a−2

r2

)
−

8∑
n=3

C2n

r2n

[
1− exp (−br)

2n∑
k=0

(br)k

k!

]
(19)

where the dispersion coefficients C2n and the repulsion coefficients A, an, and b are obtained

by fitting the potential form to the ab initio data. For a complete description of Eq. 19, see

References 35–37.
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Linking Excess Entropy and Acentric Factor

When applying the excess entropy dissection method proposed in Sec. III, a hypothetical

hard sphere system should be defined for each model. For the square-well system, we use a

hard sphere potential with the same hard-core diameter as such a hypothetical one: ϕhs(r) =

∞ (r ≤ σ) and ϕhs(r) = 0 (r > σ). For continuous potential models, we need to define an

effective hard-core diameter. Several different methods have been devised to determine the

effective hard-core diameter of a continuous potential model based on Rowlinson’s concept.38

We adopt the recent suggestion by Attia, Dyre, and Pedersen.39 In this method, the hard-

core diameter is calculated as the distance where the excess entropy of a soft repulsive

particle becomes equal to that of the hard sphere system: s+(r;ϕ = ϕhs) = s+(r;ϕ = ϕrep).

Following this philosophy, we first define the repulsive portion of the potential based

on the suggestion by Weeks, Chandler, and Andersen (WCA).7 This method defines the

repulsive potential ϕrep(r) by shifting and cutting the original potential at its potential

minimum (r = rmin).

ϕrep(r) =

ϕ(r)− ϕ(rmin) r ≤ rmin

0 r > rmin

(20)

The MD simulation protocol for this purely repulsive system is identical to that of the full

potential system, which is written in Sec. IVB. After calculating the excess entropy from

the simulation results, the packing fraction of a hard sphere system (η ≡ πρσ3
hs/6) that

yields the same excess entropy is computed. The hard sphere excess entropy term (sex,hs) is

calculated using the Carnahan-Starling EOS,33 which is given as

s+hs = −sex,hs =
η(4− 3η)

(1− η)2
. (21)

The packing fraction making −sex,hs equal to the excess entropy of the WCA system is

found using the Brent’s root-finding method. Then, the hard-core diameter σhs is obtained

as σhs = [6η/(ρπ)]1/3.

B. Molecular Simulation Details

We use event-driven and time-driven molecular dynamics (EDMD and TDMD) and clas-

sical Monte Carlo (MC) simulations to obtain thermodynamic and structural characteristics

of the model fluids. DynamO, an open-source event-driven particle simulator,40 is used to
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Linking Excess Entropy and Acentric Factor

perform the single-phase EDMD simulations of the hard sphere and square-well fluid sys-

tems. Initial configurations containing N = 2, 048 particles are first generated and relaxed

during 106 collisions. The particle velocities in the relaxed system are rescaled, and the

Andersen thermostat is introduced to reach the specified temperature. The system is ther-

mally equilibrated during 107 collisions. Then, the pressure and trajectory data are collected

during an additional production run (5 × 107 collisions). The trajectory data are sampled

every 50, 000 collisions.

MCCCS Towhee, an open-source Monte Carlo software for molecular simulations,41 is

used to perform the two-phase Monte Carlo (2PMC) simulations of square-well particles for

estimating their acentric factors. In the 2PMC simulations, a periodic simulation box whose

number density is ρ∗ = ρσ3 = 0.3 is first prepared. The number of particles is 2,048. The

simulation box lengths (Lx, Ly (= Lx), and Lz) are adjusted so that Lx is higher than the

particle diameter σ by a factor of ten. The length along the z direction (Lz) is four times

longer than Lx.
42 The initial configuration is equilibrated during 1,000,000 steps (109 moves).

Then, the system configurations are collected every 10, 000 steps during the production run

(5, 000, 000 steps).

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS, 23 Jun 2022)43

is used to perform the TDMD simulations of the noble gases modeled with the LJ, Mie n–6,

and two-body ab initio potentials. The LJ and Mie n–6 potentials are already implemented

in LAMMPS, but the ab initio potential is not. Thus, a tabulated form of the ab initio

potential is constructed from r = 0.2 Å to r = 14 Å with an interval of ∆r = 0.01 Å, based

on an earlier work.13 In all single-phase simulations, the particles are randomly placed in

a simulation box with arbitrary velocities. The system is equilibrated for 5 ns. Then, the

pressure and trajectory data are collected every 5 ps during the production run (10 ns).

The timestep is 1 fs. In two-phase (2PMD) simulations, the number of molecules and the

simulation box dimensions are the same as those of the 2PMC simulations.

C. Estimation of the Gas-Liquid Critical Point

Although the pair potentials used in this work have been extensively studied, their critical

properties and acentric factors (Tcrit, pcrit, ρcrit, and ω) from earlier works are scattered,

depending on the methodology and simulation details.44–51 For consistency, we re-estimate
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Linking Excess Entropy and Acentric Factor

their critical properties based on van der Waals’ definition of the gas-liquid critical point.52

As shown in Eq. 5, the first and second derivatives of the pressure with respect to the

density should be zero at the gas-liquid critical point. By regressing a cubic polynomial (p =

aρ3+bρ2+cρ+d) to the pressure data obtained along different isotherms, we first determine

inflection densities at different temperatures (ρinf = −b/3a). Then, Tcrit is computed as

where the slope at the inflection density (dp/dρ at ρ = ρinf) becomes zero. The critical

density (ρcrit) is calculated as the inflection density (ρinf) at T = Tcrit. The critical pressure

(pcrit) is calculated by interpolating the pressure-density curve along the critical isotherm.

For a detailed calculation protocol and comparison between the obtained data and literature,

see Sec. S2 in Supplementary Material.

D. Estimation of the Acentric Factor

After estimating Tcrit, the saturation densities (ρgas and ρliq) are calculated at Tr = 0.7

by performing the 2PMD/2PMC simulations. In this method, the trajectory data are used

to construct a histogram of the particle density along the z direction. This profile is fitted

to a sigmoid function (Eq. 22) by applying the Levenberg-Marquardt algorithm.42

ρ(z) =
1

2
(ρliq + ρgas)−

1

2
(ρliq − ρgas) tanh

[
θ(z − z0)

δ

]
(22)

In Eq. 22, ρliq and ρgas are saturation liquid and vapor densities, respectively. The regression

parameters (ρgas, ρliq, δ, θ, and z0) are initially set to be one. After estimating ρgas and ρliq,

NVT simulations are performed at Tr = 0.7 and ρ = ρgas to obtain the saturation pressure.

The uncertainties of acentric factors are estimated as follows. After estimating the un-

certainties of the critical temperature (δTcrit) as described in Sec. IVC, three independent

simulations at different temperatures (0.7(Tcrit + δTcrit), 0.7Tcrit, and 0.7(Tcrit − δTcrit)) are

performed to calculate the saturation densities. Then, the averages and uncertainties of

the saturation pressure data along three different isotherms are calculated. For the detailed

results, see Sec. S3 in Supplementary Material.

E. Calculation of the Excess Entropy

We implement the excess entropy dissection method in Sec. III by combining two algo-

rithms proposed by Sastry et al.53 and Bieshaar et al.54, which were constructed based on
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Linking Excess Entropy and Acentric Factor

FIG. 3. a An illustration of the three-dimensional Voronoi tessellation. In Voronoi tessellation, a

system of consist of N particles is dissected into N Voronoi cells. Each cell contains a single particle

enveloped by planes perpendicularly bisecting the line connecting a central atom and its neighbors.

The shape and size of the Voronoi cell contain fruitful information about its local environment. For

instance, the local density of a molecule is defined as ρcell = 1/vcell where vcell is the cell volume. b

A two-dimensional representation of the Voronoi-Delaunay tessellation. In this method, voids are

detected using the Voronoi vertices (red squares). Then, the Delaunay simplices enveloping the

voids (triangles connecting gray atoms) are used to calculate the void volume.

Voronoi tessellation. In Voronoi tessellation, a space consisting of N particles is partitioned

into N cells. The Voronoi cell consists of all points closer to the seed particle (central

particle) than the other particles. (Figure 3a) Since the Voronoi cell contains abundant in-

formation about the interaction between a central particle and its neighbors, this technique

has been utilized as a computational tool to characterize the structural characteristics of

particle systems.55
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Linking Excess Entropy and Acentric Factor

Sastry et al. employed the Voronoi-Delaunay tessellation technique to calculate the probe-

occupiable volume in the system configuration generated from molecular simulations.53 This

algorithm detects a void using the Voronoi vertices and edges (Figure 3b). Then, the poly-

hedron enclosing the cavity is identified and dissected into subsimplices. The cavity vol-

ume is calculated by summing up the subsimplices’ volumes. Compared to conventional

MC algorithms, this algorithm greatly reduces the statistical uncertainty in estimating the

probe-occupiable space. We calculate ςhs and ςstr via the Sastry method.

Bieshaar et al.,54 independent from Sastry et al., proposed an algorithm to perform the

Widom insertion in high-density systems. In this method, a probe particle is inserted into

the grid constructed near the Voronoi vertices. Since these Voronoi vertices are probably

most distant from all neighbors (Figure 3b), a particle inserted into the grid points has

a lower chance of overlapping with preexisting particles. This insertion algorithm reduces

the number of trials required for calculating the excess chemical potential in a high-density

system, improving the calculation accuracy of ςenergy.

To ensure the robustness of the Sastry-Bieshaar method, we compare the calculated s+

data to those obtained using the Deiters-Hoheisel method. In the Deiters-Hoheisel method,56

the dimensionless excess chemical potential βµex is calculated as

βµex =

∫ ρ

0

Z − 1

ρ
dρ+ Z − 1 (23)

where Z is the compressibility factor (Z ≡ p/ρkBT ), and ρ is the number density. The

integrand (Z − 1) /ρ term converges to the second virial coefficient B2 at the low-density

limit.13 The integral term in Eq. 23 is calculated by constructing a spline function in the

density region between 0 and ρ. Then, s+ is computed using the fundamental relation of

thermodynamics.12

The average absolute relative deviation (AARD) between the two methods is 0.3 %. See

Sec. S4 in Supplementary Material for the detailed analysis of the deviation between the

two methods.

F. Structural Analysis

In addition to thermodynamic characteristics, we examine the structural features, includ-

ing the radial distribution function (g(r)), multi-particle excess entropy (sM,ex), and local
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Linking Excess Entropy and Acentric Factor

density augmentation (∆ρloc). The radial distribution function g(r), one of the most useful

measures of the fluid structure, shows how the coordination structure is formed as a result of

the complex interaction inside the system. It is also directly related to the two-body excess

entropy (s2,ex), which is given as:

s+2 = −s2,ex
kB

= 2πρ

∫ ∞

0

[g(r) ln g(r)− g(r) + 1]r2dr (24)

The two-body excess entropy has been widely used as a good approximation to the excess

entropy in low-density (gas-like) systems. However, the many-body contribution to forming

the coordination structure becomes important in high-density systems. This many-body

contribution, also called as the multi-particle excess entropy (sM,ex ≡ −kBs
+
M = sex − sex,2),

has been used as another sensitive measure to examine the structural transition in a fluid

system.57,58 We calculate s+M to understand how an interatomic potential affects the multi-

particle contribution to forming the coordination structure.

In near-critical fluids, the local density of solvents near a solute is greater than the

bulk solvent density.59–66 The difference between the average local density of a molecule

(⟨ρloc⟩) and the bulk (system) density (ρ) is defined as the local density augmentation:

∆ρloc ≡ ⟨ρloc⟩−ρ. The maximum local density augmentation is usually observed at ρ < ρcrit

(not at ρ = ρcrit), which was one of the riddles in supercritical fluid science and technology.

Maddox, Goodyear, and Tucker suggested that the local density is most augmented below the

critical density as a result of the competition between the critical density fluctuation and the

potential-induced effect.61 However, they did not quantitatively examine how the interplay

between the local potential-induced effect and the critical density fluctuation determines

where ∆ρloc is maximized.

To calculate the local density augmentation, we again adopt the Voronoi tessellation

to define the local density of an individual atom.59,60 The VORO++ software developed

by Rycroft55 is used to dissect the system into Voronoi cells. Then, the local density of

a molecule is computed as the reciprocal of the Voronoi cell volume vcell. (ρcell = 1/vcell)

The arithmetic mean of the local density data of all molecules is defined as the mean local

density.

⟨ρloc⟩ =
1

N

N∑
i=1

ρcell,i (25)

Note that ⟨ρloc⟩ is equal to the bulk density ρ only when the arithmetic mean of the local

density is the same as the harmonic mean. Since molecules attract each other, either by
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FIG. 4. a Dimensionless critical temperature (T ∗
crit ≡ kBTcrit/ϵ) and b dimensionless critical density

ρ∗crit ≡ ρσ3 and vapor-liquid coexistence densities (ρ∗gas and ρ∗liq, the inset graph) as a function of the

well width λ. As λ increases, T ∗
crit monotonically increases, while ρ∗crit, ρ

∗
liq, and ρ∗gas show extrema

near λ = 1.8. This oscillatory behavior signifies the effect of acentricity on the thermophysical

properties of fluid systems.

repulsion (hard-sphere exclusion) or attraction (local cluster formation), the (arithmetic)

mean local density is usually higher than the bulk density.

V. RESULTS AND DISCUSSIONS

A. Square-well Simulations

Figure 4 shows the dimensionless critical temperature (T ∗
crit ≡ kBTcrit/ϵ) and density

(ρ∗crit ≡ ρcritσ
3) as a function of the attractive well width λ (See Sec. S5 of Supplementary

19

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

02
16

12
6



Linking Excess Entropy and Acentric Factor

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

0.4

0.2

0.0

0.2

0.4

0.6
a

 (This work)
 (Elliott)
 (Vega)
 (Chang)

B *
2, crit (This Work)

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

s+ cr
it

b

7

6

5

4

3

2

B
* 2,

cr
it

FIG. 5. a Acentric factors (ω) and dimensionless second virial coefficients (B∗
2,crit ≡ B2,crit/σ

3) as a

function of the attractive well width (λ). The acentric factor of a square-well model becomes closest

to zero near λ = 1.8 where the coexistence densities show extrema. The B∗
2,crit values also show a

minimum at the same well width. b The s+crit values of square-well model fluids with different well

widths. Unlike Pitzer’s expectations,19 s+crit does not show a minimum when the particle becomes

most centric (λ = 1.8). Instead, s+crit monotonically decreases as the attractive well width increases.

Material for numerical data). As λ increases, T ∗
crit monotonically increases, whereas ρ∗crit

shows an oscillatory behavior, which was also noted by Reyes et al.67 The vapor-liquid

coexistence densities (ρ∗gas and ρ∗liq at Tr = 0.7) also show extrema at λ = 1.8.

Figure 5a shows that the dimensionless second virial coefficient at the critical temperature

B∗
2,crit(≡ B2,crit/σ

3) and the acentric factor ω also have their minima at λ = 1.8. Note that

the ω minimum is closest to zero; the fluid becomes most centric at λ ≈ 1.8. The average

−B2,crit to vcrit ratio is calculated as 1.17± 0.08; proposition P1 approximately holds in all
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Linking Excess Entropy and Acentric Factor

square-well fluids. For the detailed numerical data, see Table S5 in Supplementary Material.

The oscillatory dependence of ω on the attractive well width λ indicates that the spherical

symmetry (hypothesis H2) is insufficient to regard a molecule as centric. Instead, the nature

of interatomic potential plays a critical role in determining ω, as hypothesis H5 proposes.

While ω shows a complex dependence on λ, s+crit monotonically decreases as λ increases

(Figure 5b). Note that the excess entropy is not lowest in the centric fluid system unlike

Pitzer’s expectations.19 The wider the attractive well width is, the lower the s+crit values

are. The s+crit value becomes close to unity at λ = 1.8 and can be used to identify how the

narrowness of an attractive well affects thermodynamic properties. All these results propose

that the empirical link between s+crit ≈ 1 and ω ≈ 0 is valid in square-well systems.

Figure 6 demonstrates how each entropic contribution (ςhs, ςstr, and ςenergy) evolves as the

system density changes. For the other square-well systems, see Sec. S6. As ρ∗ increases,

ςhs monotonically increases, whereas ςper shows a maximum below ρcrit (0.9 < ρr < 1.0)

regardless of the square-well width λ, which reminds us of the local density enhancement

observed in earlier works.59,61,62,64 That is, the behavior of ςper is independent from the

(a)centricity. On the other hand, ςstr and ςenergy show a complex dependence on λ (or ω) and

ρ. When λ is low, ςenergy and ςstr reach their extrema at ρ > ρcrit. As λ becomes close to 1.8,

the densities where both properties reach their extrema become close to ρcrit. At λ > 1.8,

ςenergy and ςstr become close to zero and reach their extrema at ρ > ρcrit again. In addition,

ςenergy at ρ ≈ ρcrit becomes smaller than ςhs in the square-well fluids with λ > 1.8.

Figs. 7a and b demonstrates the similarity between ςper and the local density augmentation

(∆ρloc). In all square-well fluids, the magnitude of ∆ρloc/ρcrit reaches its maximum at the

characteristic densities where ςper peaks. Following the idea of Maddox et al.,61 this result

enables us to quantitatively interpret the competition between the local attractive potential

and the critical long-length-scale density fluctuation from an excess entropy point of view;

ςstr is directly related to the critical density fluctuation, while the ςenergy term corresponds

to the coordination structure formation inside the attractive well. At low density, increasing

the system density increases the number of particles within the attractive well. The local

structuring of atoms inside the attractive well decreases the local entropy (ςenergy > 0).

Simultaneously, clustering of particles inside the well secures enough space for a particle to

be inserted. As a result, ςstr decreases (ςstr < 0). As the density increases further, no more

particles can enter the attractive well, which manifests as a reduction in the magnitude of
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FIG. 6. The density dependence of dimensionless excess entropy (s+ ≡ −sex/kB) and its com-

ponents (ςhs, ςstr, and ςenergy) of the square-well fluids along the critical isotherm (T = Tcrit): a

λ = 1.25 (ω = 0.482), b λ = 1.50 (ω = 0.152), c λ = 1.75 (ω = 0.039), d λ = 2.0 (ω = 0.159), e

λ = 2.25 (ω = 0.212), and f λ = 2.50 (ω = 0.074). The ςper value reaches its maximum below the

critical density, which results from the combination of the system-wide critical density fluctuation

and local attractive interactions. When a fluid becomes most centric (λ ≈ 1.80), ςhs and ςenergy

become comparable below ρ = ρcrit (vertical dashed lines), supporting our hypothesis P2. In ad-

dition, the densities where ςstr and ςenergy reach their own extrema become closest to the critical

density when ω becomes closest to zero.

both ςstr and ςenergy.

Apart from this centricity-independent behavior, we also observe the centricity depen-

dency of entropic characteristics. When λ is lower than 1.7, ςenergy is higher than ςhs at low

densities (ρ < ρcrit). They become comparable (ςenergy ≈ ςhs) in the nearly centric fluids

(λ ≈ 1.8 and ω ≈ 0, Fig. 6c and d). In high-λ fluids, ςenergy is always lower than ςhs. Con-

sidering that all model fluids are simulated along their critical isotherms, the comparability

between ςhs and ςenergy observed at λ ≈ 1.8 is not related to the critical density fluctuation

but to the model potential’s intrinsic nature. Together with postulate P1, this result elu-
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FIG. 7. The density dependence of a the normalized local density augmentation (∆ρloc/ρcrit) and b

the negative of dimensionless perturbative (attractive) excess entropy contributions (ςper) along the

critical isotherm (T = Tcrit). Regardless of the square-well width (λ), Both properties show their

own maxima at the same densities. This result suggests that the characteristic density where the

ςper value becomes maximum is determined by the system-wide structuring (both critical density

fluctuations and hard sphere contributions) and local attractive interactions.

cidates the mechanism of s+crit ≈ 1 and gives a physical ground for hypothesis H5 proposed

by Pitzer. At the gas-liquid critical point of centric fluids, the hard sphere and (attractive)

energetic contributions to the total excess entropy become comparable in a centric fluid,

which makes the particle behave like an ideal gas confined in its (imaginary) cell from an

entropic point of view.

Recalling that both ςhs and ςenergy terms contribute to the formation of coordination

structures in a fluid system, we analyze the structural characteristics in terms of the radial

distribution function g(r). Figure 8a shows how the hard sphere exclusion term contributes

to the coordination structure formation. As the system density increases, the oscillatory

behavior of g(r) becomes apparent. This oscillatory behavior is a signature of the system-

wide structuring driven by the hard-core (volume) exclusion. In the followings, we will

use the distances where g(r) reaches its local minima as the first (FCS) and the second

coordination shell (SCS) (not where g(r) becomes discontinuous).

Figure 8b–d shows how the attractive interaction perturbs the coordination structure

formed by the hard-core exclusion (λ = 1.25, 1.75, and 2.5). For the other square-well fluids,

see Sec. S9 in Supplementary Material. When λ is 1.25, no local minimum is observed within

the attractive well, indicating that the short-range attractive interaction, in fact, hampers
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FIG. 8. Radial distribution functions (g(r), left) and negative dimensionless multi-particle excess

entropy (s+M, right) data of discrete potential models along the critical isotherm (T = Tcrit): a hard

sphere, b λ = 1.25, c λ = 1.75, and d λ = 2.50 square-well fluids. In the hard sphere fluid model,

the oscillation of g(r) is observed without a discontinuity, which demonstrates the formation of the

first and second coordination shells. In the acentric fluids (λ = 1.25 and λ = 2.5), the attractive

interaction hampers the FCS and SCS formation, which manifests as a discontinuity in g(r) and

s+M values lower than those of the hard sphere system. The s+M values suggest that the coordination

shells are most structured in the near-centric (λ = 1.75) fluid.
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Linking Excess Entropy and Acentric Factor

the FCS formation; the solution structure is dominated by the local attractive potential

(ςenergy > ςhs). On the contrary, in λ ≥ 1.70 fluids, g(r) shows a local minimum within

the attractive well; the system-wide structuring induced by the hard-core exclusion is able

to form the FCS. In the high-λ fluids (λ > 2), the FCS is well formulated without the

interference of the attractive well, but g(r) becomes discontinuous at the distance where the

SCS is formed; the attractive interaction suppresses the SCS formation. This result explains

why the ςstr and ςenergy terms do not vanish even at high densities, although their magnitudes

are small. Reyes et al.67 interpreted the qualitative change of g(r) within r = λ in terms

of the saturation inside the attractive well. On the other hand, the comparability between

ςhs and ςenergy makes us interpret the qualitative change in FCS and SCS as a competition

between the energy-driven (attractive) clustering and the system-wide (hard sphere driven)

structuring.

The competition between the hard sphere and local attractive contributions may reduce

or strengthen the multi-particle contribution to the formation of coordination shells. The

right column of Figure 8 compares the multi-particle term s+M ≡ −sex,M/kB of the hard

sphere and those of square-well fluids. The multi-particle terms of the λ < 1.9 fluids are

almost zero at low densities (ρ∗ < ρ∗crit) and become close to that of the hard sphere fluid in

the low-density region of high-λ fluids (λ ≥ 2). That is, at low densities, the formation of

small clusters driven by the attractive interaction reduces |s+M|, supporting our observation

that the attractive interaction prevents the hard sphere driven ordering.

At ρ∗ > ρ∗crit, only do the s+M values of the most centric fluid (1.7 ≤ λ ≤ 1.9) become

higher than that of the hard sphere fluid. This result demonstrates that the high-density

centric fluid is most structured with the aid of both hard sphere and attractive potential

contributions, as inferred from the g(r) data; they do not interrupt each other. This harmo-

nization also helps us understand why the vapor-liquid density gap width and the critical

density become minimum in the centric fluid; the lowest number of particles are required to

form liquid-like clusters.

B. Testing the Link for Continuous Potentials

We continue to test the link between s+crit = 1 and ω = 0 in continuous potential models

(Lennard-Jones, Mie n-6, and two-body ab initio potentials). The critical point (Tcrit, ρcrit,
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FIG. 9. The s+ dissection results of the a Lennard-Jones (LJ), b Mie 14-6, and c two-body ab

initio argon models along the critical isotherm (T = Tcrit). The s
+
crit calculated using the two-body

ab initio model is closest to unity. As observed in the square-well model systems, ςhs becomes

comparable to ςenergy in the two-body ab initio model, which is most centric (ω ≈ 0 and s+crit ≈ 1).

This result again demonstrates that hypothesis P2 would hold in centric fluid systems.

and pcrit) estimated based on the van der Waals method are given in Sec. S7 of Supplementary

Material. They show a reasonable agreement with earlier works.68–70 The −B2,crit to vcrit

ratio, which can be found in Tables S6 and S7 of Supplementary Material, becomes closest to

the NIST REFPROP results (−B2,crit/vcrit ≈ 1.15) in the noble gases modeled with the two-
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Linking Excess Entropy and Acentric Factor

body ab initio potential. In Lennard-Jones and Mie n-6 models, the ratios are approximately

0.99. Hence, proposition P1 approximately holds in all continuous models.

Figure 9 shows how the ςhs, ςstr, and ςenergy terms evolve in LJ, Mie 14-6, and two-body

ab initio (argon) models. For the other model potentials, see Sec. S8 in Supplementary

Material. Similar to the results obtained in the most centric square-well fluid (λ = 1.80),

s+crit becomes approximately unity in the two-body ab initio argon, krypton, and xenon. It

is below unity in the LJ (s+crit = 0.844 (n = 12)) and Mie n-6 fluids (s+crit = 0.876 (n = 13)

and 0.903 (n = 14)). Moreover, akin to the most centric square-well fluid (λ = 1.8), ςhs and

ςenergy are comparable up to the critical density in the two-body ab initio model fluids. In

the LJ and Mie n–6 potentials, ςhs is always higher than ςenergy. The only difference between

the two-body ab initio potential and the λ = 1.8 fluid is the behavior of ςstr and ςenergy

at high densities, which would come from the softness of the repulsive part, allowing the

particles to rearrange more freely.

Figure 10a shows that the link between s+crit = 1 and ω = 0 is still valid in the two-body

ab initio model fluids (ω̄ = 0.014). They are located near the empirical correlation suggested

in Sec. II. Interestingly, the acentric factor of the LJ potential, which is most widely used

to model (pseudo)atoms in the field of molecular simulations, is farthest from the centricity

(ω = −0.033), which is close to that obtained from the ancillary equations proposed by Thol

et al. (ω = −0.043).71 Instead of the empirical relation obtained from the NIST REFPROP

database, an independent linear relationship between s+crit and ω is observed in the Mie n-6

models (12 ≤ n ≤ 14), revealing the non-correctable bias of the generic n–m potentials72,73

in representing the entropy-related properties.

Figure 10b compares LJ, Mie n-6, and two-body ab initio potentials. As the interatomic

distance increases, the repulsive part of all Mie n-6 models (n ≥ 12) decreases more steeply

than that of the two-body ab initio model does, suggesting that the effective hard sphere

diameter of Mie n-6 fluids explored in this work should be larger than that of the two-body

ab initio model. As a result, ςhs dominates the entropy decrease of the system, resulting in

ςhs > ςenergy in all thermodynamic conditions. The bias induced by the imbalance between

repulsive and attractive forces in the LJ and Mie fluids is also apparent when comparing

the second virial coefficients at the critical temperature (B2,crit)
13 and the NIST REFPROP

database. The |B2,crit| values of the ab initio potential, which can be found in Tables S6

and S7 of Supplementary Material, are always higher than those of the Mie n-6 models and

27

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

02
16

12
6



Linking Excess Entropy and Acentric Factor

0.8 1.0 1.2 1.4 1.6 1.8 2.0
s +

crit

0.1

0.0

0.1

0.2

0.3

0.4

0.5

a
Two-body ab initio
Mie n-6 (12 n 14)
Square well
s +

crit = 1.85 + 1.0

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
r/r

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(r)
/|

(r
)|

b

ab initio (Ar)
LJ (Mie 12-6)
Mie 13-6
Mie 14-6

0.3 0.4 0.5 0.6 0.7
100

102

104

FIG. 10. a Relationship between s+crit and ω in different model fluids. In the two-body ab initio

model, s+crit is close to unity at ω = 0, satisfying our empirical observation (solid line). On the other

hand, Mie n-6 models form an independent linear relaionship between s+crit and ω. Square-well fluids

show ω minimum near the empirical model. b Comparison of interatomic potentials (two-body ab

initio and Mie n-6 models). While the attractive tails of the Mie n-6 models are slightly heavier

than the two-body ab initio model, their repulsive parts (see inset) are much steeper than that of

the two-body ab initio model.

are closest to the experimental result, which again supports our insights obtained from the

square-well simulation results: the minimization of B2,crit in the centric fluid system.

Since the attractive well is smooth in continuous potential models, it is difficult to directly

examine the difference by observing how g(r) evolves. Instead, s+M can be used to examine

how the coordination structure is formed. (Figure 11a and b) The dependence of s+M on

the bulk density suggests that the more centric a particle is, the higher the s+M values are

at high densities. Hence, the centric fluids are again proven to be the most structured as a
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FIG. 11. Structural characteristics of the two-body ab initio, LJ, and Mie n-6 potentials along

the critical isotherm (T = Tcrit): s+M = −sM,ex/kB (a and b), ∆ρloc/ρcrit (c and d), and ςper (e

and f). As shown in a and b, the s+M values of the two-body ab initio model are higher than the

other models at high densities, signifying the structurability of centric fluids (ω ≈ 0). Regardless

of the acentric factor, the characteristic density where ∆ρloc/ρcrit becomes maximum (c and d)

aligns well with where ςper becomes maximum (e and f). These results agree with our observations

obtained in square-well systems.

consequence of the hard sphere (volume exclusion) and local potential-induced effects, which

are comparable to each other from an entropic point of view.

Lastly, we examine if the centricity-independent structural feature is reproducible in

the continuous potential models. Figure 11c–f demonstrates that the characteristic density

where ςper shows its maximum aligns well with where the local density augmentation oc-

curs. Moreover, similar to the square-well systems, the characteristic density where ςper and
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∆ρloc/ρcrit reach their maxima becomes closest to the critical density in the two-body ab

initio system, which fulfills the link between sex,crit ≈ −kB and ω ≈ 0.

VI. CONCLUSIONS

This work reveals a tight connection between the excess entropy (sex) at the gas-liquid

criticality and the acentric factor (ω), a conceptual number introduced by Pitzer to quantify

a molecule’s nature to deviate from the corresponding state principle. By reviewing the

hypotheses proposed by Pitzer to define the centric fluid (ω = 0), we attempt to find

a physical basis for his last hypothesis about the necessary condition of the interatomic

potential for a molecule (particle) to be centric.

Starting from an empirical observation, we discover that sex,crit approximates −kB in

centric fluids (ω = 0). Based on classical cell theory, we postulate that this equality might

mean that the repulsive and attractive contributions to the excess entropy are comparable

at the gas-liquid critical point of a centric fluid, which leads the system to behave like a

confined ideal gas system from a thermodynamic point of view. In order to validate this

idea, we scrutinize two propositions. We first validate that the effective volume explored by

a molecule at the gas-liquid criticality, which approximates the second virial coefficient, is

close to the critical volume. Specifically, the ratio between the second virial coefficient at

the gas-liquid critical temperature and the critical volume is obtained as 1.15 in noble gases,

which are regarded to be most centric.

Second, we apply an alchemical transformation method to dissect excess entropy into

hard-core, structural, and energetic contributions. In both discrete and continuous potential

models, we observe both centricity-independent and dependent behaviors. Regardless of the

acentric factor, the perturbative (attractive) contribution, which is a sum of the structural

and energetic contributions, is maximized at where the local density is most augmented.

This result demonstrates the competition between the system-wide critical fluctuation and

the local potential energy to determine the solution structure. In addition, we observe that

the repulsive (hard-core) contribution to the excess entropy becomes comparable to the

energetic contribution when a fluid is centric. In square-well models, the fluid whose well

width is approximately 1.8 is most centric. In continuous potential models, the two-body

ab initio model is regarded to be most centric. All these fluids satisfy the empirical link
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between sex,crit ≈ −kB and ω ≈ 0. On the contrary, Mie n-6 fluids show an independent linear

relationship between sex,crit and ω, revealing their intrinsic limit to represent the essence of

a centric particle. This conclusion aligns with a recent work by Paterson et al.73 who use

the curvature of the Zeno line to test the representability of generic potential models.

The comparability between the repulsive and attractive potential contributions to the

excess entropy manifests well the structural characteristics of the centric fluid. The radial

distribution function of the most centric square-well fluids (λ ≈ 1.8) shows a discontinuity

at the distance between the first and second coordination shells, maximizing the magnitude

of multi-particle interaction contribution to the excess entropy. Likewise, the two-body

ab initio potential shows a steep increase of the multi-particle excess entropy across the

critical density, which is interpreted as a result of the harmonization between hard-core and

attractive potential contributions.

In addition to these theoretical findings, we expect that the physical insight obtained in

this work would be beneficial from an industrial point of view, considering the prevalent use

of the acentric factor for modeling the thermodynamic and transport properties of fluids.

For instance, they can be used to determine a suitable model potential or the exponent

of the repulsive/attractive potentials for coarse-grained modeling of globular molecules or

molecular thermodynamic EOSs. The direct link between the excess entropy and centricity

can also work as a basis to test the physical adequateness of an arbitrary EOS and an ab

initio-derived model potential.

SUPPLEMENTARY MATERIAL

Supplementary Material provides additional details, which include classical 4He excess

entropy calculation results, van der Waals method to estimate the gas-liquid critical point,

two-phase molecular dynamics and Monte Carlo simulation results, test of the excess entropy

calculation algorithms, critical point and acentric factor calculation results, and thermody-

namic and structural properties data.
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