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Abstract
This paper considers the ill-posed data assimilation problem associated with hyper-
bolic/parabolic systems describing 2D coupled sound and heat flow. Given hypothetical 
data at time 𝑇 > 0, that may not correspond to an actual solution of the dissipative system 
at time 𝑇, initial data at time 𝑡 = 0 are sought that can evolve, through the dissipative 
system, into a useful approximation to the desired data at time 𝑇. That may not always 
be possible. A stabilized explicit finite difference scheme, marching backward in time, is 
developed and applied to nonlinear examples in non rectangular regions. Stabilization is 
achieved by applying a compensating smoothing operator at each time step, to quench 
the instability. Analysis of convergence is restricted to the transparent case of linear, 
autonomous, selfadjoint spatial differential operators. However, the actual computational 
scheme can be applied to more general problems. Data assimilation is illustrated using 
512 × 512 pixel images. Such images are associated with highly irregular non smooth 
intensity data that severely challenge ill-posed reconstruction procedures. Successful and 
unsuccessful examples are presented.

Keywords
Coupled sound and heat flow backward in time; stabilized explicit marching schemes; error 
bounds; numerical experiments.
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1. Introduction
As was the case in [1–4], the present paper considers the data assimilation problem of 
recreating plausible initial values at 𝑡 = 0, given hypothetical and/or partially known data 
at some later time 𝑇 > 0, in a coupled hyperbolic/parabolic system involving ill-posed 
time-reversed 2D coupled sound and heat flow, [5–8]. A particularly advantageous direct, 
non iterative, explicit, backward marching finite difference scheme, is constructed and 
explored. There is considerable interest in data assimilation in the geophysical sciences 
[9–26], where such problems are most often treated using iterative algorithms that may 
include neural networks coupled with machine learning. The direct methods discussed 
here may provide useful initial solutions that might be further refined by such iterative 
procedures. Additionally, similar direct methods may be developed in specific geophysical 
contexts, and these can be used, when needed, to provide confirmation of unexpected 
results obtained by artificial intelligence methods.

Here, as was emphasized in [1–4], the given hypothetical data at time 𝑇 > 0 may not be 
smooth, may not correspond to an actual solution at time 𝑇, and may differ from such a 
solution by an unknown large 𝛿 > 0 in an appropriate 𝐿𝑝 norm. Moreover, it may not be 
possible to locate initial values that can evolve into a useful approximation to the desired 
data at time 𝑇. The above data assimilation problem differs fundamentally from the ill-posed 
backward recovery problems discussed in [27–34], where the given data at time 𝑇 > 0 are 
noisy, but relatively smooth, and are known to approximate an actual solution at time 𝑇, to 
within a known small 𝛿 > 0, in an appropriate 𝐿𝑝 norm. For ill-posed initial value problems, 
all consistent stepwise marching schemes, whether explicit or implicit, are necessarily 
unconditionally unstable and lead to explosive error growth, [5, p. 59]. Nevertheless, it 
is possible to stabilize such schemes by applying an appropriate compensating smoothing 
operator at each time step to quench the instability. In [27–34], such stabilized backward 
marching explicit schemes have been successfully applied in backward recovery problems, 
and on time intervals [0, 𝑇 ] that are significantly larger than might be expected, based 
on the uncertainty estimates in [35–42]. As will be seen in Section 2.1 below, the data 
assimilation problem presents additional difficulties. However, limited success is still feasible 
in that problem, using backward marching stabilized explicit schemes.

A particularly effective vehicle for computational exploration of the proposed direct explicit 
data assimilation approach, lies in the use of 8 bit grey scale 512 × 512 pixel images, as 
hypothetical data at time 𝑇 > 0. As shown in Figure 1, many natural images are defined 
by highly non smooth intensity data that severely challenge ill-posed reconstructions. In 
the experiments to be described below, three such non smooth images are involved, and 
they interact with each other as the evolution progresses.
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  IMAGES ARE DEFINED BY HIGHLY NON SMOOTH INTENSITY 

  DATA THAT CHALLENGE  ILL−POSED RECOVERY METHODS

 

Note: The Non smooth intensity is typical of many natural images. 

Figure 1. Non-smooth intensity data plot (Abraham Lincoln image)

2. A stabilized explicit scheme for linear selfadjoint 
time-reversed coupled wave and diffusion equations

Let Ω be a bounded domain in 𝑅𝑛 with a smooth boundary 𝜕Ω. Let < , > and ∥ ∥2, 
respectively denote the scalar product and norm on 𝐿2(Ω). Let 𝐿 denote a linear, second 
order, positive definite selfadjoint variable coefficient elliptic differential operator in Ω, 
with homogeneous Dirichlet boundary conditions on 𝜕Ω. Let {𝜙𝑚}∞

𝑚=1 be the complete 
set of orthonormal eigenfunctions for 𝐿 on Ω, and let {𝜆𝑚}∞

𝑚=1, satisfying

0 < 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑚 ≤ ⋯ ↑ ∞, (1)

be the corresponding eigenvalues.

With positive constants 𝑎, 𝑏, 𝑑,  and 0 < 𝑡 ≤ 𝑇𝑚𝑎𝑥, consider the linear initial value 
problem on Ω × (0, 𝑇𝑚𝑎𝑥],

𝑢𝑡 = −𝑏𝐿𝑢 − 𝑑𝑣,

𝑣𝑡 = 𝑎𝐿𝑢 − 𝑎𝐿𝑤,

𝑤𝑡 = 𝑣,

𝑢(𝑥, 0) = 𝑓(𝑥), 𝑣(𝑥, 0) = 𝑔(𝑥), 𝑤(𝑥, 0) = ℎ(𝑥).

(2)
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When 𝐿 = −Δ, 𝑎 = 𝑐2, 𝑏 = 𝜎, 𝑑 = (𝛾 − 1),  the above system reduces to the 
linearized equations of coupled sound and heat flow discussed in [5–8], namely, 𝑤𝑡𝑡 =
𝑐2Δ𝑤−𝑐2Δ𝑢, 𝑢𝑡 = 𝜎Δ𝑢−(𝛾−1)𝑤𝑡 , with 𝑤 = 𝑢 = 0 on 𝜕Ω, where 𝑐 is the isothermal 
sound speed, 𝜎 is the thermal conductivity, and 1 < 𝛾 < 2,  is the ratio of specific heats.

The initial value problem Eq. (2) becomes ill-posed when the time direction is reversed. We 
contemplate such time-reversed computations by allowing for possible negative time steps 
Δ𝑡 in the explicit difference scheme Eq.(7) below. With 𝜆𝑚 as in Eq. (1), the positive 
constants 𝑎, 𝑏, 𝑑, and the operator 𝐿 as in Eq. (2),  fix 𝜔 > 0 and 𝑝 > 1. Given Δ𝑡, 
define 𝜌, Λ, 𝑄, 𝜁𝑚, 𝑞𝑚, as follows:

𝜌 = {1 + 𝑑 + 𝑑2 + 2𝑎2 + 2𝑏 +
√

2𝑎2 + 2𝑏2}, Λ = 𝜌(𝐼 + 𝐿), 𝑄 = exp(−𝜔|Δ𝑡|Λ𝑝),

𝜁𝑚 = 𝜌(1 + 𝜆𝑚) > 1, 𝑞𝑚 = exp (−𝜔|Δ𝑡|(𝜁𝑚)𝑝) , 𝑚 ≥ 1.
(3)

Let 𝐺, 𝑆, and 𝑃, be the following 3 × 3 matrices

𝐺 = ⎡⎢
⎣

−𝑏𝐿 −𝑑𝐼 0
𝑎𝐿 0 −𝑎𝐿
0 𝐼 0

⎤⎥
⎦

, 𝑆 = ⎡⎢
⎣

𝑄 0 0
0 𝑄 0
0 0 𝑄

⎤⎥
⎦

, 𝑃 = ⎡⎢
⎣

Λ𝑝 0 0
0 Λ𝑝 0
0 0 Λ𝑝

⎤⎥
⎦

. (4)

Let 𝑊 be the three component vector [𝑢, 𝑣, 𝑤]𝑇. We may rewrite Eq. (2) as the equivalent 
first order system,

𝑊𝑡 = 𝐺𝑊, 0 < 𝑡 ≤ 𝑇𝑚𝑎𝑥, 𝑊(⋅, 0) = [𝑓, 𝑔, ℎ]𝑇. (5)

It is instructive to study the following explicit time-marching finite difference scheme for 
Eq.(5), in which only the time variable is discretized, while the space variables remain 
continuous. With a given positive integer 𝑁, let |Δ𝑡| = 𝑇𝑚𝑎𝑥/𝑁 be the time step 
magnitude, and let 𝑊 𝑛 denote 𝑊(⋅, 𝑛Δ𝑡), 𝑛 = 0, 1, ⋯ 𝑁. If 𝑊(⋅, 𝑡) is the unique 
solution of Eq.(5), then

𝑊 𝑛+1 = 𝑊 𝑛 + Δ𝑡𝐺𝑊 𝑛 + 𝜏𝑛, (6)

where the ‘truncation error’ 𝜏𝑛 = 1
2(Δ𝑡)2𝐺2𝑊( ̃𝑡), with 𝑛|Δ𝑡| < ̃𝑡 < (𝑛 + 1)|Δ𝑡|. With 

𝐺 and 𝑆 as in Eq.(4), let 𝑅 be the linear operator 𝑅 = 𝑆 + Δ𝑡𝑆𝐺. We consider 
approximating 𝑊 𝑛 with 𝑈𝑛 ≡ [𝑢𝑛, 𝑣𝑛]𝑇, where

𝑈𝑛+1 = 𝑆𝑈𝑛 + Δ𝑡𝑆𝐺𝑈𝑛 ≡ 𝑅𝑈𝑛, 𝑛 = 0, 1, ⋯ (𝑁 − 1), 𝑈0 = [𝑓, 𝑔, ℎ]𝑇. (7)

Remark. While the analysis that follows assumes 𝐿 to be a linear operator, the stabilized 
explicit scheme can actually be used with nonlinear operators 𝐿, by lagging the nonlinearity 
at the previous time step. This is the case in the computational experiments to be discussed 

3
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below.

With Δ𝑡 > 0 and the data 𝑈0 at time 𝑡 = 0, the forward marching scheme in Eq.(7) aims 
to solve a well-posed problem. However, with Δ𝑡 < 0, together with appropriate data 𝑈0

at time 𝑇𝑚𝑎𝑥, marching backward from 𝑇𝑚𝑎𝑥 in Eq.(7) attempts to solve an ill-posed 
problem. Define the following norms for three component vectors such as 𝑊(., 𝑡) and 𝑈𝑛,

∥ 𝑊(⋅, 𝑡) ∥2= {∥ 𝑢(⋅, 𝑡) ∥2
2 + ∥ 𝑣(⋅, 𝑡) ∥2

2 + ∥ 𝑤(⋅, 𝑡) ∥2
2}1/2 ,

∥ 𝑈𝑛 ∥2= {∥ 𝑢𝑛 ∥2
2 + ∥ 𝑣𝑛 ∥2

2 + ∥ 𝑤𝑛 ∥2
2}1/2 ,

|||𝑊|||2,∞ = sup 0≤𝑡≤𝑇𝑚𝑎𝑥
{∥ 𝑊(⋅, 𝑡) ∥2} .

(8)

Lemma 1 With 𝑝 > 1, and 𝜁𝑚, 𝑞𝑚, as in Eq. (3), fix a positive integer 𝐽, and choose 
𝜔 ≥ (𝜁𝐽)1−𝑝. Then,

𝑞𝑚 (1 + |Δ𝑡|𝜁𝑚) ≤ 1 + |Δ𝑡|𝜁𝐽, 𝑚 ≥ 1. (9)

Proof : See [31, Lemma 6]. 

Lemma 2 With 𝜔, 𝑝, 𝜁𝐽, as in Lemma 1, and 𝑅 as in Eq.(7), we have ∥ 𝑅 ∥2≤ 1+|Δ𝑡|𝜁𝐽. 
The explicit scheme in Eq.(7) is unconditionally stable, and

∥ 𝑈𝑛 ∥2=∥ 𝑅𝑛𝑈0 ∥2≤ exp{𝑛|Δ𝑡|𝜁𝐽} ∥ 𝑈0 ∥2, 𝑛 = 1, 2, ⋯ , 𝑁. (10)

Proof : See [31, Lemma 7]. 

Lemma 3 Let 𝑊(𝑡) be the unique solution of Eq.(5). Then, with 𝐺, 𝑆 and 𝑃 as in 
Eq.(4), the definitions of the norms in Eq.(8), and 0 ≤ 𝑛 ≤ 𝑁,

∥ 𝜏𝑛 ∥2 ≤ 1/2(Δ𝑡)2 |||𝐺2𝑊|||2,∞,
∥ 𝑊 𝑛 − 𝑆𝑊 𝑛 ∥2 ≤ 𝜔|Δ𝑡| |||𝑃𝑊|||2,∞,

|Δ𝑡| ∥ 𝐺𝑊 𝑛 − 𝑆𝐺𝑊 𝑛 ∥2 ≤ 𝜔(Δ𝑡)2 |||𝑃𝐺𝑊|||2,∞. (11)

Proof : See [31, Lemma 3]. 

4
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Theorem 1 With Δ𝑡 > 0, let 𝑊 𝑛 be the unique solution of Eq. (5) at 𝑡 = 𝑛Δ𝑡. Let 𝑈𝑛

be the corresponding solution of the forward explicit scheme in Eq. (7), and let 𝑝, 𝜁𝐽, 𝜔, be 
as in Lemma 1. If 𝐸𝑅(𝑡) ≡ 𝑈𝑛 − 𝑊 𝑛, denotes the error at 𝑡 = 𝑛Δ𝑡, 𝑛 = 0, 1, 2, ⋯ , 𝑁,
we have

∥ 𝐸𝑅(𝑡) ∥2≤ 𝑒𝑡𝜁𝐽 ∥ 𝐸𝑅(0) ∥2 + {𝜔(𝑒𝑡𝜁𝐽 − 1)/𝜁𝐽} |||𝑃𝑊|||2,∞

+ {(𝑒𝑡𝜁𝐽 − 1)/𝜁𝐽} {𝜔Δ𝑡 |||𝑃𝐺𝑊|||2,∞ + (Δ𝑡/2) |||𝐺2𝑊|||2,∞} . (12)

Proof : See [31, Theorem 1]. 

In the above forward problem, as Δ𝑡 ↓ 0, we are left with the error 𝑒𝑡𝜁𝐽 ∥ 𝐸𝑅(0) ∥2, 
originating in possibly erroneous initial data, together with the stabilization penalty, repre-
sented by the second term in Eq, (12). These errors grow monotonically as 𝑡 increases. If 
𝑇𝑚𝑎𝑥 is large, the accumulated distortion may become unacceptably large as 𝑡 ↑ 𝑇𝑚𝑎𝑥, 
and the stabilized explicit scheme is not useful in that case.

Marching backward from 𝑡 = 𝑇𝑚𝑎𝑥  in the backward problem, solutions exist only 
for a restricted class of data satisfying certain smoothness constraints. Such data are 
seldom known with sufficient accuracy. This is especially true of the hypothetical data 
𝑊 ∗(⋅, 𝑇𝑚𝑎𝑥) in the present data assimilation problem. It will be assumed that the given 
data 𝑈𝑏 = 𝑊 ∗(⋅, 𝑇𝑚𝑎𝑥), differ from the necessary exact data 𝑊(⋅, 𝑇𝑚𝑎𝑥), by an unknown 
amount 𝛿 in the 𝐿2(Ω) norm.

∥ 𝑈𝑏 − 𝑊(⋅, 𝑇𝑚𝑎𝑥) ∥2≤ 𝛿. (13)

This leads to the following result, as proved in [31, Theorem 2]. 

Theorem 2 With Δ𝑡 < 0, let 𝑊 𝑛 be the unique solution of the forward well-posed 
problem in Eq. (5) at 𝑠 = 𝑇𝑚𝑎𝑥 − 𝑛|Δ𝑡|. Let 𝑈𝑛 be the solution of the backward explicit 
scheme in Eq. (7), with initial data 𝑈(0) = 𝑈𝑏 = [𝑓𝑏, 𝑔𝑏, ℎ𝑏] as in Eq.(13). Let 𝑝, 𝜁𝐽, 𝜔,
be as in Lemma 6. If 𝐸𝑅(𝑠) ≡ 𝑈𝑛 − 𝑊 𝑛, denotes the error at 𝑠 = 𝑇𝑚𝑎𝑥 − 𝑛|Δ𝑡|, 𝑛 =
0, 1, 2, ⋯ , 𝑁, then

∥ 𝐸𝑅(𝑠) ∥2≤ 𝛿𝑒𝑛|Δ𝑡|𝜁𝐽 + {𝜔(𝑒𝑛|Δ𝑡|𝜁𝐽 − 1)/𝜁𝐽} |||𝑃𝑊|||2,∞

+ {(𝑒𝑛|Δ𝑡|𝜁𝐽 − 1)/𝜁𝐽} {𝜔|Δ𝑡| |||𝑃𝐺𝑊|||2,∞ + (|Δ𝑡|/2) |||𝐺2𝑊|||2,∞} .(14)

2.1. Application to data assimilation
In Theorems 1 and 2 above, define the constants 𝐾1 through 𝐾5 as follows, and consider 
the values shown in Table 1 below.

5
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𝐾1 = 𝑒𝜁𝐽𝑇𝑚𝑎𝑥 , 𝐾2 = 𝜔(𝑒𝜁𝐽𝑇𝑚𝑎𝑥 − 1)/𝜁𝐽, 𝐾3 = |Δ𝑡|𝐾2, 𝐾4 = 𝐾3/(2𝜔),
𝐾5 = 𝐾2|||𝑃𝑊|||2,∞ + 𝐾3|||𝑃𝐺𝑊|||2,∞ + 𝐾4|||𝐺2𝑊|||2,∞. (15)

Table 1. Values of 𝐾1 through 𝐾4 in Eq. (15)

𝐾1 𝐾2 𝐾3 𝐾4

𝑒𝜁𝐽𝑇𝑚𝑎𝑥 (𝜁𝐽)−𝑝(𝐾1 − 1) |Δ𝑡|𝐾2 𝐾3/(2𝜔)

< 23.8 < 9.2 × 10−14 < 1.3 × 10−20 < 7.7 × 10−11

with following parameter values: 𝑇𝑚𝑎𝑥 = 1.6 × 10−4, |Δ𝑡| = (4/3) × 10−7,
𝑝 = 3.35, 𝜁𝐽 = 19800, 𝜔 = 𝜁(1−𝑝)

𝐽 = 8 × 10−11. 

As outlined in the Introduction, data assimilation applied to the system in Eq. (5), is 
the problem of finding initial values [𝑢(., 0), 𝑣(., 0), 𝑤(., 0)], at 𝑡 = 0, that can evolve 
into useful approximations to 𝑊 ∗(⋅, 𝑇𝑚𝑎𝑥), the given hypothetical data at an appropriate 
time 𝑇𝑚𝑎𝑥 > 0. If the true solution in Eq. (5) does not have exceedingly large values for 
|||𝑃𝑊|||2,∞, |||𝑃𝐺𝑊|||2,∞,  or |||𝐺2𝑊|||2,∞, the parameter values chosen in Table 1, 
together with Theorem 2, indicate that marching backward to time 𝑡 = 0 from the 
hypothetical data 𝑊 ∗ at 𝑇𝑚𝑎𝑥, leads to an error 𝐸𝑅(0), satisfying

∥ 𝐸𝑅(0) ∥2≤ 𝛿𝐾1 + 𝐾5, (16)

where the constant 𝐾5 may be negligibe compared to 𝛿𝐾1. Next, from Theorem 1, 
marching forward to time 𝑇𝑚𝑎𝑥 using the inexact computed initial values 𝑈(⋅, 0), leads to 
an error 𝐸𝑅(𝑇𝑚𝑎𝑥), satisfying

∥ 𝐸𝑅(𝑇𝑚𝑎𝑥) ∥2≤ 𝐾1(𝛿𝐾1 + 𝐾5) + 𝐾5. (17)

The error 𝐸𝑅(𝑇𝑚𝑎𝑥) in Theorem 1 is the difference at time 𝑇𝑚𝑎𝑥, between the unknown 
unique solution 𝑊(⋅, 𝑡) in Eq.(5), and the computed numerical approximation to it, 
𝑈(⋅, 𝑡), provided by the stabilized forward explicit scheme. However, ∥ 𝑊 ∗(⋅, 𝑇𝑚𝑎𝑥) −
𝑊(⋅, (𝑇𝑚𝑎𝑥) ∥2≤ 𝛿, if 𝑊 ∗(⋅, 𝑇𝑚𝑎𝑥) is the given hypothetical data. Hence, using the 
triangle inequality, one finds

∥ 𝑊 ∗(⋅, 𝑇𝑚𝑎𝑥) − 𝑈(⋅, 𝑇𝑚𝑎𝑥) ∥2≤ 𝛿(1 + 𝐾2
1 ) + 𝐾5(1 + 𝐾1). (18)

Therefore, data assimilation is successful only if the inexact computed initial values 𝑈(⋅, 0)
at 𝑡 = 0, lead to a sufficiently small right hand side in Eq.(18). Clearly, the value of 
𝜁𝐽𝑇𝑚𝑎𝑥, together with the unknown value of 𝛿, will play a vital role. From Table 1, we 
find 𝛿(1 + 𝐾2

1 ) < 568 𝛿. However, with 𝑇𝑚𝑎𝑥 chosen five times larger, one would find 
𝛿(1 + 𝐾2

1 ) > (5.8 × 1013) 𝛿.
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2.2. Using the Laplacian for smoothing when 𝐿 has variable coef-
ficients

All of the discussion and results in [31, Section 6] on using the Laplacian for smoothing, can 
be applied to the linear system in Eq. (5). With 𝜌, Λ, 𝑄 as in Eq. (3), let Γ = 𝜌(𝐼 − Δ). 
For real 𝑞 > 1, and 𝜖 > 0, define 𝑄Δ = exp{−𝜖|Δ𝑡|Γ𝑞}. In domains where closed form 
expressions for the eigenfunctions of the Laplacian are known, it may be advantageous to use 
the smoothing operator 𝑄Δ in lieu of 𝑄 in the stabilized explicit scheme in Eq. (7). This is 
feasible for differential operators 𝐿 where the hypothesis in [31, Eq. (6.2)] is valid, so that, 
with appropriately chosen (𝜖, 𝑞), one has ∥ 𝑄Δ𝑔 ∥2≤∥ 𝑄𝑔 ∥2, for all 𝑔 ∈ 𝐿2(Ω) and suffi-
ciently small |Δ𝑡|. When this is the case, Theorems 1 and 2 remain valid, with 𝑆Δ and 𝑃Δ
replacing 𝑆 and 𝑃. Moreover, as described in [31, Section 6.1], and as will be demonstrated 
in the computational experiments discussed below, it may be possible to use efficient FFT 
algorithms to synthesize 𝑄Δ, even in problems defined on non-rectangular domains Ω. 

3. Data assimilation in nonlinear coupled sound and 
heat flow in non-rectangular region, using FFT Lapla-
cian smoothing

We now highlight the versatility of the stabilized scheme in Eq. (7), by considering a 
nonlinear example in a non-rectangular region, in which the explicit computation proceeds 
by lagging the nonlinearity at the previous time step. Let Ω be the open quarter circle 
region in the (𝑥, 𝑦) plane,

0.05 < 𝑥, 𝑦 < 0.95, (𝑥 − 0.05)2 + (𝑦 − 0.05)2 < (0.9)2, (19)
let 𝑇𝑚𝑎𝑥 = 1.6 × 10−4, and let 𝐿 be the nonlinear differential operator defined as follows 
on functions 𝑧(𝑥, 𝑦, 𝑡) on Ω × (0, 𝑇𝑚𝑎𝑥):

𝐿𝑧 = −0.00085 𝑠(𝑧) ∇.{𝑞(𝑥, 𝑦)∇𝑧} − 2.75(𝑧𝑥 + 𝑧𝑦), (20)
where

𝑠(𝑧) = exp{0.005𝑧}, 1 < 𝑞(𝑥, 𝑦) = {1 + 2 sin 𝜋𝑥 sin 𝜋𝑦} ≤ 3, (21)
With 𝑎 = 6, 𝑏 = 5, 𝑑 = 0.95, and (𝑥, 𝑦, 𝑡) ∈ Ω × (0, 𝑇𝑚𝑎𝑥), consider the system

𝑢𝑡 = −𝑏𝐿𝑢 − 𝑑𝑣,

𝑣𝑡 = 𝑎𝐿𝑢 − 𝑎𝐿𝑤,

𝑤𝑡 = 𝑣,

𝑢(𝑥, 𝑦, 𝑇𝑚𝑎𝑥) = 𝑓(𝑥, 𝑦), 𝑣(𝑥, 𝑦, 𝑇𝑚𝑎𝑥) = 𝑔(𝑥, 𝑦), 𝑤(𝑥, 𝑦, 𝑇𝑚𝑎𝑥) = ℎ(𝑥, 𝑦),

𝑢(𝑥, 𝑦, 𝑡) = 𝑣(𝑥, 𝑦, 𝑡) = 𝑤(𝑥, 𝑦, 𝑡) = 0, (𝑥, 𝑦, 𝑡) ∈ 𝜕Ω × [0, 𝑇𝑚𝑎𝑥].

(22)
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U=Temperature, V=wave velocity, W=wave displacement.

SUCCESSFUL DATA ASSIMILATION FROM T=1.6E-4.

Desired U at time T   Computed U at t=0    Evolved U  at time T

Desired V at time T  Computed V at t=0     Evolved V at time T

Desired W at time T   Computed W at t=0   Evolved W at time T

See summary in Table 2. Above nonlinear coupled sound and heat flow experiment lies outside scope of 
linear theory developed in Section 2. As explained in the discussion following Eq. (22), enclosing quarter 
circle region Ω in unit square Ψ, allows use of FFT Laplacian smoothing operator 𝑄Δ, in backward 
reconstruction with scheme in Eq. (7). 

Figure 2. Successful data assimilation experiment
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Desired U at time T    Computed U at t=0   Evolved U at time T

Desired V at time T    Computed V at t=0   Evolved V at time T

Desired W at time T   Computed W at t=0   Evolved W at time T

UNSUCCESSFUL DATA ASSIMILATION FROM  T =8.0 E-4.

U=Temperature, V=wave velocity, W=wave displacement.

See summary in Table 3. As previously explained, enclosing quarter circle region Ω in unit square Ψ, 
allows use of FFT Laplacian smoothing operator 𝑄Δ, in backward reconstruction with scheme in Eq. (7). 

Figure 3. Failure of data assimilation with significantly larger value for 𝑇𝑚𝑎𝑥
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In Eq. (22), 𝑢(𝑥, 𝑦, 𝑡) denotes the temperature, 𝑤(𝑥, 𝑦, 𝑡) is the wave displacement, 
and 𝑣 = 𝑤𝑡(𝑥, 𝑦, 𝑡) is the wave velocity. The hypothetical data at time 𝑇𝑚𝑎𝑥, namely, 
𝑓(𝑥, 𝑦), ℎ(𝑥, 𝑦), 𝑔(𝑥, 𝑦), are the three images shown in the leftmost column in Figure 2. 
Here, the quarter circle region Ω was enclosed in the unit square Ψ = {0 < 𝑥, 𝑦 < 1}. A 
512 × 512 uniform grid was imposed on Ψ, leading to a discrete boundary 𝜕Ω𝑑 consisting 
of the grid points closest to 𝜕Ω. This was assumed to sufficiently well-approximate 𝜕Ω. 
With Δ𝑥 = Δ𝑦 = 1/512, and Δ𝑡 = −(4/3) × 10−7, homogeneous boundary conditions 
were applied on 𝜕Ω𝑑. Lagging the nonlinearity at the previous time step, explicit time 
differencing together with centered finite differencing in the space variables, were used in 
the stabilized backward computation, as described below, for 1200 Δ𝑡. This produced the 
images at 𝑡 = 0, shown in the middle column in Figure 2. The actual computed data at 
𝑡 = 0 involve negative values. These values are not used in forming and displaying the 
middle column images, but are nevertheless retained as necessary to enable computation 
of the images in the rightmost column in Figure 2.

With 𝜌 as in Eq. (3), Γ = 𝜌(𝐼 −Δ), real 𝑞 > 1, and 𝜖 > 0, let 𝑄Δ = exp{−𝜖|Δ𝑡|Γ𝑞}. In 
the above stabilized backward computation at each time step 𝑚 in Eq. (7), after applying 
the operator (𝐼 + Δ𝑡𝐺) to 𝑈𝑚 on Ω ⊂ Ψ, the solution is extended to all of Ψ by defining 
it to be zero on Ψ − Ω. FFT algorithms are then applied on Ψ to synthesize 𝑄Δ, and 
produce 𝑈𝑚+1 = 𝑆Δ(𝐼 + Δ𝑡𝐺)𝑈𝑚, while retaining only the values of 𝑈𝑚+1 on Ω. This 
process is then repeated at the next time step. Interactive trials are needed to locate 
appropriate values for (𝜖, 𝑞). Here, a parameter pair 𝜖 = 8.0 × 10−11, 𝑞 = 3.35, was 
arrived at after very few trials.

As is evident from Figure 2, together with the accompanying data in Table 2, data 
assimilation was successful in that computational experiment. At time 𝑇𝑚𝑎𝑥, the evolved 
𝐿1 norms closely match the desired 𝐿1 norms, and the resulting 𝐿1 relative errors are 
small. In the linear selfadjoint problem contemplated in Table 1 and Eq.(18), we found 
𝛿(1 + 𝐾2

1 ) < 568 𝛿, when using the same parameter values that were used in the nonlinear 
problem in Figure 2. However, with 𝑇𝑚𝑎𝑥 chosen five times larger in the linear problem, 
we found 𝛿(1 + 𝐾2

1 ) > (5.8 × 1013) 𝛿.

We now consider data assimilation for the same nonlinear problem described in Eq. (22), 
with the same parameters used in Figure 2 and Table 2, except for 𝑇𝑚𝑎𝑥, which is now 
chosen five time larger, with the Elizabeth Taylor image replaced by the USAF 1951 
resolution chart. As can be seen from Figure 3 and Table 3, data assimilation is now 
unsuccessful. The images in the rightmost column in Figure 3, do not match the desired 
images in the leftmost column. The evolved 𝐿1 norms are not good approximations to 
the desired 𝐿1 norms at time 𝑇𝑚𝑎𝑥, and the accompanying 𝐿1 relative errors are quite 
large. While the failure in the above nonlinear experiment with 𝑇𝑚𝑎𝑥 = 8.0 × 10−4 is 
less catastrophic than was predicted in the linear selfadjoint case with the same 𝑇𝑚𝑎𝑥
value, the linear analysis in Table 1 and Eq.(18), was a useful guide. As previously noted, 
successful reconstruction in backward dissipative evolution equations is necessarily limited, 
given the associated uncertainty estimates, in [35–42].
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4. Concluding Remarks
With proper parameter choices, stabilized explicit schemes appear to be helpful in difficult 
data assimilation problems, involving non differentiable data and nonlinear dissipative 
systems. Examples of failure in such problems are also instructive and valuable.

Along with [1–4], the results in the present paper invite useful scientific debate and 
comparisons, as to whether equally good or better results might be achieved, using the 
computational methods described in [9–26]. As an alternative computational approach, 
backward marching stabilized explicit schemes may also be helpful, if needed, in validating 
computations involving machine learning.

Table 2. Behavior of 𝐿1 norm at  𝑇𝑚𝑎𝑥 in successful data assimilation (Fig. 2)

 Image  Desired 𝐿1 norm  Evolved 𝐿1 norm 𝐿1 relative error

 Bill Clinton  61.06  60.80  7.46 %
 USS Kitty Hawk  93.60  93.07  4.41 %
 Elizabeth Taylor  99.95  99.27  2.69 %

with following parameter values: 𝑇𝑚𝑎𝑥 = 1.6 × 10−4, |Δ𝑡| = (4/3) × 10−7,
𝑝 = 3.35, 𝜁𝐽 = 19800, 𝜔 = 𝜁(1−𝑝)

𝐽 = 8 × 10−11. 

Table 3. Behavior of 𝐿1 norm at  𝑇𝑚𝑎𝑥 in unsuccessful data assimilation (Fig. 3)

 Image  Desired 𝐿1 norm  Evolved 𝐿1 norm 𝐿1 relative error

 Bill Clinton  61.06  56.57  18.11 %
 USS Kitty Hawk  93.60  85.81  48.94 %

 USAF chart  39.27  41.59  26.25 %

with following parameter values: 𝑇𝑚𝑎𝑥 = 8.0 × 10−4, |Δ𝑡| = (4/3) × 10−7,
𝑝 = 3.35, 𝜁𝐽 = 19800, 𝜔 = 𝜁(1−𝑝)

𝐽 = 8 × 10−11. 
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