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Abstract 

This report examines the economics of digital twins (i.e., digital computer model of a physical 
system such as a machine or building that has high accuracy, precision, and flexibility to model 
various aspects of the system) in the manufacturing industry, including the costs, benefits, and 
economic decision to invest in the adoption of a digital twin. It characterizes the costs and 
benefits along with the circumstances under which digital twins are likely to be cost effective. 
Finally, it estimates the potential impact of digital twins to be $37.9 billion annually if they are 
fully adopted across the manufacturing industry. A Monte Carlo simulation varying key factors 
of this estimate by -50 % and +20 % (i.e., biasing it downwards) and assuming that digital twins 
account for between the 80th and 95th percentile of data tracking and analytics investments by 
cost, puts the 90 % confidence interval between $16.1 billion and $38.6 billion with a median of 
$27.2 billion annually. From these estimates, one could reasonably surmise that the potential 
impact of digital twins is likely in the low tens of billions of dollars. 

Keywords 

Digital Twin; Manufacturing; Investment Analysis; Manufacturing Economics; Modeling; Data 
Utilization 
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Executive Summary 

This report examines the economics of digital twins in the manufacturing industry, including the 
costs, benefits, and economic decision to invest in the adoption of a digital twin. A digital twin is 
a computer model of a physical system, such as a machine or building, that has the potential for 
high accuracy, precision, and flexibility to model various aspects of the system. They are used in 
five primary areas based on the sales of software for implementation (Markets and Markets 
2022): predictive maintenance (39.9 %), business optimization (25.3 %), performance 
monitoring (17.8 %), inventory management (11.9 %), and product design and development 
(3.4 %). The remaining applications represent 1.6 % of the sales. Three primary factors slow 
their growth (Markets and Markets 2022): cyber threats, the cost of digital twins, and the 
required human capital.  

Digital twins primarily function to make predictions or as a status indicator for the system being 
modeled. The benefit of the broader category of data tracking and analytics, which includes 
digital twins, is being able to identify more optimal design and/or settings for a particular 
system, such as when to conduct maintenance or where to place machinery. Digital twins 
provide the potential for high level accuracy, precision, and flexibility in data tracking and 
analytics, where flexibility is the model’s ability to consider different types and levels of input 
and output factors. The cost effectiveness of investing in a digital twin is likely affected by the 
complexity and sensitivity (i.e., the level of system variation that affects economic outcomes) of 
the real-world system being modeled along with the cost consequence of having the non-
optimal level of settings or design for the system. A digital twin is more likely to be cost 
effective for a complex system that has a high-cost consequence for having non-optimal 
settings/designs; that is, it is cost effective when the costs or losses of having non-optimal 
settings/design are significant. As system complexity and/or cost consequences of non-optimal 
settings/designs decrease, digital twins are likely to become less cost effective and models or 
data tracking with less potential accuracy, precision, and/or flexibility become more cost 
effective. A “fit for purpose” approach might facilitate more cost-effective digital twin designs. 
Future research could identify the types of system complexities where digital twins are cost 
effective along with the situations where an increase in one benefit of digital twins (i.g., 
accuracy, precision, and/or flexibility) is more beneficial than the others. 

The total benefits of all future data tracking and analytics investments in the U.S., including 
those for digital twins and those with less precision, accuracy, and flexibility, is estimated to be 
$88.6 billion. If digital twins account for data tracking and analytics investment costs that are 
above the 85th percentile, the total potential impact of the adoption of digital twins in the 
manufacturing industry is estimated to be $37.9 billion. Anecdotally, it is common for the 
highest performing category within a group to account for between the top 10 % and 20 %; 
thus, the 85th percentile is a significant but reasonable assumption, given the patterns in the 
costs and return-on-investment found in other similar investments that are discussed in this 
report. A Monte Carlo simulation varying key factors of this estimate by -50 % and +20 % (i.e., 
biasing it downwards) and assuming that digital twins account for between the 80th and 95th 
percentile of data tracking and analytics investments by cost, puts the 90 % confidence interval 
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between $16.1 billion and $38.6 billion with a median of $27.2 billion annually. These industry 
level estimates are based on a number of datasets and calculations, including tendencies or 
patterns in the relationship between the costs and returns on investments entered in the 
Department of Energy’s (DOE) Industrial Assessment Center data. From the industry estimates 
in this report, one could reasonably surmise that the potential impact of digital twins is likely in 
the low tens of billions of dollars. Reasonable assumptions are made to calculate the estimates 
above and these assumptions are relaxed using a Monte Carlo approach. Despite these best 
efforts, there is a wide range of error in the estimates and the assumptions made are not 
certainties. Future research could increase the accuracy and precision of these estimates by 
collecting additional data from manufacturers. Understanding the potential impact affects the 
investment analysis of public investment in advancing digital twins and their adoption.  

In order for the benefits of the broader category of data tracking and analytics investments to 
be realized, including those from digital twins, the right level of modeling (e.g., digital twin vs. 
tracking a selection of data items) must be selected based on factors such as the system 
complexity and cost consequences of having non-optimal system design/settings. If real-world 
systems are matched with the wrong modeling solutions, the total industry impact will not be 
realized. Thus, robust methods and practices for investment analysis in digital twins is needed 
in order for their impact to be achieved. This report briefly discusses investment analysis 
methods that manufacturers can use for evaluating an investment in a digital twin or other data 
tracking/analytics solutions.  
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1. Introduction  

Years ago, Dick and Mac McDonald took their staff to a tennis court to rehearse the operations 
of their restaurant, McDonalds (Murphy 2017). This event, which is depicted in a movie about 
the McDonald brothers, is a real-life example of successfully using models to gain a competitive 
advantage. With significant advancements in technology, today a firm can completely model 
their operations digitally. One model type is a digital twin, which is a digital version of a physical 
object, system, or process such as machinery, buildings, floor layouts, or a manufacturing 
process. The average individual might see it as an advanced computer model. Negri (2017) 
describes digital twins as “representations based on semantic data models that allow running 
simulations in different disciplines, that support not only a prognostic assessment at design 
stage (static perspective), but also a continuous update of the virtual representation of the 
object by a real time synchronization with sensed data. This allows the representation to reflect 
the current status of the system and to perform real-time optimizations, decision making, and 
predictive maintenance according to the sensed conditions.” Other definitions include the 
following:  

“A digital twin is a set of virtual information constructs that mimics the structure, 
context, and behavior of a natural, engineered, or social system (or system-of-systems), 
is dynamically updated with data from its physical twin, has a predictive capability, and 
informs decisions that realize value. The bidirectional interaction between the virtual 
and the physical is central to the digital twin” (AIAA Digital Engineering Integration 
Committee 2020). 

“A digital twin is a set of virtual information constructs that mimics the structure, 
context, and behavior of a natural, engineered, or social system (or system-of-systems), 
is dynamically updated with data from its physical twin, has a predictive capability, and 
informs decisions that realize value. The bidirectional interaction between the virtual 
and the physical is central to the digital twin” (National Academies of Sciences, 
Engineering, and Medicine 2024). 

“A digital twin is an integrated data-driven virtual representation of real-world entities 
and processes, with synchronized interaction at a specified frequency and fidelity. 

• Digital Twins are motivated by outcomes, driven by use cases, powered by 
integration, built on data, enhanced by physics, guided by domain knowledge, 
and implemented in dependable and trustworthy IT/OT/ET systems. 

• Digital Twin Systems transform business by accelerating and automating holistic 
understanding, continuous improvement, decision-making, and interventions 
through effective action. 

• Digital Twin Systems are built on integrated and synchronized IT/OT/ET systems, 
use real-time and historical data to represent the past and present, and simulate 
predicted futures. 
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• Digital Twin Prototypes use data to model and simulate predicted futures before 
being integrated into IT/OT/ET Systems and before synchronization with the 
real-world entity or process” (Digital Twin Consortium 2024). 

Frequently, a major difference between utilizing data or other modeling approaches and a 
digital twin is the potential level of model accuracy, precision, and flexibility, where 

• Model accuracy is the extent to which the model correctly predicts the real-world 
physical system. 

• Model precision is the level of detail that the model accurately predicts the real-world 
system (e.g., accurate predictions within 1.0 mm vs. accurate predictions within 0.01 
mm). 

• Model flexibility is the model’s ability to consider different scenarios and factors. It 
includes, but is not limited to, the number of factors that can be changed in the model, 
the number of factors predicted by the model, and the real-time representation of 
system being modeled. 

In order to achieve more accurate, precise, and flexible system predictions, it often becomes 
more necessary to employ a digital twin (see Figure 1.1). The threshold for when a model 
becomes a digital twin is not easily defined; thus, the term is often used to describe what some 
consider just modeling or data tracking (Wright and Davidson 2020). One might suggest that a 
digital twin approaches the potential for maximum technologically feasible accuracy, precision, 
and flexibility in modeling a system.  

There are a number of benefits to implementing a digital twin. For instance, it can facilitate 
more optimal level of maintenance or aid in business optimization. It also can be used for 
performance monitoring, inventory management, and/or product design and development. 
Digital twins could even be used for hazard mitigation. Moreover, through the design, 
manufacture, sale, and usage of a product there are benefits that can reduce costs, accelerate 
development, increase product quality, and increase utility, as illustrated in Figure 1.2. Digital 
twins, however, can require significant investments. Although Figure 1.2 shows positive net 
benefits, this may not be the case for all products and services.  

 

 

 

 

 

Figure 1.1: Basic Modeling vs. Digital Twin 
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 Scope  

This report aims to examine the economics of digital twins, including methods for investment 
analysis, costs, benefits, and the circumstances that digital twins are cost effective. The analysis 
focuses on the manufacturing industry, including the design, production, and inventory of 
products. It does not examine the application of digital twins by the end user. For instance, it 
does not examine the impact of an airline using a digital twin for maintenance. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Illustration of the Benefits of Digital Twins 
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 Approach 

This report examines data and literature on the economics of using data analysis, modeling, and 
digital twins in the manufacturing industry. It examines the current application of digital twins 
such as in predictive maintenance, inventory management, and optimization (Chapter 2). It 
then discusses the structure of digital twin costs and benefits, including what factors affect the 
cost effectiveness of them (Chapter 3). Methods for investment analysis of digital twins are 
discussed and developed in Chapter 4. Chapter 5 uses manufacturing industry data, survey 
data, and trends in the returns on investments to estimate the potential impacts/savings from 
data analysis, models, and digital twins. Finally, an estimate of the potential impact of digital 
twins is estimated. 

In practice, there seems to be some disagreement in whether real-time data tracking is 
required for a model to be considered a digital twin, which would largely exclude modeling for 
the design of a product. Since many include design activity, this report errs on the side of 
including those models that do not have real-time tracking, as design activity is commonly 
referenced regarding digital twins. To reference those digital twins with data tracking, this 
report uses the term “advanced digital twin.” 

 

 



AMS 100-61 
October 2024 

11 

2. Current Application and Growth of Digital Twins 

As reported by Argolini et al. (2023), in advanced industries an estimated 75 % of companies 
have adopted digital twins; however, there is significant variation between industries. In the 
automobile, aerospace, and defense industries, digital twins are more advanced while in 
logistics, infrastructure, and energy they are in the earlier stages of adoption. There could be 
many reasons for the differences, which could include the level of competition in an industry, 
how costs are borne out by different stakeholders, the complexity of a system, and the 
difference in the costs and benefits of modeling a system using digital twins. 

Currently, digital twins are used in a number of applications. The largest application, as 
measured by sale of products/services to implement it, is predictive maintenance, which 
accounts for 39.9 % of expenditures (Table 2.1). The products/services measured are software 
focused, such as those from Microsoft, Siemens, Amazon Web Services, or Dassault Systemes 
which have been identified as being among the top digital twin providers. It is important to 
note that there is some variation in the estimate of what is referred to as the digital twin 
market. For instance, Market and Markets (2022) estimates the global market size at $4.5 
billion for 2021 while Global Market Insights estimates the market to be $ 8 billion for 2022. 
Although the estimates are for different years, it is unlikely that this accounts for all of the 
difference. The difference in estimates may also be due to data sources and what is considered 
a digital twin.  

Predictive maintenance, the largest application for digital twins, can affect product cost, 
quality, and production time. The maintenance of machinery typically leads to downtime, 

Table 2.1: Percent of Revenue Generated from the Sale of Products/Services to Implement Digital Twins by 
Industry and Application (Global), 2021 
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Predictive Maintenance 7.1% 8.0% 6.4% 7.0% 2.0% 6.4% 3.1% 39.9% 1797 

Business Optimization 4.2% 2.3% 5.4% 2.0% 5.0% 2.3% 4.1% 25.3% 1137 

Performance Monitoring 3.5% 2.7% 0.8% 2.7% 2.5% 1.7% 3.9% 17.8% 801 

Inventory Management 1.6% 2.0% 1.4% 1.6% 2.0% 1.4% 2.0% 11.9% 535 

Product Design and Development 0.4% 0.3% 0.4% 0.3% 1.5% 0.2% 0.4% 3.4% 155 

Other Applications 0.2% 0.2% 0.2% 0.2% 0.2% 0.3% 0.4% 1.6% 74 

  TOTAL (%) 17.0% 15.5% 14.5% 13.8% 13.2% 12.2% 13.8% 100.0%   

  TOTAL ($Million) 765 697 653 621 594 548 622   4500 

  NORTH AMERICA TOTAL ($Million) 299 262 251 218 230 191 236   1688 

  US TOTAL                 1383 

Source: Markets and Markets (2022)  
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either planned or unplanned. Unplanned downtime often stems from breakdowns along with 
increasing defects when machinery operates outside of specification. This can result in 
production delays and customer dissatisfaction. The increase in unexpected delays often leads 
to increased inventory throughout the supply chain to deal with uncertainty, which incurs 
additional costs. 

Generally, there are three primary approaches to manufacturing machinery maintenance. 
These strategies include the following (which are derived from a series of practical case studies 
(Jin et al. 2016a; Jin et l. 2016b): 

• Predictive maintenance (PdM), which is analogous to condition-based maintenance, is 
initiated based on predictions of failure made using observed data such as temperature, 
noise, and vibration.  

• Preventive maintenance (PM), which is related to scheduled maintenance and planned 
maintenance, is scheduled, timed, or based on a cycle. 

• Reactive maintenance (RM), which is related to run-to-failure, corrective maintenance, 
failure-based maintenance, and breakdown maintenance, is maintenance done, 
typically, after equipment has failed to produce a product within desired quality or 
production targets, or after the equipment has stopped altogether. 

There are limited studies on the costs and benefits of moving between the different 
maintenance techniques, especially at the aggregated national level. The estimates that have 
been made, which are mostly at the firm level, show the impacts of PdM are measured using a 
wide range of metrics and, within each metric, have a wide range of values (Thomas 2018).  

Business optimization is the second largest application of digital twins, accounting for 25.3 % of 
the sale of implementation products/services. It is the largest application for aerospace and the 
other category while it is the second largest for three other industries. A digital twin allows the 
simulation of different what-if scenarios in order to optimize machinery, scheduling, and 
factory operations. It also allows for performance monitoring, which is the third largest 
application by sales of implementation products/services.  

As shown in Table 2.2, there are a number of sources of growth in digital twins, including 
predictive maintenance and pursuing industry 4.0. However, there are a number of items 
hindering growth. The largest is the human capital required for collecting data and modeling 
followed by the high cost of digital twins and the threat of cyber security.  
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Table 2.2: Approximated Sources of Forecasted Cumulative Growth in Digital Twins, 2022-2027 

Source of Growth and Inhibitors Low High 

Industries reducing cost and advancing supply chains 3% 5% 

Healthcare industry 4% 5% 

Predictive maintenance 3% 5% 

Pursuing real-time data analytics 3% 5% 

Pursuing industry 4.0  4% 5% 

Using digital twins to examine human health and 
safety 3% 5% 

Threat of cyber attacks -1% -2% 

High cost of digital twins -2% -3% 

Human capital required for collecting data and 
modeling -3% -5% 

TOTAL 14% 20% 
          Source: Markets and Markets (2022) 
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3. Structure of Digital Twin Costs and Benefits 

Manufacturing inputs typically follow the law of diminishing marginal returns, which is a theory 
that states that increasing a single factor of production while holding other factors constant will 
eventually result in diminishing returns. For instance, consider a factory that has an optimal 
level of labor when holding all other factors constant. Adding additional labor will eventually 
result in employees having little work to do and less efficient operations. If one adds enough 
labor, the people standing around might even get in the way of operations. Similarly, for a 
particular firm or establishment, there is an optimal level of investment in digital twins where 
at some point additional investment will result in less efficient operations, when holding other 
factors constant. 

Three primary factors are identified in determining the cost of a digital twin for a particular 
system. As discussed previously, these factors include the following: 

• Model Accuracy: The extent to which the model correctly predicts the real-world 
physical system. 

• Model Precision: The level of detail that the model accurately predicts the real-world 
system (e.g., accurate predictions within 1.0 mm vs. accurate predictions within 0.01 
mm). 

• Model Flexibility: The number of factors that can be changed and the number of factors 
predicted by the model, resulting in the model’s flexibility in predicting outcomes from 
changing different types of factors. 

As illustrated in Panel A of Figure 3.1, as a firm increases its model accuracy, precision, and 
flexibility for digital twins, it would be expected that the benefits increase but eventually they 
increase at a decreasing rate, which is a typical S-curve as discussed by Kober et al. (2023a). 
Meanwhile, costs will likely increase at an increasing rate (Kober et al. 2023a). For the 
illustration in Figure 3.1, the cost function does not change. One might imagine a standardized 
digital twin that has many options and can be applied to systems with varying complexity, 
sensitivity, and cost consequences. Item A in Figure 3.1 graphs costs and benefits based on the 
accuracy, precision, and flexibility of a model, similar to what Kober et al. (2023a) refer to as 
digital twin fidelity; however, the latter focuses on digital twin solutions while the former allows 
for non-digital twin solutions. Items A through D in Figure 3.1 demonstrate how the benefits 
shift from increasing/decreasing system complexity/sensitivity and increasing/decreasing the 
cost consequences of not having the optimal system options/design, as discussed below. 

There are two major factors that are likely to determine the cost effectiveness of investing in a 
digital twin for a system. The first factor is the complexity and sensitivity of the real-world 
system being modeled. As the number of factors in a system increases, including inputs and 
outputs, it becomes increasingly more difficult to ascertain the optimal system design, including 
maintenance and optimal usage parameters. Optimal system parameters may also change over 
time, making it even more difficult to identify optimal settings and design. System complexity 
includes, but is not limited to, both the number of factors in a system and the range of options 
for each factor (e.g., binary options or continuously variable options). The sensitivity of the  
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Panel A is adapted from Kober et al. 2023a 
NOTE: System complexity refers to the complexity of the system being modeled. 
NOTE: Cost consequence refers to the cost consequence of having a non-optimal design. 
NOTE: For illustration purposes, it is assumed that the function for the costs of modeling is unchanged as the 
system and cost consequences change. 

Figure 3.1: Illustration of Tendencies for Short-Run Net Benefits for Investing in Digital Twins. Panel A through D 
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system refers to the level of variation that affects outcomes from the system. The other major 
factor for cost effectiveness is the cost consequence for each factor and each factor’s range of 
options. Note that cost in this context can include losses, lost revenue, lost opportunities, or 
other consequences of a non-optimal design or usage.  

Benefits of digital twins typically occur as a result of averting losses. For instance, consider a 
fictional example of two systems: 1) a fighter jet and 2) a Humvee. Also, consider two purposes 
for these systems: 1) military combat and 2) public relations display. Together, these represent 
four scenarios: 

1. Fighter jet used for combat operations, 

2. Humvee used in combat operations, 

3. Fighter jet used for public display, and 

4. Humvee used for public display. 

In this example, the fighter jet is assumed to be a complex system while the Humvee is 
assumed to be less complex. A disruption in combat operations is assumed to be a high-cost 
consequence while disruptions in public displays are assumed to be a low-cost consequence. A 
digital twin is more likely to be cost effective when it is built into a fighter jet that is used for 
combat, as it might ensure proper operation of the jet and its weapons, increasing the 
likelihood of mission success. These are the types of benefits that accrue and are graphed in 
Figure 3.1. A digital twin might not be as cost effective for a fighter jet that is only used for 
display, such as at an airshow, as the consequence of system failure, and risk to life and 
property, is far less than in a combat situation. A digital twin would likely be less cost effective 
for a Humvee that is used for combat than the fighter jet for the same purpose, as the system is 
not as complex; however, it might still be cost effective in that it ensures performance during 
critical operations. A digital twin would be even less cost effective for a Humvee that is only 
used for public display; however, some form of maintenance tracking and sensors would be 
cost effective, similar to sensors and tracking for oil changes in many modern cars.   

If a system has high complexity but the options have little effect on the cost/benefit outcome, 
then investing in determining the optimal system design may not be cost effective; that is, it 
may not be cost effective to invest in digital twins. A system that has high complexity and high-
cost consequences will likely shift the optimal level of investment up and to the right when 
compared to those with moderate complexity and cost consequences, as illustrated in Panel B 
of Figure 3.1. The higher-level complexity requires more complex modeling, accounting for the 
rightward shift, while the higher cost consequence means higher benefits, accounting for the 
upward shift. This is similar to the example of the fighter jet being used in combat, as discussed 
above. Note that Figure 3.1 holds the graph of costs constant to examine the effect of system 
changes. A system could have a moderate level of complexity and a lower level of cost 
consequences. This situation is represented by Panel C in Figure 3.1, where the optimal 
investment level is shifted downward to the point where there is no optimal level of 
investment, because it is not cost effective. This might be similar to the example of the Humvee 
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being used for public display. The last situation from Figure 3.1 is from Panel D where there is a 
low level of complexity but a high level of cost consequences. The result is a leftward shift in 
the optimal level of investment in modeling (i.e., lower model accuracy, precision, and 
flexibility). This situation might make it cost effective to invest in modeling but not necessarily 
at the level of modeling that is considered a digital twin. This might be similar to the example of 
the Humvee being used in combat. It is also important to note that some system types might 
have a correlation of cost consequences and system complexity. This can be due to, for 
instance, more and higher cost components.  

The tendencies for the effect of more/less complexity and cost consequences on the optimal 
investment level are summarized in Figure 3.2. As the cost consequences increase for non- 
optimal design, the benefits increase (vertical arrows) with all other things being equal. As a 
system becomes more and more complex, it requires more model accuracy, precision, and 
flexibility to maintain the same level of benefits (horizontal arrows) with all other things being 
equal. For some instances, costs of modeling exceed benefits at all points; that is, the benefits 
never exceed the costs. Also, as one moves toward the right side of Figure 3.2, costs will start to 
exceed benefits. One last item to note is the angled line for system complexity, which illustrates 
the potential correlation in complexity and cost consequences since complex systems often 
have higher cost components.  

To illustrate the two factors for cost effectiveness, consider developing a digital twin for the 
maintenance and usage of a stapler. It could have sensors on how the staples move through the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Tendency for Optimal Investment, by Shifts in System Complexity and Cost Consequences 
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stapler, a sensor determining the number of staples remaining before refill, and even a sensor 
on the pressure applied for each staple so that one can ensure a near perfect stapling 
experience. However, a stapler is not a complex system, and the consequence of an imperfect 
staple are so low that the costs of the model, sensors, and tracking likely far outweigh the 
benefits. This might be similar to Panel C in Figure 3.1, where net benefits never turn positive. 
On the other hand, consider the assembly of a Boeing 787 Dreamliner. This airplane has 
millions of parts, making it extremely complex and errors in production can have major 
consequences, such as when a door plug of a Boeing 737 MAX 9 came off in mid-flight due to a 
manufacturing error. In this instance, the benefits of a digital twin likely far outweigh the costs. 
This might be illustrated in Panel B of Figure 3.1, where both the net benefits and level of 
accuracy/precision/flexibility are high at the optimal investment level.  

Another example might be for a small manufacturer with an expensive piece of machinery that 
requires regular maintenance. This firm might face a situation where there is low system 
complexity but high-cost consequences. Conducting maintenance too infrequently could result 
in damage; however, conducting maintenance too frequently results in unnecessary downtime 
and labor costs. Tracking various factors such as heat and vibration to implement a predictive 
maintenance program might be the optimal level of investment in modeling. Creating a digital 
replica of the machine might be costly and yield limited additional benefits. This situation is 
similar to that of Panel D in Figure 3.1. 

A real-life example where a digital twin may not be cost effective might be found in an 
examination by West and Blackburn (2017). They examine the cost for developing a digital twin 
for the operation of the Next Generation Air Dominance aircraft for the U.S. Air Force. The 
paper estimated that the costs of such a model were so high that it was not feasible. Although 
the digital twin was not cost effective, it is likely that there is a model that has reduced 
accuracy, precision, and/or flexibility that is cost effective. That is, West and Blackburn (2017) 
were examining a model so far to the right in Figure 3.2 that it was in the purple zone where 
costs far exceeded benefits. Moving to the left, they might find a model that is cost effective. 
This might be akin to or consistent with the concept of a “fit for purpose” digital twin (National 
Academies of Sciences, Engineering, and Medicine 2024).  

Determining the right level of accuracy, precision, and/or flexibility might be complicated. As 
illustrated in Figure 3.3, increases in accuracy, precision, and flexibility each tends to increase 
the cost of a model with high levels of all three resulting in a much more costly model. Lower 
levels of all three might be considered only as modeling while high levels move toward being 
considered a digital twin with some areas in between being somewhat of a grey area. 

One approach for determining the design of a digital twin model might be to determine or 
estimate the costs and benefits for including each potential input and output or groups of 
inputs and outputs. Factors where the benefits outweigh the costs would be ranked higher 
priority for inclusion in the model while those with costs that outweigh benefits would be 
ranked lower. A prioritization of factors might even be made using net present value or internal 
rate of return. It is important to note, however, that the interaction of multiple factors may 
make the inclusion of a group of factors cost effective to include while each individual factor 
may appear to not be cost effective. The decision maker might use these insights to compare a 
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selection of potential model designs using net present value and internal rate of return 
combined with an examination of uncertainty using Monte Carlo analysis. Although there is 
likely a tradeoff between accuracy/precision/flexibility and the ability to control the costs of the 
model, as illustrated in Figure 3.4, over time it is likely that costs of the model are driven 
downward where advancements in a firm’s experience and expertise reduces the cost of 
maintaining, using, and possibly expanding the model. This advancement is illustrated by the 
outward long run integration in Figure 3.4. 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 3.3: Illustration of Digital Twin Investment Costs by Model Precision, Accuracy, and Flexibility 
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Adapted from Kim and Chulsoon 2013 

Figure 3.4: Tradeoff Between Costs and Model Accuracy, Precision, and Flexibility 
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4. Methods for Investment Analysis  

This chapter briefly discusses two methods for investment analysis and sensitivity analysis using 
Monte Carlo techniques. For a more complete discussion on net present value, internal rate of 
return, and Monte Carlo analysis, please see Thomas (2017) or other relevant literature cited 
later in this chapter.  

An article by Graham and Harvey (2001 pg 187-243) provides some insight into the usage of net 
present value and internal rate of return for investment analysis (Graham and Campbell 2001). 
They surveyed 392 chief financial officers (CFO) about the cost of capital, capital budgeting, and 
capital structure. Surveys were sent to CFO’s for firms listed in the Fortune 500 rankings. 
Approximately 40 % of the firms were manufacturers and another 15 % were financial. 
Respondents were asked on a scale from 0 to 4, “how Frequently does your Firm use the 
Following Techniques when Deciding which Projects or Acquisitions to Pursue.” It listed 11 
techniques with 0 representing “never use it” and 4 meaning “always use it.” The most 
prominent method used in economic decision making seems to be the internal rate of return. 
The survey revealed that 75.61 % of respondents always or almost always use this method 
when making investment decision. The second most common metric was the net present value, 
where 74.93 % of respondents indicated that always use it or they use it most of the time.  

This section relies on widely utilized methods for investment analysis. It is important to note 
that other alternatives exist that focus on meeting specified objectives. For instance, Kober et 
al. (2023b) propose a method referred to as the Digital Twin Fidelity Requirements Model (DT-
FRM). This model tends to be useful in meeting set criteria in the design of a digital twin but 
tends not to focus on the possibility of non-digital twin solutions. Another example of a method 
for prioritizing options might be found in the Analytical Hierarchy Process. Since digital twins 
tend to be developed for the purpose of reducing costs, this report focuses on investment 
analysis methods that more directly reflect costs/savings rather than meeting set objectives. It 
is important to note that different methods can be complimentary or might be better suited for 
different situations. For instance, the methods below could be used to select among a coarser 
level of options (e.g., should a firm track data, implement a simple regression model, or develop 
a digital twin) and the DT-FRM model is used to refine a selected option (e.g., deciding the level 
of precision for a digital twin). 

 Net Present Value 

Net present value is the difference between the present value of all cash inflows and the 
present value of all cash outflows over the period of an investment, where present value is 
future cash flow discounted to equate its value to cash flows received today (Ross et al. 2005 pg 
61; Defusco et al. 2015 pg 2-3, 44-45; Defusco et al. 2001 pg 54-56; Budnick 1988 pg 894-895): 

 

𝑁𝑃𝑉 = ∑
(𝐼𝑡 − 𝐶𝑡)

(1 + 𝑟)𝑡

𝑇

𝑡=0
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Where: 

 

𝐼𝑡 = Total cash inflow in time period 𝑡 

𝐶𝑡 = Total cost in time period t 

𝑟 = Discount rate 

𝑡 = Time period, which is typically measured in years 

𝑇 = Study period 

Net present value, which accounts for the time value of money, is a common metric for 
examining an investment, and is considered a superior method over many other approaches 
(Ross et al. 2005 pg 223; Helfert 2001 pg 235). The net cash inflows for each time period are 
divided by one plus a selected discount rate raised to the power of the time period, t. The basic 
interpretation of net present value is that if it is positive, it means that the return on the 
investment is expected to exceed the discount rate. An anticipated follow-up question is what 
the rate of return is on the investment. Net present value does not reveal this information. The 
internal rate of return is more appropriate for answering this question. 

 Internal Rate of Return 

Internal rate of return is a widely used metric for evaluating investments. It has been suggested 
that in some industries, it is the principal method used for such analyses. The internal rate of 
return is, essentially, the discount rate at which the net present value is zero. Thus, it is 
calculated by setting NPV equal to zero and solving for r (Ross et al. 2005 pg 152-153; Defusco 
et al. 2001 pg 44-49). Due to the nature of this calculation, individuals often use software or 
trial and error to identify the internal rate of return (i.e., select varying discount rates in order 
to identify the value where the net present value equals zero).  

 Monte Carlo Analysis 

To account for uncertainty, a probabilistic sensitivity analysis can be conducted using Monte 
Carlo methods. This technique is based on works by McKay, Conover, and Beckman (1979 pg 
239-245) and by Harris (1984) that involves a method of model sampling. It can be 
implemented using various software packages such as the Monte Carlo Tool (Thomas 2019b) 
and the Smart Investment Tool (Thomas 2021) provided by NIST. Specification involves defining 
which variables are to be simulated, the distribution of each of the variables, and the number of 
iterations performed. The software then randomly samples from the probabilities for each 
input variable of interest. Three common distributions that are used include triangular, normal, 
and uniform. To illustrate, consider a situation where a firm has to purchase 100 ball bearings 
at $10 each; however, the price can vary plus or minus $2. In order to address this situation, 
one can use a Monte Carlo analysis where the price is varied using a triangular distribution with 
$12 being the maximum, $8 being the minimum, and $10 being the most likely. Moreover, the 
anticipated results should have a low value of approximately $800 (i.e., 100 ball bearings at $8 
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each) and a high value of approximately $1200 (i.e., 100 ball bearings at $12 each). The 
triangular distribution would make it so the $8 price and $12 price have lower likelihoods.  

For a Monte Carlo analysis, one must also select the number of iterations that the simulation 
will run. Each iteration is similar to rolling a pair of dice, albeit, with the probabilities having 
been altered. In this case, the dice determine the price of the bearings. The number of 
iterations is the number of times this simulation is calculated. For this example, ten thousand 
iterations were selected and a simulation was ran using Oracle’s Crystal Ball software. The 
frequency graph shown in Figure 4.1 shows the number of times each value was created. Since 
a triangular distribution was selected, the far left and far right values are less likely to be 
selected while the most likely value is in the middle at approximately $1000 (i.e., 100 bearings 
at $10 each). The sum of all the bars in the graph is a probability of 1.0 with a total frequency of 
10 000. Instead of a triangular distribution, a uniform distribution could have been selected 
where each value between $8 and $12 has an equal chance of being selected in each iteration. 
The results from such a distribution are shown in Figure 4.2. The benefit of Monte Carlo 
analysis is in the situation where there are many variables that can fluctuate (e.g., price of 
energy, materials, and labor). Instead of having just one price fluctuating, maybe a dozen prices 
fluctuate.  

 Investment Analysis of Digital Twins 

Determining whether an investment in a digital twin is cost effective involves examining the 
costs and benefits of developing a model (i.e., computer model) of the system in question (e.g., 
automobile plant, airplane, or a piece of machinery) along with other costs such as sensors and 
communication mechanisms. It is important to note that an investment analysis is, typically, a  

 

 

 

Figure 4.1: Frequency Graph of the Total Cost for Ball Bearing Example using a Triangular Distribution 
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Figure 4.2: Frequency Graph of the Total Cost for Ball Bearing Example using a Uniform Distribution 

forecast or prediction of the returns for an investment. Most purchases involve making a 
prediction or forecast. For instance, the purchase of a toy for a child is typically purchased with 
the idea that the child will enjoy the toy enough to warrant the purchase; that is, the purchaser 
predicts that the benefits of the toy will outweigh the costs. Even the purchase of food involves 
predicting whether the food will be consumed before it spoils and predicting whether it will 
have a pleasant taste; thus, most individuals have made thousands of forecasts and predictions. 
Unfortunately, sometimes they are incorrect. We fail to consume food before it spoils, or it 
doesn’t have the pleasant taste that we anticipated. Sometimes children do not enjoy the toys 
that are purchased for them. Moreover, deciding whether to conduct an investment analysis is 
not a decision whether to make a forecast or prediction, as that is going to happen whenever 
an investment/purchase decision is made. Deciding to conduct an investment analysis involves 
deciding whether one will use standard recognized methods to increase the accuracy and 
precision of the forecast/prediction. A decision maker will want the most accurate and precise 
forecast possible; however, there are many unknowns in predicting the future and high levels 
of accuracy/precision come at a cost.  

As mentioned previously, a computer model of a system that has less accuracy, precision, 
and/or flexibility might be more cost effective than a complex model such as a digital twin, 
given the costs of developing the model. Therefore, a decision maker needs to consider 
alternative methods (e.g., simple regression or simply tracking data) for estimating the 
parameters of the system of concern (e.g., machinery, a manufacturing plant, or a product). 
These methods may have less complexity than a digital twin, reducing costs while maintaining 
the same or similar benefits. In addition to considering alternatives, it is also important to 
consider the options in a digital twin. For instance, one might consider a digital twin of an entire 
machine or just a digital twin of a single component. 

Uniform distribution 
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Grouping model options that have common costs (e.g., multiple sensors that feed into a single 
module) can be useful in identifying cost effective model options. These groupings can be 
ranked and a selection of model/option designs (e.g., three to five model designs) might be 
developed and compared. Some example costs to consider might include the following: 

• Upfront investment cost to develop a model 

• Cost of investing in data tracking (e.g., sensors) 

• Cost of analysis 

• Cost of maintaining data tracking systems (e.g., sensors) 

• Cost of maintaining the model 

The costs need to be contrasted with the benefits to having increased accuracy, precision, and 
model flexibility, such as the following: 

• Reduction in flow time and associated costs (i.e., reduced capital and labor per unit of 
production) 

• Reduction in inventory time 

• Reduction in defects  

• Potential increase in sales due to quality or timeliness 

The net present value and internal rate of return for each possible solution or set of solutions 
might be considered to determine more specifically the optimal level of investment. The net 
present value for investing in a model or digital twin of a real-world system (versus not 
investing) might be defined as the following: 

 

𝑁𝑃𝑉(𝐷𝑇) = ∑
∑ (𝑆𝐶ℎ𝑖𝑔ℎ−𝑎𝑝𝑓,𝑥,𝑡 − 𝑆𝐶𝑙𝑜𝑤−𝑎𝑝𝑓,𝑥,𝑡)𝑋

𝑥=1 − ∑ (𝐷𝐶𝐴𝑦,𝑡)𝑌
𝑦=1 − 𝐷𝑡 − 𝑀𝑈𝑡 − 𝑂𝑇𝐻𝑡

(1 + 𝑟)𝑡

𝑇

𝑡=0

 

where 

𝑁𝑃𝑉(𝐷𝑇) = Net present value of implementing a digital twin 

𝑆𝐶ℎ𝑖𝑔ℎ−𝑎𝑝𝑓,𝑥,𝑡 = System cash inflows less outflows for cost consequence 𝑥 at time 𝑡 in the 

presence of a system forecast with increased accuracy, precision, and flexibility (high-apf)  

𝑆𝐶𝑙𝑜𝑤−𝑎𝑝𝑓,𝑥,𝑡 = System cash inflows less outflows for cost consequence 𝑥 at time 𝑡 in the 

absence of a system forecast with increased accuracy, precision, and flexibility.  

Cost Consequence = A set or grouping of cash inflows and/or outflows connected to a set of 
model parameters. For instance, minimizing the motion of a robotic arm requires tracking 
movement in x, y, and z planes (i.e., model parameters) which is connected to energy and 
maintenance costs (i.e., set of cash inflows and/or outflows) for the robot.  

𝐷𝐶𝐴𝑦,𝑡 = Data collection and analysis costs for model parameters 𝑦 at time 𝑡 

System = The process(es) and/or physical object(s) being modeled 

𝐷𝑡 = Model development costs at time 𝑡 
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𝑀𝑈𝑡 = The costs of maintaining and using the model at time 𝑡 

𝑂𝑇𝐻𝑡 = Other modeling and implementation costs at time 𝑡 not defined elsewhere  

𝑇 = Study period 

𝑋 = Total number of cost consequences 

Note that the benefit that is estimated is the result of being closer to the optimal design or 
settings while the costs are those to implement the model that provides that information. Note 
that the net present value discussed in Section 4.1 is the same as the one present here, but 
with more detail on the types of cash inflows and outflows. As the cash inflows and outflows 
are specified in more detail, the equation becomes more complex. As discussed below, the 
investment analysis also becomes more complex as we consider different options for a digital 
twin.  

To estimate the savings or increase in cash flows (i.e., the benefits) of a digital twin, one needs 
to consider how the benefits are realized. As mentioned previously, there are three categories 
of benefits for digital twins. A digital twin provides an increase in the potential for (1) precision 
and/or (2) accuracy in forecasting the outcome of a system design or system settings. 
Additionally, it might provide forecasts for many different issues, which equates to the (3) 
flexibility of the model. Each decision maker has a unique situation, but there are three fairly 
common effects that can be identified for improving precision: 

• Continuous or step effects: Although, there may be a limit, for a continuous or step 
effect each increase in precision tends to increase savings and/or cash flows. An 
example might be found in modeling a process to increase the yield from a chemical 
reaction. With each step increase in precision, the system might be changed to result in 
higher yields, resulting in increased savings and/or cash flows. However, there is some 
limit to the improvement that can be made for the system. 

• Threshold effects: There is a benefit for meeting a threshold; however, after meeting 
this threshold there are generally no savings or increased cash flows stemming from 
more precision. For instance, a bolt has to be designed to fit into a nut. Once the bolt is 
designed such that it fits correctly, there are typically few benefits from increasing the 
precision of the threads. 

• Binary effects: Similar to threshold effects, there is a benefit for achieving a particular 
design requirement; however, after meeting this goal there are generally no savings or 
increased cash flows stemming from more precision or accuracy. For instance, a switch 
is either turned on or turned off.  

In conducting an investment analysis of a digital twin, it may be necessary to estimate the 
savings or cash inflows resulting from these benefits. Threshold and binary effects might be 
seen as somewhat simpler to estimate. Once the model reaches a certain level of performance, 
the benefits are realized and there are no more benefits to incorporate thereafter. Continuous 
or step effects are somewhat more complex. If there are multiple model options for increasing 
precision for a particular forecast, one might consider estimating and/or graphing the unit 
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increase in precision per dollar of expenditure in order to identify those options with the 
highest increase in precision per dollar. 

In addition to the precision of the forecast, the accuracy is also important. High precision with 
little accuracy may be of little use for a manufacturer. In determining the value of increasing the 
accuracy of a forecast, a user would need to consider the consequences of a forecast being 
incorrect. For instance, one might measure the costs and losses of a predictive maintenance 
model failing to identify that a machine requires maintenance. Estimating the benefits of 
increased accuracy is likely to involve probabilities and calculating expected values, as there is 
typically a probability of a model being accurate or inaccurate.  

Discussing every possible scenario is outside of the scope of this report; however, some 
common issues have been discussed above. As mentioned previously, an investment analysis 
examining the adoption of a digital twin is itself a forecast. It is a forecast of the costs and 
benefits of increasing the accuracy of forecasting the performance of a system. Thus, an 
investment analysis also has some level of accuracy and precision and there are costs 
associated with increasing them. A Monte Carlo analysis can aid in considering these issues, but 
the user or manufacturer will need to decide what level of accuracy and precision is acceptable 
for their investment analysis. Typically, a decision maker would want enough 
accuracy/precision to determine that an investment has a high probability of being more 
economical than the next best investment. It is important to note that the benefit of an 
investment analysis is similar to the benefit of a digital twin, in that it is an increase in the 
accuracy of a prediction/forecast.  

Identifying the more economical choice when there are many options/alternatives that result in 
many possible scenarios (e.g., 20 possible scenarios) is more complicated than when there are 
just two scenarios (e.g., one scenario with a digital twin and one without). In the event that 
there are many options for a digital twin, the selection of options might be made by comparing 
them using a tiered ranking and selection system where there are options and sub-options. For 
instance, a model or digital twin of an automobile might have the option of modeling different 
components within the vehicle. One component might be tracking items in the alternator, 
which could be considered an option. Within this option, there might be the sub-option to track 
or place sensors on different parts of the alternator. The IRR might be the better choice for 
ranking, but NPV could be used as well. The IRR or NPV of each option or sub-option includes 
only the costs/benefits of including that option and excludes other shared costs/benefits, which 
are incorporated in the higher-level categories. This process is for simplifying the selection of 
options.  

It is important to note that an investment analysis is typically a forecast and a prediction of the 
future. Each component of a forecast has some amount of error built into it. Some of the 
components may have very high error (e.g., guestimate) while others might be small. There is 
no method of investment analysis with 100 % accuracy; thus, we often use a range of estimates 
along with sensitivity analysis. Frequently, there are unknown values in an economic 
assessment; however, there are methods and approaches that can aid in addressing these 
challenges. In order to conduct a good investment analysis, one needs to utilize the best data, 
information, and methods available to make the most accurate and precise prediction possible; 
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however, this will likely never have 100 % accuracy and precision. Recall that typically the goal 
is to increase accuracy/precision and not to achieve absolute accuracy/precision. 
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5. Estimated Costs and Benefits of Digital Twins 

The previous chapters discussed the application, structure of costs, and methods for conducting 
an investment analysis of digital twins. This chapter discusses costs and benefits for digital 
twins with a focus at the industry level. In terms of costs, there tends to be more information 
relevant to the individual firm or establishment while for benefits/impacts there tends to be 
more information at the industry level. Section 5.1 discusses estimated costs of digital twins 
while Section 5.2 discusses the estimated benefits.  

 Digital Twin Costs 

Implementing a digital twin requires some level of investment with one component being the 
software for modeling. The average selling price of a digital twin product or solution for one 
seat is $600 to $800 (Markets and Markets 2022). For instance, the cost from Microsoft is $671 
while Robert Bosch is $689 (Markets and Markets 2022). This estimate seems to include only 
the software necessary. An IT consulting firm estimates that the cost of developing a digital 
twin application or platform can be $20k to $45k for a small company, $50k to $75k for a 
midsize company, and $75k to $90k for a large company (RisingMax 2024). Note that these 
estimates also seem to be for the application and not necessarily for the entirety of the model, 
sensors, data standardization, and implementation. The programming language, level of 
complexity, and company size tend to affect the cost (RisingMax 2024). In a survey of 300 C-
level executives (i.e., chief executives) in the U.S., which included executives from aerospace, 
defense, automotive, medical device, oil/gas, and consumer electronics, an estimated 86 % 
spent $1 million or more annually on digital twins (Dertien and McMahon 2022).  

Although this report focuses on manufacturing, there are a number of case studies on applying 
digital twins to buildings that might provide some insight. For instance, a digital twin for a 
600 000 square foot office building has an estimated cost of between $1 million and $2 million 
for software and hardware with the software accounting for 30 % of the cost (Markets and 
Markets 2022). Another example of digital twins applied to buildings is a case study of seven 
building types estimated using public data (Lengthorn 2022). As seen in Table 5.1, the high-tech 
factory or laboratory building cost between $510 000 and $720 000 and has a 9-year payback 
period, which is the longest of the seven buildings examined. The shortest payback period is 4 
years for a general hospital, which cost between $2.9 million and $4.2 million. The benefits are 
primarily within operations and maintenance. Each application has its own costs and benefits; 
thus, it isn’t entirely clear how these estimates apply to manufacturing processes, but it 
provides some context. 

One challenge for implementing a digital twin is acquiring and standardizing the needed data. 
As discussed by Argolini et al. (2023), implementing a digital twin can be difficult with 
challenges in compatibility with a company’s current digital practices and environment. This can 
be one of the barriers for adopting a digital twin. Another cost to consider is the risk of 
cybercrime, as a digital twin can potentially increase the costs and losses. For instance, a digital 
twin of a factory could provide competitors with information on how a manufacturer produces 
their products. Additionally, an outside actor could alter the digital twin, resulting in damages  
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Table 5.1: Case Study in Cost to Build Digital Twin 

Building Type 

Square 
Footage 
(1000s) 

Cost per Sq Ft Total Cost ($1000s) 
Payback 
Period Low High Low High 

General Hospital 2 100 1.4 2.0 2 940 4 200 4 

High School, Secondary 
School, Training Center 

300 1.0 1.3 300 390 5 

Shopping Mall 3 000 1.3 1.9 3 900 5 700 5 

University Campus 1 000 1.4 4.9 1 400 4 900 6 

Grade A Commercial Office 600 1.9 2.7 1 140 1 620 7 

Distribution Center 300 0.9 1.2 270 360 8 

High-Tech Factory or 
Laboratory 

300 1.7 2.4 510 720 9 

Source: Lengthorn 2022 

 

or losses in production. Losses due to cybercrime are not well understood; however, 2016 
cybercrime losses in the U.S. (not specific to digital twins) were estimated by Thomas (2020) to 
be between $167.9 billion and $770.0 billion or between 0.9 % and 4.1 % of U.S. GDP, a 
substantial amount of loss that is based on business’ estimates of their losses. For 
manufacturing, the loss is between $8.3 billion and $36.3 billion or 0.4 % and 1.7 % of 
manufacturing value added. Although, in some applications digital twins might create 
vulnerability to cyber-attacks, digital twins can also be used to protect manufacturers from 
attacks by, for instance, simulating cyber-attack scenarios (Balta et al. 2023). 

 Digital Twin Benefits 

The following subsections discuss the benefits of digital twins, including those from business 
optimization/performance monitoring (Section 5.2.1), predictive maintenance (Section 5.2.2), 
inventory management (Section 5.2.3), and product design/development (Section 5.2.4). Some 
case studies that are discussed have benefits from multiple categories; thus, some subsections 
may touch on benefits that are the focus of other subsections. Primarily three datasets are 
utilized for the estimates below, including the Manufacturing Energy Consumption Survey (U.S. 
Department of Energy 2017), which is referred to as DOE data; Annual Survey of Manufactures 
(U.S. Census Bureau 2022), which is referred to as ASM data; and NIST’s Manufacturing Cost 
Guide (Thomas 2019a), which is referred to as the MCG data.  

5.2.1. Business Optimization and Performance Monitoring 

A digital twin can be used to optimize the use and positioning of onsite physical assets and/or 
physical assets in the supply chain. Some of the benefits of business optimization in 
manufacturing using digital twins might include the following: 

• Onsite benefits 
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o Reduced machinery motion and movement 

▪ Decreased flow time resulting in reduced capital per unit of production 

▪ Reduced energy per unit of production 

o Reduced human motion 

▪ Reduced labor per unit of production 

▪ Decreased flow time 

o Optimize facility layout 

▪ Reduced capital expenditures on facilities 

▪ Reduced movement of goods 

• Reduced inventory 

o Optimize energy utilization 

▪ Reduced energy costs 

• Supply chain benefits 

o Reduced inventory needed to buffer disruptions and delays 

o Increase in customers due to fewer delays 

o Reduced risk of supply chain disruption 

These benefits amount to reductions in flow time, energy for production, production labor, 
inventory costs, and capital for buildings. Although the total possible savings for manufacturing 
for each of these is not precisely known, approximations can provide insight such that it 
reduces error in predicting/estimating possible savings.  

The list of benefits above results in six cost savings categories, including cost reductions in the 
following: onsite material transport, machinery, production labor, energy, production space 
(e.g., square footage), and work-in-process flow time. To estimate the savings that can be 
realized from a digital twin or modeling, one can start by estimating the cost savings per 1 % 
decrease in these six costs. 

Onsite Material Transport: Onsite material transport can be approximated by estimating 1 % of 
the cost for energy, labor, and machinery for onsite transport. Energy is estimated by taking the 
DOE estimated proportion of Btu’s for onsite transport and multiplying it by the ASM’s estimate 
for fuel and electricity costs. The proportion of onsite transport labor calculated from MCG data 
is used to determine the applicable proportion of machinery; thus, this proportion is multiplied 
by both the ASM’s labor cost (i.e., payroll plus fringe benefits) and an estimate of machinery 
(𝑀𝑎𝑐ℎ𝑂𝑛𝑠𝑖𝑡𝑒), which includes both onsite transport machinery and production machinery: 

𝑂𝑀𝑇 = 𝐶𝑅 ∗ (
𝑂𝑇𝐵𝑡𝑢

𝑇𝑂𝑇𝐵𝑡𝑢
∗ (𝐹𝑈𝐸𝐿 + 𝐸𝐿𝐸𝐶𝑇) +

𝐿𝑎𝑏𝑂𝑛𝑠𝑖𝑡𝑒 𝑇𝑟𝑎𝑛𝑠

𝐿𝑎𝑏𝑇𝑜𝑡𝑎𝑙

(𝐴𝑃 + 𝐹𝐵 + 𝑀𝑎𝑐ℎ𝑂𝑛𝑠𝑖𝑡𝑒)) 

where 

𝑀𝑎𝑐ℎ𝑂𝑛𝑠𝑖𝑡𝑒 =  
𝐶𝑂𝑡ℎ 𝑀𝑎𝑐ℎ

𝐶𝑀𝑎𝑐ℎ
∗ (𝐶𝑀𝑎𝑐ℎ + 𝐶𝑀𝑎𝑐ℎ 𝑅𝑒𝑛𝑡) 

and where 
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𝑂𝑀𝑇 = Savings from a 1 % reduction in the cost of onsite material transport 

𝐶𝑅 = Percent cost reduction (i.e., 1 %) 

𝑂𝑇𝐵𝑡𝑢 = Total BTUs for onsite transport from DOE  

𝑇𝑂𝑇𝐵𝑡𝑢 = Total BTUs for all activities from DOE 

𝐹𝑈𝐸𝐿 = Cost of purchased fuels consumed from ASM  

𝐸𝐿𝐸𝐶𝑇 = Cost of purchased electricity from ASM 

𝐴𝑃 = Annual payroll 

𝐹𝐵 = Fringe benefits 

𝐶𝑂𝑡ℎ 𝑀𝑎𝑐ℎ = Capital expenditures on “all other machinery and equipment,” which includes 
machinery for production, from ASM 

𝐶𝑀𝑎𝑐ℎ = Capital expenditures on machinery and equipment from ASM 

𝐶𝑀𝑎𝑐ℎ 𝑅𝑒𝑛𝑡 = Rental and lease payments for machinery and equipment 

𝐿𝑎𝑏𝑂𝑛𝑠𝑖𝑡𝑒 𝑇𝑟𝑎𝑛𝑠 = Labor costs for onsite transport of materials estimated from the MCG tool. It 
includes Standard Occupational Classification (SOC) 537011, 537021, 537062, 537063, and 
537064. 

𝐿𝑎𝑏𝑇𝑜𝑡𝑎𝑙 = Labor costs for all manufacturing from the MCG tool. 

Machinery for Production: Machinery for production can be estimated by taking the 
proportion that the “other” category in the ASM data represents and multiplying it by the sum 
of the capital expenditures on and rental payments for machinery. The machinery in this 
category, which excludes computers, automobiles, and trucks, that is not used for onsite 
transport is assumed to be for production. Therefore, the result is multiplied by one minus the 
ratio for onsite transportation labor. The product is multiplied by the 1 % cost reduction 
estimate.  

𝑀𝑎𝑐ℎ = 𝐶𝑅 ∗ 𝑀𝑎𝑐ℎ𝑂𝑛𝑠𝑖𝑡𝑒 ∗ (1 −
𝐿𝑎𝑏𝑂𝑛𝑠𝑖𝑡𝑒 𝑇𝑟𝑎𝑛𝑠

𝐿𝑎𝑏𝑇𝑜𝑡𝑎𝑙
) 

where 

𝑀𝑎𝑐ℎ = Cost of machinery for production 

 

Production Labor: Production labor is estimated by taking the proportion of labor costs from 
the MCG tool and multiplying by the sum of payroll and fringe benefits from the ASM data. The 
result is multiplied by the 1 % cost reduction.  

𝑃𝐿 = 𝐶𝑅 ∗ (𝐴𝑃 + 𝐹𝐵) ∗
𝐿𝑎𝑏𝑃𝑟𝑜𝑑

𝐿𝑎𝑏𝑇𝑜𝑡𝑎𝑙
 

where 

𝑃𝐿 = Savings from a 1 % reduction in the cost of production labor  
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𝐿𝑎𝑏𝑃𝑟𝑜𝑑 = Labor costs for production workers and managers, including (Standard Occupation 
Code) SOC 113051 and 510000 

 

 

Production Energy: Production energy is estimated by taking the proportion of Btu’s estimated 
for processes from the DOE and multiplying it by the cost of fuels and electricity from the ASM. 
The result is multiplied by a 1 % cost reduction. 

𝑃𝐸 = 𝐶𝑅 ∗
𝑃𝑟𝑜𝑐𝐵𝑡𝑢

𝑇𝑂𝑇𝐵𝑡𝑢
∗ (𝐹𝑢𝑒𝑙 + 𝐸𝑙𝑒𝑐𝑡) 

where 

𝑃𝐸 = Cost savings from a 1 % reduction in energy for production 

𝑃𝑟𝑜𝑐𝐵𝑡𝑢 = Total Btu for processes from the DOE 

 

Production Space: The cost of production space is 1 % of the sum of the capital expenditures on 
buildings, rental payments for buildings, labor for building cleaning/maintenance (𝐵𝐿), building 
energy use (𝐸𝐵𝑙𝑑𝑔), and purchased building maintenance (𝑃𝐵𝑀) services. It is assumed that on 

average half of the building space is for production while the other half is for inventory. The 
ratio of building labor maintenance to total labor from the MCG tool is multiplied by annual 
payroll and fringe benefits to estimate labor for building cleaning/maintenance. Energy 
attributed to the building is the ratio of Btu’s for HVAC, lighting, and facility support estimated 
from DOE data multiplied by the costs of fuel and electricity from the ASM. The ratio of labor 
for building grounds cleaning and maintenance to the total for labor for both machinery and 
building maintenance is multiplied by purchased maintenance from the ASM to estimate the 
purchased building maintenance.                         

𝑃𝑆 = 𝐶𝑅 ∗ (𝑃𝐵𝑀 + 0.5 ∗ (𝐶𝐵𝑙𝑑𝑔 + 𝐶𝐵𝑙𝑑𝑔 𝑅𝑒𝑛𝑡 + 𝐵𝐿 + 𝐸𝐵𝑙𝑑𝑔)) 

where 

𝐵𝐿 =
𝐿𝑎𝑏𝐵𝑙𝑑𝑔

𝐿𝑎𝑏𝑇𝑜𝑡𝑎𝑙
∗ (𝐴𝑃 + 𝐹𝐵) 

𝐸𝐵𝑙𝑑𝑔 =
𝐵𝑙𝑑𝑔𝐵𝑡𝑢

𝑇𝑂𝑇𝐵𝑡𝑢
∗ (𝐹𝑢𝑒𝑙 + 𝐸𝑙𝑒𝑐𝑡) 

𝑃𝐵𝑀 = 𝑃𝑀 ∗
𝐿𝑎𝑏𝐵𝑙𝑑𝑔

𝐿𝑎𝑏𝐵𝑙𝑑𝑔 + 𝐿𝑎𝑏𝑀𝑎𝑐ℎ 𝑀𝑎𝑖𝑛𝑡
 

 

𝑃𝑆 = Cost savings from 1 % reduction in needed production space 

𝐿𝑎𝑏𝐵𝑙𝑑𝑔 = Cost of labor for building and grounds cleaning and maintenance (SOC 370000) from 

the MCG tool 
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𝐵𝑙𝑑𝑔𝐵𝑇𝑈 = Sum of Btu for HVAC, lighting, and facility support from DOE. 

𝑃𝑀 = Purchased repair and maintenance services of buildings and/or machinery  

𝐿𝑎𝑏𝑀𝑎𝑐ℎ 𝑀𝑎𝑖𝑛𝑡 = Labor costs for installation, maintenance, and repair (SOC 490000) from the 
MCG tool 

Materials and Packaging: Materials and packaging is the value of materials and packaging from 
the ASM multiplied by 1 %.  

𝑀𝑃 = 𝐶𝑅 ∗ 𝑀𝑃𝐴𝑆𝑀 

Where 

𝑀𝑃 = Materials and packaging saved  

𝑀𝑃𝐴𝑆𝑀 = Materials and packaging from the Annual Survey of Manufactures 

 

 

Work-in-Process Flow Time: Savings from reduced work-in-process time is the sum of the 
production space saved, machinery reduction, and production labor.  

𝑊𝐼𝑃 = 𝑃𝑆 + 𝑀𝑎𝑐ℎ + 𝑃𝐿 

where 

𝑊𝐼𝑃 = Savings from a 1 % reduction in the work-in-process time 

Some of the estimates assume ratios of labor costs and those for machinery or buildings are the 
same. Although this is unlikely to be strictly true, it provides a reasonable estimate. Table 5.2 
uses the equations above to estimate a 1 % reduction in each item. Appendix A provides 
estimates for each of the items listed above. This provides context for potential cost savings 
both at the firm level, as the percentages provide average industry savings, and the industry 
level. The largest cost savings is in materials and packaging followed by work-in-process time, 
which affects multiple cost areas.  

The estimates above determine a 1 % change in costs. A multiplier is needed to estimate the 
reduction in costs from digital twins. Some insight might be gained from case studies and other 
research. An example of an onsite application is in a case study of an automotive manufacturing 
plant where a digital twin investment resulted in decreasing the average time to manufacture a 
car from 14-17 hours down to 9-10 hours, resulting in a 41 %-54 % increase in profits (Miskinis 
2018). Machine downtime was reduced by 37 %. Note that if all of automobile manufacturing 
(NAICS 334) experienced a 41 % to 54 % decrease in work-in-process time, it would equate to a 
19.1 % to 25.2 % increase in profits, estimated using the methods from above and data from 
Table A. 7, which is about half of what this individual facility experienced. Some of the 
improvements made in the auto manufacturing example would be difficult to achieve without a 
complex model such as a digital twin. For instance, one improvement was reducing automated 
machine movement. The change in this instance resulted in reducing a particular movement 
from 1.235-1.267 seconds down to 0.70 seconds to get from one point to another. Although 
this seems small, when it is performed thousands of times it adds up. Flow time has a 
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significant impact on the efficiency of production. Every moment that a good is in production or 
inventory it is consuming resources (e.g., factories, warehouses, and machinery). Flow time can 
be thought of as water flowing through a hose into a bucket. To meet the demand for water, 
one can either have multiple hoses flowing at a slow rate or one hose that flows at a fast rate. 
The slow rate (i.e., long flow time) means more resources (e.g., more hoses) are needed than  

 

Table 5.2: Business Optimization Savings from a 1 % Reduction in Cost 

  Among Three Digit NAICS   

  High Low Median Mean TOTAL 

Shipments ($million) 827 132 4 009 156 041 248 635 5 221 325 

Value Added ($million) 352 469 1 840 66 577 100 354 2 107 441 

Profit ($million) 247 307 505 33 871 49 521 1 039 932 

Onsite Material Transport 79.9 0.4 8.6 13.8 289.4 

As a Percent of Shipments 0.02% 0.00% 0.01% 0.01% 0.01% 

As a Percent of Value Added 0.04% 0.00% 0.02% 0.02% 0.01% 

As a Percent of Profit 0.08% 0.01% 0.04% 0.04% 0.03% 

Machinery ($millions) 215.8 0.5 41.7 60.2 1 264.5 

As a Percent of Shipments 0.04% 0.01% 0.02% 0.02% 0.02% 

As a Percent of Value Added 0.17% 0.02% 0.05% 0.06% 0.06% 

As a Percent of Profit 0.38% 0.04% 0.12% 0.14% 0.12% 

Production Labor ($millions) 579.2 5.7 100.8 166.6 3 498.7 

As a Percent of Shipments 0.15% 0.02% 0.08% 0.09% 0.07% 

As a Percent of Value Added 0.31% 0.05% 0.22% 0.20% 0.17% 

As a Percent of Profit 1.12% 0.06% 0.51% 0.50% 0.34% 

Energy for Production 138.2 0.3 17.4 28.2 593.0 

As a Percent of Shipments 0.03% 0.00% 0.01% 0.01% 0.01% 

As a Percent of Value Added 0.12% 0.01% 0.02% 0.03% 0.03% 

As a Percent of Profit 0.27% 0.01% 0.05% 0.07% 0.06% 

Production Space  65.2 0.4 11.3 19.8 415.0 

As a Percent of Shipments 0.02% 0.00% 0.01% 0.01% 0.01% 

As a Percent of Value Added 0.03% 0.01% 0.02% 0.02% 0.02% 

As a Percent of Profit 0.10% 0.02% 0.05% 0.05% 0.04% 

Materials and Packaging 5 223.0 15.8 580.7 1 236.1 25 957.7 

As a Percent of Shipments 0.74% 0.31% 0.44% 0.45% 0.50% 

As a Percent of Value Added 5.36% 0.56% 0.97% 1.23% 1.23% 

As a Percent of Profit 11.75% 0.74% 2.33% 2.88% 2.50% 

WIP Flow Time 777.2 6.6 154.4 245.3 5 151.2 

As a Percent of Shipments 0.18% 0.04% 0.12% 0.12% 0.10% 

As a Percent of Value Added 0.37% 0.09% 0.31% 0.28% 0.24% 

As a Percent of Profit 1.30% 0.12% 0.75% 0.69% 0.50% 
NOTE: WIP is the work-in-process flow time. 
NOTE: The different savings categories should not be added together, as they overlap. 
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the fast rate (i.e., short flow time). Thus, if the time is reduced, then the resources consumed 
are reduced. 

Another example of optimization is from a cement factory project in China, which cost almost 
$136 million and has a production capacity of 4500 tons (Montague 2021). Using a digital twin 
and a 3D equipment model, operation and maintenance costs were reduced by 30 %. Reduced 
equipment maintenance costs saved an estimated $2 million while reduced electricity 
consumption is expected to save $1.24 million. Modeling also reduced construction time by 3 
months, saving $3 million and reduced equipment costs by 1.5 % by enabling pre-installation of 
equipment. Design changes were reduced by 80 %.  

5.2.2. Predictive Maintenance 

As discussed previously, there are three primary approaches to manufacturing machinery 
maintenance (Jin et al. 2016a; Jin et l. 2016b). The most advanced is predictive maintenance 
(PdM), which is analogous to condition-based maintenance, and is initiated based on 
predictions of failure made using observed data such as temperature, noise, and vibration. The 
second is preventive maintenance (PM), which is typically scheduled, planned, timed, or based 
on a cycle. The final maintenance strategy is reactive maintenance, which is often referred to as 
run-to-failure, corrective maintenance, failure-based maintenance, and breakdown 
maintenance, and is typically done after equipment has failed to produce a product within 
desired quality or production targets, or after the equipment has stopped altogether. 

There are at least four loss categories due to maintenance issues associated with reactive and 
preventive maintenance, including unplanned downtime, defects in products, lost sales due to 
delays or defects, and injuries. Unplanned downtime occurs when machinery unexpected stops 
working due to a maintenance issue. When this happens it leaves labor and machinery 
unexpectedly idle. Defects can occur when machinery wears down and moves out of tolerance. 
Both defects and downtime can result in lost customers. Finally, injuries can occur when 
machinery breaks down in catastrophic ways.  

Digital twins can be used for predictive maintenance to model machinery, predict when 
maintenance or parts are needed, and plan maintenance rather than reacting to a breakdown. 
For instance, a costumer of GE Aviation indicated that predictive maintenance improved their 
time on wing (i.e., operational reliability of an aircraft) by 20 % (Careless 2021). However, 
predictive maintenance is not cost effective for all situations, rather it is likely more cost 
effective at higher levels of system complexity and/or higher cost consequences, as discussed 
previously. For instance, predictive maintenance is not cost effective for a light bulb, as the cost 
consequence of breakdown (i.e., the bulb burning out) is very low and there is, typically, 
redundancy in the system where there are multiple lighting sources. It is also important to note 
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that not all predictive maintenance programs use digital twins. Benefits of applying digital twins 
for predictive maintenance can include, but are not limited to the following: 

• Reduced safety risk 

• Improved product quality 

o Fewer defects and rework 

o Potential increase in customer base 

• Reduced downtime and flowtime 

o Reduced labor per unit 

o Reduced energy per unit 

o Reduced capital per unit 

• Reduce costs due to faults and failures (e.g., damaged equipment) 

• Reduced delays 

o Potential increase in customers 

• Reduced inventory needed to buffer for downtime 

The total maintenance costs, losses due to non-optimal maintenance practices, and lost 
customers is not well understood for all of the U.S. manufacturing industry; however, NIST 
Advanced Manufacturing Series 100-34 (Thomas and Weiss 2020) examines maintenance costs 
and losses due to non-optimal maintenance for discrete manufacturing, which includes the 
following: 

• NAICS 321: Wood Product Manufacturing 

• NAICS 322: Paper Manufacturing 

• NAICS 323: Printing and Related Support Activities 

• NAICS 326: Plastics and Rubber Products Manufacturing 

• NAICS 327: Nonmetallic Mineral Product Manufacturing 

• NAICS 331: Primary Metal Manufacturing 

• NAICS 332: Fabricated Metal Product Manufacturing 

• NAICS 333: Machinery Manufacturing 

• NAICS 334: Computer and Electronic Product Manufacturing 

• NAICS 335: Electrical Equipment, Appliance, and Component Manufacturing 

• NAICS 336: Transportation Equipment Manufacturing 

• NAICS 337: Furniture and Related Product Manufacturing 

• NAICS 339: Miscellaneous Manufacturing 

The manufacturing industries that are absent or not part of the examination include food 
manufacturing (NAICS 311), beverage and tobacco products (NAICS 312), textile mills (NAICS 
313), textile products (NAICS 314), apparel and leather (NAICS 315 and 316), petroleum 
products (NAICS 325), and chemical products (NAICS 324). Although not all predictive 
maintenance programs necessarily utilize digital twins, this study provides some context the 
extent of benefits that might occur by employing digital twins to maintenance.   

2016 Machinery maintenance expenditures for NAICS 321-339 (excluding 324 and 325) were 
estimated to be $57.3 billion. Additional expenditures due to faults and failures were estimated 
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at $16.3 billion and costs for inventory to buffer against maintenance issues costed $0.9 billion. 
In total, these maintenance activities costed $74.5 billion, as shown in Table 5.3. To put this in 
perspective, the 2016 shipments for these industries were $3213.1 billion and the value added 
was $1503.7, making the sum of these costs to be 2.3 % of shipments and 5.0 % of value added.  

 

 

Table 5.3: Costs and Losses Associated with Maintenance for Discrete Manufacturing 

  
Estimate 
($2016 
Billion) 

As a 
percent of 
Shipments 

As a 
percent of 

Value 
Added 

90 % Confidence 
Interval 

Costs 74.5 2.3% 5.0% 50.8 103.3 

Direct Maintenance Costs 57.3 1.8% 3.8% 42.4 72.2 

Costs due to Faults and Failures 16.3 0.5% 1.1% 7.1 25.5 

Inventory Costs 0.9 0.0% 0.1% 1.3 5.6 

Losses 119.1 3.7% 7.9% 43.9 197.3 

Unplanned Downtime 18.1 0.6% 1.2% 10.4 27.8 

Labor 13.5 0.4% 0.9% 7.1 22.1 

Capital Depreciation Buildings 2.5 0.1% 0.2% 1.8 3.1 

Capital Depreciation Machinery 1 0.0% 0.1% 0.7 1.2 

Energy 1.1 0.0% 0.1% 0.8 1.4 

Defects 0.8 0.0% 0.1% 0 2.7 

Lost Sales 100.2 3.1% 6.7% 33.5 166.8 

Due to Defects 31.2 1.0% 2.1% 3.6 58.7 

Due to Delays 69 2.1% 4.6% 29.8 108.1 

Total Costs and Losses 193.6 6.0% 12.9% 94.7 300.7 

Data Source: Thomas and Weiss 2020 

 

A 1 % savings due to an increase in advanced maintenance (𝐴𝑀) can be estimated by summing 
the savings from reduced faults and failures (𝐴𝐿), reduced downtime (𝐷𝑜𝑤𝑛), reduced defects 
(𝐷𝑒𝑓), reduced inventory to buffer delays (𝐼𝑛𝑣), and reduced lost sales (𝐿𝑆𝑎𝑙𝑒𝑠) multiplied by 
the percent cost reduction:  

𝐴𝑀 = 𝐶𝑅 ∗ (𝐴𝐿 + 𝐷𝑜𝑤𝑛 + 𝐷𝑒𝑓 + 𝐼𝑛𝑣) + 𝐿𝑆𝑎𝑙𝑒𝑠 

 

𝐴𝐿 = 𝐴𝐿𝑅𝑎𝑡𝑖𝑜 ∗ 𝑆𝐻𝐼𝑃𝐴𝑆𝑀 

𝐷𝑜𝑤𝑛 = 𝑅𝑀 ∗ 𝑃𝑒𝑟𝑐𝐷𝑜𝑤𝑛 ∗ 𝑊𝐼𝑃 

𝐷𝑒𝑓 = 𝑃𝑒𝑟𝑐𝐷𝑒𝑓 ∗ (𝑀𝑃 + 𝑃𝑆 + 𝑃𝐸 + 𝑃𝐿 + 𝑀𝑎𝑐ℎ + 𝑂𝑀𝑇) 

𝐼𝑛𝑣 = 𝑃𝑒𝑟𝑐𝐼𝑛𝑣 ∗ 𝑃𝑆 
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𝐿𝑆𝑎𝑙𝑒𝑠 = (
𝐶𝑅 ∗ 𝑆𝐻𝐼𝑃𝐴𝑆𝑀

(1 − 𝐶𝑅)
) ∗ (𝐿𝑆𝑎𝑙𝑒𝑠𝐷𝑒𝑓 + 𝐿𝑆𝑎𝑙𝑒𝑠𝐷𝑒𝑙𝑎𝑦) 

Where 

𝐴𝐿𝑅𝑎𝑡𝑖𝑜 = Ratio of Additional Losses to Shipments from Table 4.3 in Thomas and Weiss (2020). 
Note that from the table, ID 10 through 13 were utilized, where ID 13 was applied to those 
NAICS codes not covered by the table. 

𝑆𝐻𝐼𝑃𝐴𝑆𝑀 = Shipments from ASM data. 

𝑅𝑀 = Percent of downtime due to reactive maintenance from Table 5.1 in Thomas and Weiss 
(2020). Note that ID 14 through ID 17 were used from the table, where ID 17 was applied to 
those NAICS codes not covered by the table. 

𝑃𝑒𝑟𝑐𝐷𝑜𝑤𝑛 = Percent of Planned Production Time that is Downtime from Table 5.1 in Thomas 
and Weiss (2020). Note that ID 14 through ID 17 were used from the table, where ID 17 was 
applied to those NAICS codes not covered by the table. 

𝑃𝑒𝑟𝑐𝐷𝑒𝑓 = Percent of defects due to reactive maintenance Downtime from Table 5.2 in 
Thomas and Weiss (2020). Note that ID 14 through ID 17 were used from the table, where ID 17 
was applied to those NAICS codes not covered by the table. 

𝑃𝑒𝑟𝑐𝐼𝑛𝑣 = Percent of inventory due to maintenance Downtime from Table 4.4 in Thomas and 
Weiss (2020). Note that ID 10 through ID 13 were used from the table, where ID 13 was applied 
to those NAICS codes not covered by the table. 

𝐿𝑆𝑎𝑙𝑒𝑠𝐷𝑒𝑓 = Percent of lost sales attributed to defects resulting from inadequate machinery 

maintenance from Table 5.3 in Thomas and Weiss (2020). Note that ID 14 through ID 17 were 
used from the table, where ID 17 was applied to those NAICS codes not covered by the table. 

𝐿𝑆𝑎𝑙𝑒𝑠𝐷𝑒𝑙𝑎𝑦 = Percent of lost sales attributed to delays resulting from inadequate machinery 

maintenance from Table 5.3 in Thomas and Weiss (2020). Note that ID 14 through ID 17 were 
used from the table, where ID 17 was applied to those NAICS codes not covered by the table. 

Table 5.4 provides an estimate of an arbitrary 1 % reduction in losses/costs due to inadequate 
maintenance. Note that a multiplier is needed to estimate the total reduction in losses/costs. 
The total estimated 1 % savings is $3.7 billion, which amounts to 0.07 % of shipments, 0.174 % 
of value added, and 0.353 % of profits. Much of these savings would overlap with those in 
Section 5.2.1 except for savings due to a decrease in lost sales. 

5.2.3. Inventory Management 

Determining the level of inventory to maintain involves forecasting or predicting deliveries and 
sales. Many of the common approaches do not involve complex mathematics but rather might 
include using moving averages. The methods might be a little more complex by utilizing 
regression analysis. A more advanced examination might include a digital twin; however, the 
data that is likely needed for such a model might be difficult to gather for some manufacturers. 
A large manufacturer that is producing and shipping items from its own facilities to its own 
facilities or one that can demand information from its suppliers is likely to benefit more from  
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Table 5.4: Savings from a 1 % Reduction in Losses/Costs Due to Inadequate Maintenance 
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311 827 132 293 175 170 102 642.2 0.078% 0.219% 0.378% 

312 156 041 91 160 70 024 116.3 0.075% 0.128% 0.166% 

313 24 531 9 665 4 256 19.9 0.081% 0.206% 0.468% 

314 21 286 9 608 4 036 19.3 0.091% 0.201% 0.477% 

315 8 428 4 187 1 378 9.3 0.111% 0.223% 0.678% 

316 4 009 1 840 505 3.6 0.090% 0.195% 0.712% 

321 117 715 49 558 23 225 93.5 0.079% 0.189% 0.403% 

322 180 344 68 877 34 436 144.2 0.080% 0.209% 0.419% 

323 74 428 38 521 13 181 77.4 0.104% 0.201% 0.587% 

324 361 888 50 025 22 848 213.9 0.059% 0.428% 0.936% 

325 696 046 352 469 247 307 548.2 0.079% 0.156% 0.222% 

326 235 404 103 839 45 516 213.4 0.091% 0.205% 0.469% 

327 132 981 66 577 33 871 107.5 0.081% 0.161% 0.317% 

331 200 919 63 404 27 489 146.1 0.073% 0.230% 0.532% 

332 347 336 169 391 62 450 326.3 0.094% 0.193% 0.523% 

333 355 335 156 243 59 554 243.9 0.069% 0.156% 0.409% 

334 312 277 154 292 56 323 235.7 0.075% 0.153% 0.418% 

335 128 342 58 971 27 424 52.7 0.041% 0.089% 0.192% 

336 821 412 250 415 84 331 300.3 0.037% 0.120% 0.356% 

337 68 999 33 333 11 994 69.8 0.101% 0.209% 0.582% 

339 146 475 81 890 39 683 85.2 0.058% 0.104% 0.215% 

High 827 132 352 469 247 307 642.2 0.111% 0.428% 0.936% 

Low 4 009 1 840 505 3.6 0.037% 0.089% 0.166% 

Median 156 041 66 577 33 871 116.3 0.079% 0.195% 0.419% 

Mean 248 635 100 354 49 521 174.7 0.078% 0.189% 0.450% 

TOTAL 5 221 325 2 107 441 1 039 932 3 668.5 0.070%* 0.174%* 0.353%* 
* Calculated from the total of all manufacturing 
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this approach than a small manufacturer that would struggle to gather information from their 
suppliers. The benefits of a digital twin for inventory management include, but are not limited 
to the following: 

• Increase in potential accuracy in predicting material delivery (upstream and/or 

downstream) 

• Reduced inventory needed to buffer delays 

• Reduced risk of downtime due to delivery delays 

• Shorter delivery times 

• Fewer supply chain disruptions 

Some insight in inventory management investments might be gained from the Department of 
Energy (DOE) Industrial Assessment Center (IAC) program. The program has a publicly available 
database of 148 000 recommendations for 20 000 facilities, as of October 2021. The data is the 
result of DOE technical assessments of facilities conducted by university engineering students 
and staff from 26 IACs made up of 31 universities (Industrial Assessment Center 2021; U.S. 
Department of Energy 2011). Each observation in the IAC database is a recommendation for an 
investment. It includes an Assessment Recommendation Code (ARC), the cost to implement the 
recommendation, estimated annual savings, year, whether the recommendation was 
implemented, and some characteristics of the establishment including sales, various energy 
expenditures, and number of employees. For the IAC to conduct an assessment, a facility must 
generally have the following: gross annual sales of $100 million or less, consume energy at a 
cost greater than $100 000 and less than $2.5 million per year, employ no more than 500 
people, and have no technical staff whose primary duty is energy analysis (U.S. Department of 
Energy 2011). These requirements suggest that the facilities being examined are likely to have a 
relatively higher level of low-cost, high-return investment possibilities, as these establishments 
have higher costs (i.e., energy costs) and fewer resources to identify potential investments. The 
final selection is left up to the individual IACs. 

Using the IAC data, the net present value (NPV) and internal rate of return of each ARC 
recommendation code for inventory controls (ARC 4.32) was calculated for a 10-year study 
period using data from the IAC, as estimated in Thomas (2022). The results are presented in 
Table 5.5. Note that some had a negative NPV and/or IRR, where a longer study period would 
likely result in positive returns. The NPV for these investments ranged between $-32 thousand 
to $9 million. The NPV equates to between -0.21 % to 19.31 % of the sales of the organizations.  

An estimate of a 1 % savings in inventory space can be calculated similar to how production 
space was estimated: 

𝐼𝑆 = 𝐶𝑅 ∗ (𝑃𝐵𝑀 + 0.5 ∗ (𝐶𝐵𝑙𝑑𝑔 + 𝐶𝐵𝑙𝑑𝑔 𝑅𝑒𝑛𝑡 + 𝐵𝐿 + 𝐸𝐵𝑙𝑑𝑔)) 

Where 

𝐼𝑆 = Savings from a 1 % reduction in inventory space 

In addition to examining the IAC data, one can estimate cost savings that result from a 1 % 
decrease in inventory. Table 5.6 provides estimates of a 1 % reduction in inventory space by 
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three-digit NAICS codes. For the three-digit NAICS codes, the highest savings from a 1 % 
reduction is $55 million while the lowest is $0.4 million. The total for manufacturing is $388.0 
million, which equates to 0.007 % of shipments, 0.018 % of value added, and 0.037 % of profit. 
The rule of thumb is that carrying costs are typically 20 % of the value of inventory (Tuovila 
2019; Wasp Barcode Technologies 2020). If this rule is accurate, the costs in Table 5.6 are likely 
an underestimate, as estimating a similar value for manufacturing using the 20 % rule results in 
an estimate that is about 2.3 times larger than the total for manufacturing in Table 5.6. The 
source of this difference is likely that the data in the table excludes insurance, depreciation, 
shrinkage, damage/spoiled inventory, and obsolescence. 

 

Table 5.5: Economic Analysis of Investments in Inventory Controls (ARC 4.32), 2000-2020 
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Average 36.06 152 588.3 2.02% 1241% 28.9 79.9 

Median 20.00 122 149.3 0.74% 191% 8.5 22.5 

Minimum 1.00 11 -31.8 -0.21% -87% 303.0 0.0 

Maximum 400.00 600 9 019.2 19.31% 22800% 1.0 1 170.0 

Total 4 002.71 14 592 65 299.1 1.63% - 3 212.3 88 660.4 
NOTE: This analysis was for investment recommendations in inventory controls where the investment was at least 
$1000, the firm had at least $1 in sales, and had at least 1 employee. This resulted in 111 recommendations for 
106 firms out of 10 356 establishments visited.  

5.2.4. Product Design and Development 

Digital twins can aid in the design of products. Some products benefit more than others from 
improved designs, particularly those that involve complex systems. The benefits of improved 
product design and development can include, but are not limited to the following: 

• Shorter design times 

o Reduced engineering costs 

• Fewer prototypes and higher first-pass yield 

• Decrease in redesigns needed 

• Higher quality product 

o Increased customer satisfaction 

o Increased sales 

In conversations with R&D leaders, Argolini et al. (2023) reported that some have cut 
development times by 20 % to 50 %, reducing the costs of design and development. Some also  
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Table 5.6: Cost Savings from a 1 % Decrease in Building space for Inventory 
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311 827 132 293 175 170 102 55.0 0.007% 0.019% 0.032% 

312 156 041 91 160 70 024 10.5 0.007% 0.011% 0.015% 

313 24 531 9 665 4 256 1.9 0.008% 0.020% 0.046% 

314 21 286 9 608 4 036 2.3 0.011% 0.024% 0.056% 

315 8 428 4 187 1 378 1.4 0.016% 0.033% 0.099% 

316 4 009 1 840 505 0.4 0.010% 0.021% 0.077% 

321 117 715 49 558 23 225 8.6 0.007% 0.017% 0.037% 

322 180 344 68 877 34 436 13.7 0.008% 0.020% 0.040% 

323 74 428 38 521 13 181 10.1 0.014% 0.026% 0.077% 

324 361 888 50 025 22 848 9.0 0.002% 0.018% 0.039% 

325 696 046 352 469 247 307 53.8 0.008% 0.015% 0.022% 

326 235 404 103 839 45 516 25.0 0.011% 0.024% 0.055% 

327 132 981 66 577 33 871 10.6 0.008% 0.016% 0.031% 

331 200 919 63 404 27 489 11.5 0.006% 0.018% 0.042% 

332 347 336 169 391 62 450 38.3 0.011% 0.023% 0.061% 

333 355 335 156 243 59 554 30.1 0.008% 0.019% 0.051% 

334 312 277 154 292 56 323 33.1 0.011% 0.021% 0.059% 

335 128 342 58 971 27 424 7.7 0.006% 0.013% 0.028% 

336 821 412 250 415 84 331 39.3 0.005% 0.016% 0.047% 

337 68 999 33 333 11 994 9.1 0.013% 0.027% 0.076% 

339 146 475 81 890 39 683 16.6 0.011% 0.020% 0.042% 

High 827 132 352 469 247 307 55.0 0.016% 0.033% 0.099% 

Low 4 009 1 840 505 0.4 0.002% 0.011% 0.015% 

Median 156 041 66 577 33 871 10.6 0.008% 0.020% 0.046% 

Mean 248 635 100 354 49 521 18.5 0.009% 0.020% 0.049% 

TOTAL 5 221 325 2 107 441 1 039 932 388.0 0.007%* 0.018%* 0.037%* 

 

reported that they needed fewer prototypes and had 25 % fewer quality issues and 3 % to 5 % 
higher sales. Based on data from Siemens, aerospace companies that employ digital twins have 
improved first-pass yield to 75 % for designs, reducing physical testing by 25 % (Careless 2021). 
Altum RF, which produces high-performance radio frequency semiconductor components such 
as those for 5G networks, reduced its design process by 30 % (Hodge 2023). In this instance, 
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digital twins increased collaboration by creating real-time visibility of progress and changes. It 
also allowed for first-pass success where, rather than producing prototypes that failed and 
redesigned, the first prototype was successful.  

A recent case study that is relevant to the quality of design data is found in the 787 Dreamliner 
where Boeing took a new approach for production. While Boeing’s previous production 
methods custom-built each airplane at a single location, Airbus had embraced modular design 
where subassemblies were manufactured offsite and then shipped to one location for 
assembly. Boeing had decided to adopt a similar method of production for the 787 Dreamliner 
where subassemblies would be sourced from other companies. Sections of the plane would be 
built all over the world with the forward fuselage built in Japan, the wingtips from Korea, the 
center fuselage from Italy, and other parts from Australia, England, Sweden, and the United 
States.  
 
This method would require rapid, efficient, and accurate transfer of design data for any changes 
in design. It was believed that this approach would reduce development costs from $10 billion 
to $6 billion and reduce development time from 6 to 4 years. Ultimately, the project was 
billions of dollars over budget and 3 years behind schedule. The first airplane was delivered 40 
months behind schedule (McDonald and Kotha 2015).  
 
It has been suggested that the success of modular design relies on the design being set by the 
Original Equipment Manufacturer (OEM) early on and on subassembly manufacturers having 
the flexibility to make changes on their own initiative, as long as it does not reduce 
performance (Sarkar 2017 pg 39-43). Boeing, unexpectedly, had to send hundreds of engineers 
to its Tier-1, Tier-2, and Tier-3 suppliers to support on-site quality, supplier management, and 
technical support (Denning 2013). The company had to redesign the entire aircraft sub-
assembly process. One of the problems was that some parts did not fit together resulting in 
extensive rework. Boeing had to purchase some of its suppliers and bring some work back in-
house. One of the problems was traced back to the failure to clearly communicate 
requirements and data to suppliers (Sarkar 2017 pg 42).  
 
Supply-management executive Ben Funston at Boeing said that they, “needed a tool to give us 
situational awareness into the production system, the ability to have early issue detection and 
real-time problem resolution” (McDonald and Kotha 2015). This type of solution requires a 
complete understanding of the production system. Boeing created a Production Integration 
Center (PIC) to achieve this goal. This center monitored conditions around the world and served 
as a call center to resolve problems as they arose at supplier locations. Information from 
Boeing’s partners was used to develop routines and graphic-display techniques to monitor 
manufacturing processes around the globe. Addressing both design and production issues, PIC 
improved communication and collaboration, making it pivotal in stabilizing Boeing’s 787 supply 
chain. 

Another example of design cost savings resulting from modeling might be found in the 
Integrated Manufacturing Technology Initiative (IMTI), a member-based organization that 
supports technology advancements in US manufacturing. Discussions within this organization 
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indicated cost reductions from model-based tools have exceeded 50 %. In DoD ground vehicles, 
for example, production development was reduced from 2 years to 90 or 120 days. In 
construction equipment, a manufacturer indicated that product development time was 
reduced from 27 months to 9 months. Boeing reported 91 % time savings and 71 % labor cost 
savings due to model-based tools. BAE systems reported time savings of seven-fold. Proctor 
and Gamble documented savings exceeding $1 billion annually with 30 % to 40 % improvement 
in equipment reliability and 60 % to 70 % faster startup for new equipment and product 
initiatives (Integrated Manufacturing Technology Initiative, Inc 2009). Major defense 
contractors from the US MBE team estimated that the implementation of the Model-Based 
Enterprise would cut costs by 50 % and reduce time to market by 45 %; however, this estimate 
seems to be a best guess rather than the result of data analysis (IMTI, inc 2009). 

An additional benefit of digital twins might be the standardization of data required for 
adoption. Currently, 3D models are not widely adopted for product designs according to 
research by Lifecycle Insights. Implementing a digital twin typically requires standardizing data 
across the system being analyzed. A possible benefit might be the reduction in design 
communication errors. Thomas (2019) that this type of modeling data can reduce redundant 
activities that include an estimated $8.40 billion spent on engineers answering questions and 
creating additional drawing documentation and $3.84 billion for machinists to do the same. 

Similar to previous sections, a 1 % reduction in costs is estimated. For research and 
development costs in manufacturing, this report used input-output data from the Bureau of 
Economic analysis: 

𝑅𝐷 = 𝐶𝑅
𝑅𝐷𝐼𝑂 𝑈𝑠𝑒 + 𝑅𝐷𝐼𝑂 𝑀𝑎𝑘𝑒

𝑆𝐻𝐼𝑃𝐼𝑂
𝑆𝐻𝐼𝑃𝐴𝑆𝑀 

where 

𝑅𝐷 = Research and development costs saved 

𝑅𝐷𝐼𝑂 𝑈𝑠𝑒 = Sum of research and development from the BEA Use table (U.S. Bureau of Economic 
Analysis 2024) 

𝑅𝐷𝐼𝑂 𝑀𝑎𝑘𝑒 = Sum of research and development from the BEA Make table (U.S. Bureau of 
Economic Analysis 2024) 

𝑆𝐻𝐼𝑃𝐼𝑂 = Sum of shipments from the BEA Use table (U.S. Bureau of Economic Analysis 2024) 

Research and development are its own NAICS code (NAICS 541700). Economic data is gathered 
by establishment, which is a physical location where economic activity occurs, and each 
establishment is categorized by a NAICS code. The sum of the economic data for all the 
establishments in a NAICS code makes up the data for that industry. The BEA “Use table” 
provides estimates from establishments made by NAICS codes separate from manufacturing; 
however, the BEA “Make Table” provides estimates of activities that would be categorized as 
NAICS 541700 but occur at establishments with a different NAICS code. 
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5.2.5. Total Industry Benefits 

To estimate the total benefits of data tracking, analysis, modeling, and digital twins, the sum of 
the benefits shown in Table 5.2, Table 5.4, Table 5.6, and Table 5.7 can be combined. These 
each show the cost savings for a 1 % decrease in costs. Table 5.8 provides an estimate of the 
percent reduction in shop floor production costs that result from smart manufacturing 
developments, calculated from NIST GCR 16-007 (Gallaher et al 2016). These include the 
following:  

• Managing digital data streams through models  

• Sensing and monitoring  

• Seamless transmission of digital data  

• Advanced data and trend analysis  

• Communicating information to decision-makers  

• Determining required action and implementing action 

These items will be referred to as data tracking and analytics. These percent reductions were 
applied to the categories listed in Table 5.8 to create the savings estimates in Table 5.9. Note 
that NIST GCR 16-007 estimates that the reductions only apply to approximately 64 % of 
manufacturing shipments, which is applied to the estimates in Table 5.9 when calculating the 
total impact. The total estimated savings from data tracking and analytics were estimated to be 
$88.6 billion, as shown in the table. The table breaks savings into nine categories: onsite 
material transport, machinery, production labor, energy for production, production space, 
materials and packaging, maintenance, research and development (R&D) expenditures, and 
inventory space.  

There are two additional categories in the table. Work-in-process flow time, which is not 
included in the total as it would double-count other categories, and advanced maintenance that 
is partially excluded from the total for the same reason. The savings amounts to 1.70 % of 
shipments or revenue and 4.20 % of value added. It would be the equivalent of an 8.52 % 
increase in net income or profit for all of manufacturing.  

It is not clear what proportion of the savings in Table 5.9 is attributable to digital twins, as 
opposed to data tracking and analytics that have less accuracy, precision, and/or flexibility; 
however, some insight might be gained from examining high-performing investments. For 
instance, predictive maintenance is estimated to be 17.3 % of maintenance expenditures 
(Thomas and Weiss 2020). Another example might be in education, where those with advanced 
or professional degrees represent 14 % of those aged 25 or older (U.S. Census Bureau 2023). 
Additionally, the Pareto principle posits that 80 % of a consequence is due to approximately 
20 % of the cause (Hopp and Spearman 2008). This is not strictly true, but there is a tendency 
for this to occur and it has been observed in investment returns (Thomas 2022) and 
manufacturing costs (Thomas et al. 2017). Moreover, higher-performing categories often 
represent between 10 % and 20 % of the investments. Thus, it might be reasonable to surmise 
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Table 5.7: Savings from a 1 % Decrease in R&D Costs 
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311 827 132 293 175 170 102 28.2 0.003% 0.010% 0.017% 

312 156 041 91 160 70 024 5.0 0.003% 0.005% 0.007% 

313 24 531 9 665 4 256 1.7 0.007% 0.018% 0.041% 

314 21 286 9 608 4 036 1.0 0.005% 0.010% 0.024% 

315 8 428 4 187 1 378 1.4 0.017% 0.033% 0.102% 

316 4 009 1 840 505 0.5 0.013% 0.029% 0.105% 

321 117 715 49 558 23 225 1.3 0.001% 0.003% 0.006% 

322 180 344 68 877 34 436 7.6 0.004% 0.011% 0.022% 

323 74 428 38 521 13 181 1.3 0.002% 0.003% 0.010% 

324 361 888 50 025 22 848 1.4 0.000% 0.003% 0.006% 

325 696 046 352 469 247 307 417.1 0.060% 0.118% 0.169% 

326 235 404 103 839 45 516 21.5 0.009% 0.021% 0.047% 

327 132 981 66 577 33 871 8.1 0.006% 0.012% 0.024% 

331 200 919 63 404 27 489 5.1 0.003% 0.008% 0.019% 

332 347 336 169 391 62 450 30.2 0.009% 0.018% 0.048% 

333 355 335 156 243 59 554 73.9 0.021% 0.047% 0.124% 

334 312 277 154 292 56 323 429.7 0.138% 0.278% 0.763% 

335 128 342 58 971 27 424 24.7 0.019% 0.042% 0.090% 

336 821 412 250 415 84 331 302.0 0.037% 0.121% 0.358% 

337 68 999 33 333 11 994 2.6 0.004% 0.008% 0.021% 

339 146 475 81 890 39 683 84.5 0.058% 0.103% 0.213% 

High 827 132 352 469 247 307 429.7 0.138% 0.278% 0.763% 

Low 4 009 1 840 505 0.5 0.000% 0.003% 0.006% 

Median 156 041 66 577 33 871 7.6 0.007% 0.018% 0.041% 

Mean 248 635 100 354 49 521 69.0 0.020% 0.043% 0.105% 

TOTAL 5 221 325 2 107 441 1 039 932 1 448.6 0.028%* 0.069%* 0.139%* 

* Calculated from totals and equals the savings as a percent of total shipments, value added, or 
profit. 
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Table 5.8: Effective Savings in Shop Floor Production from Smart Manufacturing 

  
Process Manufacturing 

(NAICS 311-312, 324-326) 
Discrete Manufacturing 

(NAICS 313-323,327-339) Categories applied to 

Capital 2.15% 11.87% Machinery, Production 
Space, Inventory Space 

Labor 4.78% 12.32% Onsite Material 
Transport, Production 
Labor, R&D Expenditures, 
Maintenance 

Energy 2.54% 11.17% Energy for Production 

Materials 1.72% 1.98% Materials and Packaging 

NOTE: Calculated by first estimating the expenditures on capital, labor, energy, and materials, which was 
calculated by taking the “KLEM national factor expenditures” from Table 4-4 in NIST GCR 16-007 and multiplying it 
by the proportions for capital, labor, energy, and materials found in Figure 4-4 of the same document. The capital, 
labor, energy, and materials cost impacts were divided by the estimated total expenditures to get the values 
above. Note that these savings are for “shop floor production.” 
NOTE: According to Figure 4-4 in NIST GCR 16-007, the impacts are estimated to be applicable to $3 743.9 billion of 
the estimated $5 846.8 billion in shipments from the 2013 Annual Survey of Manufactures. Thus, after applying the 
percentages above, the resulting values are multiplied by approximately 0.64 (i.e., the proportion that was 
estimated to be applicable). 

 
that the top data tracking and analytics investments – those that are or approach being a digital 
twin that has high levels of accuracy, precision, and flexibility – represent between 10 % and 
20 % of the models. Appendix B provides an examination of the return-on-investment trends 
based on the percentile of the investment costs. An examination of trends in manufacturing 
investments reveals a strong trend in the proportion of savings, which is shown in Figure B. 1 in 
Appendix B. Assuming or defining digital twins as the highest cost investments within data 
tracking and analytics investments can facilitate estimating an expected impact based on the 
trends in Figure B. 1.  

Table 5.10 provides an estimate of the impact or cost/loss savings that might result from the 
implementation of digital twins in U.S. manufacturing. It assumes that digital twins represent 
between the top 10 % and 20 % of data tracking and analytics investments by cost. Based on 
the lower bound 90 % confidence interval from Figure B. 1 for 10 % and the upper bound 90 % 
confidence interval for 20 %, the range of impact for digital twins is estimated to be between 
$21.6 billion and $ 53.5 billion with the average value (i.e., 15 %) being $37.9 billion. Figure 5.1 
provides the results of relaxing this assumption further to between 1 % and 20 % of data 
tracking and analytics investment costs. It provides the estimated impact from digital twins 
based on the average and 90 % confidence intervals estimated from the examination in 
Appendix B.  

To relax other assumptions of this analysis, a Monte Carlo analysis was conducted to consider 
variations in the inputs for estimating the impact of digital twins. The Monte Carlo analysis 
varies the rates of capital, labor, energy, and materials reduction due to data tracking and   
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Table 5.9: Estimated Cost/Loss Savings from Data Analysis, Modeling, and Digital Twins ($millions/year) 

    Among Three Digit NAICS   
    High Low Median Mean TOTAL 

In
d

u
st

ry
 

To
ta

l Shipments ($million) 529 643 2 567 99 919 159 210 3 343 406 

Value Added ($million) 225 699 1 178 42 632 64 261 1 349 472 

Profit ($million) 158 360 323 21 689 31 710 665 907 
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Onsite Material Transport 244.7 2.8 62.2 79.2 1 664.0 

As a Percent of Shipments 0.13% 0.00% 0.04% 0.05% 0.03% 

As a Percent of Value Added 0.30% 0.01% 0.08% 0.11% 0.08% 

As a Percent of Profit 0.65% 0.02% 0.21% 0.27% 0.16% 

Machinery  1 206.6 3.9 190.9 296.1 6 217.2 

As a Percent of Shipments 0.32% 0.02% 0.15% 0.14% 0.12% 

As a Percent of Value Added 0.84% 0.04% 0.33% 0.34% 0.30% 

As a Percent of Profit 1.85% 0.05% 0.83% 0.82% 0.60% 

Production Labor  4 568.8 44.6 770.7 1 086.3 22 812.6 

As a Percent of Shipments 1.15% 0.05% 0.61% 0.63% 0.44% 

As a Percent of Value Added 2.42% 0.15% 1.49% 1.43% 1.08% 

As a Percent of Profit 8.83% 0.19% 3.17% 3.69% 2.19% 

Energy for Production 402.4 2.1 92.7 120.2 2 524.7 

As a Percent of Shipments 0.24% 0.01% 0.04% 0.07% 0.05% 

As a Percent of Value Added 0.63% 0.01% 0.10% 0.17% 0.12% 

As a Percent of Profit 1.46% 0.02% 0.27% 0.40% 0.24% 

Production Space  310.1 3.2 78.4 100.2 2 103.8 

As a Percent of Shipments 0.13% 0.00% 0.06% 0.06% 0.04% 

As a Percent of Value Added 0.26% 0.02% 0.15% 0.13% 0.10% 

As a Percent of Profit 0.78% 0.02% 0.34% 0.34% 0.20% 

Materials and Packaging 6 623.5 20.1 736.5 1 473.4 30 940.4 

As a Percent of Shipments 0.81% 0.36% 0.53% 0.55% 0.59% 

As a Percent of Value Added 5.89% 0.62% 1.12% 1.49% 1.47% 

As a Percent of Profit 12.90% 0.81% 2.93% 3.51% 2.98% 

Maintenance 1 019.4 4.6 213.3 274.3 5 761.3 

As a Percent of Shipments 0.29% 0.04% 0.12% 0.13% 0.11% 

As a Percent of Value Added 0.79% 0.07% 0.26% 0.33% 0.27% 

As a Percent of Profit 1.83% 0.09% 0.76% 0.77% 0.55% 

R&D Expenditures 3 389.5 4.2 60.0 435.4 9 143.5 

As a Percent of Shipments 1.09% 0.00% 0.05% 0.14% 0.18% 

As a Percent of Value Added 2.20% 0.01% 0.10% 0.30% 0.43% 

As a Percent of Profit 6.02% 0.02% 0.19% 0.78% 0.88% 

Inventory Space 310.1 3.2 78.4 100.2 2 103.8 

As a Percent of Shipments 0.13% 0.00% 0.06% 0.06% 0.04% 

As a Percent of Value Added 0.26% 0.02% 0.15% 0.13% 0.10% 

As a Percent of Profit 0.78% 0.02% 0.34% 0.34% 0.20% 

WIP Flow Time 6 081.3 51.7 1 002.1 1 482.6 31 133.6 

As a Percent of Shipments 1.42% 0.09% 0.85% 0.84% 0.60% 

As a Percent of Value Added 2.94% 0.21% 2.25% 1.90% 1.48% 

As a Percent of Profit 10.24% 0.27% 4.91% 4.85% 2.99% 

Advanced Maintenance 850.2 9.5 236.4 308.1 6 469.7 

As a Percent of Shipments 0.25% 0.07% 0.20% 0.17% 0.12% 

As a Percent of Value Added 0.62% 0.13% 0.47% 0.39% 0.31% 

As a Percent of Profit 1.88% 0.16% 1.03% 0.96% 0.62% 

  Total* 18 075 89 2 283 3 965 88 610 
  As a Percent of Shipments 0.35% 0.00% 0.04% 0.08% 1.70% 
  As a Percent of Value Added 0.86% 0.00% 0.11% 0.19% 4.20% 
  As a Percent of Profit 1.74% 0.01% 0.22% 0.38% 8.52% 

* Excludes WIP Flow Time, as it would double count items from other categories 
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Table 5.10: Estimated Cost/Loss Savings from Digital Twins ($millions/year) 

  Pareto Principal Range 

90 % 
Confidence 

Interval (Lower 
Bound) Average 

90 % 
Confidence 

Interval (Upper 
Bound) 
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Onsite Material Transport 405.0 711.7 1 004.5 

As a Percent of Shipments 0.01% 0.01% 0.02% 

As a Percent of Value Added 0.02% 0.03% 0.05% 

As a Percent of Profit 0.04% 0.07% 0.10% 

Machinery  1 513.4 2 659.3 3 753.0 

As a Percent of Shipments 0.03% 0.05% 0.07% 

As a Percent of Value Added 0.07% 0.13% 0.18% 

As a Percent of Profit 0.15% 0.26% 0.36% 

Production Labor  5 553.1 9 757.7 13 770.9 

As a Percent of Shipments 0.11% 0.19% 0.26% 

As a Percent of Value Added 0.26% 0.46% 0.65% 

As a Percent of Profit 0.53% 0.94% 1.32% 

Energy for Production 614.6 1 079.9 1 524.0 

As a Percent of Shipments 0.01% 0.02% 0.03% 

As a Percent of Value Added 0.03% 0.05% 0.07% 

As a Percent of Profit 0.06% 0.10% 0.15% 

Production Space  512.1 899.9 1 269.9 

As a Percent of Shipments 0.01% 0.02% 0.02% 

As a Percent of Value Added 0.02% 0.04% 0.06% 

As a Percent of Profit 0.05% 0.09% 0.12% 

Materials and Packaging 7 531.6 13 234.3 18 677.2 

As a Percent of Shipments 0.14% 0.25% 0.36% 

As a Percent of Value Added 0.36% 0.63% 0.89% 

As a Percent of Profit 0.72% 1.27% 1.80% 

Maintenance 1 402.4 2 464.3 3 477.8 

As a Percent of Shipments 0.03% 0.05% 0.07% 

As a Percent of Value Added 0.07% 0.12% 0.17% 

As a Percent of Profit 0.13% 0.24% 0.33% 

R&D Expenditures 2 225.7 3 911.0 5 519.5 

As a Percent of Shipments 0.04% 0.07% 0.11% 

As a Percent of Value Added 0.11% 0.19% 0.26% 

As a Percent of Profit 0.21% 0.38% 0.53% 

Inventory Space 512.1 899.9 1 269.9 

As a Percent of Shipments 0.01% 0.02% 0.02% 

As a Percent of Value Added 0.02% 0.04% 0.06% 

As a Percent of Profit 0.05% 0.09% 0.12% 

WIP Flow Time 7 578.6 13 316.9 18 793.8 

As a Percent of Shipments 0.15% 0.26% 0.36% 

As a Percent of Value Added 0.36% 0.63% 0.89% 

As a Percent of Profit 0.73% 1.28% 1.81% 

Advanced Maintenance 1 574.9 2 767.3 3 905.4 

As a Percent of Shipments 0.03% 0.05% 0.07% 

As a Percent of Value Added 0.07% 0.13% 0.19% 

As a Percent of Profit 0.15% 0.27% 0.38% 

  Total* 21 570 37 902 53 490 
  As a Percent of Shipments 0.41% 0.73% 1.02% 
  As a Percent of Value Added 1.02% 1.80% 2.54% 
  As a Percent of Profit 2.07% 3.64% 5.14% 

NOTE: Lower bound estimate is for 10 %, average is at 15 %, and upper bound is for 20 % of the data tracking and 
analytics investments. 
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analytics from NIST GCR 16-007 found in Table 5.8 with a lower bound of 50 % of the original 
value and an upper bound being 20 % higher. The simulation used a triangular distribution. The 
applicable proportion of manufacturing that is affected by advancements in data tracking and 
analytics (i.e., 64 %) was varied by -50 % and +20 % also using a triangular distribution. The 
assumption that digital twins represent between the top 10 % and 20 % of data tracking and 
analytics investments is varied from 5 % and 20 % using a triangular distribution with 15 % 
being the most likely value. The calculated labor estimates (𝐿𝑎𝑏𝑂𝑛𝑠𝑖𝑡𝑒 𝑇𝑟𝑎𝑛𝑠, 𝐿𝑎𝑏𝑃𝑟𝑜𝑑, 𝐿𝑎𝑏𝐵𝑙𝑑𝑔, 

𝐿𝑎𝑏𝑀𝑎𝑐ℎ 𝑀𝑎𝑖𝑛𝑡)  are varied -50 % and +20 % using a triangular distribution. Figure 5.2 and Figure 
5.3 presents the results of one thousand iterations of the Monte Carlo simulation with the 
former presenting the dollar impacts for both data tracking/analysis and digital twins. The latter 
presents the percent of shipments, value added, and profit that the digital twins impact 
represents. The 90 percent confidence interval for the impact of digital twins was between 
$16.1 billion and $38.6 billion with the median being $27.2 billion. The average (not shown) was 
also $27.2 billion. As a percent of manufacturing industry shipments, the 90 percent confidence 
interval for the impact of digital twins was between 0.33 % and 0.75 % while for value added it 
is 0.81 % and 1.86 %. As a percentage of profit, it was between 1.63 % and 3.70 %. A reasonable 
conjecture from the results is that the potential impact of digital twins in the U.S. is in the low 
tens of billions of dollars. A more precise estimate with higher confidence would likely require 
data collection from manufacturers. 

 

 

 

Figure 5.1: Estimated Annual Digital Twin Impact by Varying Levels of Investment Cost (percentile) 

 

11.5

17.4

23.1

26.6
28.5

31.8
34.0

36.9
38.8 39.9

42.1
42.6

44.6
46.6

47.7
49.4 50.5 52.1 52.3

53.5

5.3
9.5

13.4

16.5
18.8

21.3
23.5

26.2
28.5

30.0
32.0

33.3
34.7

36.5
37.9

39.6
40.9

42.743.3
44.6

2.1
4.8

7.6
9.8

11.9
14.0

15.8
18.0

20.5 21.6
23.1

24.6
26.2

27.8 28.3
31.0 32.2

34.334.6
36.4

0.0

10.0

20.0

30.0

40.0

50.0

60.0

8
0

%

8
1

%

8
2

%

8
3

%

8
4

%

8
5

%

8
6

%

8
7

%

8
8

%

8
9

%

9
0

%

9
1

%

9
2

%

9
3

%

9
4

%

9
5

%

9
6

%

9
7

%

9
8

%

9
9

%

1
0

0
%

Es
ti

m
at

ed
 D

ig
it

al
 T

w
in

 Im
p

ac
t 

($
B

ill
io

n
)

Investment Cost (Percentile - Highest to Lowest)

90 % Confidence Interval (Upper Bound)
Average
90 % Confidence Interval (Lower Bound)



AMS 100-61 
October 2024 

52 

 

Figure 5.2: Monte Carlo results on the Impact of Digital Twins along with Data Tracking/Analysis 

 

Figure 5.3: Monte Carlo Results on the Impact of Digital Twins as a Percent of Shipments, Value Added, and 
Profit 
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6. Summary 

This report examined the economics of digital twins in the manufacturing industry, including 
the costs, benefits, and economic decisions to invest in the adoption of a digital twin. As 
discussed in Chapter 2, digital twins are used in five primary areas based on the sales of 
software for implementation (Markets and Markets 2022): predictive maintenance (39.9 %), 
business optimization (25.3 %), performance monitoring (17.8 %), inventory management 
(11.9 %), and product design and development (3.4 %). The remaining applications represent 
1.6 % of the sales. Three primary factors inhibit their growth: cyber threats, cost, and the 
required human capital.  

As discussed in Chapter 3, digital twins primarily function to make predictions or as an indicator 
for the system being modeled. The benefit of a digital twin over other models is essentially the 
increase in accuracy, precision, and flexibility of the model and its predictions. Note that 
flexibility is the model’s ability to consider different types and levels of input factors along with 
different types and levels of outcomes. The cost-effectiveness of investing in a digital twin is 
likely affected by the complexity and sensitivity of the real-world system being modeled, along 
with the cost consequence of having the non-optimal level of settings or design for the system. 
A digital twin is more likely to be cost effective for a complex system that has a high-cost 
consequence for having non-optimal settings/designs. As either of these factors (system 
complexity or the cost consequence of non-optimal settings/designs) decrease, digital twins are 
likely to become less cost-effective and models or data tracking with less accuracy, precision, 
and/or flexibility become more cost-effective. Chapter 4 discusses net present value and 
internal rate of return as methods for investment analysis in digital twins.  

As discussed in Chapter 5, data on the costs of digital twins is more concentrated at the 
individual firm or establishment level while data on the benefits tends to be better at the 
industry level. The average selling price of a digital twin product or solution for one seat is 
estimated to be between $600 to $800 (Markets and Markets 2022); however, this is just for 
the software. In a survey of executives from aerospace, defense, automotive, medical device, 
oil/gas, and consumer electronics, an estimated 86 % spent $1 million or more annually on 
digital twins (Dertien and McMahon 2022). If digital twins account for the top 15 % of future 
data tracking and analytics investments (i.e., those with costs above the 85th percentile), the 
total potential impact of the adoption of digital twins in the manufacturing industry is 
estimated to be $37.9 billion. A Monte Carlo simulation varying key factors of this estimate by -
50 % and +20 % (i.e., biasing it downwards) and assuming that digital twins account for 
between the top 5 % and 20 % of data tracking and analytics investments (i.e., those 
investments with costs between the 80th and 95th percentile) puts the 90 % confidence interval 
between $16.1 billion and $38.6 billion with a median of $27.2 billion. The total benefits of all 
data tracking and analytics investments, including digital twins and those with less precision, 
accuracy, and flexibility, is estimated to be $88.6 billion. These industry-level estimates are 
based on a number of datasets and calculations, including tendencies or patterns in the 
relationship between the costs and returns on investments DOE Industrial Assessment Center 
data. From the industry estimates in this report, one could reasonably conclude that the impact 
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is likely in the low tens of billions of dollars. Future research could increase the accuracy and 
precision of these estimates by collecting additional data from manufacturers.  

In order for the benefits of data tracking and analytics investments to be maximized, including 
those from digital twins, the appropriate level of modeling needs to be selected based on the 
system complexity and cost consequences of having non-optimal system design/settings. If 
systems are matched with the inefficient solutions, the total industry impact will be reduced. 
Moreover, the best practice for data tracking and analytics is not to simply adopt the most 
advanced methods of modeling, but to match the right model or data solution to each system. 
This matching requires a method for selecting the right model. This report discusses such a 
method; however, it is a proposed method that still requires some refinement and vetting. 
Thus, more research and development is needed. 
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Appendix A. Cost Savings Items for Business Optimization 

Table A. 1: Annual Savings from a 1 % Decrease in Onsite Material Transportation Cost 
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311 827 132 293 175 170 102 79.9 0.010% 0.027% 0.047% 

312 156 041 91 160 70 024 5.5 0.004% 0.006% 0.008% 

313 24 531 9 665 4 256 1.5 0.006% 0.016% 0.036% 

314 21 286 9 608 4 036 0.7 0.003% 0.007% 0.017% 

315 8 428 4 187 1 378 0.7 0.008% 0.016% 0.049% 

316 4 009 1 840 505 0.4 0.009% 0.020% 0.071% 

321 117 715 49 558 23 225 19.0 0.016% 0.038% 0.082% 

322 180 344 68 877 34 436 17.6 0.010% 0.025% 0.051% 

323 74 428 38 521 13 181 8.6 0.012% 0.022% 0.065% 

324 361 888 50 025 22 848 2.1 0.001% 0.004% 0.009% 

325 696 046 352 469 247 307 15.6 0.002% 0.004% 0.006% 

326 235 404 103 839 45 516 25.1 0.011% 0.024% 0.055% 

327 132 981 66 577 33 871 14.1 0.011% 0.021% 0.042% 

331 200 919 63 404 27 489 13.8 0.007% 0.022% 0.050% 

332 347 336 169 391 62 450 24.1 0.007% 0.014% 0.039% 

333 355 335 156 243 59 554 12.7 0.004% 0.008% 0.021% 

334 312 277 154 292 56 323 4.8 0.002% 0.003% 0.008% 

335 128 342 58 971 27 424 6.0 0.005% 0.010% 0.022% 

336 821 412 250 415 84 331 22.3 0.003% 0.009% 0.026% 

337 68 999 33 333 11 994 7.2 0.010% 0.022% 0.060% 

339 146 475 81 890 39 683 7.9 0.005% 0.010% 0.020% 

High 827 132 352 469 247 307 79.9 0.016% 0.038% 0.082% 

Low 4 009 1 840 505 0.4 0.001% 0.003% 0.006% 

Median 156 041 66 577 33 871 8.6 0.007% 0.016% 0.039% 

Mean 248 635 100 354 49 521 13.8 0.007% 0.016% 0.037% 

TOTAL 5 221 325 2 107 441 1 039 932 289.4 0.006%* 0.014%* 0.028%* 

 

* Calculated from the total of all manufacturing 
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Table A. 2: Annual Cost Savings from a 1 % Decrease in Production Machinery  
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311 827 132 293 175 170 102 138.9 0.017% 0.047% 0.082% 

312 156 041 91 160 70 024 26.8 0.017% 0.029% 0.038% 

313 24 531 9 665 4 256 6.5 0.026% 0.067% 0.152% 

314 21 286 9 608 4 036 3.1 0.015% 0.032% 0.077% 

315 8 428 4 187 1 378 0.9 0.011% 0.022% 0.066% 

316 4 009 1 840 505 0.5 0.013% 0.028% 0.101% 

321 117 715 49 558 23 225 25.4 0.022% 0.051% 0.109% 

322 180 344 68 877 34 436 75.7 0.042% 0.110% 0.220% 

323 74 428 38 521 13 181 18.0 0.024% 0.047% 0.137% 

324 361 888 50 025 22 848 86.0 0.024% 0.172% 0.377% 

325 696 046 352 469 247 307 215.8 0.031% 0.061% 0.087% 

326 235 404 103 839 45 516 77.6 0.033% 0.075% 0.170% 

327 132 981 66 577 33 871 41.7 0.031% 0.063% 0.123% 

331 200 919 63 404 27 489 67.0 0.033% 0.106% 0.244% 

332 347 336 169 391 62 450 87.7 0.025% 0.052% 0.140% 

333 355 335 156 243 59 554 74.5 0.021% 0.048% 0.125% 

334 312 277 154 292 56 323 98.4 0.032% 0.064% 0.175% 

335 128 342 58 971 27 424 18.4 0.014% 0.031% 0.067% 

336 821 412 250 415 84 331 158.7 0.019% 0.063% 0.188% 

337 68 999 33 333 11 994 14.6 0.021% 0.044% 0.122% 

339 146 475 81 890 39 683 28.2 0.019% 0.034% 0.071% 

High 827 132 352 469 247 307 215.8 0.042% 0.172% 0.377% 

Low 4 009 1 840 505 0.5 0.011% 0.022% 0.038% 

Median 156 041 66 577 33 871 41.7 0.022% 0.051% 0.123% 

Mean 248 635 100 354 49 521 60.2 0.023% 0.059% 0.137% 

TOTAL 5 221 325 2 107 441 1 039 932 1 264.5 0.024%* 0.06%* 0.122%* 

 

* Calculated from the total of all manufacturing 
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Table A. 3: Annual Cost Savings from a 1 % Decrease in Production Labor 
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311 827 132 293 175 170 102 392.5 0.047% 0.134% 0.231% 

312 156 041 91 160 70 024 44.4 0.028% 0.049% 0.063% 

313 24 531 9 665 4 256 24.4 0.099% 0.252% 0.573% 

314 21 286 9 608 4 036 25.6 0.120% 0.266% 0.634% 

315 8 428 4 187 1 378 12.3 0.146% 0.295% 0.895% 

316 4 009 1 840 505 5.7 0.141% 0.307% 1.119% 

321 117 715 49 558 23 225 93.4 0.079% 0.188% 0.402% 

322 180 344 68 877 34 436 127.1 0.070% 0.185% 0.369% 

323 74 428 38 521 13 181 97.6 0.131% 0.253% 0.740% 

324 361 888 50 025 22 848 59.3 0.016% 0.119% 0.260% 

325 696 046 352 469 247 307 251.7 0.036% 0.071% 0.102% 

326 235 404 103 839 45 516 243.9 0.104% 0.235% 0.536% 

327 132 981 66 577 33 871 90.5 0.068% 0.136% 0.267% 

331 200 919 63 404 27 489 140.2 0.070% 0.221% 0.510% 

332 347 336 169 391 62 450 495.9 0.143% 0.293% 0.794% 

333 355 335 156 243 59 554 343.1 0.097% 0.220% 0.576% 

334 312 277 154 292 56 323 131.0 0.042% 0.085% 0.233% 

335 128 342 58 971 27 424 99.1 0.077% 0.168% 0.361% 

336 821 412 250 415 84 331 579.2 0.071% 0.231% 0.687% 

337 68 999 33 333 11 994 100.8 0.146% 0.302% 0.840% 

339 146 475 81 890 39 683 141.1 0.096% 0.172% 0.356% 

High 827 132 352 469 247 307 579.2 0.146% 0.307% 1.119% 

Low 4 009 1 840 505 5.7 0.016% 0.049% 0.063% 

Median 156 041 66 577 33 871 100.8 0.079% 0.220% 0.510% 

Mean 248 635 100 354 49 521 166.6 0.087% 0.199% 0.502% 

TOTAL 5 221 325 2 107 441 1 039 932 3 498.7 0.067%* 0.166%* 0.336%* 

 

* Calculated from the total of all manufacturing 
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Table A. 4: Annual Cost Savings from a 1 % Reduction in Production Energy  
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311 827 132 293 175 170 102 71.7 0.009% 0.024% 0.042% 

312 156 041 91 160 70 024 7.6 0.005% 0.008% 0.011% 

313 24 531 9 665 4 256 5.4 0.022% 0.056% 0.126% 

314 21 286 9 608 4 036 1.5 0.007% 0.016% 0.038% 

315 8 428 4 187 1 378 0.6 0.007% 0.014% 0.041% 

316 4 009 1 840 505 0.3 0.007% 0.016% 0.057% 

321 117 715 49 558 23 225 17.4 0.015% 0.035% 0.075% 

322 180 344 68 877 34 436 50.4 0.028% 0.073% 0.146% 

323 74 428 38 521 13 181 6.4 0.009% 0.017% 0.049% 

324 361 888 50 025 22 848 61.9 0.017% 0.124% 0.271% 

325 696 046 352 469 247 307 138.2 0.020% 0.039% 0.056% 

326 235 404 103 839 45 516 31.3 0.013% 0.030% 0.069% 

327 132 981 66 577 33 871 45.1 0.034% 0.068% 0.133% 

331 200 919 63 404 27 489 56.2 0.028% 0.089% 0.205% 

332 347 336 169 391 62 450 30.2 0.009% 0.018% 0.048% 

333 355 335 156 243 59 554 13.0 0.004% 0.008% 0.022% 

334 312 277 154 292 56 323 18.8 0.006% 0.012% 0.033% 

335 128 342 58 971 27 424 6.4 0.005% 0.011% 0.023% 

336 821 412 250 415 84 331 23.4 0.003% 0.009% 0.028% 

337 68 999 33 333 11 994 2.9 0.004% 0.009% 0.024% 

339 146 475 81 890 39 683 4.4 0.003% 0.005% 0.011% 

High 827 132 352 469 247 307 138.2 0.034% 0.124% 0.271% 

Low 4 009 1 840 505 0.3 0.003% 0.005% 0.011% 

Median 156 041 66 577 33 871 17.4 0.009% 0.017% 0.048% 

Mean 248 635 100 354 49 521 28.2 0.012% 0.032% 0.072% 

TOTAL 5 221 325 2 107 441 1 039 932 593.0 0.011%* 0.028%* 0.057%* 

 

* Calculated from the total of all manufacturing 

 

 



AMS 100-61 
October 2024 

63 

Table A. 5: Annual Cost Savings from a 1 % Reduction in Production Space 
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311 827 132 293 175 170 102 65.2 0.008% 0.022% 0.038% 

312 156 041 91 160 70 024 11.1 0.007% 0.012% 0.016% 

313 24 531 9 665 4 256 2.0 0.008% 0.021% 0.048% 

314 21 286 9 608 4 036 2.3 0.011% 0.024% 0.058% 

315 8 428 4 187 1 378 1.4 0.017% 0.034% 0.103% 

316 4 009 1 840 505 0.4 0.011% 0.023% 0.084% 

321 117 715 49 558 23 225 9.5 0.008% 0.019% 0.041% 

322 180 344 68 877 34 436 14.6 0.008% 0.021% 0.042% 

323 74 428 38 521 13 181 11.0 0.015% 0.029% 0.084% 

324 361 888 50 025 22 848 9.4 0.003% 0.019% 0.041% 

325 696 046 352 469 247 307 57.1 0.008% 0.016% 0.023% 

326 235 404 103 839 45 516 26.0 0.011% 0.025% 0.057% 

327 132 981 66 577 33 871 11.3 0.008% 0.017% 0.033% 

331 200 919 63 404 27 489 12.1 0.006% 0.019% 0.044% 

332 347 336 169 391 62 450 40.8 0.012% 0.024% 0.065% 

333 355 335 156 243 59 554 31.2 0.009% 0.020% 0.052% 

334 312 277 154 292 56 323 34.2 0.011% 0.022% 0.061% 

335 128 342 58 971 27 424 8.1 0.006% 0.014% 0.030% 

336 821 412 250 415 84 331 40.2 0.005% 0.016% 0.048% 

337 68 999 33 333 11 994 9.6 0.014% 0.029% 0.080% 

339 146 475 81 890 39 683 17.2 0.012% 0.021% 0.043% 

High 827 132 352 469 247 307 65.2 0.017% 0.034% 0.103% 

Low 4 009 1 840 505 0.4 0.003% 0.012% 0.016% 

Median 156 041 66 577 33 871 11.3 0.008% 0.021% 0.048% 

Mean 248 635 100 354 49 521 19.8 0.009% 0.021% 0.052% 

TOTAL 5 221 325 2 107 441 1 039 932 415.0 0.008%* 0.02%* 0.04%* 

 

* Calculated from the total of all manufacturing 
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Table A. 6: Annual Cost Savings from a 1 % Reduction in Materials and Packaging 
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311 827 132 293 175 170 102 4 786.0 0.579% 1.632% 2.814% 

312 156 041 91 160 70 024 517.5 0.332% 0.568% 0.739% 

313 24 531 9 665 4 256 124.8 0.509% 1.291% 2.933% 

314 21 286 9 608 4 036 93.4 0.439% 0.972% 2.314% 

315 8 428 4 187 1 378 28.2 0.335% 0.674% 2.047% 

316 4 009 1 840 505 15.8 0.395% 0.860% 3.131% 

321 117 715 49 558 23 225 571.5 0.485% 1.153% 2.461% 

322 180 344 68 877 34 436 877.9 0.487% 1.275% 2.549% 

323 74 428 38 521 13 181 262.1 0.352% 0.680% 1.989% 

324 361 888 50 025 22 848 2 683.7 0.742% 5.365% 11.746% 

325 696 046 352 469 247 307 2 604.3 0.374% 0.739% 1.053% 

326 235 404 103 839 45 516 1 059.6 0.450% 1.020% 2.328% 

327 132 981 66 577 33 871 486.3 0.366% 0.730% 1.436% 

331 200 919 63 404 27 489 1 142.0 0.568% 1.801% 4.154% 

332 347 336 169 391 62 450 1 335.0 0.384% 0.788% 2.138% 

333 355 335 156 243 59 554 1 580.4 0.445% 1.011% 2.654% 

334 312 277 154 292 56 323 1 237.6 0.396% 0.802% 2.197% 

335 128 342 58 971 27 424 580.7 0.453% 0.985% 2.118% 

336 821 412 250 415 84 331 5 223.0 0.636% 2.086% 6.193% 

337 68 999 33 333 11 994 288.1 0.418% 0.864% 2.402% 

339 146 475 81 890 39 683 459.7 0.314% 0.561% 1.158% 

High 827 132 352 469 247 307 5 223.0 0.742% 5.365% 11.746% 

Low 4 009 1 840 505 15.8 0.314% 0.561% 0.739% 

Median 156 041 66 577 33 871 580.7 0.439% 0.972% 2.328% 

Mean 248 635 100 354 49 521 1 236.1 0.450% 1.231% 2.884% 

TOTAL 5 221 325 2 107 441 1 039 932 25 957.7 0.497%* 1.232%* 2.496%* 

 

* Calculated from the total of all manufacturing 
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Table A. 7: Annual Cost Savings from a 1 % Reduction in Work-in-Process (WIP) Flow Time 
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311 827 132 293 175 170 102 586.3 0.071% 0.200% 0.345% 

312 156 041 91 160 70 024 81.7 0.052% 0.090% 0.117% 

313 24 531 9 665 4 256 32.8 0.134% 0.340% 0.771% 

314 21 286 9 608 4 036 30.9 0.145% 0.322% 0.767% 

315 8 428 4 187 1 378 14.6 0.173% 0.349% 1.060% 

316 4 009 1 840 505 6.6 0.163% 0.356% 1.297% 

321 117 715 49 558 23 225 127.4 0.108% 0.257% 0.549% 

322 180 344 68 877 34 436 216.6 0.120% 0.314% 0.629% 

323 74 428 38 521 13 181 125.7 0.169% 0.326% 0.954% 

324 361 888 50 025 22 848 154.4 0.043% 0.309% 0.676% 

325 696 046 352 469 247 307 521.4 0.075% 0.148% 0.211% 

326 235 404 103 839 45 516 346.5 0.147% 0.334% 0.761% 

327 132 981 66 577 33 871 142.7 0.107% 0.214% 0.421% 

331 200 919 63 404 27 489 218.7 0.109% 0.345% 0.795% 

332 347 336 169 391 62 450 621.8 0.179% 0.367% 0.996% 

333 355 335 156 243 59 554 447.7 0.126% 0.287% 0.752% 

334 312 277 154 292 56 323 262.6 0.084% 0.170% 0.466% 

335 128 342 58 971 27 424 125.2 0.098% 0.212% 0.457% 

336 821 412 250 415 84 331 777.2 0.095% 0.310% 0.922% 

337 68 999 33 333 11 994 124.5 0.180% 0.373% 1.038% 

339 146 475 81 890 39 683 185.9 0.127% 0.227% 0.468% 

High 827 132 352 469 247 307 777.2 0.180% 0.373% 1.297% 

Low 4 009 1 840 505 6.6 0.043% 0.090% 0.117% 

Median 156 041 66 577 33 871 154.4 0.120% 0.310% 0.752% 

Mean 248 635 100 354 49 521 245.3 0.119% 0.279% 0.688% 

TOTAL 5 221 325 2 107 441 1 039 932 5 151.2 0.099%* 0.244%* 0.495%* 

 

* Calculated from the total of all manufacturing 
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Appendix B. Digital Twins Proportion 

The proportion of the impact from Table 5.9 attributed to only digital twins is unknown; 
however, investment returns tend to follow some trends that can be used to provide an 
approximation. These trends can be estimated using data from the Industrial Assessment 
Center (IAC) database, a publicly available database of 148K recommendations for 20K facilities, 
as of October 2021. The data is the result of DOE technical assessments of facilities conducted 
by university engineering students and staff from 26 IAC centers made up of 31 universities 
(Industrial Assessment Center 2021; U.S. Department of Energy 2011). Each observation in the 
IAC database is a recommendation for an investment. It includes an Assessment 
Recommendation Code (discussed below), the cost to implement the recommendation, the 
estimated annual savings, the year, whether the recommendation was implemented, and some 
characteristics of the establishment including sales, various energy expenditures, and the 
number of employees. For the IAC to conduct an assessment, a facility must generally have the 
following: gross annual sales of $100 million or less, consume energy at a cost greater than 
$100,000 and less than $2.5 million per year, and employ no more than 500 people (U.S. 
Department of Energy 2011). 

The net present value of each recommendation was calculated for a 10-year study period using 
data from the IAC, as estimated in Thomas (2022). This equates to 81 443 investment analyses 
from recommendations made by the IAC program. Investment returns tend to follow patterns. 
For instance, results from Thomas (2022) demonstrate that investment returns follow the 
Pareto principle, where 20 % of potential investments represent 80 % of the cumulative net 
present value. This report analyzed patterns between the investment cost and the cumulative 
net present value. That is, it asks whether higher cost investments (e.g., digital twins) account 
for a predictable proportion of the benefits for all investments. The motivation for examining 
this issue is that the data available allows for estimating the impact of all data tracking and 
analytics investments, but not that for digital twins. However, earlier it was concluded that 
digital twins represent the highest levels of potential accuracy, precision, and flexibility, making 
them the highest cost data tracking and analytics investments. If there is a predictable 
relationship between the cost of an investment and the proportion of impact that it represents, 
we can use that information to approximate an impact for digital twins.  

To test the hypothesis of whether higher cost investments (e.g., digital twins) account for a 
predictable proportion of the benefits for all investments, one thousand random samples of the 
IAC data were taken, each with one thousand observations. For each sample, the proportion of 
benefits that each percentile of investment cost was examined. That is, the relationship 
between the relative level of investment cost and relative proportion of potential benefits was 
examined. The results shown in Figure B. 1 suggest that there is a pattern between the 
investment level and the proportion of the potential benefits. For instance, those investments 
that are at the 80th percentile in cost on the x-axis (i.e., the top 20 % in investment cost), 
represent 50.4 % of the potential benefits of all the investments with a 90 % confidence interval 
between 41.1 % and 60.4 %. 

To examine whether this trend applied to investments outside of the IAC data, an anecdotal 
examination of education was made. Although it is an imperfect test, there are limited 
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examples with available data. For those aged 25 or older, approximately 14 % have an 
advanced/professional degree, which amounts to the highest 14 % investment in education. 
Although there are non-monetary returns involved in education (e.g., job security and those 
who go to seminary), based on Figure B. 1 one might expect the highest 14 % (i.e., 86th 
percentile) to account for between 31.4 % and 52.6 % of the net benefits for all levels of 
education for those aged 25 and older. The aggregated annual income for all individuals aged 
25 and older was estimated for 30 years discounted at a 5 % rate. The cost of education was 
estimated and subtracted as an initial investment. Those with an advanced/professional degree 
account for 32.7 % of the total income, putting it just inside the 90 % confidence interval in 
Figure B. 1. Similar calculations were made for bachelor’s degrees, associates, and high school. 
The associate degree was the only one that fell outside the confidence interval, but it was only 
by 0.089 percentage points. Again, this could be due to some benefits being non-financial.  

 

 

NOTE: Investments that cost $1000 or more with NAICS classification were used. 

Data Sources: Census Bureau 2023; Statista 2023 

Figure B. 1: IAC Cumulative Net Present Value by Investment Cost (Percentile) 
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The higher performing categories often represent between 10 % and 20 % of the investments. 
For instance, predictive maintenance is estimated to be 17.3 % of maintenance expenditures. In 
education, those with an advanced or professional degrees represent 14 % of those aged 25 or 
older. Additionally, the pareto principle states that 20 % of the cause represents 80 % of the 
outcome, again focusing on the top 20 %. Thus, the top performing categories are often 
between 10 % and 20 % of the total. As discussed in Chapter 3, digital twins approach the 
highest level of potential accuracy, precision, and flexibility and the highest level of costs for 
modeling and data analysis. If one assumes that digital twins represent between 10 % and 20 % 
of the potential investments in data analysis and modeling, then the average percent of the net 
present value can be estimated from Figure B. 1 and is between 33.8 % and 50.4 %. If one 
assumes that digital twins represent 15 % of the investments, then the average expected 
proportion of impact or net present value attributable to digital twins would be 42.8 %, on 
average. 

 

 

 


