
NIST Grant/Contractor Report
NIST GCR 24-058

Implementation Guidance for
 Common Data Formats

John Dziurłaj, The Turnout LLC

This publication is available free of charge from:
https://doi.org/10.6028/NIST.GCR.24-058

https://doi.org/10.6028/NIST.GCR.24-058
https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.GCR.24-058

NIST Grant/Contractor Report
NIST GCR 24-058

Implementation Guidance for
 Common Data Formats

John Dziurłaj, The Turnout LLC

This publication is available free of charge from:
https://doi.org/10.6028/NIST.GCR.24-058

November 2024

U.S. Department of Commerce
Gina M. Raimondo, Secretary

National Institute of Standards and Technology
Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology

https://doi.org/10.6028/NIST.GCR.24-058

NIST GCR 24-058
November 2024

Certain equipment, instruments, software, or materials, commercial or non-commercial, are identified in this
paper in order to specify the experimental procedure adequately. Such identification does not imply
recommendation or endorsement of any product or service by NIST, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

This publication was produced as part of contract NB775010-23-01781 with the National Institute of Standards and
Technology. The contents of this publication do not necessarily reflect the views or policies of the National
Institute of Standards and Technology or the US Government.

NIST Technical Series Policies
Copyright, Use, and Licensing Statements
NIST Technical Series Publication Identifier Syntax

How to Cite this NIST Technical Series Publication
John Dziurłaj (2024) Implementation Guidance for Common Data Formats. (National Institute of Standards and
Technology, Gaithersburg, MD), NIST Grant/Contractor Report (GCR) NIST GCR 24-058.
https://doi.org/10.6028/NIST.GCR.24-058

https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/nist-research-library/nist-technical-series-publications-author-instructions#pubid
https://doi.org/10.6028/NIST.GCR.24-058

NIST GCR 24-058
November 2024

i

Abstract

This document discusses various topics related to the practical implementation of the NIST
Voting Common Data Formats. This includes materials on how the CDFs are constructed, cross-
referencing data inside and outside CDF instances, handling of geopolitical geography and low-
level processing.

Keywords

Common data format; Election technology.

NIST GCR 24-058
November 2024

ii

Table of Contents

Executive Summary ..1

1. Introduction ...2

2. Common Data Formats and Use cases ...5

2.6.1. Online Voter Registration Portals ... 13

2.6.2. Voter Records Lookup .. 15

2.6.3. Exports .. 15

3. Understanding Common Data Formats from the UML Model .. 19

3.1.1. Data Types .. 20

3.1.1.1. Extended Data Types .. 22

3.1.1.2. Enumerations .. 23

3.1.2. Classes .. 23

3.1.2.1. Abstract Classes .. 24

4. Working with Identifiers ... 34

4.1.1. Usage and Restrictions ... 34

4.1.2. Standardized Prefixes ... 38

NIST GCR 24-058
November 2024

iii

5. Geopolitical Geography .. 42

5.1.1. Governmental geography ... 43

5.1.2. Political geography ... 44

5.1.3. Administrative geography .. 45

6. Low-Level Concerns .. 54

7. Ensuring Best Practices ... 60

7.1.1. Profiling in XML using redefinition.. 61

7.1.1.1. How XSD Redefinition Works .. 61

7.1.1.2. Restriction in XSD .. 61

7.1.1.3. Contextualizing in XSD .. 64

7.1.2. Subsetting and Profiling in JSON Schema: A Comparative Analysis with XSD 64

7.1.2.1. Manual Construction of JSON Schema Profiles ... 64

7.1.3. Comparative Validation: JSON Schema vs. XSD .. 65

7.1.4. Subset Schema Validation Approach .. 65

7.1.5. Limitations of JSON Schema Validation .. 65

7.2.1. Example Schematron Use ... 66

NIST GCR 24-058
November 2024

iv

References ... 69

Appendix A. Glossary ... 71

Appendix B. Abbreviations ... 74

Appendix C. CDF Interoperability Context and Example Interoperability Scenarios 75

C.1.1. Interoperability within CDF major versions .. 77

C.1.2. Interoperability between major CDF versions .. 80

C.1.3. Final thoughts ... 81

List of Tables

Table 1 – Cross-reference coverage of CDFs and themes in this document ...3

Table 2 - Shared elements between CDFs including Voting Information Project6

Table 3 - Listing of common data formats and associated identifiers ... 17

Table 4 - Listing of UML/XSD types and JSON equivalents ... 21

Table 5 - UML Package Names for each Common Data Format .. 26

Table 6 - Mapping of terminology ... 30

Table 7 - Standardized prefixes for object identifiers ... 38

Table 8 - GpUnit literals organized by Geopolitical Geography Types ... 51

Table 9 - Commonly used language codes ... 56

Table 10 - CDF and associated UML Package Names and XML Namespace URIs 58

List of Figures

Figure 1 - Venn Diagram showing class overlap between CDFs...6

Figure 2 - Shapes used by data flow diagrams ...7

Figure 3 – Election process view of CDFs, processes, and interactions ..8

Figure 4 - High level data flow diagram for Cast Vote Records ... 10

Figure 5 - High level data flow diagram for Voter Records Interchange .. 14

Figure 6 - Eligibility determination data flow diagram for Voter Records Interchange 15

Figure 7 - Common data format artifacts .. 19

Figure 8 - Two classes showing their types .. 20

Figure 9 - Data type hierarchy ... 21

Figure 10 - ShortString extending the XSD string primitive type ... 22

Figure 11 - ShortString definition in XSD ... 22

Figure 12 - ShortString definition in JSON Schema ... 22

Figure 13 - IdentifierType with several defined literals .. 23

Figure 14 - IdentifierType definition in XSD ... 23

NIST GCR 24-058
November 2024

v

Figure 15 - IdentifierType definition in JSON Schema... 23

Figure 16 - CandidateContest inheriting from abstract class Contest .. 24

Figure 17 - A logical view of CandidateContest with all properties from Contest inherited.................. 24

Figure 18 - Election composing abstract class Contest ... 25

Figure 19 - Usage of a concrete class in XML.. 25

Figure 20 - Usage of a concrete class with namespace prefix in XML .. 25

Figure 21 - Usage of a concrete class in JSON .. 26

Figure 22 - ElectionReport with Root stereotype ... 26

Figure 23 - Directed Composition Example .. 27

Figure 24 - Directed composition using XSD .. 27

Figure 25 - Directed composition using JSON Schema .. 27

Figure 26 - “Is a Type of” Example... 28

Figure 27 - "Is a Type of" using XSD... 28

Figure 28 - Use of JSON Schema "oneOf" keyword .. 28

Figure 29 - Directed Association Example .. 29

Figure 30 - Contest definition in XSD ... 29

Figure 31 - CandidateContest definition in JSON Schema ... 29

Figure 32 - Class with attribute using «simpleContent» stereotype .. 30

Figure 33 - Uri repeating using XML .. 31

Figure 34 - Uri repeating using JSON ... 31

Figure 35 - Single value for array typed property in JSON .. 31

Figure 36 - UML Instance using references .. 32

Figure 37 - Reusable data using XML ... 32

Figure 38 - Reusable data using JSON .. 33

Figure 39 - Directed association between two classes ... 34

Figure 40 - Example cross-reference using XSD .. 35

Figure 41 - Directed associations between two classes with role names... 35

Figure 42 - Example cross-reference with role name using XML ... 35

Figure 43 - Directed associated between two classes with RoleOfB multiplicity of 1..* 36

Figure 44 - Example of directed association with unbounded upper cardinality using XML 36

Figure 45 - Example instance of directed associated with unbounded upper cardinality using XML..... 36

Figure 46 - Example of directed association with unbounded upper cardinality using JSON 37

Figure 47 - RequestMethod and VoterClassificationType can be used for EAVS Survey 40

Figure 48 - Governmental geographies ... 43

Figure 49 - Political geographies ... 44

NIST GCR 24-058
November 2024

vi

Figure 50 - Administrative geographies ... 45

Figure 51 - Ward and Precincts in Cambridge, MA. .. 46

Figure 52 - Districts Overlaying Wards and Precincts in Cambridge, MA. .. 47

Figure 53 - Overlapping Non-hierarchical Election Districts .. 48

Figure 54 - GpUnit Structural Hierarchies .. 50

Figure 55 - MA's 5th District with whole precincts errantly included .. 52

Figure 56 - MA's 5th District with split precincts replacing whole as needed 52

Figure 57 - Deep Hierarchy of GpUnits .. 52

Figure 58 - Shallow hierarchy of GpUnits in terms of SVU .. 53

Figure 59 - XML with processing instruction and comment .. 59

Figure 60 - JSON “equivalent” with missing processing instruction and comment 59

Figure 61 - Definition of Candidate from ERR .. 62

Figure 62 - XSD with redefinition section for ERR .. 62

Figure 63 - XSD with redefinition section for Candidate ... 62

Figure 64 - restriction of simpleType ElectionType .. 63

Figure 65 - restriction of simpleType ElectionType with values removed .. 63

Figure 66 - Example contextual Schematron rule ... 64

Figure 67 - Example Schematron rule enforcing correct wiring of CDF file .. 67

Figure 68 - Example of CDF interoperability notation .. 77

Figure 69 - Interoperability between two systems supporting the same version 78

Figure 70 - Interoperability between VVSG and non VVSG components ... 78

Figure 71 - Improved interoperability between a VVSG and non-VVSG component 79

Figure 72 - Full resolution of interoperability through exports across entire version family 80

Figure 73 - Interoperability failures between two components supporting different version families . 80

NIST GCR 24-058
November 2024

1

Executive Summary

This document provides an in-depth guide for voting system manufacturers, election officials,
technologists and other stakeholders on the practical implementation of NIST Voting Common
Data Formats (CDFs). By adhering to these recommendations, stakeholders can facilitate a
smooth transition to standardized data handling, improving the efficiency, accuracy, and
transparency of election processes.

The document is structured to address various aspects of CDF implementation. It includes
sections on the practical applications of each CDF within election systems, offering
comprehensive use-case scenarios for ballot definition, vote recording (via cast vote records),
and results reporting. Detailed guidance is provided on where to access necessary resources,
tools, and documentation.

Additionally, the document explains the Unified Modeling Language (UML) notation used to
describe each CDF, aiding in the understanding of data model structures and the
transformation of these models into XML Schema Definition (XSD) and JavaScript Object
Notation (JSON) schemas. It also discusses methodologies for managing identifiers within the
CDFs and provides an extensive background on geopolitical geography's significance in
elections.

Concrete implementation concerns such as text encoding, line endings, internationalization,
and system limits are addressed, alongside mechanisms for enforcing best practices. The
document highlights the importance of automated tools and techniques for ensuring
compliance with specified standards and guidelines, including validation frameworks and
testing suites.

NIST GCR 24-058
November 2024

2

1. Introduction

Interoperability is a crucial principle in the Election Assistance Commission’s (EAC) Voluntary
Voting System Guidelines that ensures various parts of a voting system can exchange and
interpret data accurately and reliably.

The NIST Voting Common Data Formats (CDFs) are standardized formats used to represent and
exchange election-related data used by VVSG 2.0 [1] certified voting systems and others. They
are designed to promote consistency, accuracy, and efficiency in the processing of election data
across different jurisdictions and systems.

The first CDF was released in 2015. Since that time, numerous systems have adopted the CDFs
to ease interoperability between election technology components. With the benefit of nearly
ten years of hindsight, this document seeks to address key questions recurrently asked by
implementers, as well as provide the insights of those on the ground implementing and using
the CDFs.

This document consists of several sections, each focusing on a particular area of interest:

Section 2 delineates the practical applications of each common data format (CDF) within the
elections ecosystem. This section provides comprehensive use case scenarios demonstrating
how each CDF can be effectively utilized in various election processes, such as ballot definition,
vote-capture, and results reporting. Additionally, it offers guidance on where to access the
necessary resources, tools, and documentation to implement each CDF.

Section 3 offers an in-depth overview of the Unified Modeling Language (UML) class diagram
notation as it is used to describe each CDF. It explains the key components and symbols of UML
class diagrams, enabling readers to understand the structural representation of each CDF’s data
model. Furthermore, this section details the process of transforming these UML models into
XML Schema Definition (XSD) and JavaScript Object Notation (JSON) Schemas.

Section 4 outlines various methodologies for managing identifiers within the CDFs. It details the
use of document cross-references, which allow data elements to be uniquely identified and
referenced across a given document. The section also covers internal code lists and external
identifiers, providing guidelines for using standardized prefixes and ensuring identifiers are
unique.

Section 5 provides an extensive background on geopolitical geography and its significance in
the context of elections. It elaborates on the various approaches for representing geopolitical
entities, such as districts, precincts, and polling places, within the Ballot Definition (BD) and
Election Results Reporting (ERR) CDFs.

Section 6 addresses practical implementation details that are crucial for the successful
deployment of CDFs in election systems. It emphasizes the importance of understanding and
managing text encoding, line endings, implementation formats, internationalization, system
limits, and robustness principles to aid in the interoperability of election data.

Section 7 covers automated tools and techniques for ensuring compliance with the standards
and guidelines highlighted elsewhere in the document. It describes the importance of profiling

NIST GCR 24-058
November 2024

3

to tailor the broad, flexible CDF specifications to specific use cases. It also introduces
Schematron for complex validation rules beyond what XSD can enforce, and the use of the CDF
Test Method for automated, repeatable testing.

Limitations of Scope. This document does not describe the microCDF beyond its use cases as it
represents novel work without established best practices, nor does it cover Election Results
Reporting v1.0 as it was already superseded by v2.0 at the time of this writing.

For convenience, Table 1 provides a cross-reference for quickly finding information about
particular CDFs or topics within this document.

Table 1 – Cross-reference coverage of CDFs and themes in this document

Section

V
o

te
r

R
e

co
rd

s
In

te
rc

h
an

ge
 (

V
R

I)

B
al

lo
t

D
e

fi
n

it
io

n
 (

B
D

)

C
as

t
V

o
te

 R
e

co
rd

s
(C

V
R

)

El
e

ct
io

n
 R

e
su

lt
s

R
e

p
o

rt
in

g
(E

R
R

)

El
e

ct
io

n
 E

ve
n

t
Lo

gg
in

g
(E

EL
)

M
ic

ro
 C

D
F

(m
C

D
F)

X
M

L

JS
O

N

C
D

F
Te

st
 M

e
th

o
d

C
D

F
In

te
ro

p
e

ra
b

ili
ty

Section 1. Introduction 1 1 1 1 1 1
1

1.1

1

1.1
1 1

Section 2. Common Data Formats and Use

Cases

2

2.6

2.7

2.8

2

2.5

2.7

2.8

2

2.2

2.5

2.8

2.4

2.8

2

2.3

2.8

2.5

2.1

2.3

2.5

2.7

2.8

Section 3. Undertanding Common Data

Formats from the UML Model

3.1.2.1

3.2
3.1.2.1 3.1.2.1 3.1.2.1

3.1.2.1

3.2

3.1.1

3.1.1.2

3.1.2.1

3.2 - 3.7

3.1.1

3.1.1.1

3.1.1.2

3.1.2.1

3.2 - 3.7

Section 4. Working with Identifiers 4.2
4.1.2

4.4
4.3

4

4.1

4.1.1

4

4.1

4.1.1

4.1.1

Section 5. Geopolitical Geography 5 5.1.1
5

5.4

5

5.4

5.6

Section 6. Low-Level Concerns 6.8 6.8 6.8 6.8 6.8

6

6.3

6.6

6.8

6.9

6

6.3

6.6

6.8

 6.9

6.6

6

6.1

6.2

6.3

 6.5

6.6

Section 7. Ensuring Best Practices
7.2.1

7.3
7.2.1

7.1

7.1.1.2

7.2.1

7.1.1

7.1.2

7.1.3

7.2

7.3

7.1.2

7.1.2.1

7.1.3

7.1.4

7.1.5

7.2.1

7

7.1.5

7.2.1

7.3

7.3

Appendix C. CDF Interoperability

C.

C.1.1

C.1.2

NIST GCR 24-058
November 2024

4

 Document conventions

Managing polysemy. This document describes concepts used in JSON, JSON Schema, UML,
XML and XML Schema Definition (XSD). These five technical specifications use similar, and in
some cases the same, words to mean slightly different things. When such a term is
encountered, its context will always be given, e.g., an XML Element vs a UML Element.
Additionally, all such terms will be defined in a glossary, given in Appendix A.

XSD types. References to types specified in the XSD Data Model are always described with the

prefix xsd, e.g., xsd:ID for the XSD data type ID. UML does not use prefixes, however, for
consistency sake, the prefix xsd will also be used to refer to a UML mapping of an XSD data
type.

NIST GCR 24-058
November 2024

5

2. Common Data Formats and Use cases

The NIST Voting Common Data Formats (CDF) are not a single specification but rather a suite of
interoperable data formats designed to support a wide range of election-related activities.
Therefore, when discussing the implementation of “the CDF”, it is crucial to understand that
the focus is on implementing a specific CDF tailored to meet the particular needs and
requirements of a given use case.

The use case driven development approach for NIST Common Data Formats (CDFs) emphasizes
the identification and prioritization of specific capabilities based on their intended use cases.
These use cases are derived from sources such as VVSG requirements and requests from
election officials and other key stakeholders.

Targeted Focus. The capabilities supported by a CDF are directly tied to its intended use cases.
By identifying these use cases upfront, NIST can prioritize features that are essential for
achieving the desired outcomes. Additionally, this focus ensures that the format caters to
specific use cases and avoids becoming overly complex.

Anticipating Off-Label Uses. While CDFs are designed with specific use cases in mind, it is
essential to acknowledge the potential for "off-label" applications. The CDF development
process provides the flexibility to accommodate unforeseen uses without introducing undue
complexity.

There are a total of five primary common data formats covering a wide range of use cases.
Despite their differences, many use cases share a core set of data needs. As a result, the CDFs
broadly share the same data classes and relationships. The properties of those shared classes
are tailored to each CDF’s specific needs.

Due to these shared underlying structures, understanding one CDF gives implementers a strong
foundation for learning another. The core concepts and organization will be familiar, allowing
implementers to quickly grasp the specific details of a new format.

The Venn diagram in Figure 1 illustrates the overlap and unique classes among four different
CDFs. The four CDFs represented are Ballot Definition (BD), Cast Vote Records (CVR), Voter
Records Interchange (VRI), and Election Results Reporting (ERR). Each ellipse in the Venn
diagram represents one of these CDFs (Election Event Logging has no overlap with any other
CDF and thus was excluded from the Venn Diagram).

Table 2 represents the degree of shared elements among various CDFs used in election systems
as previously seen in Figure 1 with the additional inclusion of the Voting Information Project
(VIP) [3]. The numbers in parentheses next to each CDF represent the total number of classes in
each format1.

1 The numbers of classes listed are representative at the time of this writing, but may vary over time with evolution of the CDFs.

NIST GCR 24-058
November 2024

6

Table 2 - Shared elements between CDFs including Voting Information Project

 CVR
(27)

VRI
(33)

ERR
(45)

VIP
(36)

BD
(52)

11 7 35 20

CVR
(27)

 4 14 9

VRI
(33)

 7 5

ERR
(45)

 21

Figure 1 - Venn Diagram showing class overlap between CDFs

Notation. This section uses data flow diagrams, constructed using Gane-Sarson notation [4].
Each use case of the scenario is enumerated as a process. The data required for each use case is
specified using data flows – arrows pointing from the source of the data to its target. Data can
flow between processes, data-info stores, and external agents. An overview of the notation is
given in Figure 2.

NIST GCR 24-058
November 2024

7

Figure 2 - Shapes used by data flow diagrams

The following subsections are broken down by CDF, with each CDF receiving its own section.
For each CDF, a data flow diagram (DFD) is constructed. The DFD consists of use cases (DFD
processes), data flows that support those use cases, data stores (i.e., data stored inside a
component) and external participants (such as other systems) involved in the scenario.

 Ballot Definition

Ballot definition can be used to store information required to generate ballots, including both
logical ballot styles and a subset of physical ballot styles. A logical ballot definition serves as the
abstract model of the ballot. It describes the structure, content, and relationships of various
elements on the ballot, such as contests, candidates, and measures.

Physical ballot definition refers to details about the actual manifestation of the ballot as it will
be presented to the voter (either physically or digitally). This includes both paper ballots and
electronic displays used in Ballot Marking Devices (BMDs). The BD provides a subset of lower-
level presentation details such as the contest option position locations which can be used by
scanners to capture vote selections. For more information on remaining gaps in ballot
definition, refer to Section 2.7.

NIST GCR 24-058
November 2024

8

Figure 3 – Election process view of CDFs, processes, and interactions

A global election process view of CDFs, their processes, and respective interactions is shown in
Figure 3 and described in more detail below. The ballot definition CDF plays a central role
throughout a given election system. So, this system-level view is provided with respect to this
context.

Election Management System Export. The Election Management System (EMS) is generally
used to define the structure of ballots. This includes inputting contests and candidates that will
appear on the ballot, organizing them in a logical order, and adding the necessary design
elements. By using the BD CDF, the EMS can generate consistent and accurate ballot definitions
that can be utilized by various components of the voting system.

Election Process Steps CDFs

PRE-ELECTION

begin election

decide to include contest on ballot BD

decide to include candidate on ballot BD

register candidate for election BD

register voter VRI

define election BD

define ballot BD

implement ballot BD

install ballot on equipment BD

verify election equipment is ready for election EEL

ELECTION

open polls

authenticate/identify voter VRI

connect voter to blank ballot VRI, BD

voter interacts with ballot via interfaces BD

voter edits ballot (selects, deselects) contest choices BD

voter navigates ballot BD

voter verifies contest selections BD

voter casts/records ballot CVR, mCDF

voter cancels/spoils ballot BD

POST-ELECTION

close polls

count votes CVR

consolidate votes CVR, ERR

transfer information (physically, electronically) CVR, ERR, EEL

report results (intermediate, final) ERR

track/log election status throughout EEL

archive election information and equipment VRI, BD, ERR, EEL

audit election information and equipment VRI, BD, ERR, EEL

accept election results VRI, BD, ERR, EEL

end election

NIST GCR 24-058
November 2024

9

Electronic Poll Books. Electronic Poll Books use ballot definitions to determine and issue the
correct ballot to each voter based on their registration data. This includes verifying the voter’s
precinct, party affiliation, and any specific requirements such as language or accessibility needs.
The correlation of precinct / split identifiers from the EPB to associated ballot styles in the BD
ensures that the EPB can accurately match voters with the appropriate ballot, reducing the risk
of errors and ensuring a smooth voting process.

Ballot Generation and Printing. Ballot definitions are instrumental in the generation of both
electronic and paper ballots. They provide the necessary layout and structural data required to
print ballots accurately. Additionally, ballot definitions ensure that the printed ballot matches
the voter’s eligibility and preferences. This is crucial for jurisdictions that offer different ballot
styles based on precinct, party affiliation, or language preferences.

Vote capture and tabulation. In the vote capture and tabulation process, scanners and other
vote capture devices use the layout information provided by the ballot definition to read and
tally votes correctly. This includes interpreting marks on paper ballots or reading barcodes and
other machine-readable elements on ballot selection records produced during ballot
generation.

Ballot definition. Standardizing ballot styles facilitates interoperability between different voting
system components and manufacturers. This is particularly important in jurisdictions that use
equipment from multiple manufacturers. A common data format for ballot styles ensures that
all components, from ballot printers to scanners and tabulation systems, can communicate
effectively, reducing the risk of misinterpretation and aiding in accurate vote counting.

The BD CDF provides robust support for logical ballot definition and partial support for physical
ballot definition in the form of contest selection capture. A full set of use cases for ballot styles
is given in the white paper “Recommendations for Voting System Interoperability” [6], which
provides a roadmap for future development in this area.

 Cast Vote Records

Cast Vote Records provide digital representations of voted ballots.

The CVR CDF supports efficient tabulation of ballots, particularly for ballots containing rank
choice voting contests.

It also enables the use of ballot-level comparison audits, which are an efficient approach to risk
limiting audits. Risk limiting audits provide approaches to statistically verify the accuracy of
election results [22].

Use of the CVR CDF enables public analysis of fine-grained voting data. Researchers can analyze
voting patterns, such as ticket splitting and support for various candidates or issues, providing
insights that can inform future electoral reforms and policies [8]. The availability of detailed
voting data allows for a more comprehensive analysis than aggregate vote totals. While public
analysis promotes transparency, it also necessitates careful consideration of voter privacy.

NIST GCR 24-058
November 2024

10

The VVSG 2.0 requires that vote-capture devices, Election Management Systems (EMSs) and
other devices be capable of importing and exporting CVRs.

The term “cast vote records” is sometimes used interchangeably with “ballot images”, however
these are two separate but related, concepts. In the CVR CDF, ballot images can be referenced
or embedded alongside the structured representations of the cast ballot.

Figure 4 illustrates an example workflow of ballot processing and result tabulation, divided into
several distinct stages.

Figure 4 - High level data flow diagram for Cast Vote Records

The process begins with the scanning of ballots. In this initial stage, each ballot is scanned and
interpreted to produce a Cast Vote Record (CVR). At this point, the raw selections may be
placed into a CVR CDF instance or the processing of business rules may occur immediately prior.

In that case, predefined business rules are applied to ballot selections according to the voting
method and contest parameters. The business rules are sourced from the Election
Management System (EMS) component, which provides the necessary parameters for
interpreting the ballots correctly.

Ballots may be flagged for review at the scanning or interpretation phase, e.g., when a marginal
mark is detected in the former, and if a contest is overvoted in the latter. In such cases, an
adjudication process may come into play. During adjudication, flagged ballots are examined to
resolve any issues and ensure that the voter's intent is accurately reflected. This may involve
making adjustments or confirming contest selections. The adjudication process is overseen by

NIST GCR 24-058
November 2024

11

adjudicators who are responsible for interpreting and resolving any discrepancies found in the
flagged ballots.

Once the ballots have been scanned, rules applied, and adjudicated, if necessary, the next step
is to tabulate the votes. In this stage, the system aggregates the interpreted and adjudicated
ballots to produce the final vote totals. These election results are then compiled and forwarded
to the reporting system for dissemination.

The CVR CDF supports efficient ballot-level comparison audits. This step supports the integrity
of the election results by cross-verifying a sample of ballots against the recorded data. Auditors
conduct this verification process and interpret the audit results to confirm the reliability of the
election outcome.

 Elections Event Logging

The Election Event Logging (EEL) CDF is a standardized data format designed to facilitate the
efficient and accurate exchange of election log data. It aims to improve the transparency,
interoperability, and integrity of such logs.

Standardized event logging ensures the consistent reporting of election events across different
devices and even jurisdictions, making it easier to aggregate and compare data.

EEL supports several approaches to logging:

Decentralized Logging. Each device maintains its own log, capturing all events specific to its
operation. This decentralizes the logging process, allowing for detailed tracking of events on a
per-device basis.

Combined Logging. Logs are combined into a Security Information and Event Management
(SIEM) system. This centralization ensures that all logs are accessible from a single repository
for analysis and auditing. Because logs are always correlated to the logging device, it is always
possible to combine logs without losing context.

For a detailed treatment of EEL use cases, refer to the specification.

 Election Results Reporting

The Election Results Reporting (ERR) specification provides a detailed and flexible common data
format for pre-election setup information and election night, and post-election results
reporting.

Pre-Election Use Case. The pre-election use case focuses on reporting various types of election-
related data prior to the actual election day. Election officials use this use case to ensure the
accuracy and organization of election data and to inform the public about upcoming elections.
The data can be sourced from various systems such as voter registration databases, ballot
programming systems, and campaign finance systems. Reports can be produced in multiple
formats, including complete files, sequences of files, or as updates and corrections to previous
reports. Pre-election reporting data includes jurisdictional information, political party details,

NIST GCR 24-058
November 2024

12

candidate and officeholder information, election dates and types, ballot measures, contest
details, and specific voting locations and devices.

Election Night Reporting. The election night reporting use case pertains to the real-time
reporting of individual or aggregated election results. This use case supports the dissemination
of election results to the public and media immediately following the close of polls. Depending
on the jurisdiction's capabilities, detailed reporting at the precinct level may also be included.
Results are typically reported either directly from local jurisdictions to the public/media or
through an upward reporting process to state authorities. The data that may be reported
includes contest-level results, votes for each candidate or selection, overvotes, undervotes, and
breakdowns by precinct, ballot type, and device type. The aim is to provide timely and accurate
election results, although these are considered unofficial until finalized.

Post-Election Reporting. The post-election reporting use case deals with the comprehensive
reporting of final election results after all ballots have been counted and verified. This phase
includes detailed breakdowns of vote counts by different types of ballots (e.g., absentee,
provisional) and voting devices. Post-election reporting includes data that may not have been
available on election night, such as late-arriving absentee ballots and provisional ballots. This
detailed reporting is critical for analysts and media for in-depth election analysis, including
voter behavior patterns and rejection rates for provisional ballots. The data reported includes
all information from pre-election and election night reporting, as well as additional details on
vote counts and summaries at various geographical and organizational levels.

 microCDF

microCDF (mCDF) functions as a serialization format, supporting representation of complex
data models in environments with limited storage capacities, such as on paper or in QR Codes.
Serialization in this context involves transforming data into a format that is easy to store and
reconstruct. mCDF achieves compactness by employing delimiters instead of tags and using
default values to further reduce required storage space. Fields and segments in mCDF messages
are separated by specific delimiters, while maintaining a hierarchical structure that reflects the
relationships and nesting found in each profile’s UML model.

The mCDF specification does not define data structures but rather a method for encoding data
according to the profiles. Each profile serves as a template, specifying the data structures,
types, and constraints necessary for specific use cases, such as the exchange of contest option
selections or ballot style identifier information.

The following use cases are anticipated by the mCDF format:

Exchange of Activation Information. The mCDF can be used to support the exchange of
activation information between ballot activation devices and ballot marking devices.

Exchange of Contest Option Selections. In the context of exchanging contest option selections
between ballot marking devices and ballot scanners, mCDF offers a standardized method for

NIST GCR 24-058
November 2024

13

transmitting voter selections. The Contest Selection Capture (CSC) message included in a future
revision to CVR CDF provides support for this use case.

Exchange of Ballot Style Identifier Information. The mCDF supports storing specific identifiers
on paper ballots, allowing scanners to correctly interpret and process different ballot styles.
Appendix A of the Ballot Definition (BD) specification provides a detailed mCDF profile for Ballot
Style Identification.

General Software-Independent Information Exchange. mCDF is designed for any application
that requires software-independent information exchange, such as those involving paper-based
data transfer. In these scenarios, mCDF facilitates the transfer of election data by leveraging its
compact and flexible syntax.

By facilitating these specific types of data exchanges, mCDF enhances interoperability among
election devices, which can lead to more componentized and flexible election systems,
providing jurisdictions with greater choice and better integration capabilities.

Note: No further treatment of microCDF is given in this document.

 Voter Records Interchange

The Voter Records Interchange (VRI) supports voter registration modernization efforts by
providing a standardized format for exchange between voter registration databases (VRDBs)
and other systems and agencies. This includes support for Online Voter Registration (OVR),
Automatic Voter Registration (AVR) and National Voter Registration Act (NVRA) agency
automation.

The VRI provides robust support for both the EAC’s National Voter Registration Act (NVRA) and
FVAP’s Federal Post Card Application (FPCA) forms. This capability is particularly beneficial for
states that have adopted these standardized forms for voter registration, as it facilitates a
streamlined and efficient registration process.

In addition to its federal form support, the format offers native support for common state-
specific requirements. VRI also includes functionality for handling various assertions that may
be required by state laws. For example, it can process declarations regarding an individual's
status as a member of the military or a citizen residing overseas.

When voters change their address, name, or other personal information, the use of VRI helps
ensure that these updates are transmitted and recorded in a uniform manner. This reduces the
likelihood of discrepancies and helps maintain the integrity of voter data across different
systems.

2.6.1. Online Voter Registration Portals

Figure 5 provides a detailed representation of the flow of voter registration data from
applicants to a voter registration database, demonstrating the different channels through which

NIST GCR 24-058
November 2024

14

this data can be processed and integrated. It highlights the use of VRI CDF as the standard
exchange format for this data.

Figure 5 - High level data flow diagram for Voter Records Interchange

The primary source of data in this example is the applicants agent block, representing
individuals applying to register to vote. The diagram outlines three distinct pathways for the
voter data to travel from applicants to the voter registration database.

The first pathway involves a State OVR system, which is managed by the election jurisdiction. In
this scenario, voter data collected from applicants can be directly processed by the state-run
OVR system or passed to the Registration Gateway.

The second pathway, labeled Third Party OVR, depicts the process when a third-party entity,
such as a non-profit, operates their own OVR system. Voter data from applicants is collected by
this third-party system and transmitted to the Registration Gateway using VRI CDF. This
standardized format ensures consistent and accurate data exchange between the third-party
OVR system and the election jurisdiction's registration gateway.

The third pathway involves an NVRA Agency. This governmental OVR system facilitates data
exchange between the Department of Motor Vehicles (DMV) or similar systems and the voter
registration systems. This pathway is crucial for digital notification of voter registration requests
made by DMV customers. Additionally, it supports the semi-automated steps toward
permanent voter registration by including updates from DMV records, such as change-of-
address notifications (i.e. Automatic Voter Registration). This exchange of data, also in the VRI
Common Data Format, ensures that all relevant voter information is efficiently communicated
to the voter registration systems.

NIST GCR 24-058
November 2024

15

At the center of the data integration process is the Registration Gateway, a service endpoint
provided by the election jurisdiction. The gateway accepts voter registration data from various
sources, including OVR systems and NVRA agencies. It processes and validates this data,
ensuring it is accurately formatted and ready for entry into the voter registration database.

Finally, the Voter Registration DB serves as the repository for all processed voter registration
data. It receives data directly from the State OVR and through the Registration Gateway from
third-party OVR systems and NVRA agencies. Additionally, the database provides eligibility
responses, confirming the status of the voter registration applicants.

2.6.2. Voter Records Lookup

Figure 6 represents a workflow for handling requests for information regarding voter records
within a Voter Registration (VR) system, or between a VR system and a third party.

Figure 6 - Eligibility determination data flow diagram for Voter Records Interchange

The process begins with requests for information about voter records. These requests might
include prequalification inquiries for updating voter registration, for looking up voter
registration status, or requests for general voter registration data exports.

In the prequalification of a voter scenario, the VR system is queried to determine whether a
voter meets the criteria for updating their registration. This might involve verifying the voter’s
current registration status, checking for any outstanding issues, and ensuring compliance with
the relevant rules and regulations.

For voter registration lookup applications, the system provides tools for users to check their
registration status. This might include verifying whether they are registered to vote, confirming
the details of their registration, and determining if their information is up to date.

2.6.3. Exports

The process also includes handling general voter registration exports, where large datasets of
voter registration information are exported from the VR system. These data dumps might be
requested by authorized entities for various purposes, such as analysis, auditing, or reporting.

NIST GCR 24-058
November 2024

16

Ensuring the security, accuracy, and voter privacy when performing data dumps is crucial to
maintaining the integrity of voter information.

 Use Case Gaps

While CDFs described so far support numerous use cases, gaps remain in their ability to handle
specific interoperability scenarios. An analysis of several known gaps was conducted by NIST in
2022 resulting in two documents, one evaluating interoperability needs outside the voting
system [5] and another evaluating needs within it [6]. This section summarizes those
documents.

Ballot Definition.

The Ballot Definition (BD) CDF was released in 2023 in response to a gap analysis paper. The
primary objective of the BD CDF was to ensure full coverage of logical ballot styles and enhance
the ability to capture vote selections from various types of ballots. This release represented a
significant step forward in addressing interoperability issues within voting systems by
standardizing the way ballot styles may be defined and vote selections may be recorded.

One major use-case that remains unaddressed is the ability to comprehensively describe ballot
layouts for various ballot formats. The current specification does not provide sufficient detail to
enable the generation of legally compliant ballots directly from the definition. Specifically, the
BD CDF does not support the conveyance of typography information, certain design elements
or their spatial arrangement.

Electronic Poll Books

Electronic Poll Books (EPB) face interoperability issues primarily in determining voter eligibility,
issuing ballots, and tracking ballots. The VRI CDF supports several EPB functions, such as voter
registration and querying voter records, but lacks optimization for EPB-specific scenarios.
Additionally, the interoperability between EPBs and ballot activation systems is hindered due to
the absence of a standardized ballot activation data format. Recommendations include
extending the VRI to better support EPB use cases, developing an EPB-specific CDF, and creating
a Ballot Activation CDF to facilitate seamless interaction between EPBs and ballot marking
devices.

Interactions between Electronic Poll Books and Voter Registration Databases (VRDBs)

Interactions between EPBs and VRDBs require detailed information structures to support
various functions such as ballot tracking, voter registration, and voter eligibility determination.
Current data formats partially support these interactions, but gaps exist in conveying detailed
ballot and voter information. Enhancing the VRI to explicitly cover these data flows and
developing interoperable data formats for ballot tracking and voter registration details are
necessary to improve interoperability between EPBs and VRDBs.

On-Demand Ballot Printing

The On-Demand Ballot Printing (ODBP) systems face several interoperability challenges
primarily related to ballot style determination, ballot printing, and ballot tracking. The existing

NIST GCR 24-058
November 2024

17

Voter Records Interchange (VRI) Common Data Format only provides partial support for
determining ballot styles through ReportingUnit identifiers, but lacks the capability to convey
detailed presentation data required for printing ballots. Additionally, VRI does not adequately
support the tracking of ballot sequence numbers, which is critical for maintaining the chain of
custody and ensuring auditability. Recommendations include extending the VRI specification to
better support on-demand ballot printing scenarios and developing a dedicated ballot style CDF
to address the deficiencies in conveying ballot presentation data.

Remote Ballot Marking

Remote Ballot Marking (RBM) systems encounter gaps in voter authentication, ballot style
determination, ballot generation, and ballot transcription. While the VRI CDF supports voter
authentication and eligibility determination, it falls short in providing detailed ballot style data
necessary for generating markable ballots. Enhancing the VRI to explicitly cover remote ballot
marking use cases and incorporating support for high fidelity ballot styles within the Ballot
Definition CDF is recommended. Additionally, addressing the electronic return of ballots in a
privacy-preserving manner is crucial.

 Finding Common Data Format Resources

The first place to go when looking for CDF Resources is the NIST Voting Program website,
accessible at https://www.nist.gov/itl/voting. The Interoperability page provides up to date,
official publications from NIST.

NIST Voting Common Data Formats are published as NIST Technical Series Publications. NIST
Technical Special Publication (SP) Series 1500 has been used for all CDFs developed so far. Each
publication is commonly referred to as a “CDF Specification”. Each NIST publication is given a
Publication ID (PubID) of the form {series} {report number} {edition} {update} {update number}
{update year}. Table 3 provides a listing of the published CDFs at time of writing, associated
PubID and document object identifiers.

Table 3 - Listing of common data formats and associated identifiers

Common Data Format PubID DOI

Micro Common Data Format
Specification Version 1.0

SP 1500-19 10.6028/NIST.SP.1500-19

Ballot Definition Common Data Format
Specification Version 1.0

SP 1500-20 10.6028/NIST.SP.1500-20

Election Results Common Data Format
Specification Revision 2.0

SP 1500-100r2 10.6028/NIST.SP.1500-100r2

Election Event Logging Common Data
Format Specification Version 1.0

SP 1500-101 10.6028/NIST.SP.1500-101

https://www.nist.gov/itl/voting

NIST GCR 24-058
November 2024

18

Voter Records Interchange Common
Data Format Specification Version 1.0

SP 1500-102 10.6028/NIST.SP.1500-102

Cast Vote Records Common Data Format
Specification Version 1.0

SP 1500-103 10.6028/NIST.SP.1500-103

All CDF specifications are assigned Document Object Identifiers (DOIs) [2]. DOIs provide
permanent links that will always lead to the current location of each publication, even if the
original URL changes. This ensures long-term accessibility and reliability for citing NIST
publications.

NIST Voting Common Data Formats are published according to the Common Data Format
lifecycle policy [7].

NIST GCR 24-058
November 2024

19

3. Understanding Common Data Formats from the UML Model

The development of the NIST 1500 series Common Data Formats (CDFs) follows a Model Driven
Architecture (MDA) approach. This means that a high-level representation (i.e., model) of each
common data format is developed, and then transformed into implementation formats that
can be used by developers. This model is specified using the standardized syntax of the Unified
Modeling Language (UML) [1]. The relationship between layers of representation is given in
Figure 7.

Figure 7 - Common data format artifacts

All CDFs are documented in terms of the model; therefore, understanding of the UML class
model and how it maps to the JSON [11] and XML [10] is required for implementers.

This section provides background regarding how the NIST 1500 UML models map into the
implementation formats.

Examples used throughout this document are based on a subset of the Election Results
Reporting specification, v2.0 [12]. Examples may abbreviate the actual definitions used in XSD
or JSON Schema in order to emphasize a particular concept.

This section is not intended to be an introduction to UML, JSON or XML.

 Types

Every property in the UML model belongs to a particular type, which has the effect of
constraining the range of values allowed for that property. For UML attributes, types are
indicated after the colon in the attribute listing. For associations, the UML type is indicated by

NIST GCR 24-058
November 2024

20

the target of the relationship, i.e., the class pointed to by the arrow. In Figure 8,
Contest::Name’s type is String, while Contest::ElectionDistrict’s type is ReportingUnit.

Figure 8 - Two classes showing their types

3.1.1. Data Types

From Figure 8, it is clear where the type ReportingUnit comes from, ReportingUnit is a class
defined in the model. However, where does the UML type String come from?

String is a built-in UML primitive type. Primitive types are used to represent atomic values. The
UML provides 5 different primitive types:

• Boolean

• Integer

• Real

• String

• UnlimitedNatural

XML maps UML Primitive types to either an XML element typed as Parsed Character Data
(PCDATA, default) or an XML attribute (controlled by stereotypes, see Section 3.5).

JSON distinguishes between objects (which are collections of key-value pairs) and primitive
values (which are individual data items like strings, numbers, and booleans). Primitive types in
UML map directly to these non-object JSON values.

The primitives provided by UML are limited in comparison to other languages. However, UML
allows for the creation of additional, custom data types. The CDFs extend the UML set of
primitive types with that of the XSD’s to augment the UML types available.

Presented in Figure 9 is the hierarchy of XSD built-in primitive and derived primitive types that
are used in various CDFs. The data types in bold are used by a CDF, those in blue are extended
types defined in one or more CDFs, and those in gray are not used directly, but are an ancestor
of a used data type and constrains the data in some way.

The use of inherited constraints from ancestor types, even those not directly utilized, ensures
that all derived types conform to a foundational set of rules. For more information see Section
3.1.1.1.

NIST GCR 24-058
November 2024

21

Figure 9 - Data type hierarchy

Because the UML models use the XSD types directly, the mapping from a CDF’s UML model to
an XSD schema is straightforward. However, for the JSON Schema these XML data types must
be mapped to their equivalents, given in Table 4.

Table 4 - Listing of UML/XSD types and JSON equivalents

UML JSON JSON
Format

xsd:anyURI string uri

xsd:base64Binary string byte

Boolean boolean

xsd:date string date

xsd:dateTime string date-time

xsd:float number

xsd:ID* string

xsd:IDREF* string

xsd:IDREFS* string

Integer integer

xsd:language* string

Real number

String string

xsd:time string time2

2 XML data types are currently more constrained than JSON equivalents. The CDF Test Method can be used to fully validate JSON instances.
Refer to Section 7.3.

NIST GCR 24-058
November 2024

22

JSON Schema uses JSON Formats to further constrain the basic JSON data types. These formats
are often related to specific types of data commonly encountered in applications, such as dates,
times, URIs, email addresses, and more.

Handling of xsd:ID, xsd:IDREF and xsd:IDREFs is given in Section 4.1. Handling for xsd:language
is given in Section 6.4.

3.1.1.1. Extended Data Types

The UML primitive types can be further extended by creating new data types based on them.
When a data type is extended, it inherits all the constraints and facets of its base type, with
additional restrictions potentially being imposed to narrow the scope of acceptable values. This
inheritance of constraints ensures that derived types maintain the identity and validation rules
of their ancestors while providing more specific constraints tailored to particular use cases.

Note: Extension of UML primitives is an action reserved exclusively to the authors of the
CDFs. End-users of the specifications should not extend the CDFs if they wish to be
conformant with published specification (see Section 6.7).

For example, if a CDF uses an extended type derived from a built-in XSD type like xsd:string,
the extended type may introduce restrictions such as a specific pattern, length constraints,
among others. These additional constraints are layered on top of the inherent facets of string,
ensuring that any instance of the extended type adheres to both the base type’s rules and the
newly defined restrictions. Figure 10 shows ShortString inheriting from xsd:string and setting
the property maxLength to 32.

Figure 10 - ShortString extending the XSD string primitive type

This maxLength constraint in Figure 10 corresponds to a facet in the XSD model. The equivalent
XSD and JSON Schema structures are given in Figure 11 and Figure 12.

<xsd:simpleType name="ShortString">

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="32"/>

 </xsd:restriction>

</xsd:simpleType>

Figure 11 - ShortString definition in XSD

{

 "ElectionResults.ShortString": {

 "type": "string",

 "maxLength": 32

 }

}

Figure 12 - ShortString definition in JSON Schema

NIST GCR 24-058
November 2024

23

3.1.1.2. Enumerations

An enumeration is a data type that restricts the possible values to a set of named literals. An
example using IdentifierType is shown in Figure 13. IdentifierType is used with
ExternalIdentifier, further discussed in Section 4.3.

Figure 13 - IdentifierType with several defined literals

UML Enumerations become simpleTypes in XML which restrict a string value to the
enumeration values defined, as shown in Figure 14.

<xsd:simpleType name="IdentifierType">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="fips"/>

 <xsd:enumeration value="local-level"/>

 <xsd:enumeration value="national-

level"/>

 <xsd:enumeration value="ocd-id"/>

 <xsd:enumeration value="state-level"/>

 <xsd:enumeration value="other"/>

 </xsd:restriction>

</xsd:simpleType>

Figure 14 - IdentifierType definition in XSD

Likewise, UML Enumerations become JSON string types with the enum constraint set in JSON
Schema, as given in Figure 15.

"ElectionResults.IdentifierType": {

 "type": "string",

 "enum": [

 "fips",

 "local-level",

 "national-level",

 "ocd-id",

 "other",

 "state-level"

]

}

Figure 15 - IdentifierType definition in JSON Schema

3.1.2. Classes

A class defines the set of objects sharing the same features and constraints. In the CDFs, classes
provide blueprints for represent real world objects such as candidates, contests, parties among
others.

NIST GCR 24-058
November 2024

24

3.1.2.1. Abstract Classes

There are some classes that cannot be instantiated directly. These abstract classes serve as a
template for creating subclasses that can be used directly by implementers. The subclasses
inherit all the defined properties of the abstract parent. Figure 16 shows CandidateContest
inheriting from Contest.

Figure 16 - CandidateContest inheriting from abstract class Contest

Logically, this is equivalent to the properties (including associations) being directly included in
CandidateContest as shown in Figure 17.

Figure 17 - A logical view of CandidateContest with all properties from Contest inherited

When encountering a class that references an abstract class, as shown in Figure 18, the
implementer must choose the proper subtype they wish to use.

NIST GCR 24-058
November 2024

25

Figure 18 - Election composing abstract class Contest

The xsi:type attribute is used in XML Schema instances (XSI) to explicitly specify the actual type
of an element when it is instantiated from an abstract class defined in an XML Schema (XSD) or
if a more specific subtype is called for generally. The use of xsi:type to specify the subtype
CandidateContest is given in Figure 19.

<ElectionReport xmlns="http://itl.nist.gov/ns/voting/1500-100/v2"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 ...

 <Contest xsi:type="CandidateContest" ObjectId="cc-1">

 …

 </Contest>

 ...

</ElectionReport>

Figure 19 - Usage of a concrete class in XML

While the namespace URI for XSI (http://www.w3.org/2001/XMLSchema-instance) is fixed, the
prefix (such as xsi in this case) can be chosen by the user. The option exists to declare it as
something else like myxsi as long as there is consistent use of that prefix throughout the
document to associate it with the same namespace URI.

However, using a standard prefix like xsi enhances readability and ensures broader
compatibility with XML processors that understand common conventions.

If the concrete type has a namespace prefix declared in the document, then the xsi:type value
should include that prefix as shown in Figure 20.

<cdf:ElectionReport xmlns:cdf="http://itl.nist.gov/ns/voting/1500-100/v2"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 ...

 <cdf:Contest xsi:type="cdf:BallotMeasureContest" ObjectId="bmc-1">

 ...

 </cdf:Contest>

 ...

</cdf:ElectionReport>

Figure 20 - Usage of a concrete class with namespace prefix in XML

In JSON, the correct type is chosen by using the @type key, as demonstrated in Figure 21.

http://www.w3.org/2001/XMLSchema-instance

NIST GCR 24-058
November 2024

26

{

 "@type": "ElectionResults.CandidateContest",

 ...

}

Figure 21 - Usage of a concrete class in JSON

The @type value consists of two parts: the UML Package name and the UML class name,
separated by a period. The UML Package names are not documented in the CDF specifications
and are thus provided in Table 5 for convenience.

Table 5 - UML Package Names for each Common Data Format

Common Data Format UML Package Name

Ballot Definition Common Data Format
Specification

BallotDefinition

Cast Vote Records Common Data Format
Specification version 1.0

CVR

Election Event Logging Common Data
Format Specification

EventLogging

Election Results Common Data Format
Specification revision 2.0

ElectionResults

Voter Records Interchange Common
Data Format Specification version 1.0

VRI

 Root Element

The UML class model is a graph data structure in the sense that there is no hierarchy implied by
the model. However, the two supported implementation formats, JSON and XML, are
hierarchical in structure (also called a tree). All hierarchies must start with a root, which is
indicated in the UML model as a class with the «root» stereotype applied. In Figure 22the
ElectionReport class will be generated in XML Schema as the root element ElectionReport.

Figure 22 - ElectionReport with Root stereotype

A single model can have multiple root elements. For example, VRI has two root elements, one
VoterRecordsRequest for making requests, and VoterRecordsResponse for receiving responses.
Likewise, EEL has ElectionEventLog for producing log files containing event described by types
and identifiers and ElectionEventLogDocumentation for describing the meaning of those event
types and identifiers.

NIST GCR 24-058
November 2024

27

 Relationships Between Classes

The major classes in the UML model result in major elements in the schemas, and the different
types of relationships between the UML classes determine how the elements are structured
(linked) in the schema. There are three types of relationships between the classes:

Directed Composition. In Figure 23, ElectionReport and Election should be read as, “An
election report is composed of elections.” In the XML schema for example, the Election
element will be generated as a sub-element of the ElectionReport element. A directed
composition relationship has a closed diamond at one end and an arrow pointing to the
composing class.

Figure 23 - Directed Composition Example

The equivalent representation in XSD is given in Figure 24.

<xsd:complexType name="ElectionReport">

 <xsd:sequence>

 <xsd:element name="Election" type="Election" minOccurs="0"

maxOccurs="unbounded">

 </xsd:element>

 </xsd:sequence>

</xsd:complexType>

Figure 24 - Directed composition using XSD

The equivalent representation in JSON Schema is given in Figure 25.

"ElectionResults.ElectionReport": {

 ...

 "type": "object",

 "properties": {

 "Election": {

 "type": "array",

 "minItems": 0,

 "items": {

 "$ref": "#/definitions/ElectionResults.Election"

 }

 }

 ...

 }

}

Figure 25 - Directed composition using JSON Schema

Is a Type of (Generalization). In Figure 26, Contest and CandidateContest should be read as, “A
candidate contest is a type of contest.” Contest is an abstract class (indicated by placing the
class name in italic font); it is “implemented” by its concrete classes such as CandidateContest.
In the XML schema, Contest will be generated as an abstract type and serves as an extension
base to the CandidateContest element. A generalization relationship has an open triangle at
one end, pointing from the concrete class to the abstract class.

NIST GCR 24-058
November 2024

28

Figure 26 - “Is a Type of” Example

The equivalent representation in XSD is given in Figure 27.

<xsd:complexType name="CandidateContest">

 <xsd:complexContent>

 <xsd:extension base="Contest">

 <xsd:sequence>

 ...

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

Figure 27 - "Is a Type of" using XSD

JSON Schema does not support object-oriented constructs. Instead, each concrete class is
defined with its own properties, including all properties inherited by its parents. When a type
with descendants is specified, the schema generation tool uses the oneOf construct, which
allows one of the concrete children to be selected, as shown in Figure 28.

"Contest": {

 ...

 "items": {

 "oneOf": [

 {

 "$ref": "#/definitions/ElectionResults.PartyContest"

 },

 {

 "$ref": "#/definitions/ElectionResults.BallotMeasureContest"

 },

 {

 "$ref": "#/definitions/ElectionResults.CandidateContest"

 },

 {

 "$ref": "#/definitions/ElectionResults.RetentionContest"

 }

]

 }

}

Figure 28 - Use of JSON Schema "oneOf" keyword

NIST GCR 24-058
November 2024

29

Directed Association: In Figure 29, Contest and Reporting, should be read as, “A contest is
associated with or linked to a reporting unit.” In the XML schema, the Contest element will
include a ElectionDistrictId element (based on the role name, see Section 4.1), which will
contain an identifier associated with a ReportingUnit element. A directed association has an
arrow at one end, goes in one direction, and serves to link the class to another associated class,
e.g., the reporting unit linked to the contest.

Figure 29 - Directed Association Example

The equivalent in XSD is given in Figure 30. Because JSON does not support inheritance the
JSON example in Figure 31 uses CandidateContest instead of Contest.

<xsd:complexType name="Contest" abstract="true">

 <xsd:sequence>

 ...

 <xsd:element name="ElectionDistrictId" type="xsd:IDREF"/>

 ...

 </xsd:sequence>

 <xsd:attribute name="ObjectId" type="xsd:ID" use="required"/>

</xsd:complexType>

Figure 30 - Contest definition in XSD

"ElectionResults.CandidateContest": {

 "type": "object",

 "properties": {

 "@id": {

 "type": "string"

 },

 ...

 "ElectionDistrictId": {

 "type": "string"

 }

 ...

 }

 ...

}

Figure 31 - CandidateContest definition in JSON Schema

NIST GCR 24-058
November 2024

30

 Terminology Mapping

Terminology can be difficult because JSON, UML, and XML were all developed independently
and use different terms to represent similar concepts. An attempt at mapping these concepts is
described in Table 6.

Table 6 - Mapping of terminology

UML XML Schema JSON Schema

Class type object

Property type property

Enumeration enumeration enum

Supertype extensionBase N/A

Multiplicity occurrence (min/max) items

Cardinality bounding min/max

UML uses the term property to refer to either an attribute or an association.

A glossary of terms is available in Appendix A.

 Elements and Attributes

In the UML model, the classes become complexTypes in the XML schema. The attributes of a
class become XML sub-elements of the complexTypes.

JSON (as with UML) only provides a single data structure for presenting information, in JSON
these are called objects, whereas XML provides two data structures for presenting data,
elements and attributes. If a UML attribute has the «xmlAttribute» stereotype or the class
contains an attribute with the «simpleContent» stereotype as shown in Figure 32, then XML
attributes are generated. The «simpleContent» stereotype indicates that the UML attribute is
the target for the character data of the XML element. For example, the following UML
represents a class named FileValue with two XML attributes:

Figure 32 - Class with attribute using «simpleContent» stereotype

An example using XML is:
<FileValue FileName="String"

MimeType="string">UjBsR09EbGhjZ0dTQUxNQUFBUUNBRU1tQ1p0dU1GUXhEUzhi</FileValue>

NIST GCR 24-058
November 2024

31

 Representing Multiplicities

Some properties in the UML model can repeat. Repetition is represented by multiplicities
whose lower or upper cardinality is greater than one, e.g., 1..2, 2..4, 0..*, etc. An asterisk (*) for
the upper cardinality represents an unbounded number of repetitions. A “1” for the lower
cardinality indicates that the attribute is required.

UML attributes with multiplicities greater than one are represented in XML as repeating
elements, as shown in Figure 33.
<Uri Annotation="mobile">http://mobile.samplesite.com/</Uri>

<Uri Annotation="desktop">http://www.samplesite.com/</Uri>

Figure 33 - Uri repeating using XML

In JSON, UML attributes with multiplicities greater than one are represented as an array of
objects, as shown in Figure 34.
"Uri":

 [

 {

 "@type": "ElectionResults.AnnotatedUri",

 "Annotation": "mobile",

 "Content": "http://mobile.samplesite.com/"

 },

 {

 "@type": "ElectionResults.AnnotatedUri",

 "Annotation": "desktop",

 "Content": "http://www.samplesite.com/"

 }

]

Figure 34 - Uri repeating using JSON

Even if an implementer wants to provide a single occurrence of an attribute, it must be
wrapped in an array, as shown in Figure 35.

"Uri":

 [

 {

 "@type": "ElectionResults.AnnotatedUri",

 "Annotation": "mobile",

 "Content": "http://mobile.samplesite.com/"

 }

]

Figure 35 - Single value for array typed property in JSON

 References

Some classes of data may be referenced repeatedly, for example political parties or geopolitical
units. It would make sense to define single instances of these classes and then reference them
whenever they are needed as opposed to creating new instances. The UML model represents
these references as directed associations between classes. Figure 36 shows a reusable
ReportingUnit that is referenced by multiple Contests.

NIST GCR 24-058
November 2024

32

Figure 36 - UML Instance using references

In this figure, two contests are defined; they are of type CandidateContest and both have the
same election district: Summit County. Only one reporting unit for Summit County needs to be
defined, however, because the contests can reference the reporting unit as needed.

The XML representing the classes in Figure 36 is given in Figure 37 - Reusable data using XML.

<ElectionReport>

 <Election>

 <Contest ObjectId="cc-sc-sherif" xsi:type="CandidateContest">

 <ElectionDistrictId>gp-summit-county</ElectionDistrictId>

 <Name>Summit County Sheriff</Name>

 </Contest>

 <Contest ObjectId="cc-sc-fiscal-officer"

 xsi:type="CandidateContest">

 <ElectionDistrictId>gp-summit-county</ElectionDistrictId>

 <Name>Summit County Fiscal Officer</Name>

 </Contest>

 <ElectionScopeId>gp-summit-county</ElectionScopeId>

 <Type>general</Type>

 </Election>

 <GpUnit ObjectId="gp-summit-county">

 <Name>Summit County</Name>

 </GpUnit>

</ElectionReport>

Figure 37 - Reusable data using XML

XML provides two built in types for handling references: one for establishing the reusable
element (xsd:ID) and one for referencing it (xsd:IDREF). Identifiers are defined using the
ObjectId attribute. The name of the identifier must be unique across the XML instance and
conform to restrictions specified by the xsd:NCName datatype. An xsd:NCName value must start

NIST GCR 24-058
November 2024

33

with either a letter or underscore and may contain only letters, digits, underscores, hyphens,
and periods.
JSON references are handled by the use of an @id property as given in Figure 38 - Reusable data
using JSON.

{

 "@type": "ElectionResults.ElectionReport",

 "Election": [

 {

 "@type": "ElectionResults.Election",

 "Contest": [

 {

 "@id": "cc-sc-sheriff",

 "@type": "ElectionResults.CandidateContest",

 "ElectionDistrict": "gp-summit-county",

 "Name": "Summit County Sheriff"

 },

 {

 "@id": "cc-sc-fiscal-officer",

 "@type": "ElectionResults.CandidateContest",

 "ElectionDistrict": "gp-summit-county",

 "Name": "Summit County Fiscal Officer"

 }

],

 "Type": "general"

 }

],

 "GpUnit": [

 {

 "@id": "gp-summit-county",

 "@type": "ElectionResults.ReportingUnit",

 "Name": "Summit County"

 }

]

}

Figure 38 - Reusable data using JSON

NIST GCR 24-058
November 2024

34

4. Working with Identifiers

Identifiers are strings that serve as shorthand references to entities that may exist elsewhere.
These could be other electronic data or real-world entities. In the context of electronic data, an
identifier can reference a data element defined in the same document, an external document
such as a ballot image, or any other discrete piece of information. Identifiers can also reference
physical objects such as polling locations, geography, or individuals.

 Document cross-references

Common Data Formats use cross-references extensively throughout. In the UML Model, classes
can relate to other elements, including other classes. In a real-world example, a contest may be
associated with exactly one reporting unit (i.e. its election district). The definition of a given
reporting unit only needs to be described once no matter how many contests may be
associated with it.

In order to reduce the size of CDF instance files and provide consistent data access, reusable
data is defined once then referenced as often as needed. This referencing is accomplished
through assigning a unique identifier to the referenceable object, then referring to that object
using that identifier.

Object identifiers are defined using the ObjectId attribute (in XML) or the @id key (in JSON). In
this section, ObjectId is used to refer to both.

4.1.1. Usage and Restrictions

To be used, ObjectIds must first be defined in the schema. The schema generation tools used
by NIST to build the CDF schemas will produce them on an as-needed basis. That is, an ObjectId
will be generated only for a class that is referenced by other classes’ properties.

In Figure 39, class C will be generated with an ObjectId attribute as it is referenced by another
class, B. B will not have an ObjectId as no other class references it.

Figure 39 - Directed association between two classes

Conversely, B will have an element of type IDREF named CId which links B to C, as given in Figure
40 - Example cross-reference using XSD.

NIST GCR 24-058
November 2024

35

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://itl.nist.gov/ns/voting/1500-999/v1" elementFormDefault="qualified"

targetNamespace="http://itl.nist.gov/ns/voting/1500-999/v1" version="1.0">

 <xsd:element name="A" type="A"/>

 <xsd:complexType name="A">

 <xsd:sequence>

 <xsd:element name="B" type="B"/>

 <xsd:element name="C" type="C"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="B">

 <xsd:sequence>

 <xsd:element name="CId" type="xsd:IDREF"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="C">

 <xsd:attribute name="ObjectId" type="xsd:ID" use="required"/>

 </xsd:complexType>

</xsd:schema>

Figure 40 - Example cross-reference using XSD

In Figure 40, the element containing the reference to B is named BId. In most cases, the name
of the element is implicitly constructed from the class name. However, if a role name is given,
then the role name is used instead.

Figure 41 revises the previous example, where the association’s end for B is given the role name
RoleOfC.

Figure 41 - Directed associations between two classes with role names

Consequently B will have an element of type IDREF named RoleOfCId which links B to C, as
shown in Figure 42.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://itl.nist.gov/ns/voting/1500-999/v1" elementFormDefault="qualified"

targetNamespace="http://itl.nist.gov/ns/voting/1500-999/v1" version="1.0">

 <xsd:element name="A" type="A"/>

 <xsd:complexType name="A">

 <xsd:sequence>

 <xsd:element name="B" type="B"/>

 <xsd:element name="C" type="C"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="B">

 <xsd:sequence>

 <xsd:element name="RoleOfCId" type="xsd:IDREF"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="C">

 <xsd:attribute name="ObjectId" type="xsd:ID" use="required"/>

 </xsd:complexType>

</xsd:schema>

Figure 42 - Example cross-reference with role name using XML

The allowed references to a given class are specified in the UML model. In some cases, a
reference may be optional, while in others it may be required. Likewise, sometimes only a

NIST GCR 24-058
November 2024

36

single reference can be specified, e.g., a candidate to a person, while in other cases, multiple
references are allowed, such as from a geography to its composing geopolitical units.

In XML, single references are conveyed using the type xsd:IDREF, and multiple references use
the type xsd:IDREFS. In Figure 43, the cardinality of RoleOfC is changed from 1 to *, which has
the effect of allowing an unbounded number of references from B to C.

Figure 43 - Directed associated between two classes with RoleOfB multiplicity of 1..*

As such, B will have an element of type IDREFS named RoleOfCIds which links B to C, as
presented in Figure 44.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://itl.nist.gov/ns/voting/1500-999/v1" elementFormDefault="qualified"

targetNamespace="http://itl.nist.gov/ns/voting/1500-999/v1" version="1.0">

 <xsd:element name="A" type="A"/>

 <xsd:complexType name="A">

 <xsd:sequence>

 <xsd:element name="B" type="B"/>

 <xsd:element name="C" type="C"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="B">

 <xsd:sequence>

 <xsd:element name="RoleOfCIds" type="xsd:IDREFS"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="C">

 <xsd:attribute name="ObjectId" type="xsd:ID" use="required"/>

 </xsd:complexType>

</xsd:schema>

Figure 44 - Example of directed association with unbounded upper cardinality using XML

A XML instance will use the element RoleOfCIds to associate B with elements of C as shown in
Figure 45.

<A xmlns="http://itl.nist.gov/ns/voting/1500-999/v1"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <RoleOfCIds>ID1</RoleOfCIds>

 <C ObjectId="ID1"/>

Figure 45 - Example instance of directed associated with unbounded upper cardinality using XML

A JSON equivalent of the XSD is given in Figure 46.

{

 "$ref": "#/definitions/CDFModel.A",

 "$schema": "http://json-schema.org/draft-04/schema#",

 "definitions": {

 "CDFModel.A": {

 "required": [

 "@type",

 "B",

 "C"

],

 "additionalProperties": false,

 "properties": {

NIST GCR 24-058
November 2024

37

 "@type": {

 "enum": [

 "CDFModel.A"

],

 "type": "string"

 },

 "B": {

 "$ref": "#/definitions/CDFModel.B"

 },

 "C": {

 "$ref": "#/definitions/CDFModel.C"

 }

 },

 "type": "object"

 },

 "CDFModel.B": {

 "required": [

 "@type",

 "RoleOfCIds"

],

 "additionalProperties": false,

 "properties": {

 "@type": {

 "enum": [

 "CDFModel.B"

],

 "type": "string"

 },

 "RoleOfCIds": {

 "items": {

 "type": "string",

 "refTypes": [

 "CDFModel.C"

]

 },

 "minItems": 1,

 "type": "array"

 }

 },

 "type": "object"

 },

 "CDFModel.C": {

 "required": [

 "@id",

 "@type"

],

 "additionalProperties": false,

 "properties": {

 "@id": {

 "type": "string"

 },

 "@type": {

 "enum": [

 "CDFModel.C"

],

 "type": "string"

 }

 },

 "type": "object"

 }

 }

}

Figure 46 - Example of directed association with unbounded upper cardinality using JSON

ObjectIds have several naming and usage restrictions. First, they must be globally unique
within a given instance file, i.e., no two objects can be identified by the same ObjectId, even if
those objects are of different types (see Section 4.1.2 for a workaround). Secondly, ObjectIds

NIST GCR 24-058
November 2024

38

use the xsd:ID data type, which restricts the characters that can be used within them. Thirdly,
ObjectIds will only appear in a file if the class is referenced elsewhere. Finally, ObjectIds
cannot be used to refer to objects outside the instance’s scope. For these reasons, we strongly
recommend that ObjectIds not be used to convey durable identifiers, i.e., identifiers that will
be stored in a destination system. Instead, we recommend the use of ExternalIdentifiers (see
Section 4.3) for this purpose.

xsd:ID are a subtype of xsd:NCName (see Figure 9) and therefore must begin with a letter or an
underscore, and subsequently consist of letters, digits, period, hyphen and underscores. This
conformance to this restriction can be validated using the CDF Test Method (see Section 7.3).

4.1.2. Standardized Prefixes

As previously mentioned, ObjectIds must follow a number of naming restrictions. Over time,
standardized prefixes have developed. These prefixes clarify what the object is from its name
alone. It also reduces the chances that a generating system violates the uniqueness constraints
for object identifiers. By employing a systematic approach to prefix usage, each category of
objects can be managed within its own "namespace." A set of standardized prefixes are
specified in Table 7.

Table 7 - Standardized prefixes for object identifiers

Class Prefix

ActivationContest
ac

ActivationOption
ao

BallotFormat
bf

BallotMeasureContest
bmc

BallotMeasureOption
bmo

BallotMeasureSelection
bms

Candidate
can

CandidateContest
cc

CandidateOption
co

CandidateSelection
cs

Coalition
coa

Contest
N/A

ContestOption
N/A

ContestSelection
N/A

ControllingContest
conc

CVRSnapshot
cvrs

Election
ele

GpUnit
N/A

NIST GCR 24-058
November 2024

39

Header
hea

Office
off

Party
par

PartyContest
pc

PartyOption
po

PartyPreferenceContest
ppc

PartySelection
ps

Person
per

ReportingDevice
rd

ReportingUnit
ru

Shape
sha

StraightPartyContest
spc

 Internal Code Lists

Data can be categorized based on different aspects. The class data belongs to provides a broad
categorization (e.g., CandidateContest vs. BallotMeasureContest). More specific categorization
can further distinguish between "what something is" and "what it is called". For instance, a
BallotMeasureContest (what it is) might have its Type property set to "recall" (what it is called)
providing a more specific category beyond just the class. Setting this Type property doesn't
affect the structure of the class itself.

Each CDF specification comes with several predefined enumerations, which can be used to
categorize certain classes or data within them. Each enumeration contains a set of literals that
represent what things are called in different jurisdictions, and thus implementers are free to
use the categorization that makes the most sense within their local context.

Some enumerations have a literal other which may be used to indicate a custom literal will be
provided. This should only be used when no predefined literal reasonably applies to data being
categorized.

Code lists can be used to simplify data reporting. For example, the Voter Records Interchange
(VRI) format is aligned with the standardized categories used by the Election Administration
and Voting Survey (EAVS) Section A and Section B in terms of request method and military
classification types. This facilitates immediate collection of relevant transactional data at a fine
level of granularity, simplifying data collection for this survey. The enumerations used for this
data collection are given in Figure 47.

NIST GCR 24-058
November 2024

40

Figure 47 - RequestMethod and VoterClassificationType can be used for EAVS Survey

 External Identifiers

External Identifiers, also referred to as Codes by certain CDFs, are indented to convey durable
references outside a given instance’s scope.

ExternalIdentifiers were originally designed to support the Election Results Reporting (ERR)
CDF. One of the use cases of ERR is data rollups between systems. For example, election results
may roll up from the local jurisdiction to the state, or even federal level. ExternalIdentifiers
can be used to convey an identifier from one system to another such that data can be round
tripped.

A common scenario involves feeding candidate information, identifiers, and other ballot data
from a state Election Management System (EMS) to a local EMS for the purpose of election
programming. Once the election is conducted, the results are then fed back up to the state
EMS. By using the state-defined identifiers, the data can be accurately correlated and
reconciled.

The use of predefined literals such as local-level, state-level, and national-level within
ExternalIdentifiers helps in indicating the scope and context of these identifiers. This
hierarchical coding system ensures that data can be properly aggregated and disaggregated at
various levels of election management.

The second predefined External Identifier types are Open Civic Identifiers [13] (ocd-id) and FIPS
codes [14] (fips). OCD-IDs are designed to provide a single, unique identifier for geographies,
particularly political geography used in elections. FIPS codes on the other hand are primarily
used for legally defined geography such as states, counties or municipal equivalents. Such codes
provide a consistent way to classify geographic areas and makes data analysis and comparison
between different jurisdictions easier.

Note: The correct FIPS standard to use for any given class is not defined in this
document.

NIST GCR 24-058
November 2024

41

Finally, there are certainly identifier types not envisioned by the specifications that nonetheless
need to be conveyed using the External Identifiers. In this case implementers can use the other
option available in every enumeration. When this enumeration literal is used, then a value is
expected in the corresponding OtherType property.

 Domain Specific Identifiers

There are identifiers that do not fall into any of the categories described thus far. These
identifiers are domain specific and their usage is given by the description associated with each
property. Examples include:

• CVR::BallotAuditId

• CVR::BallotPrePrintedId

• CVR::BatchSequenceId

• CVR::BallotSheetId

• CVR::BallotStyleId

• CVR::BatchId

• CVR::UniqueId

These domain specific identifiers can be distinguished in the UML Model. Object Identifiers
never appear directly in the UML Model, they are artifacts of schema generation. However, DSL
IDs do appear in the UML Model. This shows the primacy of the UML Model for understanding
any given CDF.

NIST GCR 24-058
November 2024

42

5. Geopolitical Geography

This section provides an overview of the geopolitical geography in the United States as it relates
to elections, ballot definition and election results reporting and provides background for how
geopolitical geography is implemented in the UML model and JSON/XML schemas that are
described in other sections. Knowing what constitutes geopolitical geography and how it is
interrelated and used in elections provides the underpinning for understanding the
complexities of ballot style construction.

 The Primary Types of Geopolitical Geography

The primary types of geopolitical geography include those that run elections such as states,
counties, and cities, as well as the many types of election districts that are tied to contests,
precincts, and various other geographical units associated with political boundaries.

The complexity of geopolitical geography, with its overlapping and hierarchical structures,
demands meticulous management to ensure that each voter receives the appropriate ballot
reflecting their specific electoral districts.

Generally, the media and election analysts wish to obtain voting results comprised of electoral
districts and related composing units; thus, the process of running an election includes
associating contests and vote counts with these units for reporting.

Ballot counts and vote counts for contests can be associated with different types of geopolitical
geography, ranging from aggregated counts associated with a county or state down to more
granular counts associated with a precinct and breakdowns of a precinct. Precincts are
generally the smallest unit of geopolitical geography. Precincts can be thought of as the
building blocks that compose all other geopolitical geography and are generally the entities by
which results are reported.

Geopolitical geography can often be quite complex in that some are hierarchical, others
overlap, and still others change their boundaries regularly (sometimes several times within a
year). Changes to city and district boundaries affect precinct boundaries, splitting them into
multiple parts (called split precincts), with each part requiring a distinct ballot style.

The following sections break down geopolitical geography into three primary types and show
how the geographies interrelate. These three types are:

1. Governmental geography
2. Political geography
3. Administrative geography

NIST GCR 24-058
November 2024

43

5.1.1. Governmental geography

Governmental geography refers to entities that run elections and are well-established and do
not change over time, with the exception of some cities. For many states, the governmental
geography is hierarchical, as shown in Figure 47. This can be categorized as follows:

• States

• Counties

• Cities

• Towns and Townships

• Other Civil Divisions.

American Indian reservations may span states and are sovereign bodies for the purposes of
their internal governmental elections. They are not represented hierarchically under the state,
however voters residing in reservations vote in the same federal, state, and local elections as
other voting residents of the state.

All states have counties, although some use different words to describe them, such as parishes
for Louisiana and boroughs for Alaska. Townships occur in 13 states and adhere to county
boundaries. In the six New England states, townships run the election process, and there is no
county government; thus, election results are reported directly to the state. Municipalities
(cities, towns, or villages) in Michigan, Minnesota, and Wisconsin also run their elections, but
report their information to the county, which then reports to the state. In New York City, each
of the 5 boroughs run their own elections but report the results to the NYC Board of Elections.
Other civil divisions include boroughs as used in Connecticut, New Jersey, Pennsylvania, and
other states.

How different levels of governmental geography form hierarchies is illustrated in Figure 48.

Figure 48 - Governmental geographies

NIST GCR 24-058
November 2024

44

Governmental geographies are associated with offices that are elected jurisdiction-wide (such
as for Governor, County Clerk, Supervisor, Treasurer, Assessor, and Highway Commissioner), so
all voters in its jurisdiction vote for these offices, requiring no different ballot styles.

Governmental geographies do not cross the lines of the precincts that compose them.
However, cities can change their boundaries through annexations, and, in some states, city
boundaries can also cross county boundaries. Thus, changes to city boundaries may result in
crossing the boundaries of one or more precincts, creating split precincts and requiring a
distinct ballot style for each split precinct.

5.1.2. Political geography

Political geographies are those that tend to be population-based and therefore may change
with each U.S. Census happening every 10 years in a process known as re-districting. Political
geographies are also known as election districts, where people are elected to an office that has
jurisdiction within a specific geography, for example, a U.S. Congressional district.

Figure 49 - Political geographies

Figure 49 shows the most common political geographies as they interrelate with the
governmental geographies. Political geographies can be categorized as follows:

• U.S. Congressional districts

• State senate or upper-house districts

• State house or lower-house districts (in some states, several state house districts
combine to form a state senate district)

• County election districts

• City election districts

• Numerous other forms of election districts

NIST GCR 24-058
November 2024

45

Because election districts can change as they are re-drawn, and districts are often drawn under
different authorities, political geographies will often divide precincts, creating split precincts
and requiring a distinct ballot style for each split precinct.

5.1.3. Administrative geography

Administrative geographies are identified this way because their boundaries are determined by
election or civil administration. Administrative geographies include precincts and their various
types such as wards, combined precincts, and split precincts. They can be very small,
sometimes only applying to several streets or houses or even only a single house along a street.
They can involve territory that is non-contiguous, for example, for some of the taxing and
special districts. They can change many times throughout a given year, even daily in some
cases. Figure 50 shows the basic administrative geographies, which can be categorized as
follows:

• Election administrative areas
o Precincts, split precincts, combined precincts, wards
o Polling places, vote centers
o Various other ballot style areas

• Taxing districts, such as fire, water, sewer, transit, school, police, hospital, utilities

• Special districts, that is, unique areas brought together for a referendum.

Figure 50 - Administrative geographies

NIST GCR 24-058
November 2024

46

 Linking Geopolitical Geographies Together

As an example of administrative geographies and their relationship to political and
governmental geographies, Figure 51 shows the wards and precincts that make up the city of
Cambridge, MA, and Figure 52 shows how the wards and precincts in the city compose the U.S.
Congressional election districts [25]. The wards are implemented as collections of precincts and
are shown in a distinct color in Figure 50.

Figure 51 - Ward and Precincts in Cambridge, MA.

NIST GCR 24-058
November 2024

47

Figure 52 - Districts Overlaying Wards and Precincts in Cambridge, MA.

In many states, the boundaries of election districts may crisscross the precinct boundaries,
creating one or more split precincts, with a distinct ballot style for each split precinct.
Depending on the number of districts and how often they cross the precinct boundaries, the
resulting number of ballot styles created could grow well beyond the number of whole
precincts. It is possible that, despite best efforts, very low numbers of voters or even just one
voter will require a distinct ballot style.

NIST GCR 24-058
November 2024

48

Figure 53 - Overlapping Non-hierarchical Election Districts

Figure 53 shows different overlaps between Precincts, School Districts, and a Sanitary District,
all which create precinct splits. The Elkhart Lake-Glenbeulah school district in rust color, and
the Plymouth Joint school district in yellow, do not follow the precinct lines or municipal
boundaries (the gray lines). The Rhine and Plymouth Sanitary District #1 in red also does not
follow the precinct lines or the school district lines. This creates multiple split precincts. For
example, Town of Rhine ward 1 (RHINE – T 0001) has part of the Rhine & Plymouth Sanitary
District #1 as well as small area of the Plymouth Joint school district. The rest of the precinct
has no sanitary district and is in Elkhart Lake-Glenbeulah school district. This creates up to 3
different ballot styles in that one precinct, depending on the contests up for election.

Precincts can be split as well by changes to the other administrative geographies. Adding to the
complexity, a number of states now use combined precincts and vote centers on election night,
which associate multiple precincts with one polling place. This means that for a vote center
handling multiple precincts that themselves may be split, there can be potentially many
different ballot styles in use at the vote center, with each voting device needing to display or
tabulate any one of the ballots. This adds further complexity and places additional demands on
election jurisdictions and their ability to manage and report details of votes on election night
and post-election.

To make this situation more manageable, some states and counties prefer over time to heal
split precincts by combining them with other precincts or generally redrawing the precinct
boundaries so that the number of ballot styles is reduced, and election management and
reporting is less complicated.

NIST GCR 24-058
November 2024

49

 Use of Geographic Information Systems

Geographic Information Systems (GIS) are designed to capture, store, analyze, manage, and
visualize geographic data. Unlike traditional tabular structures that rely on address files to
assign voters to smallest voting units, GIS utilizes spatial data to create precise maps of voter
residences and geopolitical unit boundaries. By converting addresses into geographic
coordinates, GIS provides a visual and analytical advantage that tabular systems lack.

GIS systems enable automated, point-in-polygon spatial queries to validate voter placements
within the correct precincts, offering a more intuitive and error-resistant approach compared to
the static and often cumbersome address file systems.

After every census, the boundaries of political geography are redrawn to reflect changes in
population distribution. GIS technology provides tools needed to create and manage updated
district maps.

Redistricting often coincides with the redrawing of precinct boundaries such that they do not
split along prohibited geographic lines, and the number of precinct splits are kept to a
minimum. In some jurisdictions the use of GIS assists in ensuring that the number of voters
contained in each precinct stays under a maximum threshold.

Finally, GIS provides decision support for the allocation of resources. By analyzing spatial data,
GIS can evaluate various factors such as population density, transportation networks, and
existing infrastructure to identify ideal locations for vote centers, polling locations, and poll
worker material drop-off and pick-up sites.

The BD and ERR CDFs support the conveyance of spatial data using the SpatialExtent class,
discussed in Section 5.6.

 Geopolitical Geography in the UML Model and Related Schemas

The previous discussion demonstrated that there are different types of geopolitical geography
that overlap each other or behave hierarchically, resulting sometimes in very complex maps
and many small geopolitical units that require distinct, different ballot styles. Election officials
may spend considerable time managing this complexity.

Furthermore, each state and sometimes county or city will manage elections differently, using
combinations of units such as combined precincts or wards, with specific rules about how the
associated contests operate. When one combines the complexities of geopolitical geography
with the different election rules employed in the U.S. states and territories, one sees that
running an election can be an extremely complicated endeavor.

Note that the different geographies form relationships much like a lattice, in which objects can
be related in non-hierarchical ways. The UML model and JSON/XML schemas implement
geopolitical geography in this way using a structure that can be linked with other structures
depending on the type of geopolitical geography. In the UML model, this object is referred to as
the GpUnit (short for ‘Geopolitical Unit”) class, and in the UML Model it is called the GpUnit

NIST GCR 24-058
November 2024

50

element. GpUnits can model a district, county, or precinct, and can be linked to each other to
mirror the real-world geopolitical geography of the reporting jurisdiction.

GpUnits can be linked hierarchically when modeling jurisdictional geographies. To model a
jurisdiction that runs or reports on elections, the lowest-level GpUnits, that is precincts, will be
children of the election-running GpUnit, say a city, county, or state.

District GpUnits need to be linked to the precinct or split precinct GpUnits that compose them.
The precincts and split precincts thus link the jurisdictional and district GpUnits together, as
shown below in Figure 54. The wards in Figure 50 and Figure 54 are synonymous with precincts
in Wisconsin and are the children of the combined precincts, and so forth on up to the state.
The precincts and split precincts are also the children of the districts that they compose.

Figure 54 - GpUnit Structural Hierarchies

The CDFs support representing geopolitical geography using the GpUnit and its subclasses
ReportingUnit and ReportingDevice.

NIST GCR 24-058
November 2024

51

ReportingDevice allows geography to be categorized using one of 29 different enumeration
literals. Implementers should attempt to “fit” their geography types into one of these literals
instead of using the OtherType (see Section 4.1.2). This makes aggregation and comparison
easier between jurisdictions.

Table 8 - GpUnit literals organized by Geopolitical Geography Types

Governmental
Geography

Political
Geography

Administrative
Geography

borough congressional ballot-batch

city state-house ballot-style-

area

country state-senate combined-

precinct

county county-council drop-box

municipality city-council polling-place

state judicial precinct

town ward school

township

special

village

split-

precinct

utility

vote-center

water

The GpUnit and its subclasses reference and are referenced by many other classes. While the
schema does not enforce the range of geopolitical geography types allowed in each
relationship, certain types are more likely in certain relationships. For example, counts can be
associated with GpUnits of any type. However, ballot styles are much more likely to be
associated with a smallest voting unit (e.g. precinct or precinct-split).

 Modeling Geography

The CDFs support the creation of hierarchies of geopolitical units. Every GPUnit can use
ComposingGpUnit to point to other GpUnits that it composes. In terms of the Nine intersection
model [14], a GpUnit covers or completely engulfs each individual ComposingGpUnit.

 It is an error for a GpUnit to merely intersect, touch or cross any of its ComposingGpUnits. This
can happen if at least one of the ComposingGpUnits is split between multiple GpUnits. In the
case of when a precinct is split between multiple GpUnits, then the split precinct should be
used instead.

NIST GCR 24-058
November 2024

52

For example, consider the portion of the 5th Congressional District that crosses the City of
Cambridge, MA. The ComposingGpUnits for this district include in 14 whole precincts, and parts
of three others as shown in Figure 55. By the rule set above, the precinct that crosses the
congressional district cannot be included.

Figure 55 - MA's 5th District with whole precincts errantly included

Instead, a split-precinct should be created for each. 3-3A, 6-1A, and 10-1A are created and
attached to the GpUnit for the 5th District of Congress, as demonstrated in Figure 56.

Figure 56 - MA's 5th District with split precincts replacing whole as needed

The depth of the hierarchies can vary. For example, the GpUnit of The Commonwealth of
Massachusetts is composed of municipalities, in which the City of Cambridge, MA is contained.
Cambridge, in turn, contains a number of wards, which are further divided into the smallest
voting units (e.g. precincts and precinct-splits), as shown in Figure 57.

Figure 57 - Deep Hierarchy of GpUnits

NIST GCR 24-058
November 2024

53

The use of shallow hierarchies is also possible, and has been used in real world applications of
the CDFs. In a shallow hierarchy, all GpUnits are described in terms of their composing smallest
voting units (SVUs) only, as illustrated in Figure 58.

Figure 58 - Shallow hierarchy of GpUnits in terms of SVU

 Comparing CDF and GIS concepts

The BD and ERR CDFs support the conveyance of spatial data using the SpatialDimension and
SpatialExtent classes. SpatialDimension is prescribed when an externally referenced map is to
be used. SpatialExtent may be used when embedded data in spatial format such as geo-json,
gml, kml, shp or wkt. Note that because the geospatial data is stored within the CDF, it can cause
the files to ballon substantially.

Layers. CDFs have no concept of a layer per se, but they can be emulated by the use of
GpUnit::Type. For example, all of the ‘congressional’ valued GpUnit::Type properties in a CDF
instance can be thought of as forming the “congressional layer”.

Geometries. All SpatialExtents should be enclosed polygons.

Topologies. Hierarchies of GpUnits form a covering relationship between the parent and child
GpUnit.

The CDFs are not a substitute for exports of spatial data in dedicated formats when advanced
features are required.

NIST GCR 24-058
November 2024

54

6. Low-Level Concerns

As much as possible, the CDFs are described using the more abstract, high-level structures of
the UML model, such as classes, properties, and types (among others). While abstraction
empowers developers to reason about systems at a high level, it's essential to acknowledge the
underlying implementation realities.

XML and JSON make specific implementation decisions that constrain how data may be
expressed. Additionally, XML and JSON are both textual and do not specify a text encoding
mechanism, which means that the underlying encoding is significant for interoperability.

 Text Encoding

Text encoding refers to the mechanism in which human readable symbols are represented in
digital form (i.e., as sequences of bits). Many textual encoding schemes have been developed
over the years. However, within the microcomputer space, none has been more important than
the American Standard Code for Information Interchange (ASCII) [13]. This 7-bit encoding
standard facilitates the representation of 128 different characters, primarily consisting of
alphanumeric characters and symbols commonly used within the United States and other
English-speaking countries.

The limitations of an English-centric standard like ASCII in the age of the global internet
necessitated a more comprehensive solution. Unicode [17] emerged to address this challenge.
It operates over two key aspects:

• Code Points. Unicode establishes a unique numerical identifier (code point) for a vast
repertoire of characters encompassing various writing systems around the globe. This
expansive character set allows for the representation of languages beyond English,
including Chinese, Spanish, Vietnamese, and many more.

• UTF (Unicode Transformation Formats). While code points provide the underlying
character definitions, UTF (Unicode Transformation Formats) specifies the mechanisms for
expressing these characters in a computer-readable format. Different UTF encodings exist,
with UTF-8 being the most widely used due to its efficiency and compatibility with ASCII.
UTF-8 utilizes a variable-length encoding scheme, optimizing storage space for commonly
used characters like those found in ASCII, while efficiently accommodating characters from
other languages.

UTF-8 supports 7-bit ASCII as-is, that is, every 7-bit ASCII document is also a valid UTF-8
document. This allows for producers and consumers who do not support UTF-8 data to
interoperate, so long as the data transmitted uses the English centric subset of the Latin
alphabet, and related formatting characters.

Because a 7-bit ASCII document is indistinguishable from a UTF-8 document, it is sometimes
impossible to know if the input document was intended to be interpreted as Unicode or ASCII.
The optional Byte Order Mark (BOM) resolves this ambiguity by adding a signature to the
beginning of all UTF documents that use it.

NIST GCR 24-058
November 2024

55

However, the use of a BOM presents a trade-off. While it clearly identifies Unicode encoding, it
can potentially disrupt compatibility with legacy systems or workflows that expect pure ASCII
data. Since the BOM itself is not a valid ASCII character, its presence may lead to unexpected
behavior in such environments. Adding an identifier that breaks naive ASCII support runs
counter to CDF interoperability goals.

UTF-16 and UTF-24 provide space saving benefits for languages that regularly require several
bytes per code point. As we are most interested in elections conducted in the United States
that sometimes use non-English characters, we recommend UTF-8.

BEST PRACTICE:

Use UTF-8 to encode all Common Data Format instances without the
Byte Order Mark

 Line endings

There are multiple ways to represent line endings in Unicode, i.e. the beginning of a new line of
text. Due to its consistent use across most modern operating systems, ASCII Control Character
“LF” (Line Feed) alone should be used for interoperability.

BEST PRACTICE:

Use LF to represent a new line

 Implementation Formats

Each CDF specification provides two schemas, one for XML Schema Definition (XSD) and
another for JSON Schema. Both are supported to allow consumers to use the format that works
best for them. However, for implementers of the CDFs, it poses a quandary. Which should be
supported?

Imagine a scenario involving two systems that use the same CDF. One exports data while the
other imports it. For successful data exchange, both systems must agree on the implementation
format (i.e. XML or JSON) within the CDF. Incompatibility in this regard could lead to data
exchange failures, hindering the very purpose of using a standardized format.

To ensure interoperability and maximize the value of CDFs, a two-pronged approach is
recommended:

• Comprehensive Import Support. Systems should strive to support importing data in
both JSON and XML formats for a given CDF. This flexibility caters to a wider range of
potential data sources and eliminates compatibility roadblocks.

• Selective Export Options. For exporting data, systems can offer a choice of JSON or XML
(or both), allowing users to select the format that best aligns with their downstream
workflows.

NIST GCR 24-058
November 2024

56

 Internationalization and Languages

The CDFs recognize the need to communicate certain content in multiple different natural
languages. The properties that support internationalization use the InternationalizedText
class. This structure requires each text string to specify the language it represents along with
the textual content.

The language of a given string is indicated using RFC 3066 [13] language tags. RFC 3066 is very
large and flexible specification. Language identifiers can include multiple data points, including
language, language-country, and language-variant. Examples with variants are given in Table 9.

Table 9 - Commonly used language codes

Language Code

English en

English in United States en-US

Chinese (Simplified) zh

Chinese (Traditional) zh-Hans

Chinese in Hong Kong
(Implicitly Traditional)

zh-HK

Because elections are generally conducted in a single country, there is little benefit in specifying
the country in the language code. There may be contexts in which providing the script code is
useful, particularly if multiple scripts for the same language are offered, such as to distinguish
between traditional and simplified Chinese characters.

BEST PRACTICE:

Use language tags containing the language and optionally the script
code

Because the CDFs support Unicode, and the schemas do not constrain its usage, implementers
should expect Unicode anywhere. That includes all String typed properties, whether or not
they use InternationalizedText. However, because there is no language tag in other contexts,
the language used is not specified.

 System Limits

CDFs are files and the only size limitation is storage space. Election systems, on the other hand,
may use databases that have stricter limits on what can be stored.

Most data types used in the CDFs are unbounded, meaning that the lexical length is
theoretically unlimited. In order to ensure interoperability, implementers should specify the
limits they support.

NIST GCR 24-058
November 2024

57

Implementers should consider how to handle data overflow scenarios, provide options to the
user, and report what action was taken (such as truncation of the input).

 The Robustness Principle

The robustness principle, also known as Postel’s law, states, “[…] be conservative in what you
do, be liberal in what you accept from others” [18]. Applied to CDFs, this means that
implementers should adhere closely to the specifications and guidance in what they produce
while being forgiving of minor variations in what is received.

Conservative in what you produce:

CDF instances should conform to the syntax and semantics specified in the CDF specifications
and related schemas.

• The NIST Common Data Format Test Method [18] can be used to test CDF instances for
this basic conformance.

• Additionally, this document provides a set of practices that may help ensure
interoperability in various environments.

Liberal in what you accept:

CDF instances may not always be valid according to a schema or test method, but minor
validation errors should not necessarily prevent a file from being processed.

Assuming the instance is at least well-formed JSON or XML, there are three primary scenarios:

• Data that is required per the model is missing

o Consider the target data model (i.e., the internal model of the importing
component). Is the data required? If not, it may be possible to continue
processing.

• Data that is required per the model is provided but fails data type validation

o Consider the target data model. Does the model violation also violate the target
model’s internal constraints? If not, it may be possible to import the data.

• Data that is prohibited (e.g., unfamiliar properties) per the model is encountered.

o Ignore the data and continue processing.

It is a good idea to log any deviations to the standard on import so that problems with
upstream systems can be analyzed and fixed. In some cases, it may be possible to prompt the
user as to what actions to take when minor deviations are detected.

This is not to say that implementers should predict and account for every potential deviation
from the published specifications, only that reasonable efforts to work around errors should be
made.

A related discussion on approaches to CDF version support is given in Appendix C - CDF
Interoperability Context and Example Interoperability Scenarios.

NIST GCR 24-058
November 2024

58

 Implementation Data Models

In addition to the UML data model, the implementation formats have their own data model as
well. Describing it in depth goes beyond the extent of this document, but a particular
distinction should be made between an open data model and a closed one.

Open data models are designed to be flexible and extensible, allowing new elements and
attributes to be added as needed.

Closed data models, on the other hand, restrict the addition of new elements and attributes,
ensuring that all data conforms to a specific, standardized format. This approach is often
favored in environments where consistency and predictability are paramount.

The CDFs use a closed data model. This does not mean that extensibility is disallowed; however,
predefined extension points must be used. This includes the addition of custom code lists and
external identifiers (see Sections 4.2 and 4.3, respectively).

More background on this topic is available in “EAC Decision on Request for Interpretation

2023-06 Common Data Format (CDF) Extensions” [19].

 Determining CDF Versions

Determining the version of the CDF can be determined by inspecting the instance file for key
values.

XML. Use the Version property of the «RootElement» if it is available. This provides both the
major and minor version numbers. Next, inspect the namespace URI of the root tag to get the
CDF and major version number.

Note: CDFs published going forward will include a Version property.

JSON. Use the Version property of the «RootElement» if it is available. This provides both the
major and minor version numbers. Next, inspect the @type property of the root object to get
the UML Package Name in its prefix. Refer to Table 10.

Table 10 - CDF and associated UML Package Names and XML Namespace URIs

Common Data Format UML Package Name XML NS URI

Ballot Definition Common Data
Format Specification

BallotDefinition http://itl.nist.gov/ns/voting/1500-20/v1

Election Results Common Data
Format Specification Revision 2.0

ElectionResults http://itl.nist.gov/ns/voting/1500-100/v2

Election Event Logging Common
Data Format Specification

EventLogging http://itl.nist.gov/ns/voting/1500-101/v1

NIST GCR 24-058
November 2024

59

Voter Records Interchange
Common Data Format
Specification Version 1.0

VRI http://itl.nist.gov/ns/voting/1500-102/v1

Cast Vote Records Common Data
Format Specification Version 1.0

CVR http://itl.nist.gov/ns/voting/1500-103/v1

 XML Specific Notes

XML Specific Features. There are no JSON equivalent to certain core XML concepts. This
includes XML processing instructions (PIs), comments and entity declarations (see Figure 59 and
Figure 60, respectively). As such, care should be taken when using these XML features.

...

<!--GpUnits for Precincts (Reporting Units)-->

<GpUnit xsi:type="ReportingUnit" ObjectId="prec-1-1 ">

 <Name>

 <?import-spec preferred-value?>

 <Text Language="en">Precinct 1-1 </Text>

 </Name>

 <Type>precinct</Type>

</GpUnit>

...

Figure 59 - XML with processing instruction and comment

...

"GpUnit": [

 {

 "Type": "precinct",

 "@type": "ElectionResults.ReportingUnit",

 "@id": "prec-1-1",

 "Name": {

 "Text": [

 {

 "Content": "Precinct 1-1 ",

 "Language": "en",

 "@type": "ElectionResults.LanguageString"

 }

],

 "@type": "ElectionResults.InternationalizedText"

 }

 }

...

Figure 60 - JSON “equivalent” with missing processing instruction and comment

While JSON offers a simpler and more concise data format, its lack of equivalents for XML's PIs,
comments, and entity declarations needs to be considered during data exchange or conversion.

NIST GCR 24-058
November 2024

60

7. Ensuring Best Practices

This section describes mechanisms for tailoring Common Data Formats (CDFs) to specific, real-
world use cases. This allows end-users of CDFs to precisely define the required data points,
their representation, and the business rule constraints that must be enforced during election-
related data exchanges.

Moreover, this section details the CDF Test Method, a tool for automated, repeatable testing to
verify the correctness and consistency of CDF implementations. A future roadmap is provided,
outlining the integration of these profiling and validation approaches with the CDF Test
Method.

 Optionality and Profiling

Each NIST Special Publication (SP) 1500 series Common Data Format (CDF) is designed to
support a wide range of use cases (refer to Section 2 for a full treatment). A use case, in this
context, refers to the specific application of the CDF for a particular purpose. The versatility of
these CDFs allows them to accommodate multiple use cases simultaneously. However, this
flexibility introduces a significant tradeoff: the specific data elements required for each use case
cannot be fully defined within a single CDF data model.

Consider the Election Results Reporting (ERR) Specification. This specification must cater to
different stages of the election process. If vote counts were mandated as a required data point
for the election night use case, it would render the same specification unsuitable for pre-
election day purposes, such as exporting lists of candidates and contests to the media. This
illustrates the inherent challenge in creating a single, flexible CDF model that can seamlessly
address various use case requirements without additional modifications.

The CDFs’ inherent flexibility can be likened to an "open-ended" contract. Such contracts
provide a general structure but lack the specificity required to guarantee particular outcomes.
Loosely-defined contracts significantly risk encountering discrepancies between what one party
expects and what the other party delivers. In the context of CDFs, this means that diligent
implementers—those who meticulously adhere to best practices and seek to fully understand
the intended use cases—are more likely to meet the expected requirements. However, there is
no absolute assurance that all implementations will align perfectly with the desired outcomes.

To mitigate these risks and ensure that the data exchange process is precise and reliable, it is
crucial to introduce tighter language and more explicit definitions. This is where the concept of
subsetting or profiling CDFs can help. By creating a profile, specifiers essentially narrow the
broad, flexible CDF to a specific set of requirements tailored to a particular use case. This
process involves defining exact data elements, structures, and constraints, thereby
transforming an open-ended contract into one with clear, unambiguous terms.

With a well-defined profile, testing and validation processes become more straightforward.
Voting System Test Laboratories (VSTLs) can develop precise test cases based on the specific
requirements outlined in the profile, ensuring that implementations are thoroughly vetted for
conformance.

NIST GCR 24-058
November 2024

61

As an illustration, consider the Election Results Reporting (ERR) Specification within the NIST SP
1500 series. Without profiling, the ERR Specification is broadly defined to cater to various
scenarios, such as election night reporting, pre-election testing, and post-election auditing. By
creating a specific profile for election night reporting, for example, the requirements for data
elements such as vote counts, precinct details, and identifier formats can be explicitly defined.
Consequently, election officials can rely on the data received, knowing it adheres to the
predetermined standards.

7.1.1. Profiling in XML using redefinition

XML Schema Definition (XSD) redefinition is a feature that allows for the modification of an
existing schema to better fit specific requirements or use cases. Redefinition enables schema
designers to take an existing schema—such as a NIST SP 1500 series Common Data Format
(CDF)—and redefine certain components to create a more specialized schema, i.e., a profile.

7.1.1.1. How XSD Redefinition Works

XSD redefinition operates by allowing the inclusion of a base schema within a new schema,
where specific types or groups from the base schema can be redefined. The redefined schema
inherits the structure and elements of the base schema but applies new definitions to selected
components. This is achieved using the <redefine> element in the XML schema.

7.1.1.2. Restriction in XSD

A redefined type can be derived by extension or by restriction. Extension can be used to create
superset schemas, i.e. schemas with additional elements, which is disallowed [19]. Restriction,
on the other hand, narrows down the possibilities defined by a base type. It involves limiting
the content model or the permissible values of elements and attributes. The resulting restricted
type is always a subset of the base type.

complexType Example

Suppose it is required that an election management system (EMS) must provide the filing date
(FileDate) and person record identifier (PersonId) for each Candidate in a pre-election Election
Results Reporting (ERR) feed. By examining the definition of Candidate, it is evident that
FileDate and PersonId are optional (minOccurs="0") in the 1500-100 schema. Therefore, the
Candidate definition will need to be redefined to change these specifications. The existing
definition is shown in Figure 61.

<xsd:complexType name="Candidate">

 <xsd:sequence>

 <xsd:element name="BallotName" type="InternationalizedText"/>

 <xsd:element name="ContactInformation" type="ContactInformation" minOccurs="0"/>

 <xsd:element name="ExternalIdentifier" type="ExternalIdentifier" minOccurs="0"

maxOccurs="unbounded"/>

 <xsd:element name="FileDate" type="xsd:date" minOccurs="0"/>

 <xsd:element name="IsIncumbent" type="xsd:boolean" minOccurs="0"/>

 <xsd:element name="IsTopTicket" type="xsd:boolean" minOccurs="0"/>

 <xsd:element name="PartyId" type="xsd:IDREF" minOccurs="0"/>

NIST GCR 24-058
November 2024

62

 <xsd:element name="PersonId" type="xsd:IDREF" minOccurs="0"/>

 <xsd:element name="PostElectionStatus" type="CandidatePostElectionStatus"

minOccurs="0"/>

 <xsd:element name="PreElectionStatus" type="CandidatePreElectionStatus" minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="ObjectId" type="xsd:ID" use="required"/>

</xsd:complexType>

Figure 61 - Definition of Candidate from ERR

A redefined schema section starts with a redefine element and consists of zero or more types
to be redefined, as illustrated in Figure 62.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:ns1="http://itl.nist.gov/ns/voting/1500-100/v2"

targetNamespace="http://itl.nist.gov/ns/voting/1500-100/v2" elementFormDefault="qualified"

attributeFormDefault="unqualified">

 <xs:redefine schemaLocation="NIST_V2_election_results_reporting.xsd">

 {redefined types}...

 </xs:redefine>

</xs:schema>

Figure 62 - XSD with redefinition section for ERR

The definition of Candidate from the NIST schema is copied into the redefine section, as seen in
Figure 63.

<xs:complexType name="Candidate">

 <xs:complexContent>

 <xs:restriction base="Candidate">

 <xs:sequence>

 <xs:element name="BallotName" type="InternationalizedText"/>

 <xs:element name="ContactInformation" type="ContactInformation" minOccurs="0"/>

 <xs:element name="ExternalIdentifier" type="ExternalIdentifier" minOccurs="0" m

axOccurs="unbounded"/>

 <xs:element name="FileDate" type="xs:date" minOccurs="0"/>

 <xs:element name="IsIncumbent" type="xs:boolean" minOccurs="0"/>

 <xs:element name="IsTopTicket" type="xs:boolean" minOccurs="0"/>

 <xs:element name="PartyId" type="xs:IDREF" minOccurs="0"/>

 <xs:element name="PersonId" type="xs:IDREF" minOccurs="0"/>

 <xs:element name="PostElectionStatus" type="CandidatePostElectionStatus" minOcc

urs="0"/>

 <xs:element name="PreElectionStatus" type="CandidatePreElectionStatus" minOccur

s="0"/>

 </xs:sequence>

 <xs:attribute name="ObjectId" type="xs:ID" use="required"/>

 </xs:restriction>

 </xs:complexContent>

</xs:complexType>

Figure 63 - XSD with redefinition section for Candidate

The new schema includes two additional elements not present in the source schema:
complexContent and restriction elements. The restriction element indicates that the new
Candidate type will be derived by restricting the original type. A validator will ensure that the
redefined schema is a subset of the original schema. To make FileDate and PersonId required,
the minOccurs attributes for these elements must be adjusted to 1.

simpleType Example

NIST GCR 24-058
November 2024

63

All NIST 1500 series CDFs use enumerations to capture common values in a consistent way. The
list of enumeration values can be very long and may overlap somewhat to allow data to be
captured at various levels on granularity. Suppose a jurisdiction wants to restrict the
enumeration values of ElectionType in the 1500-100 ERR schema. Out of the box, the allowed
values include:

Table 10 - Enumerations values of ElectionType

Enumeration Value
general

partisan-primary-

closed

partisan-primary-open

primary

runoff

special

other

The jurisdiction wants to disallow the use of partisan-primary-open, because they are in a
closed primary state.

The basic syntax for a simpleType is given in Figure 64.

<xs:simpleType name="ElectionType">

 <xs:restriction base="ElectionType">

 <xs:enumeration value="general"/>

 <xs:enumeration value="partisan-primary-closed"/>

 <xs:enumeration value="partisan-primary-open"/>

 <xs:enumeration value="primary"/>

 <xs:enumeration value="runoff"/>

 <xs:enumeration value="special"/>

 <xs:enumeration value="other"/>

 </xs:restriction>

</xs:simpleType>

Figure 64 - restriction of simpleType ElectionType

To restrict the allowed enumeration values, delete the enumeration tags for the partisan-
primary-open, as illustrated in Figure 65.

<xs:simpleType name="ElectionType">

 <xs:restriction base="ElectionType">

 <xs:enumeration value="general"/>

 <xs:enumeration value="partisan-primary-closed"/>

 <xs:enumeration value="primary"/>

 <xs:enumeration value="runoff"/>

 <xs:enumeration value="special"/>

 <xs:enumeration value="other"/>

 </xs:restriction>

</xs:simpleType>

Figure 65 - restriction of simpleType ElectionType with values removed

NIST GCR 24-058
November 2024

64

7.1.1.3. Contextualizing in XSD

The redefinition of a type in XML Schema (XSD) has a global impact, meaning that any
modifications to a type affect all instances where that type is used throughout the schema. This
global effect can pose significant challenges when attempting to apply changes in a context-
specific manner. For example, consider a scenario where someone wishes to restrict the
ContactInformation type such that the AddressLine element is required, but only within the
context of ElectionAdministration. Since ContactInformation is used by several other
elements (such as Candidate, Election, Office, etc.), making AddressLine required in the global
type definition would inadvertently enforce this requirement across all contexts.

Schematron is a rule-based validation language for making assertions about the presence or
absence of patterns in XML trees. It provides a flexible and powerful mechanism for applying
context-specific constraints that cannot be easily handled by XSD alone.

Using Schematron, we can impose the requirement that AddressLine must be present only
within the context of ElectionAdministration without affecting other uses of
ContactInformation. This is illustrated in Figure 66.

<schema xmlns="http://purl.oclc.org/dsdl/schematron">

 <pattern id="ElectionAdministrationContactInfo">

 <title>Ensure AddressLine is required for ElectionAdministration</title>

 <rule context="ElectionAdministration/ContactInformation">

 <assert test="AddressLine">AddressLine is required for ElectionAdministration</assert>

 </rule>

 </pattern>

</schema>

Figure 66 - Example contextual Schematron rule

In this Schematron schema, the rule asserts that within the context of ElectionAdministration,
the ContactInformation element must contain an AddressLine. This targeted rule ensures that
AddressLine is only required for ElectionAdministration, leaving other contexts like Candidate,
Election, and Office unaffected.

7.1.2. Subsetting and Profiling in JSON Schema: A Comparative Analysis with XSD

JSON Schema, unlike XML Schema Definition (XSD), does not possess native mechanisms for
creating subset schemas or profiles. This inherent limitation requires developers to manually
construct profiles, ensuring that any modifications made to the schema maintain a valid subset.
This process is inherently more complex and less reliable than the automatic subset validation
available in XSD.

7.1.2.1. Manual Construction of JSON Schema Profiles

In JSON Schema, creating a profile involves defining a more specific schema based on a general
(e.g., NIST published) schema. This is typically done by adding constraints, such as identifying
required fields or restricting value sets, to the base schema. However, because JSON Schema
lacks built-in support for verifying that a derived schema is a valid subset of its base schema,

NIST GCR 24-058
November 2024

65

developers must take extra care to manually ensure that the subset schema does not violate
the base schema's structure and rules.

7.1.3. Comparative Validation: JSON Schema vs. XSD

In XSD, the concept of redefinition and restriction allows for automatic verification that a
subset schema adheres to the rules and structure of its base schema [23]. This built-in
functionality ensures that any derived schema is inherently a valid subset, providing a robust
and reliable means of schema validation.

Conversely, JSON Schema requires a more cumbersome approach to achieve a similar level of
assurance. The only practical way to emulate the subset validation functionality of XSD is
through empirical validation. This involves running both the subset schema and the original
schema against a known valid instance. If the instance validates successfully against both
schemas, it provides indirect evidence that the subset schema is valid.

7.1.4. Subset Schema Validation Approach

To determine if a JSON Schema profile is a valid subset of its base schema, developers can
follow these steps:

1. Develop Test Instances: Create a set of JSON instances that are known to be valid
according to the subset schema.

2. Validate Against Base Schema: Ensure these instances validate against the original,
general schema.

3. Validate Against Subset Schema: Run the same instances against the subset schema.

Validation Condition

The JSON subset 𝑆 is assumed valid unless:

∃i ∈ I (¬validate(𝑂, i) ∧ validate(S, i))

Where I is the set of JSON candidate instances, O is the original schema, S is the subset schema.

7.1.5. Limitations of JSON Schema Validation

This approach, while practical, is inherently weaker than the formal validation mechanisms in
XSD. The primary limitations include:

1. Manual Effort and Expertise: Constructing and validating subset schemas in JSON
requires significant manual effort and expertise, increasing the likelihood of errors.

NIST GCR 24-058
November 2024

66

2. No Formal Assurance: Unlike XSD, which provides formal assurance that a redefined
schema is a valid subset, JSON Schema validation relies on empirical evidence, which
may not cover all edge cases.

3. Scalability Issues: Validating a large corpus of instances against both schemas can be
resource-intensive and may not be feasible for large-scale applications.

For the foregoing reasons, we strongly recommend that profiles be developed using XSD even if
the target is JSON. Tools like the CDF Test Method can be used to validate a JSON instance’s
conformance against an XSD subset schema.

 Schematron

Schematron is a rule-based validation language for making assertions about the presence or
absence of patterns in XML documents. Unlike XSD, which focuses on the structure,
Schematron allows for more complex validation rules, often based on business logic.

For example, Schematron can enforce rules such as "if a voter provides a driver's license
number, they must also provide the issuing state" or "the end date of a ballot request must be
after the start date." These kinds of rules are essential for ensuring the logical consistency of
elections data.

Schematron allows for the definition of complex validation rules using XPath expressions.

7.2.1. Example Schematron Use

The primary purpose of the ruleset included in the CDF Test Method is to address specific
syntactic issues that arise when using XSD data types such as xsd:ID, xsd:IDREF, and
xsd:IDREFS, and their equivalents in JSON. These data types are integral to ensuring the
uniqueness and referential integrity of elements within an XML document. xsd:ID is used to
uniquely identify elements, xsd:IDREF is used to reference these unique identifiers, and
xsd:IDREFS is used to reference multiple identifiers. However, the XSD standard has limitations
in enforcing the correctness of these references, particularly in complex XML documents
derived from UML models.

The xs:ID class of types are used in the Ballot Definition, Cast Vote Records and Election Results
Reporting common data formats to conserve storage space. For example, it would be inefficient
to repeat details about a particular contest in an instance containing multiple CVRs (a more
detailed treatment of these identifiers is given in Section 4.1).

When UML models, which provide a visual representation of the format’s structure, are
transformed into XML Schemas, the xs:ID type's lack of type specificity becomes problematic.
An xs:ID simply identifies elements but does not specify the type of element it identifies. This
opaqueness means that while the XML Schema can enforce the uniqueness of xsd:ID values, it
cannot ensure that xs:IDREF and xs:IDREFS correctly reference elements of the appropriate

NIST GCR 24-058
November 2024

67

type. This limitation leads to potential validation issues where references might point to invalid
or unintended targets, compromising data integrity.

Schematron rulesets are used to fill this gap.

Forward Lookups

A forward lookup enforces the predicate of the form {X}Ids must point to an element of type {X},
where {X} is a type in the XML Schema.

Consider the type Candidate. It has an element PartyId to associate a candidate to one or more
political parties. A Schematron rule enforcing this relationship is given in Figure 67.

<sch:rule context="element(*, err:Candidate)">

 <sch:assert test="not(id(err:PartyId)[not(. instance of element(*, err:Party))])">PartyId

(<xsl:value-of select="err:PartyId" />) must point to an element of type Party</sch:assert>

</sch:rule>

Figure 67 - Example Schematron rule enforcing correct wiring of CDF file

id(err:PartyId) uses the XPath id function to return the element containing that id, which
should be a type of Party. The predicate in the brackets, . instance of element(*, err:Party)
checks exactly that.

Note: The use of not in the example above may appear confusing at first glance. For the
rule to validate, it must not return any elements (an empty sequence casts to the
boolean value of false). Therefore, the predicate is negated to ensure that it only returns
an element when the instance is not of the desired type. Since multiple xsd:ID values
can potentially be listed in an xsd:IDREFS, testing the positive case without knowing the
exact number expected is infeasible at compile time.

 CDF Test Method

The CDF Test Method is an executable method to verify the correctness of CDF
implementations. The primary purpose of the CDF Test Method is to validate instances of CDFs
against their respective specifications to provide reports to assist stakeholders in determining
conformance.

The CDF Test Method incorporates the CDF schemas, which provide the foundational structures
and constraints that the data must adhere to, including naming conventions, the relative
ordering of properties, data type restrictions, and relationships between different data
elements.

The test method also includes several test data sets, which can be used to simulate various
election scenarios during import into voting equipment. These data sets include both synthetic
data, which is designed to cover a wide variety of test cases in a compact form, and real-world
data, which captures the nuances and complexities of actual elections. The combination of
synthetic and real-world data allows the test method to validate CDF implementations across

NIST GCR 24-058
November 2024

68

different contexts and conditions, providing a more complete assessment of system function
and compliance.

An example testing protocol outlines a high-level approach to executing the tests. This protocol
shows how the CDF Test Method may be integrated into larger testing campaigns, covering the
election lifecycle from ballot definition through tabulation. By embedding CDF validation steps
into existing functional testing workflows, the protocol ensures that interoperability testing is
performed with minimal additional burden.

The CDF Test Method is built on industry-standard open-source tools and validators, such as
Xerces for XML Schema Definition (XSD) validation, Schematron for semantic validation, and
XProc for executing tests. The use of open-source technologies also means that there is no cost
for manufacturers, Voting System Test Laboratories (VSTLs), or others to use the test method.

The test method provides machine-readable results and human-readable reports. This
capability facilitates the review and analysis of test outcomes by stakeholders, including system
developers, testers, and certification bodies.

The current iteration of the CDF Test Method does not support CDF Profiles or custom
Schematron rulesets, though these features are recognized as significant areas for future
development and are included on the roadmap for enhancement. By adding these features, the
test method will be able to validate against more precise and context-specific requirements,
enhancing its utility and effectiveness for a broader range of use cases. This development will
enable election officials and system developers to ensure that their implementations are not
only generally compliant but also specifically tailored to the unique demands of their particular
election environments.

NIST GCR 24-058
November 2024

69

References

[1] Voluntary Voting Systems Guidelines, Version 2.0 (2021)
https://www.eac.gov/sites/default/files/TestingCertification/Voluntary_Voting_System_
Guidelines_Version_2_0.pdf. Accessed January 5, 2023.

[2] NIST Publications and Reports Page. https://www.nist.gov/tpo/publications-and-reports.
Accessed November 1, 2024.

[3] Voting Information Project (VIP). Standardization of voting data and information.
https://www.votinginfoproject.org. Accessed November 1, 2024.

[4] Gane, Chris P. and Sarson, Trish (1979) Structured Systems Analysis: Tools and
Techniques (Prentice Hall Professional Technical Reference), 1st Ed.

[5] Dziurlaj, J (2022) Gap Analysis for Key Interoperability Scenarios in Election Technology.
(National Institute of Standards and Technology, Gaithersburg, MD), NIST
Grant/Contractor Report (GCR) NIST GCR 22-033. https://doi.org/10.6028/NIST.GCR.22-
033. Accessed November 1, 2024.

[6] Dziurlaj, J (2022) Recommendations for Voting System Interoperability. (National
Institute of Standards and Technology, Gaithersburg, MD), NIST Grant/Contractor Report
(GCR) NIST GCR 22-034. https://doi.org/10.6028/NIST.GCR.22-034. Accessed November
1, 2024.

[7] Common Data Format lifecycle policy. Detailed guidelines for the lifecycle of NIST
common data formats. https://www.nist.gov/itl/voting/interoperability. Accessed
November 1, 2024.

[8] Kuriwaki, S (2020) The Administration of Cast Vote Records in US States.
https://doi.org/10.31219/osf.io/epwqx. Accessed November 1, 2024.

[9] Object Management Group (OMG) UML Specification version 1.1 (1997).
https://www.omg.org/cgi-bin/doc?ad/97-08-11. Accessed November 1, 2024.

[10] W3C, Extensible Markup Language (XML) 1.0 (Fifth Edition), W3C Recommendation,
November 26, 2008. http://www.w3.org/TR/xml. Accessed November 1, 2024.

[11] JavaScript Object Notation (JSON). http://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-404.pdf. Accessed November 1,
2024.

[12] Wack, J. (2019), Election Results Common Data Format Specification Revision 2.0, Special
Publication (NIST SP), National Institute of Standards and Technology, Gaithersburg, MD,
[online]. https://doi.org/10.6028/NIST.SP.1500-100r2. Accessed November 1, 2024.

[13] Open Civic Data Identifiers (OCD-ID). https://open-civic-data-
docs.readthedocs.io/en/latest/ocdids.html. Accessed November 1, 2024.

[14] American National Standards Institute (ANSI), Federal Information Processing Series
(FIPS), and Other Standardized Geographic Codes (2024) Census.
https://www.census.gov/library/reference/code-lists/ansi.html. Accessed November 1,
2024.

[15] Egenhofer, M. J., & Franzosa, R. D. (1991). Point-set topological spatial relations.
International Journal of Geographical Information Systems, 5(2), 161–174.
https://doi.org/10.1080/02693799108927841. Accessed November 1, 2024.

https://www.eac.gov/sites/default/files/TestingCertification/Voluntary_Voting_System_Guidelines_Version_2_0.pdf
https://www.eac.gov/sites/default/files/TestingCertification/Voluntary_Voting_System_Guidelines_Version_2_0.pdf
https://www.nist.gov/tpo/publications-and-reports
https://www.votinginfoproject.org/
https://doi.org/10.6028/NIST.GCR.22-033
https://doi.org/10.6028/NIST.GCR.22-033
https://doi.org/10.6028/NIST.GCR.22-034
https://www.nist.gov/itl/voting/interoperability
https://doi.org/10.31219/osf.io/epwqx
https://www.omg.org/cgi-bin/doc?ad/97-08-11
http://www.w3.org/TR/xml
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://doi.org/10.6028/NIST.SP.1500-100r2
https://open-civic-data-docs.readthedocs.io/en/latest/ocdids.html
https://open-civic-data-docs.readthedocs.io/en/latest/ocdids.html
https://www.census.gov/library/reference/code-lists/ansi.html
https://doi.org/10.1080/02693799108927841

NIST GCR 24-058
November 2024

70

[16] American National Standard for Information Systems — Coded Character Sets — 7-Bit
American National Standard Code for Information Interchange (7-Bit ASCII), ANSI X3.4-
1986 (Technical report). American National Standards Institute (ANSI). 1986-03-26.

[17] The Unicode Consortium. The Unicode Standard, Version 15.0.0, (Mountain View, CA:
The Unicode Consortium, 2022. ISBN 978-1-936213-32-0)
https://www.unicode.org/versions/Unicode15.0.0. Accessed November 1, 2024.

[18] Alvestrand, H., "Tags for the Identification of Languages", RFC 3066, DOI
10.17487/RFC3066, January 2001, <https://www.rfc-editor.org/info/rfc3066>.

[19] Postel, J., "DoD standard Transmission Control Protocol", RFC 761, DOI
10.17487/RFC0761, January 1980, <https://www.rfc-editor.org/info/rfc761>.

[20] EAC Decision on Request for Interpretation, 2023-06 Common Data Format (CDF)
Extensions. https://www.eac.gov/sites/default/files/2023-
11/EAC_Decision_on_RFI_2023-06_CDF_Extensions.pdf. Accessed November 1, 2024.

[21] Dziurłaj, J., Marcotte, J., Guttman, B., and Long, B. (2023), Common Data Format Test
Method, Version 1.0, National Institute of Standards and Technology, [Software],
https://github.com/usnistgov/cdf-test-method . Accessed March 16, 2023.

[22] Verified voting Risk-Limiting Audit Methods. https://verifiedvoting.org/wp-
content/uploads/2020/06/VV-Risk-Limiting-Audit-Methods-11.22.19-1.pdf. Accessed
November 1, 2024.

[23] XML Schema Part 1: Structures Second Edition W3C Recommendation 28 October 2004,
Schema Component Constraint: Particle Valid (Restriction).
https://www.w3.org/TR/xmlschema-1/#cd-model-restriction. Accessed November 1,
2024.

[24] EAC Election Support Technology Evaluation Program (ESTEP).
https://www.eac.gov/estep-program. Accessed November 1, 2024.

[25] City of Cambridge, Massachusetts, Geographic Information Systems: Map Gallery.
https://www.cambridgema.gov/GIS/mapgallery. Accessed November 1, 2024.

https://www.unicode.org/versions/Unicode15.0.0
https://www.eac.gov/sites/default/files/2023-11/EAC_Decision_on_RFI_2023-06_CDF_Extensions.pdf
https://www.eac.gov/sites/default/files/2023-11/EAC_Decision_on_RFI_2023-06_CDF_Extensions.pdf
https://github.com/usnistgov/cdf-test-method
https://verifiedvoting.org/wp-content/uploads/2020/06/VV-Risk-Limiting-Audit-Methods-11.22.19-1.pdf
https://verifiedvoting.org/wp-content/uploads/2020/06/VV-Risk-Limiting-Audit-Methods-11.22.19-1.pdf
https://www.w3.org/TR/xmlschema-1/#cd-model-restriction
https://www.eac.gov/estep-program
https://www.cambridgema.gov/GIS/mapgallery

NIST GCR 24-058
November 2024

71

Appendix A. Glossary

Abstract Class
A class that cannot be instantiated directly and is intended to be subclassed. It typically includes one or more
properties that will be inherited by its subclasses.

Adjudication
Process of resolving flagged cast ballots to reflect voter intent. Common reasons for flagging include:

• write-ins,

• overvotes,

• marginal machine-readable mark,

• having no contest selections marked on the entire ballot, or

• the ballot being unreadable by a scanner.

Attribute
An attribute in UML is a property of a class that describes a structure of the modeled entity. Attributes have a
name, type, and may have constraints or default values. They represent the data stored within an object and
define the state of the object. [UML]

An attribute in XML is a name-value pair that provides additional information about an element. Attributes appear
within the start tag of an element and are used to specify metadata or properties related to the element's content.
They are not hierarchical and cannot contain other elements or attributes. [XML]

Ballot Definition
The process or result of specifying the content, layout, and order of contests and candidates on a ballot.

Cast Vote Record (CVR)
Archival tabulatable record of a set of contest selections produced by a single voter as interpreted by the voting
system.

Common Data Format (CDF)
Standard and practice of creating and storing data in a common, described format that can be read by other
systems.

Concrete Class
A class that can be instantiated, as opposed to an abstract class which cannot.

Election Event Logging (EEL)
The recording of events and activities that occur during the election process for auditing and monitoring purposes.

Element
The base class for all UML metamodel classes. It represents any construct that is part of a UML model, providing
the foundational properties and operations that other UML model elements inherit. Elements can include classes,
relationships, constraints, and more. [UML]

An individual piece of data within an XML document. It specifies a name, type, and constraints for the content that
may appear within it, including whether it is optional or required, and the number of times it can appear. [XSD]

NIST GCR 24-058
November 2024

72

Enumeration
A data type that consists of a set of named values called literals. Each literal represents a possible value for the
enumeration. Enumerations are used to define attributes that can take on one of a predefined set of values. [UML]

An enumeration in XSD defines a restriction on a simple type that specifies a list of acceptable values for an
element or attribute. It is used to restrict the content of an XML element or attribute to a specific set of values,
ensuring that the data adheres to predefined options. [XSD]

External Identifier
An identifier that references an entity outside the current context or system, often used for interoperability
between different systems.

Geopolitical Unit (GpUnit)
An administrative or political division such as a state, county, precinct, or other defined area used in the context of
elections.

Identifier
A unique value assigned to an element or object to distinguish it from others within a particular context.

JavaScript Object Notation (JSON)
A lightweight data interchange format that is easy for humans to read and write and easy for machines to parse
and generate [W3C JSON-LD 1.1 Specification].

Model Driven Architecture (MDA)
An approach to software design and implementation that uses models to define the structure and behavior of a
system, which are then transformed into executable code [OMG UML spec].

Multiplicity
Specifies the number of instances of one class that can be associated with one instance of another class [OMG
UML spec].

Precinct
Election administration division corresponding to a geographic area that is the basis for determining which
contests the voters legally residing in that area are eligible to vote on.

Type
Represents a set of values that constrain the range of values allowed in a typed element. It serves as a template for
creating instances (objects). [UML]

A definition that specifies the format, constraints, and rules for the content in an XML document. XSD defines
simple types (e.g., strings, numbers) and complex types (combinations of elements and attributes), which can be
used to create custom data types for validating XML data. [XSD]

Validation
The process of checking that data conforms to defined rules or standards, often using schemas [W3C XML Schema
Definition Language (XSD)].

Unified Modeling Language (UML)
A standardized modeling language used to visualize, specify, construct, and document the artifacts of a software
system [OMG UML spec].

NIST GCR 24-058
November 2024

73

XML Schema Definition (XSD)
A schema language used to define the structure, content, and semantics of XML documents [W3C XML Schema
Definition Language (XSD)].

NIST GCR 24-058
November 2024

74

Appendix B. Abbreviations

Selected acronyms and abbreviations used in this document are defined below.

Acronym Meaning

BD Ballot Definition

BMD Ballot Marking Device

CDF Common Data Format

CVR Cast Vote Record

EAC Election Assistance Commission

EAVS Election Administration and Voting Survey

EEL Election Event Logging

EMS Election Management System

EPB Electronic Poll Book

ERR Election Results Reporting

FVAP Federal Voting Assistance Program

GIS Geographic Information System

JSON JavaScript Object Notation

mCDF Micro Common Data Format

NVRA National Voter Registration Act

ODBP On-Demand Ballot Printing

OVR Online Voter Registration

RBM Remote Ballot Marking

SIEM Security Information and Event Management

UML Unified Modeling Language

VIP

VRI

Voting Information Project

Voter Records Interchange

VRDB Voter Registration Database

VVSG Voluntary Voting System Guidelines

XML Extensible Markup Language

NIST GCR 24-058
November 2024

75

Appendix C. CDF Interoperability Context and Example Interoperability Scenarios

CDF Interoperability Context

The CDF specifications were created to implement a common language through which election
systems, components, and applications can exchange information. This document has provided
an exploration of what CDF implementors need to know to realize CDF-based data
interoperability throughout the election domain over time. The conditions surrounding such
interoperability are addressed in the CDF lifecycle update policy [7] where CDF interoperability
at a high level is dependent upon the lower-level interoperability of its CDF-based systems and
components. This section gives concrete meaning to the robustness principle introduced in
Section 6.6 by illustrating how two or more CDF implementations using different versions of a
given CDF specification may exchange information in whole or in part.

The ability of different components having implemented identical CDF specifications and
versions to exchange information is an example of idealized interoperability, wherein all
information is exchangeable by both implementations (syntactically and semantically). In
contrast, systems having only partial interoperability (e.g., backward compatibility or forward
compatibility) are those whose components have implemented different versions of a given
CDF specification. In partial interoperability, components with differing versions exchange
mandatory, shared information while handling unknown data flexibly through the robustness
principle.

This approach, combined with the CDF lifecycle update policy, provides CDF implementations
with the capability to continue to exchange information during the time periods while their
systems are at different but similar (minor release) specification versions. This allows for more
graceful and natural co-evolution of CDF implementations, allowing for larger sliding windows
of compatibility while CDF implementors make decisions about how to stay up to date with the
latest CDF specification version baselines as part of their regular maintenance and sustainability
plans.

The CDF interoperability scenarios given below use hypothetical CDF version numbers (e.g.,
v1.0, v1.1, v2.0) and CDF specification names (e.g. AAA, etc.) for the sake of example - with real
components in order to convey the essential idea that each system may consist of a portfolio of
different components implementing a range of possible CDF specifications and versions that
can co-evolve and interoperate independently and asynchronously over time with respect to
minor or major changes. This approach highlights the extensive scope of CDF interoperability,
which encompasses interactions within a single system, between different systems, among
various components, and between applications. This scalable interoperability framework can be
applied to the smallest components as well as the largest systems within the election
technology ecosystem. As a result, this approach remains relevant for existing and legacy
system interactions, future CDF implementations, and new use cases.

When systems remain well-aligned with CDF specification and version baselines, they can
maintain a level of interoperability where changes and migrations involve minimal effort and
impact to ongoing operations. Major releases in any system often represent so-called “breaking
changes,” which may require larger efforts than are typically required for minor releases to

NIST GCR 24-058
November 2024

76

transition from one release to another. This is why major releases are kept to a minimum as
much as possible.

Although the examples below focus on systems and components implementing CDFs for VVSG-
specific use cases, CDF specifications may also be implemented for applications outside the
scope of the VVSG. These might include applications ranging from auditing to analytics to
migration and more. The EAC's Election Supporting Technology Evaluation Program (ESTEP) [24]
use cases are another emerging example of this type.

Example Interoperability Scenarios

This section describes real-world interoperability scenarios between components that may
support different CDF versions. Diagrams are used to show how interoperability may or may
not be achieved in each case. The examples present interoperability scenarios to the reader
incrementally, introducing additional assumptions with each case shown. In this way, a reader
can begin to see why the CDF interoperability concepts and CDF lifecycle update policy were
organized as they were. Some of the initial examples illustrate what would happen if CDF
interoperability were to be defined rigidly, such as an interoperability definition that would only
allow exact CDF version matching at any time between interoperating components and
systems. This would lead to many unmanageable incompatibilities since many components and
systems must evolve independently from one another.

Recognizing the reality of independently evolving systems, the CDF lifecycle policy describes a
more robust definition of interoperability, allowing for a graduated range of compatibility
among minor versions that can be feasibly achieved. This formulation of interoperability
supports the notions of backward compatibility and forward compatibility between various CDF
specification versions. Making such compatibility ranges possible allows CDF implementations
to continue to interoperate across small specification changes without major interoperability
failures, allowing for graceful evolution and continuity of operations over time.

This section references backward and forward compatibility without providing definitions.
These terms are defined in the CDF Lifecycle Update Policy and should ideally be reviewed
there first.

When reading the examples below, it is useful to keep in mind that the notion of “implicit”
import or export refers to the non-overlapping information (present in only one or the other,
but not both) exchanged between systems trying to interoperate with different specification
versions, and “explicit” import or export refers to the overlapping information present in both
specification versions when they interact to import or export.

• Legend

o Dotted node – system with implicit export for version via forward compatibility.

o Bolded node – system with explicit import and export for version

o Dashed node – system with implicit import support for version via backward

compatibility.

o Red edge – interoperability failure between systems

o Green edge – interoperability success between systems

NIST GCR 24-058
November 2024

77

o Gray edge – interoperability partial success between systems (forward

compatibility)

o Arrows - follow the direction of the data flow

An example of the notation is given in Figure 68.

Figure 68 - Example of CDF interoperability notation

Several systems are described together to depict various interoperability scenarios. Each
system supports the fictitious AAA CDF:

• VRDB procured in 2024

o Can import and export in v1.0 only

• VVSG Certified EMS procured in 2025

o Can import and export in v1.1

o Can import in v1.0

o Has forward compatibility within the major version family v1.x

• VVSG Certified BMD procured in 2027

o Can import and export in v1.2

o Can import in v1.0, v1.1

o Has forward compatibility within version family v1.x

C.1.1. Interoperability within CDF major versions

Suppose an election jurisdiction procures a new voting system EMS, which implements AAA
CDF v1.0, and a voter registration database (VRDB) that implements AAA CDF v1.0 as well. At
the point of procurement, both systems can exchange data using AAA CDF v1.0. See Figure 69.

NIST GCR 24-058
November 2024

78

Figure 69 - Interoperability between two systems supporting the same version

Sometime later, AAA CDF v1.1 is released, and the manufacturer of the voting system EMS
implements the new format and simultaneously drops the export for AAA CDF v1.0. This
situation presents a problem. Even though v1.1 is backward compatible with v1.0, the VRDB is
not forward compatible with v1.1, creating an interoperability failure.

At the same time, the election jurisdiction procures a new ballot marking device, which
implements AAA CDF v1.2, which the voting system EMS can import using forward
compatibility. The VRDB cannot import data from the BMD for the same reason as the voting
system EMS. See Figure 70.

Figure 70 - Interoperability between VVSG and non VVSG components

NIST GCR 24-058
November 2024

79

However, if all systems were to maintain support for all previously supported formats (i.e.,
updates to a system must include support for export capabilities of previous CDFs), the
situation would improve to some extent. See Figure 71.

Figure 71 - Improved interoperability between a VVSG and non-VVSG component

However, the interoperability failure between the BMD and VRDB persists. Even though the
BMD is a VVSG-certified component, it was originally certified with v1.2 and cannot export in
v1.0, which the VRDB requires. If VVSG-certified components supported export in all minor
versions, no matter when they were submitted, then the interoperability picture would be
further improved, as illustrated in Figure 72.

NIST GCR 24-058
November 2024

80

Figure 72 - Full resolution of interoperability through exports across entire version family

C.1.2. Interoperability between major CDF versions

Suppose it is 2035, and it is time to replace the voting system EMS. There is now a v2.0 of AAA
CDF. The new voting system EMS supports v2.0 only. This scenario raises the question of what
will occur next. See Figure 73.

Figure 73 - Interoperability failures between two components supporting different version families

Major version upgrades may result in significant interoperability issues. Per the CDF lifecycle
policy, major version upgrades are not backward compatible; thus, every other system must
also support the major version. Given the extended operational lifespans of voting systems—

NIST GCR 24-058
November 2024

81

such as Voter Registration Databases (VRDBs), which often remain in use for over 20 years—
this approach may nonetheless be advisable to ensure long-term interoperability.

C.1.3. Final thoughts

Currently, the CDF Lifecycle policy does not mandate that manufacturers adhere to any support
policy for CDFs. However, manufacturers aiming to maximize compatibility should consider
implementing forward compatibility through the robustness principle, thereby sustaining
interoperability over time. Furthermore, providing support for exporting in multiple major and
minor CDF versions will enhance export interoperability, especially with systems that do not
support forward compatibility.

Finally, maintaining compatibility with older file formats acknowledges that not all systems are
upgraded simultaneously, and even where simultaneous upgrades occur, manufacturers may
be at varying stages of CDF support implementation.

