
NIST Technical Note
NIST TN 2310

Elastic Shape Registration of Surfaces in
3D Space with Gradient Descent and

Dynamic Programming

Javier Bernal
Jim Lawrence

This publication is available free of charge from:
https://doi.org/10.6028/NIST.TN.2310

https://crossmark.crossref.org/dialog?doi=10.6028/NIST.TN.2310

NIST Technical Note
NIST TN 2310

Elastic Shape Registration of Surfaces in
3D Space with Gradient Descent and

Dynamic Programming

Javier Bernal
Information Technology Laboratory

Applied and Computational Mathematics Division

Jim Lawrence
George Mason University

Information Technology Laboratory
Applied and Computational Mathematics Division

This publication is available free of charge from:
https://doi.org/10.6028/NIST.TN.2310

October 2024

U.S. Department of Commerce
Gina M. Raimondo, Secretary

National Institute of Standards and Technology
Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology

Certain equipment, instruments, software, or materials, commercial or non‐commercial, are identified in
this paper in order to specify the experimental procedure adequately. Such identification does not imply
recommendation or endorsement of any product or service by NIST, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

NIST Technical Series Policies
Copyright, Use, and Licensing Statements
NIST Technical Series Publication Identifier Syntax

Publication History
Approved by the NIST Editorial Review Board on 2024‐10‐09

How to cite this NIST Technical Series Publication:
Bernal J, Lawrence J (2024) Elastic Shape Registration of Surfaces in 3D Space with Gradient Descent and
Dynamic Programming. (National Institute of Standards and Technology, Gaithersburg, MD), NIST TN
2310. https://doi.org/10.6028/NIST.TN.2310

Author ORCID iDs
Javier Bernal: 0000‐0002‐9681‐7007
Jim Lawrence: 0000‐0003‐0638‐2559

Contact Information
javier.bernal@nist.gov

https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/nist-research-library/nist-technical-series-publications-author-instructions#pubid
mailto:javier.bernal@nist.gov

NIST TN 2310
October2024

Abstract

Algorithms based on gradient descent for computing the elastic shape registration of two
simple surfaces in 3‐dimensional space and therefore the elastic shape distance between
them have been proposed by Kurtek, Jermyn, et al., and more recently by Riseth. Their
algorithms are designed to minimize a distance function between the surfaces by rotating
and reparametrizing one of the surfaces, the minimization for reparametrizing based on
a gradient descent approach that may terminate at a local solution. On the other hand,
Bernal and Lawrencehaveproposed a similar algorithm, theminimization for reparametriz‐
ing based on dynamic programming thus producing a partial not necessarily optimal elastic
shape registration of the surfaces. Accordingly, Bernal and Lawrence have proposed to use
the rotation and reparametrization computed with their algorithm as the initial solution to
any algorithm based on a gradient descent approach for reparametrizing. Here we present
results fromdoing exactly that. We also describe and justify the gradient descent approach
that is used for reparametrizing one of the surfaces.

Keywords

diffeomorphism; dynamic programming; elastic shapedistance; gradient descent; reparametriza‐
tion; shape analysis.

i

NIST TN 2310
October2024

Table of Contents
1. Introduction 1

2. The Shape Function of a Parametrized Surface 1

3. Gradient Descent Optimization over the Group of Reparametrizations of a Curve
in the Plane 4

4. Gradient Descent Optimization over the Group of Reparametrizations of a Surface
in 3D Space 7

5. Results from Implementation of Methods 17

6. Summary 30

References 31

List of Figures
Fig. 1. Views of the boundaries of two surfaces in 3D space of identical sinusoidal

shapes so that the elastic shape distance between them is zero. 2
Fig. 2. Three plots of boundaries of surfaces of the sine kind. Elastic shape reg‐

istrations of the two surfaces in each plot were computed using gradient
descent, with and without dynamic programming. 21

Fig. 3. Boundaries of two surfaces of similar shape of the helicoid kind for k = 4,
type 1 in dashed red, type 2 in solid blue. 23

Fig. 4. For γ(r, t) = (r5/4, t), (r, t) ∈ [0,1]× [0,1], after dynamic programming, be‐
fore gradient descent, views of boundary of rotated first surface (solid blue),
and of reparametrized second surface (dashed red). 24

Fig. 5. For γ(r, t) = (r5/4, t5/4), (r, t) ∈ [0,1]× [0,1], after dynamic programming,
before gradient descent, views of boundary of rotated first surface (solid
blue), and of reparametrized second surface (dashed red). 25

Fig. 6. For γ(r, t)= (r5/4, t5/4), (r, t)∈ [0,1]× [0,1], after dynamic programming fol‐
lowed by gradient descent, views of boundary of rotated first surface (solid
blue), and of reparametrized second surface (dashed red). 26

Fig. 7. Boundaries of the two surfaces of the cosine‐sine kind, the type 1 surface
in dashed red, the type 2 surface in solid blue. 27

Fig. 8. For γ(r, t) = (r5/4, t), (r, t) ∈ [0,1]× [0,1], after dynamic programming, be‐
fore gradient descent, views of boundary of rotated first surface (solid blue),
and of reparametrized second surface (dashed red). 27

Fig. 9. For γ(r, t) = (r5/4, t5/4), (r, t) ∈ [0,1]× [0,1], after dynamic programming,
before gradient descent, views of boundary of rotated first surface (solid
blue), and of reparametrized second surface (dashed red). 28

Fig. 10. For γ(r, t)= (r5/4, t5/4), (r, t)∈ [0,1]× [0,1], after dynamic programming fol‐
lowed by gradient descent, views of boundary of rotated first surface (solid
blue), and of reparametrized second surface (dashed red). 29

ii

NIST TN 2310
October2024

1. Introduction

In this paper, we present results from computing the elastic shape registration of two sim‐
ple surfaces in 3−dimensional space and the elastic shape distance between them with
an algorithm based on a gradient descent approach for reparametrizing one of the sur‐
faces similar to those in [6, 10], and more recently in [12], using as the input initial so‐
lution to the algorithm the rotation and reparametrization computed with the algorithm
based on dynamic programming presented in [3] for reparametrizing one of the surfaces
to obtain a partial elastic shape registration of the surfaces. We note, the gradient de‐
scent approach used to obtain our results is a generalization to surfaces in 3−dimensional
space of the gradient descent approach for reparametrizing one of two curves in the plane
when computing the elastic shape distance between them as presented in [13]. For the
sake of completeness, we describe and justify the approach for curves as it is done there,
and then present and justify its generalization to surfaces in 3−dimensional space. This
generalization together with its justification was developed independently of similar work
in [6, 10, 12].

Given that S1 and S2 are the two surfaces under consideration, we assume they are simple,
that is, we assume that forD = [0,1]× [0,1] in the xy plane (R2), i.e., the unit square in the
plane, one‐to‐one functions c1 and c2 of classC1 exist, c1 : D →R3, c2 : D →R3, such that
S1 = c1(D) and S2 = c2(D). We then say that c1 and c2 parametrize or are parametriza‐
tions of S1 and S2, respectively, and that S1 and S2 are parametrized surfaces relative to c1
and c2, respectively. In addition, given a surface S in 3−dimensional space and one‐to‐one
functions c, p of class C1, c : D → R3, p : D → R3, c(D) = S, p(D) = S, so that c and p
are parametrizations of S, we say p is a reparametrization of c or that p reparametrizes S
(given as an image of c), if p = c◦h for a diffeomorphism h from D onto D.

The computation of the elastic shape registration of two surfaces in 3D space together
with the elastic shape distance between them has applications in the study of geological
terrains, surfaces of anatomical objects and structures such as facial surfaces, etc. Figure 1
shows the boundaries (solid blue and dashed red) of two surfaces of sinusoidal shape.
Their shapes are identical so that the elastic shape distance between them is zero. Note,
the x−, y− and z− axes in the figure are not to scale relative to one another.

2. The Shape Function of a Parametrized Surface

In this section we recall the definition of the shape function of a parametrized surface in
3‐dimensional space as introduced in [3]. A similar definition has been presented in [1, 2,
7, 13, 14] in the context of the shape function of a parametrized curve in d−dimensional
space, d any positive integer. Accordingly, in [1, 2, 7, 13, 14], given β : [0,1]→ Rd of class
C1, a parametrization of a curve in Rd , the shape function q of β , i.e., the shape function

1

NIST TN 2310
October2024

Fig. 1. Views of the boundaries of two surfaces in 3D space of identical sinusoidal shapes so that
the elastic shape distance between them is zero.

q of the curve that β parametrizes, q : [0,1] → Rd , is defined by q(t) = β̇ (t)/
√

||β̇ (t)||,
t ∈ [0,1] (d−dimensional 0 if β̇ (t) equals d−dimensional 0). It follows then that q is square
integrable as ∫ 1

0
||q(t)||2dt =

∫ 1

0
||β̇ (t)/

√
||β̇ (t)|| ||2dt =

∫ 1

0
||β̇ (t)||dt

which is the length of the curve that β parametrizes, where || · || is the d−dimensional Eu‐
clidean norm. Again with q the shape function of β and Γ the set of orientation‐preserving
diffeomorphisms of [0,1] so that for γ ∈ Γ then γ̇ ≥ 0 on [0,1], it then follows that for γ ∈ Γ
the shape function of the reparametrization β ◦ γ of β is (q,γ) = (q◦ γ)

√
γ̇ . With ||q||2 =

(
∫ 1

0 ||q(t)||2dt)1/2, we also note that given β1, β2 : [0,1] → Rd of class C1, parametriza‐
tions of curves in Rd with shape functions q1, q2, respectively, then ||(q1,γ)− (q2,γ)||2 =
||q1 − q2||2 for any γ ∈ Γ, and from this, etc., with Γ0 = {γ ∈ Γ, γ̇ > 0 on [0,1]}, SO(d)
the set of d × d rotation matrices, it has been demonstrated [1, 4, 13] that the number
infR∈SO(d),γ∈Γ0 ||Rq1 − (q2,γ)||2 can then be used as a well‐defined distance between the
two curves that β1, β2 parametrize, β1 and β2 both normalized to parametrize curves of
length 1.

As for the definition of the shape function of a parametrized surface in 3‐dimensional
space, again with D = [0,1]× [0,1] in the xy plane (R2), given a one‐to‐one function c of
class C1, c : D → R3, so that for (u,v) in D, c takes (u,v) to c(u,v) in R3, c a parametriza‐
tion of a surface S in 3−dimensional space, the shape function q of c, q : D →R3, i.e., the
shape function q of the surface S that c parametrizes is defined by

q(u,v) = (
∂c
∂u

(u,v)× ∂c
∂v

(u,v))/

√
||∂c

∂u
(u,v)× ∂c

∂v
(u,v)||

2

NIST TN 2310
October2024

(3−dimensional 0 if ∂c
∂u(u,v)×

∂c
∂v(u,v) equals 3−dimensional 0), where ||·|| is the 3−dimensional

Euclidean norm. It follows then that q is square integrable as∫ ∫
D
||q(u,v)||2dudv =

∫ ∫
D
||∂c

∂u
(u,v)× ∂c

∂v
(u,v)||dudv

which is the surface area of S.

With c, q, D, S as above, in a manner similar to the one described above in the context of
the shape function of the parametrization of a curve in d−dimensional space, the shape
function of a reparametrization of c can be computed from the shape function q of c. With
p as a reparametrization of c, i.e., p a parametrization of S and p = c ◦ h for a diffeo‐
morphism h from D onto D, h(r, t) = (h1(r, t),h2(r, t)), assuming ∂h

∂ (r,t) ≥ 0 on D, ∂h
∂ (r,t) the

determinant of the Jacobian of h, i.e., ∂h
∂ (r,t) =

∂h1
∂ r

∂h2
∂ t − ∂h1

∂ t
∂h2
∂ r , and defining a function on

D into R3, which we denote by (q,h),

(q,h)≡ (q◦h)

√
∂h

∂ (r, t)
,

then as established in [3] the shape function on D of the reparametrization p = c◦h of c
is then (q,h).

Wenote aswell, givenD, h, ∂h
∂ (r,t) as above,

∂h
∂ (r,t) ≥ 0onD; S1, S2 surfaces, c1, c2 parametriza‐

tions of S1, S2, respectively, p1, p2 parametrizations of S1, S2, respectively, p1, p2 reparametriza‐
tions of c1, c2, respectively, p1 = c1 ◦ h, p2 = c2 ◦ h; q1, q2, q̂1, q̂2 the shape functions of
c1, c2, p1, p2, respectively, then as established in [3], with h(r, t) = (h1(r, t),h2(r, t)) =
(u(r, t),v(r, t)),

||q̂1 − q̂2||2 ≡
(∫ ∫

D
||q̂1 − q̂2)||2dr dt

)1/2

=
(∫ ∫

D
||q1 −q2||2dudv

)1/2

≡ ||q1 −q2||2.

Based on results about shape functions of parametrized surfaces such as the results above,
and using arguments similar to arguments for justifying the definition of the distance be‐
tween curves in d−dimensional space found in [1, 4, 13], it has been demonstrated as
pointed out in [3] that with D as above, given two simple surfaces S1 and S2 parametrized
by functions c1 and c2, c1 : D →R3, c2 : D →R3, S1 = c1(D), S2 = c2(D), letting SO(3) be
the set of 3×3 rotation matrices, Σ0 the set of all diffeomorphisms h from D onto D, with
h(r, t) = (h1(r, t),h2(r, t)), ∂h

∂ (r,t) > 0 on D, ∂h
∂ (r,t) the determinant of the Jacobian of h, and

3

NIST TN 2310
October2024

q1 and q2 the shape functions of c1 and c2, respectively, the number infR∈SO(3),h∈Σ0 ||Rq1−
(q2,h)||2, i.e.,

infR∈SO(3),h∈Σ0

(∫ ∫
D
||Rq1 − (q2,h)||2dr dt

)1/2
=

infR∈SO(3),h∈Σ0

(∫ 1

0

∫ 1

0

∣∣∣∣Rq1 − (q2 ◦h)

√
∂h

∂ (r, t)
∣∣∣∣2dr dt

)1/2

can be used as a well‐defined distance between the surfaces S1 and S2, c1 and c2 both
normalized to parametrize surfaces of area equal to 1.

3. Gradient Descent Optimization over the Group of Reparametrizations of a Curve in
the Plane

In this section, for the sake of completeness, we describe and justify the gradient descent
approach in [13] in the same way it is done there, for reparametrizing one of two curves in
the plane when computing the elastic shape distance between them. In what follows, ΓI
will denote the set of functions γ : [0,1]→ [0,1], with γ(0) = 0, γ(1) = 1, such that γ−1,
the inverse of γ , exists, both γ and γ−1 are smooth, and γ̇ > 0 on [0,1]. With H : ΓI →R≥0
defined by

H(γ) =
∫ 1

0
||q1(t)−q2(γ(t))

√
γ̇(t)||2 dt,

where q1, q2 are shape functions of parametrized curves in the plane of length 1, the goal
then is to find γ ∈ ΓI that minimizes H(γ).

In order to find any such γ with a gradient approach, as illustrated below, a gradient of H
is computed with respect to ΓI at the kth iteration of the approach, from which γk and γ(k)
in ΓI are then computed, so that inductively with γ0 in ΓI as an initial solution, γ0 possibly
equal to the identity function γid inΓI , then γ(k) = γ0◦γ1◦ . . .◦γk, andH(γ(0))> H(γ(1))>

.. . > H(γ(k)). In reality, inductively, with q̃2 = (q2 ◦ γ(k−1))

√
˙γ(k−1), at the kth iteration of

the approach it is the gradient of

Hk(γ) =
∫ 1

0
||q1(t)− q̃2(γ(t))

√
γ̇(t)||2 dt

that is actually computed, from which γk is computed, and as verified below, with γ(k) as
above, then H(γ(k)) = Hk(γk).

With [q2]ΓI denoting the orbit of q2, i.e., [q2]ΓI = {q̃ | q̃ = (q2 ◦ γ)
√

γ̇, γ ∈ ΓI}, and q̃2

in [q2]ΓI given by q̃2 = (q2 ◦ γ(k))
√

˙γ(k), at the (k+ 1)th iteration of the approach, letting
Tq̃2([q2]ΓI) be the tangent space to [q2]ΓI at q̃2, Tγid(ΓI) the tangent space to ΓI at γid , and
ϕ the mapping from ΓI into [q2]ΓI defined by ϕ(γ) = (q̃2 ◦ γ)

√
γ̇ , γ ∈ ΓI , since ϕ(γid) = q̃2,

4

NIST TN 2310
October2024

then the differential dϕγid : Tγid(ΓI)→ Tq̃2([q2]ΓI) of ϕ at γid can be defined. Accordingly,
given v in Tγid(ΓI), the lemma that follows shows how to compute dϕγid(v), and using the
result of this computation, the theorem that also follows shows how to compute at the
(k+1)th iteration of the approach the directional derivative ∇vH of H (actually ∇vHk+1 of
Hk+1) in the direction of v.

We note then that given vi, i = 1,2,3, . . ., an orthonormal basis of the vector space Tγid(ΓI)

under some metric, e.g., 1√
2πn

sin(2πnt), 1√
2πn

(cos(2πnt)− 1), t ∈ [0,1], n = 1,2,3, . . .,

under the Palais metric,
√

2sin(mπt), t ∈ [0,1], m = 1,2,3, . . ., under the L2 metric, at
the (k+1)th iteration of the approach the gradient of Hk+1 is approximated by ∇Hk+1 =

∑N
i=1(∇viHk+1)vi, for a large N. If under the same metric ∇Hk+1 is considered to be small

enough, then γ(k) is taken to be the solution of the gradient descent approach, although
perhaps a local solution. Otherwise, using a small step size δ > 0, γk+1 and γ(k+1) are
computed, γk+1 = γid − δ ∇Hk+1, γ(k+1) = γ(k) ◦ γk+1. That γ(k+1) is computed so that
H(γ(k+1)) = Hk+1(γk+1) follows by letting q̃2 be as obtained at the kth iteration of the
approach, and proving that

(q2 ◦ γ(k+1))

√
˙γ(k+1) = (q̃2 ◦ γk+1)

√
˙γk+1 as is done here:

(q̃2 ◦ γk+1)
√

˙γk+1 = ((q2 ◦ γ(k))
√

˙γ(k))◦ γk+1)
√

˙γk+1

= (q2 ◦ γ(k) ◦ γk+1)

√
˙γ(k) ◦ γk+1

√
˙γk+1

= (q2 ◦ γ(k) ◦ γk+1)

√
(˙γ(k) ◦ γk+1) ˙γk+1 = (q2 ◦ γ(k+1))

√
˙γ(k+1).

The lemma and theorem follow. Here shape functions areC1 as well.

Lemma 1: Given q, the shape function of a curve in the plane, ϕ : ΓI → [q]ΓI , ϕ(γ) =
(q◦ γ)

√
γ̇ , then given γ in ΓI , v in Tγ(ΓI), with q̇ the Jacobian of q, the differential of ϕ at

γ applied on v is

(dϕγ(v))(s) =
√

γ̇(s)q̇(γ(s))v(s)+
1

2
√

γ̇(s)
v̇(s)q(γ(s)), s ∈ [0,1].

Proof: Let α(τ, ·) be a differentiable path in ΓI passing through γ at τ = 0, i.e., α(0,s) =
γ(s), s ∈ [0,1]. Let the velocity of this path at τ = 0 be given by v ∈ Tγ(ΓI), i.e., v(s) =
∂α
∂τ (0,s), s ∈ [0,1]. Note as well that ∂α

∂ s (0,s) = γ̇(s), ∂ 2α
∂ s∂τ (0,s) = v̇(s), s ∈ [0,1].

Since α(τ, ·) is a path in ΓI , then ϕ(α(τ, ·)) is the corresponding path in [q]ΓI , and since v

5

NIST TN 2310
October2024

is the velocity of α(τ, ·) at τ = 0, then the velocity of ϕ(α(τ, ·)) at τ = 0 is dϕγ(v), that is
to say

(dϕγ(v))(s) =
∂

∂τ
|τ=0 ϕ(α(τ,s)) =

∂
∂τ

|τ=0

(√∂α
∂ s

(τ,s) q(α(τ,s))
)

=
(√∂α

∂ s
(τ,s) q̇(α(τ,s))

∂α
∂τ

(τ,s)+

1

2
√

∂α
∂ s (τ,s)

∂ 2α
∂τ∂ s

(τ,s) q(α(τ,s))
)
|τ=0

=
√

γ̇(s)q̇(γ(s))v(s)+
1

2
√

γ̇(s)
v̇(s)q(γ(s)), s ∈ [0,1].

□
Corollary 1: Given q, ϕ , v as above, then

(dϕγid(v))(s) = q̇(s)v(s)+
1
2

v̇(s)q(s), s ∈ [0,1].

Theorem 1: With Hk+1(γ) =
∫ 1

0 ||q1(t)− q̃2(γ(t))
√

γ̇(t)||2dt so that q̃2 = (q2 ◦ γ(k))
√

˙γ(k)
from the definition of Hk+1, then the directional derivative of Hk+1 in the direction of
v ∈ Tγid(ΓI) is

∇vHk+1 =−2
∫ 1

0

〈
q1(t)− q̃2(t) , ˙̃q2(t)v(t)+

1
2

q̃2(t)v̇(t)
〉

dt.

Proof: Let α(τ, ·) be a differentiable path in ΓI passing through γid at τ = 0, i.e., α(0, t) =
γid(t), t ∈ [0,1], with the velocity of this path at τ = 0 equal to v, i.e., ∂α

∂τ (0, t) = v(t),
t ∈ [0,1].

Note, Hk+1(α(τ, t)) equals∫ 1

0

〈
q1(t)− q̃2(α(τ, t))

√
∂α
∂ t

(τ, t) , q1(t)− q̃2(α(τ, t))
√

∂α
∂ t

(τ, t)
〉

dt.

Using the fact that in general d
ds⟨ f (s),g(s)⟩= ⟨ f (s),g′(s)⟩+⟨ f ′(s),g(s)⟩, fromwhich d

ds⟨ f (s), f (s)⟩=
2⟨ f (s), f ′(s)⟩, then differentiating Hk+1(α(τ, t)) with respect to τ by differentiating this
last integral with respect to τ (done under the integral), and setting τ equal to zero, gives
∇vHk+1 equals

2
∫ 1

0

〈
q1(t)− q̃2(γid(t))

√
˙γid(t) ,

∂
∂τ

|τ=0

(
− q̃2(α(τ, t))

√
∂α
∂ t

(τ, t)
)〉

dt

=−2
∫ 1

0

〈
q1(t)− q̃2(t) ,

∂
∂τ

|τ=0

(
q̃2(α(τ, t))

√
∂α
∂ t

(τ, t)
)〉

dt

6

NIST TN 2310
October2024

=−2
∫ 1

0

〈
q1(t)− q̃2(t) , ˙̃q2(t)v(t)+

1
2

q̃2(t)v̇(t)
〉

dt

by Corollary 1 and the proof of Lemma 1 as α here is the same as α there with γ equal
to γid . □

Note that given γ ∈ ΓI and a differentiable path α(τ, ·) in ΓI through γ at τ = 0, i.e.,
α(0, t)= γ(t), t ∈ [0,1], then since for any real numbers τ1, τ2, close or equal to 0,α(τ1,0)−
α(τ2,0) = 0−0 = 0 and α(τ1,1)−α(τ2,1) = 1−1 = 0, it can also be shown that

Tγ(ΓI) = {v : [0,1]→ R | v(0) = 0,v(1) = 0, v smooth}.

We note that under this identification of Tγ(ΓI), each member of either of the sets of
functions given above as examples of bases for Tγid(ΓI) is indeed in Tγid(ΓI).

4. Gradient Descent Optimization over the Group of Reparametrizations of a Surface
in 3D Space

In this section, inspired by ideas used in the previous section, we describe and justify a gra‐
dient descent approach for reparametrizing one of two surfaces in 3−dimensional space
when computing the elastic shape distance between them. The approach is a generaliza‐
tion to surfaces in 3−dimensional space of the gradient descent approach for reparametriz‐
ing one of two curves in the plane when computing the elastic shape distance between
them as presented in [13] and in the previous section. This generalization together with
its justification was developed independently of similar work in [6, 10, 12]. Again with D
the unit square in the plane, in what follows, ΓD will denote the set of functions h : D →
D, with h(r, t) = (h1(r, t),h2(r, t)), (r, t) ∈ D, satisfying boundary conditions h1(0, t) = 0,
h2(r,0) = 0, h1(1, t) = 1, h2(r,1) = 1, such that h−1, the inverse of h, exists, both h and
h−1 are smooth, and ∂h

∂ (r,t) > 0 on D, ∂h
∂ (r,t) the determinant of the Jacobian of h, i.e.,

∂h
∂ (r,t) =

∂h1
∂ r

∂h2
∂ t − ∂h1

∂ t
∂h2
∂ r . With H : ΓD → R≥0 defined by

H(h) =
∫ 1

0

∫ 1

0

∣∣∣∣∣∣q1(r, t)−q2(h(r, t))

√
∂h

∂ (r, t)
(r, t)

∣∣∣∣∣∣2dr dt,

where q1, q2 are shape functions of parametrized surfaces in 3−dimensional space of sur‐
face area 1, the goal then is to find h ∈ ΓD that minimizes H(h).

Again, inspired by ideas used in the previous section, in order to find any such h ∈ ΓD with
a gradient approach, as illustrated below, a gradient of H is computed with respect to ΓD
at the kth iteration of the approach, from which hk and h(k) in ΓD are then computed, so
that inductively with h0 in ΓD as an initial solution, h0 possibly equal to the identity func‐
tion hid in ΓD, or possibly equal to another element of ΓD such as one computed with the

7

NIST TN 2310
October2024

algorithm based on dynamic programming presented in [3] that partially minimizes H(h),
then h(k) = h0 ◦h1 ◦ . . .◦hk, and H(h(0))> H(h(1))> .. . > H(h(k)). In reality, inductively,

with q̃2(r, t) = q2(h(k−1)(r, t))
√

∂h(k−1)

∂ (r,t) (r, t), (r, t) ∈ D, at the kth iteration of the approach
it is the gradient of

Hk(h) =
∫ 1

0

∫ 1

0

∣∣∣∣∣∣q1(r, t)− q̃2(h(r, t))

√
∂h

∂ (r, t)
(r, t)

∣∣∣∣∣∣2dr dt

that is actually computed, from which hk is computed, and as verified below, with h(k) as
above, then H(h(k)) = Hk(hk).

With [q2]ΓD denoting the orbit of q2, i.e.,

[q2]ΓD =
{

q̃ | q̃(r, t) = q2(h(r, t))

√
∂h

∂ (r, t)
(r, t), (r, t) ∈ D, h ∈ ΓD

}
,

and q̃2 in [q2]ΓD given by q̃2(r, t) = q2(h(k)(r, t))
√

∂h(k)
∂ (r,t)(r, t), at the (k + 1)th iteration of

the approach, letting Tq̃2([q2]ΓD) be the tangent space to [q2]ΓD at q̃2, Thid(ΓD) the tan‐
gent space to ΓD at hid , and ϕ the mapping from ΓD into [q2]ΓD defined by ϕ(h)(r, t) =
q̃2(h(r, t))

√
∂h

∂ (r,t)(r, t), (r, t) ∈ D, h ∈ ΓD, since ϕ(hid) = q̃2, then the differential dϕhid :
Thid(ΓD) → Tq̃2([q2]ΓD) of ϕ at hid can be defined. Accordingly, given v in Thid(ΓD), the
lemma that follows shows how to compute dϕhid(v), and using the result of this computa‐
tion, the theorem that also follows shows how to compute at the (k+1)th iteration of the
approach the directional derivative ∇vH of H (actually ∇vHk+1 of Hk+1) in the direction of
v.

Wenote then that givenwi, i= 1,2,3, . . ., an orthonormal basis of the vector spaceThid(ΓD)
under some metric, e.g., the basis presented in [12] which we describe later in this sec‐
tion, at the (k + 1)th iteration of the approach the gradient of Hk+1 is approximated by
∇Hk+1 = ∑N

i=1(∇wiHk+1)wi, for N large enough. If under the same metric ∇Hk+1 is con‐
sidered to be small enough, then h(k) is taken to be the solution of the gradient descent
approach, although perhaps a local solution. Otherwise, using a small step size δ > 0,
hk+1 and h(k+1) are computed, hk+1 = hid − δ ∇Hk+1, h(k+1) = h(k) ◦ hk+1. That h(k+1) is
computed so that H(h(k+1)) = Hk+1(hk+1) follows by letting q̃2 be as obtained at the kth

iteration of the approach, and proving that

q2(h(k+1)(r, t))

√
∂h(k+1)

∂ (r, t)
(r, t) = q̃2(hk+1(r, t))

√
∂hk+1

∂ (r, t)
(r, t), (r, t) ∈ D,

as follows:

q̃2(hk+1(r, t))

√
∂hk+1

∂ (r, t)
(r, t)

8

NIST TN 2310
October2024

= q2(h(k)(hk+1(r, t)))

√
∂h(k)

∂ (u,w)
(hk+1(r, t))

√
∂hk+1

∂ (r, t)
(r, t)

= q2(h(k)(hk+1(r, t)))

√
∂h(k)

∂ (u,w)
(hk+1(r, t))

∂hk+1

∂ (r, t)
(r, t)

= q2(h(k+1)(r, t))

√
∂h(k+1)

∂ (r, t)
(r, t)

with (u(r, t),w(r, t)) = hk+1(r, t) by the product rule for determinants and the chain rule.

The lemma and theorem follow. Here shape functions areC1 as well.

As above, given h ∈ ΓD, in what follows ∂h
∂ (r,t) is the determinant of the Jacobian of h, i.e.,

∂h
∂ (r,t) =

∂h1
∂ r

∂h2
∂ t − ∂h1

∂ t
∂h2
∂ r , where h(r, t) = (h1(r, t),h2(r, t)), (r, t) ∈ D. Finally, given h ∈ ΓD,

again h(r, t) = (h1(r, t),h2(r, t)), and v ∈ Th(ΓD), v(r, t) = (v1(r, t),v2(r, t)), (r, t) ∈ D, we
define

∂ (v,h)
∂ (r, t)

≡ ∂v1

∂ r
∂h2

∂ t
− ∂v2

∂ r
∂h1

∂ t
+

∂h1

∂ r
∂v2

∂ t
− ∂h2

∂ r
∂v1

∂ t
,

and let div(v) be the divergence of v, i.e., div(v)(r, t) = ∂v1
∂ r (r, t)+

∂v2
∂ t (r, t).

Lemma2: Given q, the shape function of a surface in 3−dimensional space, ϕ : ΓD → [q]ΓD ,

ϕ(h(r, t)) = q(h(r, t))
√

∂h
∂ (r,t)(r, t), then given h in ΓD, v in Th(ΓD), with q̇ the Jacobian of q,

the differential of ϕ at h applied on v is

(dϕh(v))(r, t) =

√
∂h

∂ (r, t)
(r, t)q̇(h(r, t))v(r, t) +

1

2
√

∂h
∂ (r,t)(r, t)

∂ (v,h)
∂ (r, t)

(r, t)q(h(r, t)), (r, t) ∈ D.

Proof: Letα(τ, ·, ·)be a differentiable path inΓD passing through h at τ = 0, i.e.,α(0,r, t)=
h(r, t), (r, t) ∈ D. Let the velocity of this path at τ = 0 be given by v ∈ Th(ΓD), i.e., v(r, t) =
∂α
∂τ (0,r, t), (r, t) ∈ D. Note as well, with α(τ,r, t) = (α1(τ,r, t),α2(τ,r, t)), and again with
h(r, t) = (h1(r, t),h2(r, t)), v(r, t) = (v1(r, t),v2(r, t)), that

∂α1

∂ r
(0,r, t) =

∂h1

∂ r
(r, t),

∂α1

∂ t
(0,r, t) =

∂h1

∂ t
(r, t),

∂α2

∂ r
(0,r, t) =

∂h2

∂ r
(r, t),

∂α2

∂ t
(0,r, t) =

∂h2

∂ t
(r, t),

9

NIST TN 2310
October2024

∂ 2α1

∂ r∂τ
(0,r, t) =

∂v1

∂ r
(r, t),

∂ 2α1

∂ t∂τ
(0,r, t) =

∂v1

∂ t
(r, t),

∂ 2α2

∂ r∂τ
(0,r, t) =

∂v2

∂ r
(r, t),

∂ 2α2

∂ t∂τ
(0,r, t) =

∂v2

∂ t
(r, t), (r, t) ∈ D.

Since

∂α
∂ (r, t)

(τ,r, t) =
∂α1

∂ r
(τ,r, t)

∂α2

∂ t
(τ,r, t)− ∂α2

∂ r
(τ,r, t)

∂α1

∂ t
(τ,r, t),

it follows then that

∂α
∂ (r, t)

(τ,r, t)|τ=0 =
∂α1

∂ r
(0,r, t)

∂α2

∂ t
(0,r, t)− ∂α2

∂ r
(0,r, t)

∂α1

∂ t
(0,r, t)

=
∂h1

∂ r
(r, t)

∂h2

∂ t
(r, t)− ∂h2

∂ r
(r, t)

∂h1

∂ t
(r, t)

=
∂h

∂ (r, t)
(r, t).

In addition, we note that

∂
∂τ

(∂α
∂ (r, t)

(τ,r, t)
)
|τ=0

=
∂

∂τ
(∂α1

∂ r
(τ,r, t)

∂α2

∂ t
(τ,r, t) − ∂α2

∂ r
(τ,r, t)

∂α1

∂ t
(τ,r, t)

)
|τ=0

=
(∂ 2α1

∂τr
(τ,r, t)

∂α2

∂ t
(τ,r, t)+

∂α1

∂ r
(τ,r, t)

∂ 2α2

∂τt
(τ,r, t)

−∂ 2α2

∂τr
(τ,r, t)

∂α1

∂ t
(τ,r, t)− ∂α2

∂ r
(τ,r, t)

∂ 2α1

∂τt
(τ,r, t)

)
|τ=0

=
(∂ 2α1

∂ rτ
(τ,r, t)

∂α2

∂ t
(τ,r, t)+

∂α1

∂ r
(τ,r, t)

∂ 2α2

∂ tτ
(τ,r, t)

−∂ 2α2

∂ rτ
(τ,r, t)

∂α1

∂ t
(τ,r, t)− ∂α2

∂ r
(τ,r, t)

∂ 2α1

∂ tτ
(τ,r, t)

)
|τ=0

=
∂v1

∂ r
(r, t)

∂h2

∂ t
(r, t)+

∂h1

∂ r
(r, t)

∂v2

∂ t
(r, t)

−∂v2

∂ r
(r, t)

∂h1

∂ t
(r, t)− ∂h2

∂ r
(r, t)

∂v1

∂ t
(r, t)

=
∂ (v,h)
∂ (r, t)

(r, t).

Sinceα(τ, ·, ·) is a path inΓD, then ϕ(α(τ, ·, ·)) is the corresponding path in [q]ΓD , and since
v is the velocity of α(τ, ·, ·) at τ = 0, then the velocity of ϕ(α(τ, ·, ·)) at τ = 0 is dϕh(v),

10

NIST TN 2310
October2024

that is to say

(dϕh(v))(r, t) =
∂

∂τ
|τ=0 ϕ(α(τ,r, t))

=
∂

∂τ
|τ=0

(√ ∂α
∂ (r, t)

(τ,r, t) q(α(τ,r, t))
)

=
(√ ∂α

∂ (r, t)
(τ,r, t) q̇(α(τ,r, t))

∂α
∂τ

(τ,r, t) +

1

2
√

∂α
∂ (r,t)(τ,r, t)

∂
∂τ

(∂α
∂ (r, t)

(τ,r, t)
)

q(α(τ,r, t))
)
|τ=0

=

√
∂h

∂ (r, t)
(r, t)q̇(h(r, t))v(r, t) +

1

2
√

∂h
∂ (r,t)(r, t)

∂ (v,h)
∂ (r, t)

(r, t)q(h(r, t)), (r, t) ∈ D.

□
Corollary 2: Given q, ϕ , v as above, then

(dϕhid(v))(r, t) = q̇(r, t)v(r, t)+
1
2

div(v)(r, t)q(r, t), (r, t) ∈ D.

Theorem2: WithHk+1(h)=
∫ 1

0
∫ 1

0 ||q1(r, t)− q̃2(h(r, t))
√

∂h
∂ (r,t)(r, t)||

2 dr dt so that q̃2(r, t)=

q2(h(k)(r, t))
√

∂h(k)
∂ (r,t)(r, t) from the definition of Hk+1, then the directional derivative of

Hk+1 in the direction of v ∈ Thid(ΓD) is

∇vHk+1 = −2
∫ 1

0

∫ 1

0

〈
q1(r, t)− q̃2(r, t) ,

˙̃q2(r, t)v(r, t)+
1
2

div(v)(r, t)q̃2(r, t)
〉

dr dt.

Proof: Letα(τ, ·, ·)be adifferentiable path inΓD passing through hid at τ = 0, i.e.,α(0,r, t)=
hid(r, t), (r, t) ∈ D, with the velocity of this path at τ = 0 equal to v, i.e., ∂α

∂τ (0,r, t) = v(r, t),
(r, t) ∈ D.

Note,

Hk+1(α(τ,r, t)) =
∫ 1

0

∫ 1

0

〈
q1(r, t)− q̃2(α(τ,r, t))

√
∂α

∂ (r, t)
(τ,r, t) ,

q1(r, t)− q̃2(α(τ,r, t))

√
∂α

∂ (r, t)
(τ,r, t)

〉
dr dt.

11

NIST TN 2310
October2024

Again, since in general d
ds⟨ f (s),g(s)⟩= ⟨ f (s),g′(s)⟩+⟨ f ′(s),g(s)⟩, fromwhich d

ds⟨ f (s), f (s)⟩=
2⟨ f (s), f ′(s)⟩, then differentiating Hk+1(α(τ,r, t)) with respect to τ by differentiating this
last integral with respect to τ (done under the integral), and setting τ equal to zero, gives

∇vHk+1 = 2
∫ 1

0

∫ 1

0

〈
q1(r, t)− q̃2(hid(r, t))

√
∂hid

∂ (r, t)
(r, t) ,

∂
∂τ

|τ=0

(
− q̃2(α(τ,r, t))

√
∂α

∂ (r, t)
(τ,r, t)

)〉
dr dt

= −2
∫ 1

0

∫ 1

0

〈
q1(r, t)− q̃2(r, t) ,

∂
∂τ

|τ=0

(
q̃2(α(τ,r, t))

√
∂α

∂ (r, t)
(τ,r, t)

)〉
dr dt

= −2
∫ 1

0

∫ 1

0

〈
q1(r, t)− q̃2(r, t) ,

˙̃q2(r, t)v(r, t)+
1
2

div(v)(r, t)q̃2(r, t)
〉

dr dt

by Corollary 2 and the proof of Lemma 2 as α here is the same as α there with h equal
to hid . □

Note that given h ∈ ΓD and a differentiable path α(τ, ·, ·) in ΓD through h at τ = 0, i.e.,
α(0,r, t) = h(r, t), (r, t) ∈ D, then with α(τ,r, t) = (α1(τ,r, t),α2(τ,r, t)), since for any real
numbers τ1, τ2, close or equal to 0, for 0 ≤ r, t ≤ 1, α1(τ1,0, t)−α1(τ2,0, t) = 0− 0 = 0,
α2(τ1,r,0)−α2(τ2,r,0) = 0− 0 = 0, α1(τ1,1, t)−α1(τ2,1, t) = 1− 1 = 0, α2(τ1,r,1)−
α2(τ2,r,1) = 1−1 = 0, with v(r, t) = (v1(r, t),v2(r, t)), (r, t) ∈ D, v ∈ Th(ΓD), it can also be
shown that

Th(ΓD) = {v : D → R2 | v1(0, t) = v2(r,0) = v1(1, t) = v2(r,1) = 0,
0 ≤ r, t ≤ 1, v smooth}.

Next, we present and describe the orthonormal basis under the L2 norm of the vector
space Thid(ΓD) presented in [12] as it is the basis we use as well. As described in [12], first
an orthonormal basis B1 under the L2 norm is identified for the space

Sr
rt = {v : D → R | v(0, t) = v(1, t) = 0, 0 ≤ t ≤ 1, v smooth}

that consists of three families of functions:
√

2sin(πkr), 2sin(πkr)cos(2πlt), 2sin(πkr)sin(2πlt),
k, l = 1,2,3, . . ., (r, t) ∈ D.

With one(t) = 1 for all t, 0 ≤ t ≤ 1, using ϕm(r), m = 1,2,3, . . ., to refer to
√

2sin(πkr), 0 ≤
r ≤ 1, k= 1,2,3, . . ., andψn(t), n= 1,2,3, . . ., to refer to one(t),

√
2cos(2πlt),

√
2sin(2πlt),

12

NIST TN 2310
October2024

0≤ t ≤ 1, l = 1,2,3, . . ., then under theL2 norm ϕm,m= 1,2,3, . . ., is an orthonormal basis
for the space

{v : [0,1]→ R | v(0) = v(1) = 0, v smooth}

and ψn, n = 1,2,3, . . ., is an orthonormal basis for the space

{v : [0,1]→ R | v smooth}.

Clearly B1 is the tensor product of the two bases ϕm, m = 1,2,3 . . ., and ψn, n = 1,2,3, . . .,
and that B1 is linearly independent is a direct result of the linear independence of these
twobases. Finally, given v∈ Sr

rt , that v is a linear combination, possibly infinite under theL2

norm, of elements of B1, is established by applications of Parseval’s identity (three times)
together with Fubini’s theorem (twice) as follows:

∑
m,n

∣∣∣∫ ∫
D

v(r, t)ϕm(r)ψn(t)drdt
∣∣∣2 = ∑

m,n

∣∣∣∫ 1

0

(∫ 1

0
v(r, t)ϕm(r)dr

)
ψn(t)dt

∣∣∣2

= ∑
m

∫ 1

0

∣∣∣∫ 1

0
v(r, t)ϕm(r)dr

∣∣∣2dt =
∫ 1

0
∑
m

∣∣∣∫ 1

0
v(r, t)ϕm(r)dr

∣∣∣2dt

=
∫ 1

0

(∫ 1

0

∣∣∣v(r, t)∣∣∣2dr
)

dt =
∫ ∫

D

∣∣∣v(r, t)∣∣∣2drdt.

Similarly, an orthonormal basis B2 under the L2 norm can be identified and justified for
the space

St
rt = {v : D → R | v(r,0) = v(r,1) = 0, 0 ≤ r ≤ 1, v smooth}

that consists of three families of functions:
√

2sin(πkt), 2sin(πkt)cos(2πlr), 2sin(πkt)sin(2πlr),
k, l = 1,2,3, . . ., (r, t) ∈ D.

Usingη j(r, t), j = 1,2,3, . . ., to refer to the elements of the basisB1 of Sr
rt , i.e., to

√
2sin(πkr)one(t),

2sin(πkr)cos(2πlt), 2sin(πkr)sin(2πlt), k, l = 1,2,3, . . ., (r, t) ∈ D, it is clear then that
η j(t,r), j = 1,2,3, . . ., (r, t) ∈ D, are the elements of the basis B2 of St

rt . Note as well that
if for some integer KL > 0 we restrict k, l above to range from 1 to KL, then j above in the
definition of η j will range from 1 to KL+2(KL)2.

With zero(r, t) = 0 for all (r, t)∈D, then as in [12] an orthonormal basisB of Thid(ΓD) under
the L2 norm can be identified:

B = {(η j(r, t),zero(r, t)),(zero(r, t),η j(t,r)), j = 1,2,3, . . . ,(r, t) ∈ D}.

We note that under the identification of Th(ΓD) given above following the proof of The‐
orem 2, each element of B is indeed in Thid(ΓD). We also note that with KL as above so

13

NIST TN 2310
October2024

that k, l above are restricted to range from 1 to KL, and j above in the definition of η j
is therefore restricted to range from 1 to KL+ 2(KL)2, if in the definition above of the
basis B, j is restricted as well to range from 1 to KL+2(KL)2, then B is truncated to have
2(KL+2(KL)2) elements.

Next, we present a simplified outline of the procedure for the elastic shape registration of
two surfaces in 3−dimensional space using gradient descent and dynamic programming.
Note that in the procedure a step size δ > 0 is used for computing elements of ΓD, the
computation of δ discussed below, δ as large as the gradient descent approach allows but
small enough to guarantee that each computed element of ΓD is indeed in ΓD, in particu‐
lar that the determinant of its Jacobian is positive everywhere on D. We note as well that
in this simplified outline of the procedure, rotations are also taken into account as they
should be, so that it is

E(h,R) =
∫ 1

0

∫ 1

0

∣∣∣∣Rq1 − (q2 ◦h)

√
∂h

∂ (r, t)
∣∣∣∣2dr dt

that we actually hope to minimize with respect to h ∈ ΓD and R ∈ SO(3). Here we use wi,
i = 1,2,3, . . ., to refer to the elements of the basis B.

Simplified Outline of Optimization Procedure
1. With q1, q2 as the shape functions of the two simple surfaces under consideration,
say S1 and S2, execute dynamic‐programming‐based Procedure DP‐surface‐min in [3] for
q1, q2, to obtain (partially) optimal R̂ ∈ SO(3) and h0 ∈ ΓD, where R̂ rotates S1 and h0
reparametrizes S2.
Set k = 0, h(0) = h0.

Compute q̂1 = R̂q1, q̃2 = (q2,h(0)) = (q2 ◦h(0))
√

∂h(0)
∂ (r,t) ,

and E(h(0), R̂) =
∫ 1

0
∫ 1

0 ||q̂1 − q̃2||2dr dt.
If E(h(0), R̂) is equal or close to zero, then go to Step 4 below.
Set N to a positive integer large enough.
2. For each i, i = 1, . . . ,N, compute ∇wiHk+1 =

−2
∫ 1

0
∫ 1

0

〈
q̂1(r, t)− q̃2(r, t) , ˙̃q2(r, t)wi(r, t)+ 1

2div(wi)(r, t)q̃2(r, t)
〉

dr dt

as indicated by Theorem 2 above, and compute ∇Hk+1 = ∑N
i=1(∇wiHk+1)wi.

If the L2 norm of ∇Hk+1 is small enough, then go to Step 3 below.
Else for δ > 0 appropriately chosen, set hk+1 = hid −δ ∇Hk+1,
h(k+1) = h(k) ◦hk+1, and k = k+1.

Compute q̃2 = (q2,h(k)) = (q2 ◦h(k))
√

∂h(k)
∂ (r,t) ,

and E(h(k), R̂) =
∫ 1

0
∫ 1

0 ||q̂1 − q̃2||2dr dt.
If E(h(k), R̂) is equal or close to zero, then set h0 = h(k) and go to Step 4 below.
If E(h(k), R̂) is not much less than E(h(k−1), R̂), then go to Step 3 below.

14

NIST TN 2310
October2024

Else repeat this step (Step 2).
3. Set h0 = h(k), EL = E(h(k), R̂).
With S1, S2 as above, execute KU3 algorithm in [3], that is, the Kabsch‐Umeyama algorithm
[8, 9, 11, 15], for q̃2, q1, to obtain optimal R̂ ∈ SO(3) for the rigid alignment of S1 and S̃2,
where R̂ rotates S1, and S̃2 is S2 reparametrized so that q̃2 is its shape function.
Compute q̂1 = R̂q1, and E(h0, R̂) =

∫ 1
0
∫ 1

0 ||q̂1 − q̃2||2dr dt.
If E(h0, R̂) is equal or close to zero, then go to Step 4 below.
If this step (Step 3) has been executed enough times or E(h0, R̂) is not much less than EL,
then go to Step 4 below.
Else set k = 0, h(0) = h0.
Go to Step 2 above.
4. h = h0 and R = R̂ minimize E(h,R), possibly resulting in a local solution.
If not a local solution, then E(h0, R̂)1/2 is the elastic shape distance between the two sur‐
faces.
Stop.

Finally, we discuss how the step size δ > 0 mentioned above for computing elements
of ΓD is chosen. This is done in a way similar to what is done in [12]. In particular, in
Step 2 of the simplified outline of the optimization procedure above, hk+1 is computed as
hid −δ ∇Hk+1 so that δ > 0 should be as large as the gradient descent approach allows but
small enough that the determinant of the Jacobian of hk+1 is positive at every (r, t) in D,
i.e., ∂hk+1

∂ (r,t) (r, t)> 0 for each (r, t) ∈ D.

LetA(r, t) be the 2×2matrix which is the Jacobian of ∇Hk+1(r, t), (r, t)∈ D. It then follows
that the Jacobian of hk+1(r, t) = (hid − δ ∇Hk+1)(r, t), (r, t) ∈ D, is a 2× 2 matrix as well
equal to I2−δ A(r, t), where I2 is the 2×2 identity matrix. Thus, it is not hard to show that

∂hk+1

∂ (r, t)
(r, t) = 1− tr(A(r, t))δ +det(A(r, t))δ 2, (r, t) ∈ D,

where tr stands for trace and det for determinant.

For each (r, t) ∈ D, we hope to compute δ (r, t), which is the largest positive number for
which ∂hk+1

∂ (r,t) (r, t) > 0 for δ in the interval (0,δ (r, t)), δ (r, t) possibly equal to ∞. With a =

detA(r, t), b = −trA(r, t), c = 1, if a is zero or close to zero, then it is not hard to show
that δ (r, t) is approximately −1/b if b < 0, ∞ otherwise. On the other hand, if a is not
close to zero, then applying the quadratic formula it is not hard to show that δ (r, t) equals
−b−

√
b2−4a

2a if this last number is a positive real number, ∞ otherwise.

Ideally we would like to be able to compute δmin = min(r,t)∈D δ (r, t), and if this number
is positive, identify as the desired step size δ a positive number slightly less than δmin so
that ∂hk+1

∂ (r,t) (r, t) > 0 for every (r, t) ∈ D. However, since as pointed out in [3], in practice

15

NIST TN 2310
October2024

we can only work with a discretization of D, minimizing δ (r, t) over D is a moot point,
and in fact we assume that positive integers K, L, not necessarily equal, and partitions of
[0,1], {ri}K

i=1, r1 = 0< r2 < .. . < rK = 1, {t j}L
j=1, t1 = 0< t2 < .. . < tL = 1, not necessarily

uniform, are given, so that it is the gridG onD, G = {(ri, t j), i = 1, . . . ,K, j = 1, . . . ,L} that
is actually used instead of D to identify the desired step size δ , i.e., we compute δmin as
min(r,t)∈G δ (r, t) instead, still identifying as the desired step size δ a positive number slightly
less than δmin. Assuming then for all intents and purposes that with this δ the determinant
of the Jacobian of hk+1 is positive on D, we may assume as well that the determinant of
the Jacobian of h(k+1) is positive on D by the product rule for determinants and the chain
rule.

At the risk of making the step size δ too small, we may reduce the step size computed
as suggested above, to make sure that indeed hk+1, and therefore h(k+1), is one to one
and maps D onto D, while maintaining the boundary conditions of elements of ΓD. For
this purpose we take advantage of the Gale‐Nikaido Theorem [5] that follows. Here, given
integer n > 0, real numbers ai, bi, i = 1, . . . ,n, some or all of them allowed to be−∞ or ∞,
a rectangular region R in Rn is defined by

R = {x : x ∈ Rn, x = (x1, . . . ,xn) with ai ≤ xi ≤ bi, i = 1, . . . ,n}.

Theorem 3: (Gale‐Nikaido Theorem) If F is a C1 mapping from a rectangular region R in
Rn into Rn such that for all x ∈ R each principle minor of the Jacobian matrix of F at x is
positive, then F is injective.

Accordingly, for each (r, t) ∈ D, with ai j(r, t), i, j = 1,2, the entries of A(r, t), A(r, t) as
above, it is not hard to see that for our purposes the minors of interest of the Jacobian
matrix of hk+1 at (r, t) are

∂hk+1
∂ (r,t) (r, t), 1−δ a11(r, t) and 1−δ a22(r, t), and the goal is then

to compute δ̂ (r, t), which is the largest positive number for which all three minors are pos‐
itive for δ in the interval (0, δ̂ (r, t)), δ̂ (r, t) possibly equal to ∞. Again with G as above, we
work with G instead of D, and note that for (r, t) ∈ G, ∂hk+1

∂ (r,t) (r, t) has already been taken

care of above during the computation of δmin. Thus, for each (r, t) ∈ G, we compute δ̂ (r, t)
only with respect to 1−δ a11(r, t) and 1−δ a22(r, t) as follows. If both a11(r, t) and a22(r, t)
are nonpositive, then δ̂ (r, t) equals ∞. If both a11(r, t) and a22(r, t) are positive, then δ̂ (r, t)
is the smaller of 1/a11(r, t) and 1/a22(r, t). Otherwise, only one of a11(r, t) and a22(r, t) is
positive, and δ̂ (r, t) is 1 divided by the one of the two that is positive. Having done this
for each (r, t) ∈ G, with δmin as computed above, and δ̂min = min(r,t)∈G δ̂ (r, t), we identify

as the desired step size δ a positive number slightly less than the smaller of δmin and δ̂min,
and assume for all intents and purposes that with this δ the determinant of the Jacobian
of hk+1 is positive on D, and since D is the unit square, thus a rectangular region, that
hk+1 is one to one on D by the Gale‐Nikaido Theorem above. In addition, since we assume
∂hk+1
∂ (r,t) (r, t) > 0 on D, thus nonzero, by the inverse function theorem we may assume the

16

NIST TN 2310
October2024

inverse of hk+1 is aC1 function.

Assuming then that hk+1 is a one‐to‐oneC1 function on all of D with aC1 inverse, we show
that hk+1 maps D onto D. For this purpose we need the two well‐known results that fol‐
low. Here a homeomorphism is a one‐to‐one continuous function from a topological space
onto another that has a continuous inverse function, and a simply connected domain is a
path‐connected domain where one can continuously shrink any simple closed curve into
a point while remaining in the domain. For two‐dimensional regions, a simply connected
domain is one without holes in it. The two results appeared in [3], the first result a stan‐
dard result in the field of topology, the proof of the second result presented in [3] for the
sake of completeness.

Theorem 4: If X andY are homeomorphic topological spaces, then X is simply connected
if and only if Y is simply connected.

Theorem 5: Given E, a compact simply connected subset of R2, and h : E → R2, a home‐
omorphism, then h maps the boundary of E to exactly the boundary of h(E).

From these two theorems it then follows that hk+1(D) is simply connected and that hk+1
maps the boundary of D to exactly the boundary of hk+1(D). Note, in particular, the
boundary of hk+1(D) is then contained in hk+1(D).

Note, from the definition of hk+1, that hk+1(0,0) = (0,0), hk+1(0,1) = (0,1), hk+1(1,1) =
(1,1), hk+1(1,0) = (1,0). In particular, given r, 0 < r < 1, then again from the definition
of hk+1, hk+1(r,1) = (r′,1), r′ a number not necessarily between 0 and 1, so that hk+1(r,1)
is in the line t = 1 which contains the line segment with endpoints (0,1), (1,1), i.e., the
top side of the unit square D. However this line segment is connected, so that its image
under hk+1 in the line t = 1 is connected and thusmust contain the line segment, and since
hk+1 is one to one, this image is exactly the line segment. Since the same is true for the
other three sides of D, then it follows that the boundary conditions of elements of ΓD are
satisfied by hk+1, and that hk+1 actually maps the boundary of D onto itself. However,
we already know that hk+1 maps the boundary of D to exactly the boundary of hk+1(D),
thus the boundary of D and the boundary of hk+1(D) are exactly the same. Since D and
hk+1(D) are both simply connected, then hk+1(D) = D.

5. Results from Implementation of Methods

A software package has been implemented that incorporates the methods presented in
the previous section for computing, using gradient descent and dynamic programming,
the elastic shape registration of two simple surfaces in 3−dimensional space, and there‐
fore the elastic shape distance between them. Actually, the software package consists of

17

NIST TN 2310
October2024

two separate pieces of software. One piece is based on gradient descent as presented in
the previous section for reparametrizing one of the surfaces. This piece uses as the in‐
put initial solution the rotation and reparametrization computed with the other piece of
sofware in the package which is based on dynamic programming as presented in [3] for
reparametrizing one of the surfaces to obtain a partial elastic shape registration of the
surfaces. As described in [3], the software in the package based on dynamic programming
is in Matlab1 with the exception of the dynamic programming routine which is written in
Fortran but is executed as a Matlab mex file. On the other hand, the software in the pack‐
age based on gradient descent is entirely in Matlab. In this section, we present results
obtained from executions of the software package. We note, the software package as well
as input data files, a README file, etc. can be obtained at the following link

https://doi.org/10.18434/mds2-3519
We note, Matlab routine ESD_main_ surf_ 3d.m is the driver routine of the package, and
Fortran routine DP_MEX _WNDSTRP_ ALLDIM.F is the dynamic programming routine in
the software based on dynamic programming. This routine has already been processed to
be executed as a Matlab mex file. In case the Fortran routine must be processed to obtain
a new mex file, this can be done by typing in the Matlab window:
mex ‐ compatibleArrayDims DP_MEX _WNDSTRP_ ALLDIM.F

As was the case for the software package described in [3], at the start of the execution
of the new software package based on gradient descent and dynamic programming that
we are describing here, we assume S1, S2 are the two simple surfaces in 3−dimensional
space under consideration, with functions c1, c2 : D ≡ [0,T1]× [0,T2] → R3, T1, T2 > 0,
as their parametrizations, respectively, so that S1 = c1(D), S2 = c2(D). We also assume
that as input to the software, for positive integers M, N, not necessarily equal, and par‐
titions of [0,T1], [0,T2], respectively, {ri}M

i=1, r1 = 0 < r2 < .. . < rM = T1, {t j}N
j=1, t1 =

0 < t2 < .. . < tN = T2, not necessarily uniform, discretizations of c1, c2 are given, each
discretization in the form of a list of M ×N points in the corresponding surface, namely
c1(ri, t j) and c2(ri, t j), i = 1, . . . ,M, j = 1, . . . ,N, respectively, and for each k, k = 1,2, as
specified in the Introduction section in [3], in the order ck(r1, t1), ck(r2, t1), . . ., ck(rM, t1),
. . ., ck(r1, tN), ck(r2, tN), . . ., ck(rM, tN). Based on this input, for the purpose of computing,
using dynamic programming, a partial elastic shape registration of S1 and S2, together
with the elastic shape distance between them associated with the partial registration,
the program always proceeds first to scale the partitions {ri}M

i=1, {t j}N
j=1, so that they

become partitions of [0,1], and to compute an approximation of the area of each sur‐
face. During the execution of the software package, the former is accomplished by the
driver routine Matlab routine ESD_main_ surf_ 3d.m, while the latter by Matlab routine
ESD_ comp_ surf_ 3d.m (called by ESD_main_ surf_ 3d.m) through the computation for
each k, k = 1,2 of the sum of the areas of triangles with vertices ck(ri, t j), ck(ri+1, t j+1),

1The identification of any commercial product or trade name does not imply endorsement or recommenda‐
tion by the National Institute of Standards and Technology.

18

NIST TN 2310
October2024

ck(ri, t j+1), and ck(ri, t j), ck(ri+1, t j), ck(ri+1, t j+1), for i = 1, . . . ,M − 1, j = 1, . . . ,N − 1.
This last routine then proceeds to scale the discretizations of the parametrizations of the
two surfaces so that each surface has approximate area equal to 1 (given a surface and its
approximate area, each point in the discretization of the parametrization of the surface
is divided by the square root of half the approximate area of the surface). Once routine
ESD_ comp_ surf_ 3d.m is done with these computations, the actual computations of the
rotation and reparametrization based on dynamic programming for reparametrizing one
of the surfaces to obtain a partial elastic shape registration of the surfaces, are carried
out by Matlab routine ESD_ core_ surf_ 3d.m (called by ESD_ comp_ surf_ 3d.m) in which
the methods for this purpose presented in [3], mainly Procedure DP‐surface‐min in Sec‐
tion 7 of [3], have been implemented. Note, it is in this routine that the dynamic pro‐
gramming routine Fortran routine DP_MEX _WNDSTRP_ ALLDIM.F is executed. Finally,
Matlab routine ESD_ grad_ surf_ 3d.m (called by ESD_main_ surf_ 3d.m) is executed for
the purpose of computing, using gradient descent, the elastic shape registration of the
two surfaces, together with the elastic shape distance between them. Note, this routine
uses as the input initial solution the rotation and reparametrization computed by routine
ESD_ core_ surf_ 3d.m that as part of the output of ESD_ comp_ surf_ 3d.m become avail‐
able for ESD_ grad_ surf_ 3d.m to use as input. Note aswell that in this routinewith integer
KL > 0 and infinite basis B, KL and B as defined in the previous section, we use KL = 5
so that the basis B is then truncated to have 2(KL+2(KL)2) = 110 elements.

The results that follow were obtained from applications of our software package on dis‐
cretizations of the three kinds of surfaces in 3−dimensional space that were identified in
[3] and that were called there surfaces of the sine, helicoid and cosine‐sine kind. Of course
results in [3] were obtained using software based on dynamic programming only on the
aforementioned discretizations, while here results were obtained through executions of
our software package, using software based on both dynamic programming and gradient
descent, used separately and combined (by setting variable insol equal to 1 in the driver
routine Matlab routine ESD_main_ surf_ 3d.m, gradient descent is used with initial solu‐
tion the rotation and diffeomorphism computed with dynamic programming; otherwise,
gradient descent is usedwith initial solution the identitymatrix and the identity diffeomor‐
phism; note, with a couple of exceptions, the results reported here obtained with the soft‐
ware package using dynamic programming before using gradient descent are the same as
the results reported in [3], with comments given there about these results still valid for the
resuts here). As was the case when using software based on dynamic programming only as
described in [3], when using our software package, on input all surfaces were given as dis‐
cretizations on the unit square ([0,1]× [0,1]), each interval [0,1] uniformly partitioned into
100 intervals so that the unit square was thus partitioned into 10000 squares, each square
of size 0.01× 0.01, their corners making up a set of 10201 points. Using the same nota‐
tion used above in this section, the uniform partitions of the two [0,1] intervals that define
the unit square were then {ri}M

i=1, {t j}N
j=1, with M = N = 101, r101 = t101 = 1.0, thus al‐

ready scaled from the start as required, and by evaluating the surfaces at the 10201 points

19

NIST TN 2310
October2024

identified above in the order as specified above and in the Introduction section in [3], a
discretization of each surface was obtained consisting of 10201 points. Given a pair of sur‐
faces of one of the three kinds mentioned above, discretized as just described, then dur‐
ing the execution of our software package on their discretizations, using software based
on both dynamic programming and gradient descent, used separately or combined, one
surfacewas identified as the first surface, the other one as the second surface (in themeth‐
ods presented in the previous section and in [3], using gradient descent and/or dynamic
programming, the second surface is reparametrized while the first one is rotated). For the
purpose of testing the capability of the software, again using the samenotation used above
in this section, given γ , a bijective function on the unit square to be defined below, with
(r̂i, t̂ j) = γ(ri, t j), i = 1, . . . ,101, j = 1, . . . ,101, the second surface was reparametrized
through its discretization, namely by setting ĉ2 = c2 and computing c2(ri, t j) = ĉ2(r̂i, t̂ j),
i = 1, . . . ,101, j = 1, . . . ,101, while the first surface was kept as originally defined and
discretized by computing c1(ri, t j), i = 1, . . . ,101, j = 1, . . . ,101. All of the above done,
the software package then was executed twice, each time using the discretizations of the
surfaces as just described in terms of c1, c2, etc., to compute an approximation of the
area of each surface and scale each surface to have approximate area equal to 1, and then
compute an elastic shape registration of the two surfaces and the elastic shape distance
between them associated with the registration, the first time using gradient descent with
dynamic programming, the second time using gradient descent without dynamic program‐
ming. Note, in what follows, numbers obtained as elastic shape distances are actually the
square of these distances.

The first results that follow were obtained from applications of our software package on
discretizations of surfaces in 3−dimensional space that are actually graphs of functions
based on the sine curve. Given k, a positive integer, one type of surface to which we refer
as a surface of the sine kind (type 1) is defined by

x(r, t) = r, y(r, t) = t, z(r, t) = sinkπr, (r, t) ∈ [0,1]× [0,1],

and another one (type 2) by

x(r, t) = sinkπr, y(r, t) = r, z(r, t) = t, (r, t) ∈ [0,1]× [0,1],

the former a rotation of the latter by applying the rotation matrix
(

0 1 0
0 0 1
1 0 0

)
on the latter,

thus of similar shape.

Three plots depicting surfaces (actually their boundaries in solid blue and dashed red) of
the sine kind for different values of k are shown in Figure 2. (Note that in the plots there,
the x−, y−, z− axes are not always to scale relative to one another). In each plot two sur‐
faces of the sine kind appear. The two surfaces in the leftmost plot being of similar shape,
clearly the elastic shape distance between them is exactly zero, and the hope was then
that the execution of our software package applied on these two surfaces, using gradient

20

NIST TN 2310
October2024

Fig. 2. Three plots of boundaries of surfaces of the sine kind. Elastic shape registrations of the
two surfaces in each plot were computed using gradient descent, with and without dynamic
programming.

descent and/or dynamic programming, would produce an elastic shape distance between
them equal or close to zero. The type 2 surface in each plot (in solid blue) was considered
to be the first surface in the plot. In each plot this surface was obtained by setting k equal
to 2 in the definition above of a type 2 surface of the sine kind so that it is the same surface
in all three plots. The other surface in each plot (in dashed red) is a type 1 surface of the
sine kind and was considered to be the second surface in each plot. From left to right in
the three plots, the second surface was obtained by setting k equal to 2, 3, 4, respectively,
in the definition above of a type 1 surface of the sine kind. As already mentioned above,
in themethods presented in the previous section and in [3], using gradient descent and/or
dynamic programming, the second surface is reparametrized while the first one is rotated.

With γ(r, t) = (r5/4, t), (r, t) ∈ [0,1]× [0,1], all surfaces in the plots were discretized as de‐
scribed above and an elastic shape registration of the two surfaces in each plot together
with the elastic shape distance between them associated with the registration were com‐
puted through executions of our software package, using gradient descent and/or dynamic
programming. We note that for this particular γ , the discretizations of the second surfaces
were perturbed only in the r direction which made the software package more likely to
succeed just by using dynamic programming, before using gradient descent, as it is pertur‐
bations in the r direction that the dynamic programming software is equipped to handle.

Using dynamic programming followed by gradient descent, the results were as follows.
The three elastic shape distances computed with dynamic programming before using gra‐
dient descent, in the order of the plots from left to right, were as follows with the first
distance, as hoped for, essentially equal to zero: 0.00031, 0.3479, 0.3192. The times of
execution in the same order were 28.22, 29.23, 39.97 seconds. The computed optimal ro‐

tation matrices in the same order were
(−0.0008 1 0

0 0 1
1 0.0008 0

)
,
(0.02 1 0

0 0 1
1 −0.02 0

)
,
(0.03 1 0

0 0 1
1 −0.03 0

)
.

The three elastic shape distances computed using gradient descent with the results ob‐
tained with dynamic programming used as input, in the order of the plots from left to
right, were as follows: 0.00029, 0.3421, 0.3190. The times of execution in the same order

21

NIST TN 2310
October2024

were 0.32, 0.44, 0.29 seconds. The computed optimal rotation matrices in the same or‐

der were
(0.00001 1 0

0 0 1
1 −0.00001 0

)
,
(0.02 1 0

0 0 1
1 −0.02 0

)
,
(0.03 1 0

0 0 1
1 −0.03 0

)
. Note, perhaps because the

discretizations of the second surfaces were perturbed only in the r direction, dynamic pro‐
gramming alone appears to have produced good solutions while gradient descent doesn’t
appear to have improved these solutions in a significant way. On the other hand, using
gradient descent without dynamic programming, i.e., gradient descent with initial solu‐
tion the identity matrix and the identity diffeomorphism, the results were as follows. The
three elastic shape distances in the order of the plots from left to right were 0.25, 1.02,
0.7058. The times of execution in the same order were 3.68, 1.58, 2.36 seconds. The com‐
puted optimal rotation matrices in the same order were

(0.02 1 0
0 0 1
1 −0.02 0

)
,
(−0.02 1 0

0 0 1
1 0.02 0

)
,(−0.08 1 0

0 0 1
1 0.08 0

)
. Clearly these results obtained using gradient descent with initial solution

the identity matrix and the identity diffeomorphism are far from optimal.

Finally, with γ(r, t) = (r5/4, t5/4), (r, t) ∈ [0,1]× [0,1], again all surfaces in the plots were
discretized as described above and an elastic shape registration of the two surfaces in each
plot together with the elastic shape distance between them associated with the registra‐
tion were computed through executions of our software package, using gradient descent
and/or dynamic programming. We note that for this particular γ , the discretizations of the
second surfaceswere perturbed in both the r and the t directionswhichmade the dynamic
programming software less likely to succeed by itself as it is equipped to handle perturba‐
tions in the r direction but not in the t direction.

Using dynamic programming followed by gradient descent, the results were as follows.
The three elastic shape distances computed with dynamic programming before using gra‐
dient descent, in the order of the plots from left to right, were as follows with the first dis‐
tance close to zero but not enough: 0.0126, 0.3565, 0.3282. The times of execution in the
same order were 28.76, 49.37, 40.75 seconds. The computed optimal rotation matrices

in the same order were
(−0.001 1 0

0 0 1
1 0.001 0

)
,
(0.02 1 −0.00008
−0.0002 0.00009 1

1 −0.02 0.0002

)
,
(0.03 1 0.0007

0.002 −0.0008 1
1 −0.03 −0.002

)
.

The three elastic shape distances computed using gradient descent with the results ob‐
tained with dynamic programming used as input, in the order of the plots from left to
right, were as follows: 0.00302, 0.3493, 0.3234. The times of execution in the same order
were 2.73, 0.77, 0.65 seconds. The computed optimal rotation matrices in the same or‐

der were
(−0.0001 1 0

0 0 1
1 0.0001 0

)
,
(0.03 1 −0.0003
−0.0007 0.0003 1

1 −0.03 0.0007

)
,
(0.03 1 0.001

0.005 −0.002 1
1 −0.03 −0.005

)
. Note, perhaps

because the discretizations of the second surfaces were perturbed in both the r and t di‐
rections, and the dynamic programming software is not equipped to handle perturbations
in the t direction, the results from dynamic programming alone, although not far from op‐
timal were not exactly optimal. Note as well, gradient descent did improve these results
somewhat, the first distance becoming closer to zero. On the other hand, using gradient
descentwithout dynamic programming, i.e., gradient descentwith initial solution the iden‐

22

NIST TN 2310
October2024

Fig. 3. Boundaries of two surfaces of similar shape of the helicoid kind for k = 4, type 1 in dashed
red, type 2 in solid blue.

tity matrix and the identity diffeomorphism, the results were as follows. The three elastic
shape distances in the order of the plots from left to right were 0.32, 0.70, 0.6262. The
times of execution in the same order were 4.62, 5.40, 3.67 seconds. The computed op‐

timal rotation matrices in the same order were
(0.008 1 −0.002

0.004 0.002 1
1 −0.008 −0.004

)
,
(0.009 −1 −0.002

0.009 0.002 −1
1 0.009 0.009

)
,(0.001 −1 0.0001

0.0007 −0.0001 −1
1 0.001 0.0007

)
. Clearly these results obtained using gradient descent with initial

solution the identity matrix and the identity diffeomorphism are far from optimal.

The next results that follow were obtained from applications of our software package on
discretizations of surfaces in 3−dimensional space of the helicoid kind. Given k, a positive
integer, one type of surface to which we refer as a surface of the helicoid kind (type 1) is
defined by

x(r, t) = r coskπt, y(r, t) = r sinkπt, z(r, t) = kπt, (r, t) ∈ [0,1]× [0,1],

and another one (type 2) by

x(r, t) = kπt, y(r, t) = r coskπt, z(r, t) = r sinkπt, (r, t) ∈ [0,1]× [0,1],

the former a rotation of the latter by applying the rotation matrix
(

0 1 0
0 0 1
1 0 0

)
on the latter,

thus of similar shape.

A plot depicting two surfaces (actually their boundaries) of similar shape of the helicoid
kind for k = 4 is shown in Figure 3. (Note that in the plot there, the x−, y−, z− axes are not
always to scale relative to one another). The two surfaces being of similar shape, clearly
the elastic shape distance between them is exactly zero, and the hope was once again
that the execution of our software package applied on these two surfaces, using gradient
descent and/or dynamic programming, would produce an elastic shape distance between
them equal or close to zero. The type 2 surface of the helicoid kind in the plot (in solid

23

NIST TN 2310
October2024

Fig. 4. For γ(r, t) = (r5/4, t), (r, t) ∈ [0,1]× [0,1], after dynamic programming, before gradient
descent, views of boundary of rotated first surface (solid blue), and of reparametrized second
surface (dashed red).

blue) was considered to be the first surface in the plot. The other surface in the plot (in
dashed red) is a type 1 surface of the helicoid kind and was considered to be the second
surface in the plot.

With γ(r, t) = (r5/4, t), (r, t) ∈ [0,1]× [0,1], the two surfaces in the plot were discretized
as described above and an elastic shape registration of the two surfaces together with
the elastic shape distance between them associated with the registration were computed
through the execution of our software package, using gradient descent and/or dynamic
programming. Again we note that for this particular γ , the discretization of the second
surface was perturbed only in the r direction which as pointed out above made the soft‐
ware package more likely to succeed just by using dynamic programming, before using
gradient descent.

Using dynamic programming followed by gradient descent, the results were as follows.
The elastic shape distance computed with dynamic programming before using gradient
descent was 0.00019, which, as hoped for, was close enough to zero. The time of ex‐
ecution was 15.32 seconds. The computed optimal rotation matrix was

(
0 1 0
0 0 1
1 0 0

)
. Views

of the two surfaces after dynamic programming, before gradient descent, are shown in
Figure 4. The elastic shape distance computed using gradient descent with the results ob‐
tained with dynamic programming used as input was 0.00018. The time of execution was
0.23 seconds. The computed optimal rotationmatrix was

(
0 1 0
0 0 1
1 0 0

)
. Note, perhaps because

the discretization of the second surfacewas perturbed only in the r direction, dynamic pro‐
gramming alone appears to have produced good solutions while gradient descent doesn’t
appear to have improved these solutions in a significant way. On the other hand, using
gradient descent without dynamic programming, i.e., gradient descent with initial solu‐
tion the identity matrix and the identity diffeomorphism, the results were as follows. The
elastic shape distance was 0.11. The time of execution was 13.42 seconds. The computed

optimal rotation matrix was
(0.01 1 −0.06
−0.02 0.06 1

1 −0.01 0.02

)
. Clearly these results obtained using gra‐

dient descent with initial solution the identity matrix and the identity diffeomorphism,

24

NIST TN 2310
October2024

Fig. 5. For γ(r, t) = (r5/4, t5/4), (r, t) ∈ [0,1]× [0,1], after dynamic programming, before gradient
descent, views of boundary of rotated first surface (solid blue), and of reparametrized second
surface (dashed red).

although not necessarily bad, are still far from optimal.

Finally, with γ(r, t) = (r5/4, t5/4), (r, t) ∈ [0,1]× [0,1], again the two surfaces in the plot
were discretized as described above and an elastic shape registration of the two surfaces
together with the elastic shape distance betwen them associated with the registration
were computed through the execution of our software package, using gradient descent
and/or dynamic programming. Again we note that for this particular γ , the discretization
of the second surface was perturbed in both the r and the t directions which as pointed
out above made the dynamic programming software less likely to succeed by itself as it is
equipped to handle perturbations in the r direction but not in the t direction.

Using dynamic programming followed by gradient descent, the results were as follows.
The elastic shape distance computed with dynamic programming before using gradient
descent was 0.0796 which was not far from zero but not close enough. The time of exe‐

cution was 19.59 seconds. The computed optimal rotation matrix was
(0.03 0.8 0.7
−0.03 −0.7 0.8

1 −0.04 0.004

)
.

Views of the two surfaces after dynamic programming, before gradient descent, are shown
in Figure 5. The elastic shape distance computed using gradient descent with the results
obtained with dynamic programming used as input was 0.00876. The time of execution

was 6.70 seconds. The computed optimal rotation matrix was
(0.01 1 0.07
−0.004 −0.07 1

1 −0.01 0.003

)
. Views

of the two surfaces after dynamic programming followed by gradient descent are shown
in Figure 6. Note, perhaps because the discretization of the second surface was perturbed
in both the r and t directions, and the dynamic programming software is not equipped
to handle perturbations in the t direction, the results from dynamic programming alone,
although not far from optimal were not exactly optimal. Note as well, gradient descent
did improve these results somewhat, the distance becoming closer to zero. On the other
hand, using gradient descent without dynamic programming, i.e., gradient descent with
initial solution the identity matrix and the identity diffeomorphism, the results were as
follows. The elastic shape distance was 0.0943. The time of execution was 15.80 seconds.

25

NIST TN 2310
October2024

Fig. 6. For γ(r, t) = (r5/4, t5/4), (r, t) ∈ [0,1]× [0,1], after dynamic programming followed by
gradient descent, views of boundary of rotated first surface (solid blue), and of reparametrized
second surface (dashed red).

The computed optimal rotation matrix was
(0.01 1 −0.05
−0.02 0.05 1

1 −0.01 0.02

)
. Clearly these results ob‐

tained using gradient descent with initial solution the identity matrix and the identity dif‐
feomorphism, although not necessarily bad, are still far from optimal.

The final results that follow were obtained from applications of our software package on
discretizations of two surfaces in 3−dimensional space that are actually graphs of func‐
tions based on the product of the cosine and sine functions. One surface to which we
refer as the type 1 surface of the cosine‐sine kind is defined by

x(r, t) = r, y(r, t) = t, z(r, t) = (cos0.5πr)(sin0.5πt), (r, t) ∈ [0,1]× [0,1],

and the other surface to which we refer as the type 2 surface of the cosine‐sine kind is
defined by

x(r, t) = (cos0.5πr)(sin0.5πt), y(r, t) = r, z(r, t) = t, (r, t) ∈ [0,1]× [0,1],

the former a rotation of the latter by applying the rotation matrix
(

0 1 0
0 0 1
1 0 0

)
on the latter,

thus of similar shape.

A plot depicting the two surfaces (actually their boundaries) of the cosine‐sine kind is
shown in Figure 7. (Note that in the plot there, the x−, y−, z− axes are not always to
scale relative to one another). The two surfaces being of similar shape, clearly the elastic
shape distance between them is exactly zero, and the hope was once again that the ex‐
ecution of our software package applied on these two surfaces would produce an elastic
shape distance between them equal or close to zero. The type 2 surface of the cosine‐sine
kind in the plot (in solid blue) was considered to be the first surface in the plot. The other
surface in the plot (in dashed red) is the type 1 surface of the cosine‐sine kind and was
considered to be the second surface in the plot.

With γ(r, t) = (r5/4, t), (r, t) ∈ [0,1]× [0,1], the two surfaces in the plot were then dis‐
cretized as described above and an elastic shape registration of the two surfaces and the

26

NIST TN 2310
October2024

Fig. 7. Boundaries of the two surfaces of the cosine‐sine kind, the type 1 surface in dashed red,
the type 2 surface in solid blue.

Fig. 8. For γ(r, t) = (r5/4, t), (r, t) ∈ [0,1]× [0,1], after dynamic programming, before gradient
descent, views of boundary of rotated first surface (solid blue), and of reparametrized second
surface (dashed red).

elastic shape distance between them associatedwith the registrationwere then computed
through the execution of our software package, using gradient descent and/or dynamic
programming. Again we note that for this particular γ , the discretization of the second sur‐
face was perturbed only in the r direction which as pointed out above made the software
package more likely to succeed just by using dynamic programming before using gradient
descent.

Using dynamic programming followed by gradient descent, the results were as follows.
The elastic shape distance computedwith dynamic programming before using gradient de‐
scent was 0.00021, which, as hoped for, was close enough to zero. The time of execution

was 22.29 seconds. The computed optimal rotation matrix was
(−0.001 1 0.0009
−0.001 −0.0009 1

1 0.001 0.001

)
.

Views of the two surfaces after dynamic programming, before gradient descent, are shown
in Figure 8. The elastic shape distance computed using gradient descent with the results

27

NIST TN 2310
October2024

Fig. 9. For γ(r, t) = (r5/4, t5/4), (r, t) ∈ [0,1]× [0,1], after dynamic programming, before gradient
descent, views of boundary of rotated first surface (solid blue), and of reparametrized second
surface (dashed red).

obtained with dynamic programming used as input was 0.00019. The time of execution

was 0.23 seconds. The computed optimal rotation matrix was
(−0.0006 1 0.0004
−0.0005 −0.0004 1

1 0.0006 0.0005

)
.

Note, perhaps because the discretization of the second surface was perturbed only in the
r direction, dynamic programming alone appears to have produced good solutions while
gradient descent doesn’t appear to have improved these solutions in a significant way. On
the other hand, using gradient descent without dynamic programming, i.e., gradient de‐
scent with initial solution the identity matrix and the identity diffeomorphism, the results
were as follows. The elastic shape distance was 0.47. The time of execution was 3.12 sec‐

onds. The computed optimal rotation matrix was
(0.03 1 −0.1
−0.07 0.1 1

1 −0.02 0.07

)
. Clearly these results

obtained using gradient descent with initial solution the identity matrix and the identity
diffeomorphism are far from optimal.

Finally, with γ(r, t) = (r5/4, t5/4), (r, t) ∈ [0,1]× [0,1], again the two surfaces in the plot
were discretized as described above and an elastic shape registration of the two surfaces
together with the elastic shape distance betwen them associated with the registration
were computed through the execution of our software package, using gradient descent
and/or dynamic programming. Again we note that for this particular γ , the discretization
of the second surface was perturbed in both the r and the t directions which as pointed
out above made the dynamic programming software less likely to succeed by itself as it is
equipped to handle perturbations in the r direction but not in the t direction.

Using dynamic programming followed by gradient descent, the results were as follows.
The elastic shape distance computed with dynamic programming before using gradient
descent was 0.0143 which was not far from zero but not close enough. The time of exe‐

cution was 23.54 seconds. The computed optimal rotation matrix was
(−0.04 1 0.03
−0.04 −0.03 1

1 0.04 0.04

)
.

28

NIST TN 2310
October2024

Fig. 10. For γ(r, t) = (r5/4, t5/4), (r, t) ∈ [0,1]× [0,1], after dynamic programming followed by
gradient descent, views of boundary of rotated first surface (solid blue), and of reparametrized
second surface (dashed red).

Views of the two surfaces after dynamic programming, before gradient descent, are shown
in Figure 9. The elastic shape distance computed using gradient descent with the results
obtained with dynamic programming used as input was 0.0033. The time of execution

was 2.11 seconds. The computed optimal rotation matrix was
(−0.02 1 0.008
−0.02 −0.008 1

1 0.02 0.02

)
. Views

of the two surfaces after dynamic programming followed by gradient descent are shown in
Figure 10. Note, perhaps because the discretization of the second surface was perturbed
in both the r and t directions, and the dynamic programming software is not equipped
to handle perturbations in the t direction, the results from dynamic programming alone,
although not far from optimal were not exactly optimal. Note as well, gradient descent
did improve these results somewhat, the distance becoming closer to zero. On the other
hand, using gradient descent without dynamic programming, i.e., gradient descent with
initial solution the identity matrix and the identity diffeomorphism, the results were as fol‐
lows. The elastic shape distance was 0.4791. The time of execution was 3.28 seconds. The

computed optimal rotation matrix was
(0.01 1 −0.1
−0.08 0.1 1

1 −0.003 0.08

)
. Clearly these results obtained

using gradient descent with initial solution the identity matrix and the identity diffeomor‐
phism are far from optimal.

29

NIST TN 2310
October2024

6. Summary

In this paper we have presented results from computing the elastic shape registration of
two simple surfaces in 3−dimensional space and the elastic shape distance between them
with an algorithmbasedon a gradient descent approach for reparametrizing oneof the sur‐
faces, using as the input initial solution to the algorithm the rotation and reparametriza‐
tion computed with the algorithm based on dynamic programming presented in [3] for
reparametrizing one of the surfaces to obtain a partial elastic shape registration of the sur‐
faces. The gradient descent approach used to obtain our results is a generalization to sur‐
faces in 3−dimensional space of the gradient descent approach for reparametrizing one of
two curves in the plane when computing the elastic shape distance between them as pre‐
sented in [13]. We have described and justified the approach for curves as it is done in [13],
and have presented and justified its generalization to surfaces in 3−dimensional space.
Our algorithm based on gradient descent and dynamic programming as just described has
been implemented in the form of a software package written inMatlab with the exception
of the dynamic programming routine which is written in Fortran but executed as a Matlab
mex file. The results we have presented in this paper were obtained from applications of
the software package on discretizations of the three kinds of surfaces in 3−dimensional
space identified in [3] as surfaces of the sine, helicoid and cosine‐sine kind. Some of these
results verify that dynamic programming alone as implemented produces good results es‐
sentially optimal for surfaces whose parametrizations have been perturbed only in the
x−direction of the plane as it is perturbations in this direction that dynamic programming
as implemented is equipped to handle. On the other hand, other results verify that dy‐
namic programming alone as implemented produces results not far from optimal but still
not optimal for surfaces whose parametrizations have been perturbed in the y−direction
of the plane as well. For this situation, other results show that gradient descent using as
input the results obtained with dynamic programming produces results closer to optimal
than dynamic programming alone as implemented. However some results show that gra‐
dient descent alone without dynamic programming, i.e., gradient descent with initial solu‐
tion the identity matrix and the identity diffeomorphism produces results far from optimal
almost every time.

30

NIST TN 2310
October2024

References

[1] Bernal, J.: Shape Analysis, Lebesgue Integration and Absolute Continuity Connections.
NISTIR 8217 (2018).

[2] Bernal, J., Lawrence, J., Dogan, G., Hagwood, C. R.: On Computing Elastic Shape Dis‐
tances between Curves in d‐dimensional Space. NIST Technical Note 2164 (2021)

[3] Bernal, J., Lawrence, J.: Partial Elastic Shape Registration of 3D Surfaces using Dynamic
Programming. NIST Technical Note 2274 (2023)

[4] Dogan, G., Bernal, J., Hagwood, C. R.: FFT‐based alignment of 2d closed curves with
application to elastic shape analysis. Proceedings of the 1st DIFF‐CVWorkshop, British
Machine Vision Conference, Swansea, Wales, UK. September 2015.

[5] Gale, D., Nikaido, H.: The Jacobian matrix and global univalence of mappings. Math.
Annalen. 159: 81‐93 (1965).

[6] Jermyn, I. H., Kurtek, S., Klassen, E., and Srivastava, A.: Elastic shape matching of pa‐
rameterized surfaces using square root normal fields. Proceedings of the 12th Euro‐
pean Conference on Computer Vision (ECCV’12), Volume V, pp. 804‐–817. Springer,
Berlin (2012)

[7] Joshi, S. H., Klassen, E., Srivastava, A., and Jermyn, I. H.: A novel representation for
riemannian analysis of elastic curves in Rn. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Minneapolis, MN. June 2007.

[8] Kabsch, W.: A solution for the best rotation to relate two sets of vectors. Acta Crystal‐
lographica Section A: Crystal Physics. 32(5): 922‐923 (1976).

[9] Kabsch, W.: A discussion of the solution for the best rotation to relate two sets of
vectors. Acta Crystallographica Section A: Crystal Physics. 34(5): 827‐828 (1978).

[10] Kurtek, S., Klassen, E., Ding, Z., Srivastava, A.: A novel riemannian framework for
shape analysis of 3D objects. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), San Francisco, CA. June 2010.

[11] Lawrence, J., Bernal, J., Witzgall, C.: A Purely Algebraic Justification of the Kabsch‐
Umeyama Algorithm. Journal of Research of the National Institute of Standards and
Technology. 124 (2019).

[12] Riseth, J. N.: Gradient Based Algorithms in Shape Analysis for Reparametrization of
Parametric Curves and Surfaces. Master’s thesis in Applied Physics and Mathematics,
Norwegian University of Science and Technology, Faculty of Information Technology
and Electrical Engineering, Department of Mathematical Sciences, February 2021.

[13] Srivastava, A., Klassen, E. P.: Functional and Shape Data Analysis. New York: Springer.
(2016)

[14] Srivastava, A., Klassen, E. P., Joshi, S. H., Jermyn, I. H.: Shape Analysis of Elastic
Curves in Euclidean Spaces. IEEE Trans. Pattern Analysis and Machine Intelligence.
33(7): 1415‐1428 (2011).

[15] Umeyama, S.: Least‐Squares Estimation of Transformation Parameters Between Two
Point Patterns. IEEE Trans. Pattern Analysis and Machine Intelligence. 13(4): 376‐380
(1991).

31

	Introduction
	The Shape Function of a Parametrized Surface
	Gradient Descent Optimization over the Group of Reparametrizations of a Curve in the Plane
	Gradient Descent Optimization over the Group of Reparametrizations of a Surface in 3D Space
	Results from Implementation of Methods
	Summary
	References

