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Abstract

The National Institute of Standards and Technology and the International Centre for Diffrac-

tion Data co-hosted a workshop on 17-18 October 2023 to identify and prioritize the goals, 

challenges, and opportunities for critical and emerging technology needs within indus-

try, with an emphasis on leveraging artificial intelligence, data-driven methodologies, and 

high-throughput and automated workflows for accelerating x-ray-based structural analysis 

for materials development and manufacturing. Participants, predominantly from industry, 

gathered in-person at ICDD® headquarters in Newtown Square, Pennsylvania. The findings 

of this workshop report provide critical input for strategic planning and the convening ac-

tivities serve as a kickoff for future public-private cooperation.

Keywords

X-ray diffraction, X-ray analysis, Artificial Intelligence, Machine Learning, Autonomous Lab-

oratories, Materials Synthesis and Characterization, Robotics
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Executive Summary

“[X-ray analysis] is a solved problem, 

depending on your definition of solved

and your definition of the problem.”

-Workshop Attendee

The National Institute of Standards and Tech-

nology and the International Centre for 

Diffraction Data co-hosted a workshop on 17-

18 October 2023. Its purpose was to identify 

and prioritize the goals, challenges, and op-

portunities for critical and emerging technol-

ogy needs within industry, with an emphasis 

on leveraging artificial intelligence (AI), data-

driven methodologies, and high-throughput 

and automated workflows for accelerating X-ray-based structural analysis for materials de-

velopment and manufacturing. Participants, predominantly from industry, gathered in per-

son at ICDD® headquarters in Newtown Square, Pennsylvania. The findings of the work-

shop provide critical input for strategic planning and the convening activities serve as a 

kickoff for future public-private cooperation.

The rapid development of data-driven materials methodologies and automated materi-

als experimentation (predominately in academia and national labs) presents a significant 

opportunity for industry. However, the maturation and adoption of this technology is lim-

ited by several challenges, which were identified and prioritized during the workshop. The 

workshop methodology gathered input from participants on notecards, which were later 

prioritized by participants with stickers. The facilitated sessions generated 322 cards, which 

consisted of 83 goals, 164 challenges, and 75 possible solutions.

Summarized Findings

• Data and Metadata — Data and metadata are key enablers of data-driven methodologies. 

Workshop participants authored a number of cards, which can be categorized within the 

well-defined concept of FAIR (findable, accessible, interoperable, reusable) data principles 

or within the emerging concept of AI-ready data. Within the category of FAIR data, workshop 

participants highlighted the need to revive conversations about file formats for diffraction 

data. Furthermore, there were considerable discussions surrounding machine actionability 

and quality of data and metadata. Within the category of AI-ready data, we first make a 

clear distinction from FAIR data. Furthermore, a major theme was the need to publish more 

benchmark diffraction data, with sufficient variety, to train data-driven models. Workshop 

participants emphasized null data and data of varying quality. Workshop participants em-

phasized that data traditionally unworthy of publication is important for training data-driven 

models.

◦ FAIR Data Principles — Achieving the aspirational goals within the FAIR data principles 

is: (i) critical to the seamless adoption of data-driven methodologies, (ii) a long-term 

challenge within the materials community, and (iii) often perceived by researchers to 

be a “costly distraction” that diverts time and effort from productive research. Work-

shop participants identified a clear need for the structural analysis community to de-
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velop and adopt standardized file formats that better support diffractograms and meta-

data, supporting phase identification and quantitative analysis. Other opportunities 

were also identified in relation to the findability and interoperability of models and 

tools, which warrant consideration.

◦ AI-Ready Data — Data-driven methodologies such as machine learning require sys-

tematic, fit-for-purpose data for the development and training of new algorithms and 

models. The past centuries of scientific research have resulted in the publication of 

scholarly data that was novel or interesting enough to warrant a peer-reviewed pub-

lication. However, data from “failed” or null experiments, non-ideal data (e.g., poor 

resolution), or data from laboratory mistakes (e.g., poor sample preparation or mis-

alignment) is rarely published, which makes it impossible to develop robust algorithms 

and models. Workshop participants highlighted the need for more data that repre-

sents real-world complexity to be generated and well annotated with experimental 

metadata.

• Physical Infrastructure — An emphasis of the workshop was next-generation hardware needs. 

Workshop participants noted the need for increased automation for sample preparation and 

measurement, which is a task often performed by humans. Workshop participants also in-

dicated the need to have the capability to better detect when problems occur with sample 

preparation or operation of the instrument. Workshop participants noted cases of needing 

to perform X-ray-based analysis under non-ambient conditions, which may be inaccessible 

to current hardware. Workshop participants indicated the need for programmatic access to 

equipment such that they can be driven by independent computer systems. Finally, research 

and development into standards for modular equipment may be a promising opportunity for 

public-private cooperation.

• Algorithm and Model Development — Data-driven algorithms and models are at the heart 

of data-driven science and autonomous laboratories. Workshop participants discussed a 

broad range of issues related to the development of autonomous laboratories and also pro-

vided a focused perspective on phase identification and quantitative analysis. Workshop 

participants also reaffirmed the importance of uncertainty quantification.

◦ Phase Identification and Quantitative Analysis — Workshop participants identified a 

specific need for algorithms for phase identification and quantitative phase analysis. 

Existing innovations in data-driven methodologies tend to be applied to simple and 

idealized data and lack the depth to be later applied to complex (real-world) prob-

lems. With an in-depth focus on phase identification and quantitative analysis during 

the workshop, a number of specific opportunities emerged including supporting com-

plexity in the physical samples, complexity in the measurement methodology such as 

low data quality from benchtop systems, multimodal data streams, and high through-

put methodologies.

◦ Broad AI for Materials Development — Rapid innovation in algorithm and model de-

velopment, broadly speaking, presents a significant opportunity for industry to intro-

duce targeted autonomous solutions for repetitive problems that typically require hu-

man expertise and experience. These technologies can be developed and adopted 

most efficiently if industry and other end-users prioritizes which tasks ML methods will 

2
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have the largest impact on their productivity. These can include methods for combin-

ing multimodal data streams, automated experiment planning, metadata assessment, 

and automated selection of analysis tools.

◦ Uncertainty Quantification (UQ) — As ML methods are intrinsically statistical in na-

ture, workshop participants noted that UQ is of critical importance if data-driven method-

ologies are to be implemented in robust and reliable production applications. Strength-

ening UQ evaluation requires accurate evaluation of standard statistical quantities, like 

mean average error (MAE), as well as the determination of the confidence of each in-

dividual ML prediction (error bounds), as it is individual predictions that are used in 

industrial applications. Obviously, no amount of model UQ can reveal or mitigate bad 

quality in the training data, as systematic errors in the generation of the data set will 

propagate through a machine learning model. Careful curation of the training and 

testing dataset is, therefore, a crucial step in developing trustworthy ML models, and 

there is a need for developing an accuracy measure to communicate the quality of 

such a dataset.

• Community Engagement — Workshop participants authored a number of cards centered 

around community engagement. One major theme was workforce development, with an 

emphasis on cross-disciplinary education and considering both the existing workforce and 

the next-generation workforce. Other cards discussed culture change, intellectual property, 

and economic considerations. Data-driven methodologies are ultimately implemented as 

software, and workshop participants highlighted a number of issues related to the sustain-

ability of both open-source and proprietary software. Finally, workshop participants high-

lighted the need for new and ongoing convening and coordination efforts.

◦ Workforce Development — Workforce development was identified as an important 

need where the depth of knowledge in both experimental methodology and data-

driven methodologies is critical for success. It is important to have a depth of un-

derstanding of the physical processes and geometries of the diffraction experiments 

to enable correct interpretation of measurement results. However, it is becoming in-

creasingly important to have additional depth of knowledge in the machine learning al-

gorithms to understand their implications and biases for use as analysis tools. Having a 

workforce trained in both disciplines is needed for the full realization of machine learn-

ing and autonomous workflows of diffraction experiments. Even non-expert practi-

tioners need to be educated in framing their problems as ML tasks and in identifying 

and deploying existing solutions.

◦ Software Development and Sustainability — Workshop participants highlighted a num-

ber of issues related to the development and sustainability of software. Much of the al-

gorithm development is occurring in an academic research environment and the path-

ways to production software are plagued with many challenges. Research software is 

highly decentralized and often poorly documented, making it challenging for indus-

trial users to discover and reuse. Further, industrial developers have little incentive to 

assume the responsibility of maintenance and support for open-source software they 

might otherwise incorporate into or enable integration with their products.
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◦ Culture Change, Intellectual Property, and Economic Considerations — The economic 

and intellectual property landscape of the community makes the development of a 

sustainable ecosystem of interoperable solutions challenging. The use of intellectual 

property rights associated with software and data formats generated by commercial 

instrument vendors makes implementation of these tools and data into autonomous 

pipelines challenging. Conversely, end-users are reluctant to share their proprietary 

data to improve analysis models. To overcome these barriers workshop participants 

highlighted the need for a clear value proposition for instrument vendors and other 

service providers to move towards more interoperable and open models. Workshop 

participants highlighted a divide between industry and academia in the incentives and 

constraints around adopting new methodologies and the publication of data.

◦ Convening and Coordination — Workshop participants highlighted the need for new 

convening and coordinating efforts, such as working groups and consortia. Expanded 

participation in working groups will be an important mechanism to make progress on 

specific opportunities identified during the workshop.

Future Desired Outcomes

1. FAIRness of XRD and other Experimental Data — The community achieves wide adoption of 

a consensus-based specification for data and metadata. This consensus-based specification 

provides a rich plurality of metadata fields to enable wide reuse of data and metadata. This 

consensus-based specification enjoys wide adoption across instrument vendors and soft-

ware providers.

2. Programmatic Control and Administration of XRD and other Experimental Equipment — 

There is wide adoption of a consensus-based specification for protocols and semantics for 

the programmatic control and administration of experimental instruments. This consensus-

based specification provides an extendable mechanism for instruments to enumerate and 

describe the available operations and parameters for controlling and administering the in-

strument. This consensus-based specification enjoys wide adoption across instrument ven-

dors and software providers.

3. Comprehensive Datasets for Phase Identification and Quantitative Analysis — Available 

data for training data-driven methodologies covers far more real-world use cases. For exam-

ple, labeled data would cover situations of diverse measurement quality, sample preparation 

quality, and diverse chemistry and processing conditions.

4. Robust Tools for Phase Identification, Quantitative Analysis, and Autonomous Laboratories

— Operators of autonomous laboratories and other laboratory equipment have the ability 

to leverage a plethora of robust and well-documented tools for autonomous laboratories, 

phase identification, quantitative analysis, and other laboratory activities. Open-source and 

for-profit providers coexist in delivering and supporting high-quality software.

5. Vibrant Marketplace for Autonomous Laboratory Equipment and Services — It is possible 

to affordably procure a wide variety of equipment to build an autonomous laboratory. There 

are a number of industry-lead standards that enable diverse components from different ven-

dors to easily plug and play.

4
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6. Workforce Equipped for the Autonomous Laboratory — Next-generation and current-generation 

workforce have a plethora of mechanisms to acquire skills and expertise in leveraging au-

tonomous labs and data-driven methodologies in the laboratory.

A Call to Action

Materials and manufacturing are essential sectors of the U.S. economy. This report presents 

a clear consensus on specific challenges and opportunities within the emerging field of 

autonomous materials science and within the established field of X-ray-based methodolo-

gies. The community has an opportunity to unite around this consensus, develop action 

plans around desired end states, and ultimately push the US and its allies as the world 

leaders in autonomous methodologies. We hope that the community finds this report 

informative and valuable. Furthermore, we hope that this report stimulates action within 

the community, with a specific emphasis on industry stakeholders building out the founda-

tional cyber-physical infrastructure components of autonomous laboratories and industrial 

stakeholders adopting them within their organizations.

5
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1. Introduction

The field of materials science and engineering revolves around the discovery and manip-

ulation of the processing-structure-property-performance relationships. X-ray-based scat-

tering methods are a common and powerful approach for characterizing the structure of 

materials on the atomic and near-atomic scale. Technological advances in AI and automa-

tion have great promise for accelerating the field of materials science. Yet, to reach their 

full potential, these techniques must be specialized for the materials science domain. This 

work has started in the field as a whole, but given the importance of X-ray methods to 

the field, there is still much work to be done on adapting these methods for X-ray-based 

structural analysis.

Materials science and engineering has undergone rapid innovation over the past decade 

as a result of community-wide efforts such as ICME[1] and MGI[2]. The rapid adoption of 

modeling and simulation foreshadowed the more recent rapid adoption of data-driven 

methodologies in materials science and engineering such as: ML[3], LLMs[4], and au-

tonomous experimentation (AE) systems[5–8]. The rapid pace of technological innovation 

has predominantly occurred in the setting of academia or national laboratories. This in-

novation presents a significant opportunity for industry. However, the maturation of this 

technology likely faces many challenges, which can be addressed by organizations that 

support materials and manufacturing industries.

1.1. NIST and ICDD Role

ICDD and NIST are both industry-serving organizations. ICDD is a non-profit scientific or-

ganization dedicated to collecting, editing, publishing, and distributing powder diffraction 

data for the identification of materials. NIST is a U.S. Government agency that promotes 

U.S. innovation and industrial competitiveness by advancing measurement science, stan-

dards, and technology in ways that enhance economic security and improve our quality 

of life. NIST is a larger organization with many different groups and this workshop was 

co-organized by the Data and AI-Driven Materials Science Group. The Data and AI-Driven 

Materials Science Group[9] was established in the Summer of 2023 as a successor to the 

former Materials for Energy and Sustainable Development Group, which had an exten-

sive publication history on related topics including: HTE[10–17], ML[18–26], AE[27–29], 

UQ[19, 30], and MDI[31–34]. The Data and AI-Driven Materials Science Group develops 

methods, algorithms, data, and tools, to accelerate the discovery, development, commer-

cialization, and circularity of industrially-relevant materials. The group enables the trust-

worthy use of data and AI-driven methodologies within both experimental and computa-

tional materials science and engineering workflows. This workshop was organized to help 

inform the strategic directions of both ICDD and the Data and AI-Driven Materials Science 

Group as well as the group’s parents in the organizational structure of NIST, which includes 

the Materials Measurement Science Division, and the Material Measurement Laboratory.

6
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2. Workshop Methodology

The primary objective of the workshop was to identify and prioritize goals, challenges, 

and possible solutions within the intersecting topics of autonomous methodologies and 

X-ray-based structural analysis. The workshop was divided into four, half-day units, with 

each half-day unit including both invited talks and a facilitated discussion. The facilitated 

session was structured to gather and organize input from participants. Input was gathered 

via adhesive note cards on topic-focused easel boards and 8 easel boards were used over 

the duration of the workshop and had the following titles:

1. Goals: Self-Driving Laboratory

2. Goals: XRD of the Future

3. Challenges: Sample Characterization/Analysis

4. Solutions: Sample Characterization/Analysis

5. Challenges: AI-Driven Decisions/Experiments

6. Solutions: AI-Driven Decisions/Experiments

7. Challenges: Next-Gen Hardware/Methods

8. Solutions: Next-Gen Hardware/Methods

Each easel board had a built-in actor/role-based categorization system to help promote 

sufficient input for each type of actor/role within a laboratory where input was requested. 

These actors/roles are as follows:

1. Human Scientists, Engineers, Etc.

2. Synthesis Tools plus AI/ML

3. XRD Tools plus AI/ML

4. Other Tools plus AI/ML

5. Data, Protocols, Automation

6. AI/ML-Driven Experiments

There was an additional “Parking Lot” category for adhesive cards that did not fit into the 

selected categories. These categories can be viewed at the top of Figure 1. Participants 

split into two independent groups with identical boards for logistical reasons. NIST staff 

facilitated a discussion that would evoke responses from participants. Participants would 

either write their own responses on the adhesive note card, or NIST staff would write down 

verbal responses for them and select a category. Approximately 30 minutes was dedicated 

to note card authoring before participants would rank the cards within their group. Each 

participant was given the same number of adhesive circular stickers, which they may place 

7
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upon note cards or note card clusters. Participants were not required to use all of their 

stickers. An example completed easel board is illustrated in Figure 1.

Fig. 1. An example of a completed facilitated discussion board. Adhesive cards were 

authored by participants and placed within a categorized column at the time of the 

discussion. After approximately 30 minutes of card authoring discussion, each participant 

was given an equal number of circular stickers, which they may place on cards based on 

priority.

8
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3. Workshop Findings

As discussed in the previous section, NIST facilitators led discussions in two groups com-

pleting a total of 8 easel boards in each group (16 total boards). This resulted in the au-

thoring of 322 individual adhesive note cards. Easel boards had the title prefixes of Goals, 

Challenges, and Possible Solutions. The distribution of cards is as follows:

• 83 Goals

• 164 Challenges

• 75 Possible Solutions

It is important to note that this distribution is based on the boards being used when the 

card was authored. Thus, it is possible that some cards are miscategorized. The raw im-

ages of the easel board and the digitized data is available as a data publication as listed in 

Appendix B. The note card data listed in the report may have undergone minor editorial 

revisions for spelling and clarity.

3.1. High Priority Goals, Challenges, and Possible Solutions

As discussed in the previous section, workshop participants prioritized cards with adhesive 

dots. The distribution of votes is shown in Figure 2. The most upvoted 47 cards (15 %) 

received 5 votes or higher and the remaining 275 cards (85 %) received 4 or fewer votes. 

The most upvoted cards are listed in Tables 1-3. These upvoted cards help demonstrate a 

consensus regarding the existing challenges and potential paths forward. These upvoted 

cards help inform the topics discussed in the following subsections. It is noted that cards 

with similar answers may have caused votes to be diluted in some instances. These topics 

were selected based on human expert interpretation and clustering of the cards created 

during the workshop.

9



NIST SP 1500-25

November 2024

0 50 100 150 200 250 300
Card Index

0

2

4

6

8

10

12
Vo

te
s

Highly
Upvoted
Cards

Goals
Challenges
Solutions

Fig. 2. Illustration of the distribution of the number of cards vs. the votes per card for the 

322 cards collected. The boxed region of highly up-voted cards highlights likely consensus 

perspectives that are shared within the community. Cards with 5 or more votes are 

shown in Tables 1-3.

Table 1. Goal note cards with 5 or more votes.

Votes Content

11 AI Phase ID not limited to certain phase diagrams

11 Using AI to predict additional phases in a multi-phase mixture

8 AI vs. existing methods? Are they known and /or already exploited?

8 Ontology development

8 Data organization for ML

8 Data FAIRification

6 Cross-disciplinary education: Statistics, experimental design, materials, physics, economics

6 Robust education for existing staff

6 Should not be a black box. Even with automation, expertise is needed.

6 How to make automated refinement coding resistant to software changes and updates or chang-

ing industry standards / updates

6 Automated analysis has a long way to go to robustness for challenging problems, but it could 

accelerate a lot

6 Uniting 1D and 2D collection analysis without conversion

5 Data transformation and preconditions scheme to improve ML interpretation

5 Uniform metadata file across all diffractometer manufacturers

5 Can we layer multiple complementary techniques to help QPA / XRD automation on?

5 Raw data + metadata should be published with results
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Table 2. Challenge note cards with 5 or more votes.

Votes Content

12 CIF is problematic for many use cases

12 No complete XRD file format exists

8 Need for new community members to learn what pitfalls to look out for – these are in the 

literature but hard to find without knowing already

8 Education! Users / practitioners need to know: – what factors matter – why they are important 

– where to learn more to be effective with next-generation tools (and current ones).

7 Need to build new technologies on existing programs rather than write more new programs

7 Few materials experts in general. Even fewer with knowledge of AI / ML / automation

7 Huge lack of knowledge XRPD + AI

7 Access to training datasets

6 Lack of Metadata Quality Score

6 Too many programming languages

6 Reproducible computation: – deployment – version control – metadata provenance – backward 

compatibility

5 How to maximize current generation methods?

5 What quality standards should apply to data used to train ML algorithms

5 Lack of interoperability (that can evolve)

Table 3. Potential Solution note cards with 5 or more votes.

Votes Content

10 Sustainability Models for Open-Source

10 Consortia for databases + models

9 IP (intellectual property) rights are a major blocker for industry collaboration with universities.

7 XRD + XRF

7 AI or ML to identify poor sample prep or other artifacts

7 Generative AI for data search and queries

7 Exploratory querying/match making how to help users finding/uniting questions

6 Encourage funding for translational research collaborating with industry and academia

6 Quantitative data quality assessments

6 Push on IUCR & ICDD on past efforts PowdCIF

6 Limited personnel with necessary expertise: – work on career pipeline – collaborate routinely 

with industry

5 Academia lacks ideas about business basics, and a sense of what topics are of general interest.

5 User Facility Model for Autonomous Systems

5 Independent organization (ICDD) Champions a new Data File (with a Metadata Structure that 

can Evolve) Replace CIF

5 Simulate bad data using good data. Test ML on the bad data also.

5 Publish more poor/null data

5 Adding artifacts to high quality data – Synchrotron -> benchtop – Long count -> short times – 

Re-binning high fidelity -> low

As shown in Tables 2-3, the highest-ranking goals focus on the application of data-driven 

methodologies to realistic problems experienced in the field, where many published pa-

pers focus on simple or idealized problems. The highest-ranking challenges focused on 
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issues related to poor data and system interoperability within experimental materials syn-

thesis and characterization. The highest-ranking potential solutions focused on finding 

a sustainable model for open-source software and suggested a consortium for pressing 

problems. The following subsections discuss workshop findings through the perspective 

of Data, Physical Infrastructure, Algorithm and Model Development, and Community En-

gagement.

3.2. Data and Metadata

Data and metadata are key enablers of data-driven methodologies. Workshop participants 

authored a number of cards, which can be categorized within the well-defined concept 

of FAIR (findable, accessible, interoperable, reusable) data principles[35] or within the 

emerging concept of AI-ready data. Within the category of FAIR data, workshop partici-

pants highlighted the need to revive conversations about file formats for diffraction data. 

Furthermore, there were considerable discussions surrounding machine actionability and 

quality of data and metadata. Within the category of AI-ready data, we first make a clear 

distinction from FAIR data. Furthermore, a major theme was the need to publish more 

benchmark diffraction data, with sufficient variety, to train data-driven models. Work-

shop participants emphasized null data and data of varying quality. Workshop participants 

emphasized that data traditionally unworthy of publication is important for training data-

driven models.

3.2.1. FAIR Data Principles

Achieving the aspirational goals within the FAIR data principles is: (i) critical to the seam-

less adoption of data-driven methodologies, (ii) a long-term challenge within the materials 

community, and (iii) often perceived by researchers to be a “costly distraction” that diverts 

time and effort from productive research. The FAIR data principles, which were published 

in 2016 have rapidly become a framework for continuous improvement in other areas 

beyond data publications. For example, the FAIR data principles have been considered 

for research software[36], research hardware[37], and machine learning[38]. Workshop 

participants identified a clear need for the structural analysis community to develop and 

adopt standardized file formats that better support diffractograms and metadata, support-

ing phase identification and quantitative analysis. Other opportunities were also identified 

in relation to the findability and interoperability of models and tools, which warrant con-

sideration. The cards within this category are shown in Tables 4-6.
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Table 4. Goal note cards for FAIR Data Principles

Votes Content

8 Data FAIRification

8 Ontology development

5 Uniform metadata file across all diffractometer manufacturers

5 Raw data + metadata should be published with results

3 Streaming Curation: ETL Pipeline between data resources

3 Open-source data cleaning / normalization software – depends on standard database APIs

2 Adoption of FAIR principles for data storage – community standards API for data access

2 Processing-Structure relationship related + metadata collection

1 pdCIF standardizes powder diffraction data & analysis results & metadata. (No current work 

further dev work done in U.S.)

0 Data & language common for data and workflows

Table 5. Challenge note cards for FAIR Data Principles

Votes Content

12 No complete XRD file format exists

12 CIF is problematic for many use cases

6 Lack of Metadata Quality Score

6 Reproducible computation: – deployment – version control – metadata provenance – backward 

compatibility

5 Lack of interoperability (that can evolve)

4 Data is too big to move to compute

3 Journals don’t require sufficient metadata

3 Data curation problem + licensing

2 Too many data protocols

2 Hordes of dark data

1 Vendors have different file formats

1 Data Management: Standards – premature, if possible. Adoption is difficult, as is adoption that 

does not break standards.

1 Schema, Ontology, Vocabulary: Searchable, extensible, shared schema/ontology, and vocabu-

lary – something that can be readily incorporated into commercial and open-source software

1 Search – The macroscopic property associated to the problem to solve is important

0 API software analysis paralysis

0 Technical Barriers: Disparity in computational resources (e.g., AWS, Azure, GCP, HCP, hybrid)

Table 6. Potential Solution for FAIR Data Principles

Votes Content

6 Push on IUCR & ICDD on past efforts PowdCIF

5 Independent organization (ICDD) Champions a new Data File (with a Metadata Structure that 

can Evolve) Replace CIF

3 Awesome List of Papers

2 Repository of best practices already implemented
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Data Formats for Diffraction Data — The most upvoted cards for the entire workshop 

indicated that community standard sufficient for X-ray diffraction data and metadata does 

not exist and that CIF[39] is problematic for many use cases. However, discussions with 

workshop participants didn’t provide detailed insight into the actual problem. However, 

it wasn’t clear if there is a technical problem with the CIF format or if there is a cultural 

problem in understanding and adopting an existing specification. Workshop participants 

upvoted a card suggesting reinvigorated community efforts surrounding pdCIF[40]. This 

report makes no statement on the validity of existing file formats such as CIF, NeXus[41], 

or others, but there exists a clear need to convene interested parties to better understand 

the issues.

Machine Actionable Data — Workshop participants once again highlighted the need for 

common machine-actionable data formats, vocabularies/ontologies, as well as improved 

or automated metadata collection. This represents a long-standing issue within the com-

munity. While community consensus has emerged for narrow classes of data with efforts 

like OPTIMADE[42], many challenges have persisted for the border materials data ecosys-

tem. In fact, cards collected during this workshop describing challenges with interoperabil-

ity and machine actionability of data are consistent with statements made in 2008 within 

the National Academies report on Integrated Computational Engineering[1], which men-

tioned widely varying levels of maturity for materials databases. The persistent nature of 

these issues suggests the existence of a sociotechnical gap that has not been adequately 

addressed with past incentives and community efforts. Workshop participants highlighted 

potential roles for IUCR and ICDD in charting a path forward.

Metadata Quality — Workshop participants highlighted the lack of a metadata quality 

score and indicated a goal of having uniform metadata across instrument vendors. Work-

shop participants emphasized that data and metadata should be published with derived 

data and manuscripts. However, most journals don’t place significant requirements on the 

publication of data and metadata.

Search Tools — Workshop participants highlighted the need for improved search capabili-

ties for the broad ecosystem of resources for data-driven materials science and engineer-

ing. Much focus has been placed on search capabilities for data (which are still underdevel-

oped), but significant opportunities for improvement exist for finding the knowledge con-

tained in papers and books, models and algorithms contained in research papers and code, 

and tools and utilities in software packages. Some potential solutions include a repository, 

clearinghouse, or ”awesome list” (e.g., Awesome Materials Informatics[43]) of resources.

Prior Workshop Reports — Many of the issues discussed in this 2023 workshop were also 

discussed in detail in the 2017 Materials Data Infrastructure Study[44] organized by The 

Minerals, Metals & Materials Society. That study identified 36 challenges, which were 

mapped into four quadrants based on probability of success (y-axis) and potential impact 

(x-axis), which was intended to help prioritize the challenges. This report defined the four 

quadrants as follows:
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• Quadrant I (Higher Potential Impact, Higher Probability for Success): these “no-

brainers” are expected to be particularly appealing to most readers of this report 

since they have the highest likelihood for strongly impacting the materials data in-

frastructure.

• Quadrant II (Lower Potential Impact, Higher Probability for Success): this “low-hanging 

fruit” may not have as high an impact as quadrant I, but the likelihood of success of 

overcoming these barriers is expected to make them a relatively high priority in de-

veloping the materials data infrastructure.

• Quadrant III (Lower Potential Impact, Lower Probability for Success): these “tough 

sells” are expected to be some of the lowest priority challenges, but would nonethe-

less have a worthwhile impact on the MDI if successfully addressed.

• Quadrant IV (Higher Potential Impact, Lower Probability for Success): these “heavy 

hitters” have a lower likelihood of success, but they can have a notable impact on 

the MDI if challenges can be overcome.

Some of the topics identified in our workshop tend to align with challenges from the 2017 

report that were classified as having a lower probability of success. For example, a “lack 

of robust APIs of connected systems and instrumentation” was listed in Quadrant III and 

a “lack of developed, agreed-upon ontologies for materials domain” was listed in Quad-

rant IV. This highlights that a changing landscape towards automated and autonomous sys-

tems has transformed the “tough sells” and “heavy hitters” into major bottlenecks limiting 

progress within the community.

3.2.2. AI-Ready Data

Data-driven methodologies such as machine learning require systematic, fit-for-purpose 

data for the development and training of new algorithms and models. The past centuries 

of scientific research have resulted in the publication of scholarly data that was novel or 

interesting enough to warrant a peer-reviewed publication. However, data from “failed” 

or null experiments, non-ideal data (e.g., poor resolution), or data from laboratory mis-

takes (e.g., poor sample preparation or misalignment) is rarely published, which makes it 

impossible to develop robust algorithms and models. Workshop participants highlighted 

the need for more data that represents real-world complexity to be generated and well 

annotated with experimental metadata. Tables 7-9 list Goal, Challenge, and Potential So-

lution cards that are relevant to an overarching theme of AI-ready data. While this term 

was not used in the workshop, it is rapidly gaining mainstream use. Thus, we attempt to 

conceptualize workshop input under the umbrella of AI-Ready Data.
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Table 7. Goal note cards for AI-Ready Data

Votes Content

8 Data organization for ML

3 Development of digital twins for automated & semi-automated laboratories

2 Data provenance workflow provenance aligned / respond fast better with traceable data quality 

needs / cost analysis tools 80 % good data 20 % bad data

Table 8. Challenge note cards for AI-Ready Data

Votes Content

7 Access to training datasets

4 Training/testing data that resembles real life data

4 Dealing with unbalanced datasets

4 Lab quality data, limited time, etc.

1 Characterization challenge – ill-defined requirements that can be tested in application tests only

0 Real benchmark data / SRMs for method validation

0 Training data should account for different instrument configurations, measurement parameters, 

sample prep, etc.

Table 9. Potential Solution for AI-Ready Data

Votes Content

5 Adding artifacts to high quality data – Synchrotron -> benchtop – Long count -> short times – 

Re-binning high fidelity -> low

5 Simulate bad data using good data. Test ML on the bad data also.

5 Publish more poor/null data

3 Challenge Dataset

3 Round Robin Studies

3 Round Robin on single dataset just testing the analysis of the measurement

3 Defining/Establishing a ground truth

2 Troubling datasets with known answers. Mixtures of materials amorphous organics

1 One Standard Dataset + Materials for each industry – known contaminates

1 Reference Materials for AI/ML

0 Different Datasets for Different areas

0 Internal Sample Variation?

0 See generative AI card

0 Synthetic Slag (e.g.,)

What is AI-Ready Data — Many of the cards in Tables 7-9 point to a desire to reduce 

the burdens associated with identifying, accessing, structuring, and cleaning a balanced 

dataset that is capable of addressing the problem at hand using data-driven methodolo-

gies. For the context of this report, we consider concepts associated with “AI-Ready” to 

be the concepts that remain after data has achieved high FAIR maturity[45, 46]. It is im-

portant to note that the FAIR data principles have already described the concept of ma-
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chine actionable “to indicate a continuum of possible states wherein a digital object pro-

vides increasingly more detailed information to an autonomously-acting, computational 

data explorer”[35]. In this report, we define ”AI-Ready” to describe the overall suitability 

of a dataset to support the parameterization, training, and evaluation of computational 

agents with robust and trustable performance within the scope of their intended mission. 

We emphasize that AI-readiness is not an intrinsic property of the data, but rather is a 

context-specific property of the data shaped by the specific AI task.

Opportunities to Publish More Data — Workshop participants signaled a strong desire 

to stimulate the publication of additional data and highlighted a number of mechanisms 

to achieve such an objective. For example, workshop participants suggested round-robin 

studies and adding simulated features to known data sources. Workshop participants also 

indicated an interest in challenge datasets.

Null Data — Workshop participants noted that the discipline of materials science and en-

gineering has a systemic problem of unbalanced and biased data publication, where only 

”interesting” data is published (other causes of unbalanced data are described below in 

the section ”Unbalanced Data”). One card mentioned the need to publish more “poor/null 

data”, which was also mentioned in the report of a 2017 DOE Workshop on Artificial Intel-

ligence Applied to Materials Discovery and Design[47]. One context for null data is for 

autonomizing instrument configuration. In order to develop ML algorithms for tasks such 

as detecting when samples are misaligned or instrument configuration is otherwise incor-

rect, there would need to be a database that included examples of those results. Another 

context for null data is in material synthesis. If a synthesis recipe is attempted for a par-

ticular material and the XRD pattern of the result shows something other than the target 

material, that measurement is still useful. Such XRD patterns, when contextualized with 

the details of the experiment (e.g. the attempted recipe), are valuable data for training ML 

models to predict synthesis routes. In general, in order to accurately make predictions ML 

models need both positive and negative examples: when the recipe worked and when it 

did not, the exciting data and the null data. An ML model shown only examples when the 

recipe worked will never learn when the recipe doesn’t work.

Data of Diverse Quality and Context — Workshop participants noted there is a critical need 

to increase the data available to train data-driven models, if they are to be used in real-

world applications, which can include diverse quality, multiple phases, material defects, 

etc. Workshop participants noted that some of these problems could be addressed with 

more robustly representative synthetic data.

Many ML workflows analyzing diffraction data start with the assumption that the training 

dataset is of high quality. This typically implies accurate annotations for experimentally 

collected training data, and that synthetic datasets capture a realistic range of the relevant 

measurement conditions: representative signal-to-noise ratios, resolutions, background 

contributions, peak shapes, and distributions of sample parameters. Often, simulation-

based datasets focus on the very high quality data: low signal-to-noise, high resolution, 
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and low background data from a highly monochromatic source, with a well-prepared sam-

ple measured on a recently calibrated and aligned instrument. While this high data quality 

is ideal, especially if the task is to extract detailed, high-precision quantitative descriptions 

of the phases (e.g., grain size, strain, phase fraction), it is not representative of the data 

used for other tasks. Most diffraction measurements do not meet all of those criteria. A lab 

might only have very limited time on benchtop diffractometers to measure very complex 

samples. Often the purpose of performing diffraction measurements is to identify all the 

phases present in a sample, rather than determining a detailed quantitative description. 

The phase ID tasks can be very challenging with samples that might consist of powders with 

grains having a wide variety of sizes and non-spherical shapes and include many phases, 

some of which might be amorphous. A ML-based approach could be used to address these 

types of challenging phase ID tasks – provided the algorithms have a database to train on 

that is representative of the realistic data quality. A ML model that has only been trained 

on synchrotron data will likely not perform well on data from benchtop diffractometers, 

and vice versa. Without a dataset that reflects the realistic diversity of data quality, any ML 

tools will not be able to generalize to these common scenarios seen in many labs. More 

details about the ways in which the data could be diverse, and the type of tasks that ML 

models trained on such data could be developed for can be found in the discussion in Sec-

tion 3.4.1.

Unbalanced Data — Once a particular task is identified, then the suitability of a dataset for 

that task can be evaluated. One factor is the balance of the dataset. Much of the crystal-

lography data sets are clustered around materials that were interesting to study (for one 

reason or another), rather than evenly distributed across material systems. This type of 

clustered data is a form of dataset imbalance that can cause issues with many ML work-

flows. For example, if the goal is to distinguish two classes, if the dataset has very few 

examples of the second class it will be difficult for any ML algorithms to learn the appro-

priate distinguishing features from that data. In this case, accuracy can be a misleading 

evaluation metric. Consider a dataset where 98 % of the examples belong to class 1. A 

naive model could achieve 98 % accuracy by predicting class 1 unconditionally, completely 

ignoring the input data. Metrics like the mean average precision try to account for class 

imbalance by weighing the performance of the model on each class relative to the size 

of that class. To deal with class imbalance, a dataset might be sub-sampled or pruned 

to make the class distribution more balanced. Alternatively, oversampling, data augmen-

tation, or active learning schemes might be employed to inflate the minority class. Fi-

nally, optimization techniques, such as the use of robust loss functions, like the focal loss, 

can help models automatically focus on the most informative examples. For classification 

tasks, imbalanced datasets can be clearly understood in terms of the relative populations 

of the classes. However, the balance of datasets for other tasks, like regression, is less well-

studied or established. New metrics are needed to describe the balance of X-ray datasets 

with respect to tasks specific to X-ray analysis.
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3.3. Physical Infrastructure

An emphasis of the workshop was on next-generation hardware needs. Workshop par-

ticipants noted the need for increased automation for sample preparation and measure-

ment, which is a task often performed by humans. They also indicated the need to have 

the capability to better detect when problems occur with sample preparation or operation 

of the instrument. They noted cases of needing to perform X-ray-based analysis under 

non-ambient conditions, which may be inaccessible to current hardware. Workshop par-

ticipants indicated the need for programmatic access to equipment such that they can be 

driven by independent computer systems. Finally, research and development into stan-

dards for modular equipment may be a promising opportunity for public-private coopera-

tion. The cards within this category are shown in Tables 10-12.

Table 10. Goal note cards for Physical Infrastructure

Votes Content

4 Lab tools with standard APIs

4 Automating Collection: – metadata – raw data – contextual / domain

4 Complete tracking of tool state and response function.

4 Extreme condition XRD: – High temperature – High pressure – High speed (transient)

4 Sample prep for XRD

3 Workflow to minimize waste: – sampling volume – reusing analyte – number of samples

3 Tracking ambient condition of sample at time of measurement (temperature, humidity, baro-

metric pressure)

3 Tool drift should be captured and tracked

2 All tool / prep metadata should be captured

2 Automatic manufacturing plant

2 Fully automated XRPD sample prep measurement analysis of toxic/potent materials

2 Make advanced analysis more accessible through automatic instrument function

1 What interface is required for the instruments working in the lab?

1 Automation to improve quality of life for technicians: – Sample prep – Safety

1 How to automate data collection under conditions well outside of ambient (T< 200 C, or > 300 

C, P, etc.)?
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Table 11. Challenge note cards for Physical Infrastructure

Votes Content

4 Connectivity protocols with instrumentation

3 Use cameras or other sensors to verify data and sample quality (temperature, humidity, vibra-

tions, etc.)

3 How do we tell the instruments that some of the data they are generating is poor quality and 

link poor quality data to prep issues with machines?

3 Automation interfaces are not standardized

3 How do you track development of a characterization technique in a unique or complex environ-

ment?

2 Controlling instrument will always be a Tower of Babel issue

2 Self Auditing Instrument

2 What standards can or should apply to data format coming from the instrument

2 To accelerate developments of AI-hardware integration we need to learn from pharma industry

1 How to standardize physical interface to equipment

1 How do we move powder samples from instrument to instrument without introducing sample 

errors?

1 Technical: Best practices: materials characterization software development & maintenance in-

frastructure (compute, equipment)

1 How do we train machines to prepare large numbers of powder samples without introducing 

granularity, z-errors, and preferred orientations

1 Need to combine / include XRD and NIR or FTNIR, CEC, technologies for clay quantification

1 Dedicated high throughput experimental approaches could be better to implement high fidelity 

measurements instead of trying to fully automate general gear

0 Bespoke hardware without APIs

0 What is the interface to the instrument? What standards should apply?

0 Lack of instrument metadata

0 Standardized sample loading

0 But instruments need to be designed around sample design

0 Globe detectors? (360 degree) Can the be implemented for faster data collection?

0 How do we reduce noise levels and scan faster?

0 Much faster if multiple probes and synthesis in one tool / robotic station

0 Dedicated instruments to autonomize

0 How do we resolve the need to collect data quickly (like with off-geometry models, detec-

tors, and off-normal scanning) with background modeling corrections needed for non-FP re-

finements.

0 Sample prep and synthesis may need to adapt to geometry more amenable to measurement 

systems

0 Experiments may need to be tailored specifically to capture emergent or surprising phenomena 

– like first order phase transformation

Table 12. Potential Solution for Physical Infrastructure

Votes Content

4 Self-driving lab for sample prep

3 Self-Auditing Instrument, Tool Health Monitor

2 Standard API for diffraction instruments with end-to-end pipeline

0 Adding optical microscope to XRD to verify sample prep
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Reducing Repetitive Human Tasks — A common factor in all of these issues appears to 

be a desire to reduce the level of human involvement in sample manipulation through the 

instrument because it is repetitive and time-consuming and, in some cases, can involve sig-

nificant safety hazards. These issues could be addressed with an increased level of mod-

ularity and standardized physical interfaces for sample management and other forms of 

measurement. Workshop participants noted that other disciplines have benefited from 

standardized sample management, such as robotic sample preparation systems designed 

for the 96-well plate format in the life sciences community.

Sample Preparation — A specific but important case of the need for automation is in sam-

ple preparation, which was identified frequently as a goal by workshop participants. Partic-

ipants both discussed automation of the task itself, along with a desire for robust method-

ologies (hardware and software) for detecting sample preparation and instrument issues; 

this is discussed in the section below. This sample preparation is sample and instrument-

dependent but may involve planarization of bulk samples or transferring powdered mate-

rial to an appropriate sample holder, including adding binders, dilutants, or internal stan-

dards.

Detecting Sample Preparation and Instrumentation Issues — In both human-based and 

automated X-ray analysis there are always possibilities (and maybe even frequently) of ex-

perimental issues that lead to data degradation. These issues may stem, for example, from 

problems in sample preparation or from instrumentation issues including diffractometer 

misalignment or detector problems. Particularly as automation increases and the act of 

data collection becomes separated from the act of data analysis, it becomes even more 

crucial to detect these issues before time and resources are wasted, or even worse errors 

from misanalyzed faulty data create real-world issues outside of the lab. Detecting issues 

must handle a range of failure modes including one-off problems such as sample holder 

loading problems or emergent issues such as wear on mechanical components leading 

to misalignment. Conceivable, these issues can be detected either through sensors and 

self-diagnostic routines on the instrument or through anomaly detection algorithms that 

operate on the raw data. The latter approach is attractive as it requires less specialized 

hardware, but achieving this will require the collection of datasets specifically for this pur-

pose.

Programmatic Access to Instruments — Workshop participants highlighted the need for 

programmatic access to instruments, both for control of the instrument and access to mea-

surement data and diagnostic information. Participants noted that instruments should be 

able to automatically store machine state and configuration information while enabling 

machine-actionable auditing. Attendees representing commercial vendors stated that to 

this point, there was not sufficient demand for this type of feature. They also expressed 

reluctance on behalf of their companies due to demand for a wide range of types of inter-

faces requested by their customers, requiring a large engineering load. Further, they felt 

there was a risk that changes in software that interacted with their instrument but was not 

written or controlled by them could be changed, resulting in a failure of their programmatic 
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interface that they would be held responsible for fixing. From the end-user perspective, 

workshop participants noted that many independent efforts exist and it is unclear how 

best to proceed. Efforts thus far have explored existing protocols including SiLA[48] within 

ChemOS[8] and MQTT[49] within MDML[50], explored streaming software like Apache 

Kafka[51] within OpenMSIStream[52], or built out bespoke REST APIs in HELAO7. Work-

shop participants noted that each approach likely has strengths and weaknesses, which are 

not sufficiently quantified in the context of an autonomous materials laboratory. We note 

that workshop participants view that maintaining and integrating these technologies is ex-

pensive and may distract from the broader mission goals. We note that interchange pro-

tocols are a small part of the broader cyberinfrastructure of the modern software-enabled 

laboratory.

Opportunities for Modular Equipment — Workshop participants highlighted the desire for 

improved physical interoperability of laboratory equipment. There is a clear opportunity 

to develop new standards for laboratory equipment. However, there are currently two 

approaches being actively used within the community. In one approach, researchers are 

developing new systems from the ground up with a sample-centric approach. In the other 

approach, researchers are developing human-scale robotics that are capable of operating 

existing laboratory equipment. As a follow-up to this workshop, to meet the need for 

modular equipment with hardware and software interfaces (as discussed above), we have 

generated a report proposing a national center for autonomous materials research, with 

the goal of enabling off-the-shelf modular autonomous infrastructure[53].

Multimodal Data Generation Another topic brought up by participants was the need for 

collecting multiple data streams to support more advanced analysis. This may be compo-

sitional data, spectroscopy techniques for generating chemical and additional structural 

data, or potentially measurements of functional properties. In order to collect this data 

more efficiently, it would be beneficial to allow for this data to be collected simultane-

ously. This could be achieved through instrument vendors developing these multimodal 

instruments or through the development of modular equipment as described above.

3.4. Algorithm and Model Development

Data-driven algorithms and models are at the heart of data-driven science and autonomous 

laboratories. These algorithms and models are often specialized to a specific type of data, 

and should thus not be considered monolithic. This subsection is divided further into three 

subsections. This workshop had a specific emphasis on X-ray-based methodologies. There-

fore, the first subsection reviews issues related to phase identification and quantitative 

analysis of diffraction data. The next subsection focuses on broader issues relating to AI 

for materials science and engineering and its intersection with X-ray-based. The final sub-

section reviews issues related to uncertainty quantification.
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3.4.1. Phase Identification and Quantitative Analysis

The workshop participants agreed that there was a need for algorithms for phase identi-

fication and quantitative phase analysis. In discussion, some participants felt that these 

are largely solved problems. Upon further probing, it was generally agreed that existing 

capabilities are sufficient in some cases, but for many instances with more complexity in 

the analysis goals and data these existing models fall short. There is, therefore, a need 

for a systematic evaluation of the strengths and limitations of the many competing tradi-

tional and ML approaches for different XRD-related analysis and prediction tasks. Existing 

innovations in data-driven methodologies tend to be applied to simple and idealized data 

and lack the depth to be later applied to complex (real-world) problems. With an in-depth 

focus on phase identification and quantitative analysis during the workshop, a number of 

specific opportunities emerged including supporting complexity in the physical samples, 

complexity in the measurement methodology such as low data quality from benchtop sys-

tems, multimodal data streams, and high throughput methodologies. The cards within this 

category are shown in Tables 13-15.

Table 13. Goal note cards for Phase Identification and Quantitative Analysis

Votes Content

11 AI Phase ID not limited to certain phase diagrams

11 Using AI to predict additional phases in a multi-phase mixture

6 Automated analysis has a long way to go to robustness for challenging problems, but it could 

accelerate a lot

6 Uniting 1D and 2D collection analysis without conversion

5 Can we layer multiple complementary techniques to help QPA / XRD automation on?

4 Pattern ID recognition vs absolute ID (wt %)

3 Do we want our labs to be statistically perfect (use self-referential XRD analysis) or reference 

external tools such as XRF, analytical chemistry, SEM, to establish a standard?

3 Can we pair cluster analysis (automated) with automated QPA for more accurate analysis

3 XRD tools for many different complex materials that can be used by non-experts

2 Combination of PONCKS + QPA via IS for phases with distinct amorphous hump but needs IS. 

For normalization of d-spacing for phase ID

2 Automated XRD on benchtop data for highly overlapped samples -> What is the low benchmark 

for QPA & can the AI / ML intelligently decide

2 How to make measurements almost instantaneous? (without synchrotron)

2 Data screening granularity preferred orientation crystallinity instrument

2 XRD, XRR, XRF, should be able to be simultaneously fit

1 Can automated XRD parse apart a sample for QPA with > 10 solid solutions, polymorphs, etc. 

Extreme thermodynamic variability

1 Data quality specification of XRD missing outdated multi-resolution data repairing (AI-based)

1 XRD automation that can catch multiple errors
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Table 14. Challenge note cards for Phase Identification and Quantitative Analysis

Votes Content

3 General Phase ID

3 How do we operate over the best XRD technologies in dusty and noisy environments?

1 How to standardize QPA methodology to allow for many types of analyses, including sample 

prep. PONCKS / IS / ES / Rietveldt / intelligent RIR

1 Multiphase QPA combined with many cross validation techniques.

1 How to train machines to correctly choose overlapped phases?

1 SRMs appropriate for synchrotrons – Sharp lines – Wide Q range – 0.01 % mass impurity level

1 Correct for oversampling / undersampling (representation) of certain methods (XRD, Raman, 

NMR) & properties because the are easier or more directly performance related

1 Grain boundary orientation conventions round robin analogy – can we capture sufficient meta-

data to recreate an analysis?

0 Really need quantitative phase analysis complementary cluster analysis + qualitative

0 Initially AI can be used to correlate XRD patterns to a macroscopy property

0 XRD is characterized to many ambiguities which require complementary data to move forward 

XRF, Raman, NMR

0 Texture and d-space shift complicate analysis but scanning is slow

0 Working with small sample sizes for XRD from autonomous labs – bad particle statistics

Table 15. Potential Solution for Phase Identification and Quantitative Analysis

Votes Content

7 XRD + XRF

4 Take advantage of Chi information in 2D for textured powders

4 Use Bob He’s Chi Integration or Azimuth to Automate poor texture identification

2 Reynold’s Cup for clay minerals phase ID

2 More XRD/XCT/domain specific (XML) validation

This workshop placed a major focus on X-ray and neutron based scattering methods. Over-

all, workshop participants highlighted either the need to solve repetitive problems quickly, 

or the need for data-driven methodologies to accommodate complexity in the samples and 

data being analyzed. We illustrate this complexity schematically in Figure 3.
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Fig. 3. Illustration of factors that increase the complexity of powder diffraction data, 

starting from the center box and roughly increasing in complexity outward. Each of the 

boxes represents a complicating factor for the analysis, color-coded by a theme of 

complexity. These complexities should be thought of as dimensions along which the 

analysis can be complicated, and can therefore be combined. This figure is meant to be 

illustrative and is by no means exhaustive.

Analysis of powder diffraction patterns can be made easier as justifiable simplifying as-

sumptions are introduced. In the simplest case, if the sample is known (or assumed) to 

be a single phase randomly oriented powder with equiaxed grains, then the conventional 

phase identification approach of directly matching expected peak locations and intensities 

to a set of structural prototypes. This is represented in the gray box in the center of Fig-

ure 4. This phase identification task becomes more difficult as assumptions of the data 

quality are relaxed, as represented by the light blue boxes in Figure 4. Most current ML 

algorithms are designed to handle this phase identification task at this level – or with only 

a few complexities considered as nuisance factors. Relatively little work has been done ex-

plicitly targeting quantitative analysis of quantities such as phase fraction, grain size, and 

lattice parameter directly with ML systems.

Measurement Quality — Real-world measurements are non-ideal, and those complexities 

often break assumptions used to construct the ML models. We could consider measure-

ments with low signal-to-noise ratios (S/N), lower angular or qresolution, the effects of 

non-monochromatic X-ray sources, or other instrumental artifacts like X-ray fluorescence. 

Lowering the S/N ratio should lower our confidence of the phase identification and in-

creases the uncertainty of quantitative modeling. Lowering the instrumental resolution 
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makes it more difficult to distinguish between peaks that are nearby, and to obtain precise 

estimates of peak locations. Real X-ray sources have some distribution of photon wave-

lengths and angular divergence, which will be superimposed on the diffraction signal. In-

strumental artifacts, such as X-ray fluorescence, are typically treated as background in an 

XRD measurement, but these artifacts make it more difficult to compare measurements 

across different instruments.

Instrument Configuration — One of the major instrument-to-instrument (or even sample-

to-sample) differences in X-ray diffraction is the background. It would be difficult to enu-

merate all the potential sources of background signal and explicitly account for each of 

them. Even measuring the signal from a blank or empty sample holder has its challenges, 

particularly in a reflection geometry. This is because there are some contributions to the 

background, like the diffraction off of the sample holder material – which will be partially 

blocked by a sample – while other contributions, like air scattering, will not be. Therefore 

the signal from a blank sample holder will not simply add to the signal from the sample. 

Further complicating, background fitting is scattering from amorphous material or other 

sources of diffuse scatter within the sample itself can often not be separated trivially. It is 

common, then, to seek a heuristic approach that generalizes across several instruments. 

In order to evaluate the generalizability of these heuristic approaches, data is needed from 

several instruments with different background signals. Furthermore, the background sig-

nals are different for different instrument geometries. The Bragg-Brentano geometry is 

popular for PXRD measurements in laboratory-based diffractometers. However, Debye-

Scherrer geometry is popular especially when the beam can pass through the sample in 

transmission mode.

Phases — If the assumption that the sample is single phase is relaxed to allow for the pos-

sibility of two or more phases, then analysis becomes much more challenging. Due to the 

overlapping of peak positions, it can be hard to simply identify minority phases, especially 

at low signal-to-noise ratios or resolution. Quantitative phase analysis will provide more 

reliable results not only at higher data quality, but also when the phases are more dis-

tinct from each other. These tasks are combinatorially more challenging as the number of 

possible phases increases. Of course, in many real-world applications, the total number 

of phases is not known a priori – which may, in fact, be the motivation for a particular 

PXRD analysis in the first place. Real-world samples may also include amorphous mate-

rials whose signals are more difficult to treat quantitatively. Depending on the process-

ing history of the potentially multi-phase sample, other effects like alloying which causes 

peak shifting, or supercell reconstruction, which causes additional peaks, may be possible. 

Short-range ordering has a complex contribution to the scattering signal that is typically 

analyzed in the Fourier transform of the scattering pattern known as the pair-distribution 

function.

Composition — Knowing the composition of the sample can help populate a short list of 

likely candidate material structures. For phase mapping in composition space, the scatter-

ing patterns are related by how similar the samples are in composition. This means that ad-
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jacent compositions should have similar short lists of likely phases, which can aid in identi-

fying phase regions in composition space. But if the composition is unknown, then combin-

ing the scattering pattern with another measurement may be necessary to provide enough 

information to identify the phase. Such joint inference is useful when the other measure-

ment has a different operational mechanism and, therefore, provides a complementary 

signal. For example: X-ray photoemission spectroscopy (XPS) measures the energy re-

quired to produce photoelectrons, neutrons have a different scattering cross-section than 

X-rays providing different contrast, Raman spectroscopy measures how phonons couple to 

visible light.

Beam Source — X-ray scattering factors primarily depend on the electron cloud density 

of the atoms of the material. Neutrons, however, primarily interact with the nucleus of 

the atoms. Neutron scattering, therefore, provides a very different atomic contrast than 

X-ray scattering. In neutron scattering, it is possible to get a scattering signal from the 

low atomic number elements that X-rays are not very sensitive to. Further, neutrons will 

interact with the magnetic moments that are present in the material. Neutron scattering is, 

therefore, widely used to study magnetic ordering, where the scattering of the magnetic 

order manifests as additional scattering peaks, which may or may not overlap with the 

peaks from the atomic structure. Electrons have a much stronger interaction with the 

atomic electron cloud than X-rays do. That means that strong scattering signals can be 

obtained from comparatively less dense electron clouds, or smaller amounts of material, 

but it also means that artifacts – such as multiple scattering events – are more prevalent, 

making analysis more difficult.

External Field — Materials structures distort when subjected to external fields, which, in 

turn, distorts the diffraction patterns. Perhaps the simplest external field to account for is 

an applied stress which acts directly on the lattice parameters of the structure. This has the 

effect of shifting peak positions, which can manifest as a splitting of peaks if the symmetries 

are broken by the distortion. Strain gradients can cause broadening of diffraction peaks. 

Temperature not only distorts the structure through the effects of thermal expansion/con-

traction, but also has effects on the scattering parameters. As the temperature increases, 

the phonon modes in the structure are further excited, and therefore the average atomic 

positions are less localized. The beam itself can be thought of as an external field. Some 

materials, especially organic materials, can degrade in strong X-ray (or neutron, or elec-

tron) radiation. This can have the effect of altering the atomic structure. This is perhaps 

one of the most difficult external fields to account for since the transformation is typically 

irreversible. The type of damage experienced by a sample affects the operational mode to 

account for it. Some beam damage might be mitigated at low temperatures or low times. 

A signal can be acquired over many positions as the irradiated positions are damaged. In 

some cases, the beam damage might not be avoidable, in which case the signal could be 

acquired in a single high-intensity pulse. These acquisition modes affect how the data will 

be analyzed.
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Microstructure Effects — In addition to the average crystal structure of the sample, the 

microscopic spatial distribution (the microstructure) of the material can also have substan-

tial effects on relative peak intensities and broadening. As the crystallite size decreases, 

the diffraction peaks will broaden. Conversely, very large crystallite sizes can violate the 

powder assumption as individual Bragg reflections become resolvable on a 2D detector – 

therefore leading to incomplete statistics with respect to orientation when integrated to a 

1D diffraction pattern. Many materials, including those in thin films, not only show finite-

size broadening effects but also can have a preferred crystal orientation. Because of this 

preferred orientation, some atomic planes are normal to the scattering vector more often 

than other planes, increasing the diffracted intensity of those peaks relative to the others. 

Bulk samples can also often have a preferred orientation of the crystals due to processing 

history.

Micro-absorption is an effect seen in materials with heterogeneous microstructures that 

is not accounted for in most diffraction analysis software. This effect can be envisioned 

in the extreme, for example, as layered structures where the top layer is a strong scat-

terer and the bottom layer is a weaker scatterer. The diffraction signal from the bottom 

layer is much lower than would be expected from a simple sum of the signals from both 

layers. This is because the beam must pass through the top layer first which lowers the in-

tensity that reaches the bottom layer. Furthermore, the scattered signal from the bottom 

layer must pass through the top layer, which additionally lowers the intensity that reaches 

the detector. Composition gradients can make this effect much more complex to handle 

since the heterogeneity goes from a discrete ordering of layers to a continuous function 

describing the composition. The analysis of samples that need to account for these mi-

crostructural effects can be aided by complementary characterization to directly quantify 

microstructural features through microscopy or other imaging techniques. The kinematic 

theory of diffraction, which neglects multiple-scattering, is a good approximation to use 

for most common X-ray diffraction measurements. However, as the crystal size and quality 

increases dramatically or as the interaction strength increases going from an X-ray beam 

to electron beam, then the effects like multiple scattering become increasingly important. 

These effects require a more complete description of diffraction from dynamical diffraction 

theory.

Summary of Phase Identification and Quantitative Analysis — To summarize, Figure 4 

shows the ways in which assumptions about the sample and measurement could be re-

laxed to make the analysis more difficult. This, therefore, also shows the features of a 

database that would be needed to address those complexities. For example, to build and 

test an algorithm that could handle phase identification regardless of the instrument geom-

etry, a database is needed that has Bragg-Brentano, Debye-Scherrer, and GIXRD measure-

ments. If this algorithm also needs to be able to account for strain effects, then examples 

of strain effects are needed at each geometry. Similar logic can be applied to additional 

complexities, adding new dimensions to consider, and building toward a general database 
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needed for a general algorithm. With all of these routes to support complexity, workshop 

participants indicated that it is important to incorporate known physics.

3.4.2. Broad AI for Materials Science and Engineering

Rapid innovation in algorithm and model development, broadly speaking, presents a sig-

nificant opportunity for industry to introduce targeted autonomous solutions for repeti-

tive problems that typically require human expertise and experience. These technologies 

can be developed and adopted most efficiently if industry and other end-users prioritizes 

which tasks ML methods will have the largest impact on their productivity. These can in-

clude methods for combining multimodal data streams, automated experiment planning, 

metadata assessment, and automated selection of analysis tools. Though the workshop 

focused on X-ray methods, workshop participants generated several cards for algorithm 

and model development that apply to materials research more broadly. In this section we 

present these issues through examples specific to XRD. The cards within this category are 

shown in Tables 16-18.

Table 16. Goal note cards for Broad AI for Materials Science and Engineering

Votes Content

5 Data transformation and preconditions scheme to improve ML interpretation

4 Multiple technique analysis results coordinated for consistent result

3 Predicting metadata (e.g., wavelength) based on a raw X-ray diffraction pattern alone

3 Minimize human interaction (robustness -> trust) easy to modify (code-free)

3 Automatic identification of next analysis. Example: microscopy, single crystal XRD.

3 How to deal with time series data and its analysis (as environment etc. changes or ages in certain 

environment)

2 How to measure robot wear and tear given data quality erosion without human oversight

2 Composition Mapping (3D)

1 More ML tools & data related to manufacturing

1 3D Grain Mapping: HEDM

0 Data storage / pipeline should allow for re-interpretation

0 Super Edisonian Combinatorial approach vs targeted discovery. I.e., many samples vs as few 

samples as possible

29



NIST SP 1500-25

November 2024

Table 17. Challenge note cards for Broad AI for Materials Science and Engineering

Votes Content

5 How to maximize current generation methods?

5 What quality standards should apply to data used to train ML algorithms

4 Privacy preserving learning with regard to database models

4 Measurement condition determination: Time vs Quality

4 Transferability for feature extraction

3 Combining data from XRD, XRF, and electron microscopy to determine the structure (crystalline)

3 How do we harness many computers to analyze large numbers of samples simultaneously? 

What about QA/QC?

3 AI isn’t compared to expert

2 Good methods for domain adaptation to go from synthetic data to realistic data

2 AI adoption: – issues with variable conflation / convolution limit statistical power of AI models 

(or any statistical models) without express design in which case, use Design of Experiments.

2 The samples to be analyzed should be suggested by a trained machine (system)

2 Reversible data-model matching

2 Set up network and workflow for AI to act on – but not necessarily tied directly to hardware – 

When to ship your samples for TEM?

2 Feedback on Sample Prep or Measurement Quality

2 How to make trained models instrument/sample agnostic

2 Productive workflows can include human-in-the-loop: Use AI to automatically generate solu-

tions, human expert vetoes problematic suggestions

1 In the future the XRD pattern could be related to many materials properties using AI

1 How to teach analytical machines to overcome sample prep issues consistently

1 Automation tools need to make it easy to program custom models

1 How do we link XRD lab together to form a singular material processing mind for selecting and 

analyzing specific materials?

1 Physics-informed data samples, contextualized data / sampling

1 Data mapping between different characterization techniques, technical barrier

1 Data Fusion: – alignment (time, space) – conceptual – relevant fusion depends on desired re-

sponse: in f(x,y) x & y change

0 Flowing XRD data into the decision model then to the synthesis tool

0 Make ML assessment tools more readily available

0 Match making between type of data and methods

0 How do we postprocess highly displaced data en-mass to bring the re-test rate down

0 Implementing algorithms with ELNs

0 Data is collected as fast as possible. Not great for building libraries.
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Table 18. Potential Solution for Broad AI for Materials Science and Engineering

Votes Content

7 Generative AI for data search and queries

7 Exploratory querying/match making how to help users finding/uniting questions

7 AI or ML to identify poor sample prep or other artifacts

6 Quantitative data quality assessments

4 Knowledge Graph of what questions can be answered given particular measurements

4 Privacy-preserving + federated learning

3 LLMs for prompt engineering to match methods to data

2 Protocols for splitting train/split similar materials – split by sample group or by space group or 

element – split by fidelity, make sure lab scale diffraction in test set

2 Data collection protocols for small samples: – multiple measurements – vibrating samples

2 Transferability assessment with clever similarity analysis (multimodal similarity)

1 More Hybrid Metrology + Analysis

1 Develop measurements for success / confidence in machine refinements to determine pass / 

fail thresholds for machine learning that is relevant to materials questions.

0 Pushing bar on ML work to move field forward

0 Better decision points on what techniques needed (e.g., lab vs synchrotron vs neutron)

Harnessing the AI Revolution — Workshop participants discussed the application of data-

driven methodologies to many aspects of materials science and engineering. High-ranking 

potential solutions suggest that some combination of generative AI, large language mod-

els (LLM), and knowledge graphs (KG) has the potential to improve search capabilities, 

including based on similarity (e.g., matchmaking). A number of the cards focused on 

general practices in using data-driven methodologies, such as data cleaning, addressing 

missing metadata, addressing unbalanced datasets, and how to split datasets for training 

and testing. Language modeling and knowledge graph technology represent largely unex-

plored opportunities to develop high-quality interconnected datasets of raw data, meta-

data defining samples and experimental protocols, and high-quality text emphasizing the 

expert subjective evaluation of the analysis.

Managing Risk and Maximizing Returns — Some workshop participants expressed some 

hesitancy towards data-driven methodologies for a number of reasons. they indicated 

that it is difficult to determine how to optimally adopt data-driven approaches to maxi-

mize a return on investment. Furthermore, they highlighted the desire to maximize the 

effectiveness and impact of current data-driven capabilities. These cards suggest a gen-

eral disconnect between industry and academia. Academia in the materials community is 

in constant pursuit of novel approaches in data-driven methodologies, whereas the ma-

terials industry needs to be strategic in adopting certain approaches that will provide a 

lower-risk, stable return on investment over industrially-relevant periods of time. These 

two extremes could potentially be accommodated by a software development model that 

has different release tracks where the slower release track tends to prioritize stability and 

the faster release track tends to prioritize novelty.
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Model Evaluation Criteria — To enable robust progress in ML-driven analysis algorithms, 

the community must come to a consensus on useful model evaluation criteria for each of 

the different analysis tasks. In order to evaluate the models, the particular tasks must be 

robustly defined in mathematical terms. For example, in the problem of identifying phases 

present in an XRD pattern, the task could be posed as a retrieval problem – matching the 

phases to a known ground truth. In this case, the relevant metrics might include precision 

or recall. In the problem of phase mapping across some composition space in the absence 

of a predetermined ground truth, model evaluation criteria could be some measures of 

when the phase map has converged to a stable solution. Another category of problems 

are the structure (Rietveld) refinement problems. Here, there are the conventional evalu-

ation criteria, such as the R-factors, reconstruction errors, or log-likelihoods of the pattern 

from the model against the measured pattern. In a ML context, additional evaluation cri-

teria might include the accuracy of the refined parameters with respect to some known 

ground truth, or alternatively use the reconstruction errors and similar. Practitioners of 

Rietveld refinement often discuss how well the peaks from the model match the peaks 

observed in the measured pattern – which is a qualitative metric that is often undervalued 

by global quantitative measures. Another model evaluation is related to UQ, especially in 

the case where several related XRD patterns are refined together (with the model describ-

ing how they are related). The signal from one pattern will affect the refinement of the 

structure from the other. Metrics are needed to understand the strength of this informa-

tion sharing. In addition to instrument calibration, the models themselves are calibrated 

for specific tasks, and metrics are needed for how well the models extrapolate beyond the 

data they were trained against – especially relevant for continuous monitoring and for data 

drift as new measurements are evaluated. Further, there is a need for criteria that allow 

for the selection of appropriate models. Metrics such as the Bayes Information Criterion 

provide some measure of whether the data justifies the complexity of the models. How-

ever, models could also be evaluated in terms of whether the physicochemical constraints 

they impose are appropriate (e.g. a model with a priori limits on what materials could or 

could not be present).

Detecting Measurement Quality — Workshop participants identified a need for criteria for 

automatically assessing the quality of materials measurements. This is a more challenging 

task than evaluation metrics for well-defined prediction and fitting tasks described above 

because many aspects of “measurement quality” are subjective. How can we know when 

we have a “good” measurement? Perhaps the most obvious metric is the signal-to-noise 

ratio, which can be estimated from Poissonian counting statistics. While this constitutes a 

quantitative measure of the quality, the question then becomes: what signal-to-noise ra-

tio is good enough? The answer to that may be task-dependent. In the case of XRD-based 

phase ID tasks, the signal-to-noise ratio required to confidently exclude the possibility of 

minority phases depends on the phases being considered. If the phases considered pro-

duce very different diffraction patterns, then only a moderate signal-to-noise ratio and 

resolution are required to determine the presence of each phase. However, if the phases 

produce patterns with significant peak overlap or if the primary differences are subtle (such 
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as weak superlattice reflections in the case of ordered vs disordered crystals), then a much 

higher signal-to-noise ratio and resolution and lower background would be required to 

distinguish them. Similar arguments could be applied to other quality metrics such as the 

angular (q-space) range and resolution of the data (including effects from the beam diver-

gence and chromaticity, detection optics, the detector, and the goniometer). These can 

be important metrics of quality when considering tasks like detecting slight distortions in 

high symmetry phases.

There are other more difficult to quantify metrics of measurement quality. How much sig-

nal is coming from the sample holder? If a sample being measured in a reflection geometry 

is only weakly diffracting then a significant portion of the signal reaching the detector may 

be from the sample holder. Is this the optimal instrument configuration for the task at 

hand? The choice of diffraction slit width will affect the intensity of the signal, the reso-

lution, and how much of the sample and/or sample holder is irradiated. Were there any 

issues with the sample preparation? Powders with large crystalites will not provide good 

statistics over all orientations. Samples mounted above or below the optimal sample plane 

will affect the accuracy of the angles ascribed to the peaks. What is the expected back-

ground signal from the instrument, and how likely are amorphous phases in the sample? 

Many types of instrumental background, such as air scattering, have broad features over a 

wide angular range, which can be difficult to distinguish from the broad diffraction signal 

from amorphous materials. Furthermore, some samples can change or degrade under the 

irradiation used to measure them. Determining and optimizing the measurement quality 

in terms of the risk of sample degradation can be critical for some samples. Some of these 

considerations might be addressed by dedicated datasets as discussed in AI-Ready Data. 

Metrics for data quality are needed that consider the context of the task at hand. For ex-

ample, robust and well-defined methods for assessing these aspects of quality could have 

a substantial impact by enabling automated optimization of instrument configuration and 

sample preparation.

Quality of the Analysis — The level of trust given to a particular analysis should be in-

formed by quantitative metrics for evaluating measurement and model quality. How the 

form of the model – the assumptions that go into it – along with the quality of the data will 

determine what statements one can confidently make from a measurement. The analysis 

will have considered certain possibilities, but ignored others. For example, a supervised 

phase detection system (or conventional search/match) will not be able to detect and iden-

tify structures not in its library of structures, let alone, heretofore, unreported structures. 

Many ML models (and conventional analysis methods) are typically not designed to indi-

cate when the analysis is inconclusive. They always provide a conclusion within the bounds 

of the model design. As a concrete example, consider a deep neural net trained on XRD 

patterns to predict the phase fraction from a library of structures. Given this design, such 

an ML model will consider every XRD pattern as being composed of structures from its 

training set library of structures. In other words, this ML model could never predict that 

the XRD pattern is from a structure that is not in its library, instead predicting that the XRD 
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pattern is from some combination or mutation of existing structures. Practitioners must 

decide if those bounds allow for conclusive results.

It is important to emphasize interpretability and explainability in model design. Inter-

pretable ML models can have a physics-informed model design such that the bounds of 

the model, the intermediate results, parameters, and/or predictions can be understood in 

terms of the context of the problem. Explainability in ML models refers to inspecting any 

model to understand the criteria used for the predictions, regardless of the intrinsic level 

of interpretability of the structure of the model. For example, attribution methods can be 

used to identify the influential training instances that the predictions are highly sensitive 

to. It is well known that ML models often extrapolate poorly, but it is not always straight-

forward to determine when an ML model is extrapolating, particularly in high-dimensional 

datasets. Many ML models construct a latent representation of the inputs. The location of 

a new data point in this latent representation space relative to the training points can be 

used to determine if the ML model is attempting to extrapolate. Understanding the model 

form, constructing interpretable models, and inspecting those models to explain the pre-

dictions, are all tools that a practitioner could use to judge when to trust the results of the 

analysis.

Search Tools — Workshop participants highlighted the need for improved multifaceted 

search capabilities, (e.g., data, software, algorithms, etc.). In addition to topics discussed 

in FAIR for Data, Models, Tools, and Instruments, workshop participants highlighted the 

opportunity to leverage new technologies for the use case of search. Specifically, they in-

dicated a potential opportunity in harnessing knowledge graphs, large language models, 

and generative AI more broadly as potential approaches to improving search capabilities. 

Applications of these technologies to XRD-related search problems have been broadly un-

derexplored in part due to a lack of standardized evaluation datasets and criteria.

Model Transferability — Participants noted the importance of developing criteria and ca-

pabilities for determining the degree of applicability and transferability of ML systems to 

new datasets and tasks not directly linked to the data used for training. While these are 

longstanding research topics in fields like computer vision, there have been relatively few 

specific efforts to quantify extrapolation quality and transferability for X-ray diffraction 

data. What is needed in the diffraction domain is more robust criteria for deciding when 

pre-trained ML models are applicable, when transfer learning is likely to give reasonable 

results, and when it is more appropriate to train new models from scratch. Such criteria 

will likely need to account for some of the domain knowledge particular to the field of 

diffraction. These topics are also closely linked to uncertainty quantification and model 

calibration, see Section 3.4.3.

Privacy-Preserving and Federated Learning — Workshop participants highlighted the need 

to develop mechanisms that enable ML/AI researchers to develop models for proprietary 

data while protecting that data from unauthorized disclosure. Specific examples in the 

XRD space are when one database holder wants to combine data with another database 
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holder to train a model, but one or both parties do not want to share their databases with 

each other. This is an active area of research and development within the cryptography 

and computer science community. Furthermore, it is likely that materials and manufac-

turing stakeholders and use cases are underrepresented in current efforts. Increasing the 

participation of materials and manufacturing stakeholders in efforts surrounding privacy-

preserving technologies and federated learning could become increasingly important given 

the unique complexity of materials and manufacturing data.

Fusion of Multiple Data Streams — There are important opportunities for combining mul-

tiple information sources to improve the quality and robustness of XRD analysis. A well-

established example is the use of composition-based filtering in search-match procedures 

to narrow down structure matches based on the known chemistry of the sample. High 

throughput XRD systems can integrate X-ray fluorescence measurements to bring the raw 

information underlying this analysis directly into ML-driven analysis pipelines. This high-

lights the opportunity to develop and disseminate experimental protocols and modeling 

strategies for information fusion.

3.4.3. Uncertainty Quantification

As ML methods are intrinsically statistical in nature, workshop participants noted that UQ is 

of critical importance if data-driven methodologies are to be implemented in robust and re-

liable production applications. Strengthening UQ evaluation requires accurate evaluation 

of standard statistical quantities like mean average error (MAE), as well as the determina-

tion of the confidence of each individual ML prediction (error bounds), as it is individual 

predictions that are used in industrial applications. Obviously, no amount of model UQ can 

reveal or mitigate bad quality in the training data, as systematic errors in the generation 

of the data set will propagate through a machine learning model. Careful curation of the 

training and testing dataset is, therefore, a crucial step in developing trustworthy ML mod-

els, and there is a need for developing an accuracy measure to communicate the quality 

of such a dataset.

Other important sources of uncertainty were identified in the interpretation of the various 

fittings as well as in the ML models themselves, whose quantitative predictions should be 

evaluated. Sources of uncertainties associated with implementing a trained ML model in-

clude too localized or limited training data, ML training errors (ex. overfitting), sub-optimal 

model architecture or parameter learning, and out-of-distribution samples. This reflects 

the uncertainty in the prediction with respect to the model design, which is not captured 

by the uncertainty estimates output from any one model. While many techniques are 

available for estimating the UQ on regression predictions[54], none were suggested as a 

solution, possibly because the workshop participants were not experts in the ML field. It is 

well known that ML models do not extrapolate well. However, due to the complex design 

of many algorithms (e.g., deep neural nets) and the high dimensionality of the data they 

operate on, it is often not obvious when the ML model is, in fact, extrapolating. Robust 

35



NIST SP 1500-25

November 2024

failure detection was also identified as a critical need associated with verification and val-

idation, as well as developing repeatable data analysis. The cards within this category are 

shown in Tables 19-21.

Table 19. Goal note cards for Uncertainty Quantification

Votes Content

4 Uncertainty quantification

4 Two categories of uncertainty quantification: – Raw measurement noise – Fitting interpretation

3 Easy verification of results

1 Accuracy & HTP for diverse lab -> Needs to be understood & used by non-experts

1 Repeatable analysis: Respecting promises: inputs / outputs and semantics

Table 20. Challenge note cards for Uncertainty Quantification

Votes Content

3 Quantify detection limits

2 Uncertainty in the x-axis poorly defined (e.g., composition)

2 Database accuracy should be quantified

2 High variability -> more open AI / automation -> less tailored AI -> more errors

1 XRD respective of data/sample bias. Fairness of AI/ML models.

1 Uncertainty quantification related to analysis quantification (regression)

1 Types of UQ: – robust failure detection – reasonable accurate error bounds

Table 21. Potential Solution for Uncertainty Quantification

Votes Content

4 Quality standards for input data: – invest in development of UQ (uncertainty quantification) 

and error analysis for ML – use results to specify quality standards

3.5. Community Engagement

Workshop participants authored a number of cards centered around community engage-

ment. One major theme was workforce development, with an emphasis on cross-disciplinary 

education and considering both the existing workforce and next-generation workforce. 

Other cards discussed culture change, intellectual property, and economic considerations. 

Data-driven methodologies are ultimately implemented as software. Workshop partici-

pants highlighted a number of issues related to the sustainability of both open-source and 

proprietary software. Finally, workshop participants highlighted the need for new and on-

going convening and coordination efforts.

3.5.1. Workforce Development

Workforce development was identified as an important need where depth of knowledge 

in both experimental methodology and data-driven methodologies is critical for success. 
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It is important to have a depth of understanding of the physical processes and geometries 

of the diffraction experiments to enable correct interpretation of measurement results. 

However, it is becoming increasingly important to have additional depth of knowledge in 

the machine learning algorithms to understand their implications and biases for use as 

analysis tools. Having a workforce trained in both disciplines is needed for the full real-

ization of machine learning and autonomous workflows of diffraction experiments. Even 

non-expert practitioners need to be educated in framing their problems as ML tasks and 

in identifying and deploying existing solutions. The cards within this category are shown 

in Tables 22-24.

Table 22. Goal note cards for Workforce Development

Votes Content

8 AI vs. existing methods? Are they known and /or already exploited?

6 Cross-disciplinary education: Statistics, experimental design, materials, physics, economics

6 Robust education for existing staff

6 Should not be a black box. Even with automation, expertise is needed.

3 XRD is not one thing – it is very versatile. The data modality depends heavily on the task.

3 Need to empower bench scientists to run their own analyses

1 Workforce training to use AI / ML tools

1 What is the expected level of expertise of people working in the lab?

0 Make XRD lessons searchable

Table 23. Challenge note cards for Workforce Development

Votes Content

8 Need for new community members to learn what pitfalls to look out for – these are in the 

literature but hard to find without knowing already

7 Few materials experts in general. Even fewer with knowledge of AI / ML / automation

7 Huge lack of knowledge XRPD + AI

4 Education for sample prep

4 It’s very context dependent for what other measurements to do and when.

4 ML researchers can focus too narrowly on specific established tasks, making overly restrictive 

assumptions.

4 Determining the problems that really need ML

3 Unknown Unknowns Problem; what questions to ask

3 Technical Barriers: Overlap – or lack – in necessary expertise, e.g., XRD analysis & infrastructure 

architecture

3 ML research in XRD may not be familiar with successful methods that are already established

2 Need a different way of thinking from scientists / technicians

0 Training the resource creators on data storage (including metadata)
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Table 24. Potential Solution for Workforce Development

Votes Content

8 Education! Users / practitioners need to know: – what factors matter – why they are important 

– where to learn more to be effective with next-generation tools (and current ones.

6 Limited personnel with necessary expertise: – work on career pipeline – collaborate routinely 

with industry

3 Stronger online educational materials aimed at teaching computer science students materials 

fundamentals – incentives / amplification for blog posts?

3 Practical co-training for student of computer science and materials to teach them to be effective 

cross-disciplinary collaborators. Capstone programs?

3 Educate operators of instruments on widely used software

1 Remove administrative barriers to train materials experts in coding

1 To understand what is AI, it is recommended to start one application

1 Best Practice Guide

0 Need for crystallographic coursework outside of the academic department – summer school?

Cultivating a Multidisciplinary Workforce — Workshop participants clearly articulate a de-

sire for a future workforce that has expertise in both their core chosen discipline (e.g., ma-

terials engineering, mechanical engineering) and core topics related to ML and AI. While 

an increasing number of universities are evolving their degree programs to support this 

combination of expertise, this will not benefit the existing workforce. Additionally, they in-

dicated a need to develop programs and resources specifically targeting the existing work-

force. Topics related to core knowledge and workforce development were discussed in 

workshops organized by The Minerals, Metals & Materials Society (TMS)[55, 56].

Learning from Existing Resources — Workshop participants also spoke on key content of 

educational materials and resources. First and foremost, they noted that AI/ML should 

not be treated as a black box. Secondly, they indicated a need to elucidate known pitfalls. 

Known pitfalls are in the literature, but they are difficult for inexperienced practitioners to 

find. If known pitfalls are not widely recognized, new adopters may repeat known mistakes, 

waste their valuable time, and ultimately become frustrated.

3.5.2. Software Development and Sustainability

Workshop participants highlighted a number of issues related to the development and sus-

tainability of software. Much of the algorithm development is occurring in an academic 

research environment and the pathways to production software are plagued with many 

challenges. Research software is highly decentralized and often poorly documented, mak-

ing it challenging for industrial users to discover and reuse. Further, industrial developers 

have little incentive to assume the responsibility of maintenance and support for open-

source software they might otherwise incorporate into or enable integration with their 

products. The cards within this category are shown in Tables 25-27.
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Table 25. Goal note cards for Software Development and Sustainability

Votes Content

6 How to make automated refinement coding resistant to software changes and updates or chang-

ing industry standards / updates

Table 26. Challenge note cards for Software Development and Sustainability

Votes Content

7 Need to build new technologies on existing programs rather than write more new programs

6 Too many programming languages

4 Lack of Software Testing in Peer Review

2 How to overcome coding challenges with new software adoption? (needing to constantly re-

write)

2 Need simple UI to train or add new information to an AI model

2 The evolution of computer hardware should be taken into account when an app (AI) is devel-

oped.

1 Hard to commercialize research code (licenses, quality)

0 How to code entries in open-source software to classify entries to be used in quantitative data 

consistently

0 Much of open-source is written for a particular application and is not carried through to a 

reusable library or tool. Incentives + funding needed.

0 The evolution of ML framework changes rapidly. That means that any software will be old 

rapidly too.

0 Software support for broken user code not sustainable with current business model. Difficult 

to clearly set expectations for supported features.

Table 27. Potential Solution for Software Development and Sustainability

Votes Content

10 Sustainability Models for Open-Source

3 Need for ongoing support mechanisms for software, not just initial development of open-source 

deliverable.

3 More clear support for software projects LAMMPS, Bluesky , etc. instead of funding them ini-

tially through science based proposals

3 Build on existing software solutions! – Widely adopted standards – Curated list of software – 

Fostering collaboration – Educate funding agencies on steady software support – Career ad-

vancement for software devs

3 Simplify Use: Incentivize use of code, which encourages reuse for new tech and encourages 

user-focused design

0 Remove administrative preferences for software types which are not compatible or not relevant 

to materials problems

0 The frameworks at the present are enough to start an AI application

Workshop participants noted that the current state of the machine learning software for 

XRD applications consists of numerous open-source code packages that might be imple-

mented in hundreds of example code notebooks. The open-source nature of these code 
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bases does have the strong advantage of being transparent in the analysis steps, impart-

ing traceability and reproducibility of results, and allowing for open review and correction 

of the code. However, the decentralized state of open-source code bases for XRD analysis 

does raise concerns for industrial applications, namely, the discovery, stability, and respon-

sibility of these code bases. We note that a recent strategic planning workshop hosted by 

the MGI Foundation[57] placed a specific emphasis on open-source software[58].

Sustaining Scientific Code — Workshop participants noted that open-source code bases 

are decentralized and disparately distributed. It can be difficult to discover the relevant al-

gorithms with the latest updates, corrections, or improvements. One group may develop 

the initial algorithm and host it on a code repository, and an entirely separate group may 

modify that code and then host it on their own repository. Overall, there is a lack of a 

sustainability model for most open-source software within this community. Many tools 

are developed by graduate students or postdocs and not necessarily maintained in the 

long-term. They noted the need for a business model that is capable of elevating select 

algorithms developed in academia into robust and sustainable software packages. They 

noted that instrument vendors may have difficulty traversing the current state of this soft-

ware landscape, thus hindering their ability to implement it with vendor’s products.

Managing Dependencies — Workshop participants also discussed concerns about the sus-

tainability of software dependencies. Any particular open-source code base for XRD analy-

sis may be built on a foundation of other open-source dependencies. These dependencies 

can be many layers deep. If one of the open-source dependencies implements a change 

to a feature, that update may have unintended consequences as the change propagates 

through the chain of packages that depend on it. As such it can be daunting for industrial 

applications to rely on such open-source packages without assurances of the stability of 

the foundation. Modern version tracking and code containers can go some way to improve 

this situation.

Containerization — Code containers allow for the exact version state of all of the depen-

dencies to be not only saved and archived but also allow for the distribution and implemen-

tation of that code environment. These code containers, therefore, enable reproducibility 

and longer-term stability of open-source algorithms. However, code containers do not 

guarantee the long-term support of the code base. For example, one dependency may im-

plement a major change that requires a significant effort to re-write the packages that rely 

on it. While code containers archive the state of the code environment, freezing it in a state 

that will function long-term, they do not address the effort required to stay up-to-date as 

improvements or corrections are made or future compatibility. The same could also be 

said of proprietary code development, it is perhaps more pronounced in the open-source 

community.

Liability Concerns — Workshop participants expressed concerns about who is responsible 

for the code packages. Industrial instrument vendors have a liability to their customers to 

ensure that any analysis software they provide produces accurate results. With the advent 
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and increasing popularity of machine learning algorithms, and deep learning algorithms in 

particular, there are few guarantees of the performance. It can sometimes be obfuscated 

as to how a particular deep learning model was trained – what data was used for train-

ing, for testing, and what training protocol was used. Even if the training data is provided, 

it can be a non-trivial task just to determine if a new point is within the training distri-

bution and, therefore, the model is interpolating or outside that distribution where the 

model must extrapolate. Deep learning models are notoriously poor at extrapolating and 

can provide spurious predictions outside of the training set distribution. Furthermore, ob-

taining meaningful uncertainties on the predictions of deep learning models is an area of 

active research that has not seen wide adoption in the materials community. Instrument 

vendors are, therefore, justifiably hesitant to implement such open-source deep learning 

algorithms if they cannot assure their end-users that the code will not confidently make 

incorrect predictions.

Pairing this concern over liability with the industrial incentive to maintain a competitive 

advantage makes instrument vendors reluctant to provide external programmatic control 

(e.g., APIs) of their instruments. Enabling external programmatic control might open new 

liabilities (or even the perception of liabilities) were anything to go awry downstream of 

that programmatic control. Additionally, if software that interacts with their API changes 

in a way that makes API communications fail, they could be liable to deal with such failures, 

even if just to maintain good customer relations. Furthermore, instrument vendors have 

historically sought a competitive advantage not only from the hardware of the instrument 

but also through in-house on-board proprietary analysis software. That incentive is at odds 

with end-users seeking to autonomize their laboratories – end users that may want to 

implement their own analysis algorithms, trained on their own databases, to solve their 

particular research problems.

Paths Forward for Scientific Software — There are several pathways that could be fol-

lowed to address each of these concerns. For example, the community might focus on 

developing a suite of tests to score the performance of new algorithms and models un-

der different use conditions. For exmaple, an algorithm that seeks to predict the space 

group of a material from a powder XRD pattern might be tested on materials with space 

groups that were excluded from the training set. This would aid in the quantification of the 

accuracy and robustness of the predictions by the models. Scored algorithms could then 

be hosted on a curated repository. To ensure robustness, this repository should also host 

not only the training and test data but also archive and communicate the exact training 

protocols that were used. When also paired with code containers this repository would 

also enable the reproducibility and longevity of the algorithms. Such curation and scoring 

might encourage the popularity of the models, which in turn might encourage their long-

term support. Developing such a repository would require the input and consensus of the 

XRD community and could, therefore, be the output of a working group of a consortium 

in the field.
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3.5.3. Culture Change, Intellectual Property, and Economic Considerations

The economic and intellectual property landscape of the materials science and engineering 

community makes the development of a sustainable ecosystem of interoperable solutions 

challenging. The use of intellectual property rights associated with software and data for-

mats generated by commercial instrument vendors makes implementation of these tools 

and data into autonomous pipelines challenging. Conversely, end-users are reluctant to 

share their proprietary data to improve analysis models. To overcome these barriers work-

shop participants highlighted the need for a clear value proposition for instrument vendors 

and other service providers to move towards more interoperable and open models. Work-

shop participants highlighted a divide between industry and academia in the incentives 

and constraints around adopting new methodologies and the publication of data. The 

cards within this category are shown in Tables 28-30.

Table 28. Goal note cards for Culture Change, Intellectual Property, and Economic 

Considerations

Votes Content

4 What criteria should factor into the decisions on automation level? Need a quantitative frame-

work for investment.

4 Work within government regulations

3 Identify decision-making points -> are there points in a process that one wouldn’t want auto-

mated?

2 Utilization of data for plant costs combining results & characteristics of final product. Cost / 

benefit modeling with upfront

1 Cost benefit of AI/ML vs current state

1 ML Systems can have high upfront data costs so good communication between technical staff 

and decision-makers is needed

0 What level of utilization would make it worth investing in-house or using a user facility?

0 Improve Compliance: – Enabling social change to encourage adoption – Simplifying use – easier 

to comply than not
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Table 29. Challenge note cards for Culture Change, Intellectual Property, and Economic 

Considerations

Votes Content

4 Data plumbing and DevOps is an expensive distraction

4 Modes of collaboration to bring AI/ML to sensitive data

4 IT Security is a concern for industry data

4 Better incentive structure need for service-oriented infrastructure development

3 No one is funded to make good data

3 Regulatory + SOP inertia. Need a strategy to validate, verify, and accept new methods if they 

are superior.

2 Human experts are a challenge to AI decision until the learn how to cooperate

2 Barrier motivation for adoption, proper usage, and maintenance of new software and systems

2 Incremental Adoption: Technology evolves more quickly than the applications they are meant 

to address. Mapping/porting legacy data, analysis, is impossible

2 Synchrotron-Benchtop Divide, Academia-Industry Divide. Industry does not have synchrotron 

access.

2 Autonomous labs are expensive. How to get economy of scale and lower cost?

2 Sustainable growth in self-driving laboratories

1 Lack of Customer Demand

1 Standard, e.g. ASTM, prohibit new methods being adopted

1 How do we optimize the automation we have to compete with AI

0 How to maintain consistent and comparable data with new software / given customer needs / 

demands (/ methods)

0 Internal SOPs in industry make effort to adopt new methods prohibitive

0 Non-technical: ID administration and regulatory restrictions

0 Customer-focused development model is needed to advance data and operation in a way that 

does not affect stability of day-to-day scientific operations

0 Federal funding for both labs, university, and industry should include useful, service-oriented 

work in the support of science. At present, we have too many large innovative projects with 

low impact.

0 Need to work around restrictions on the use of programs, apps, languages that store and use 

proprietary or confidential data

0 How long should a measurement be for it to be worthwhile to automate?

0 High risk for tool vendors: Accuracy and Safety

0 Risk Management for vendors and for end-users

0 Liability for AI analysis results

0 Safety Risks: Radiation and Mechanical Movement

0 Inflated Expectations for AI

0 Less than 1 % of customers need a flexible programming interface. More demand is needed to 

make OEM investment viable

0 Balance between: Open-Source Software may not correct for certain artifacts and Proprietary 

Software may obfuscate raw data

0 Large Facility (e.g. EPICS, Bluesky) vs. Small Lab (e.g., Bespoke API)
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Table 30. Potential Solution for Culture Change, Intellectual Property, and Economic 

Considerations

Votes Content

9 IP (intellectual property) rights are a major blocker for industry collaboration with universities.

6 Encourage funding for translational research collaborating with industry and academia

5 Academia lacks ideas about business basics, and a sense of what topics are of general interest.

5 User Facility Model for Autonomous Systems

3 Identify the customer: Who is going to use the results and what are they trying to accomplish?

3 Make Computational Materials Science a commercially viable entity – what is the value propo-

sition?

2 Sell software integration with machine automation

0 Basic infrastructure work is really important and needs dedicated funding and support. Not all 

funding should be focused on step changes.

0 Volume H and other resources exist – make them more approachable and advocate for practi-

tioners to use it

0 Understand Needs in the Smart Lab

Value Proposition — Workshop participants indicated that industry stakeholders must 

see a clear value proposition and path to a return on investment if data-driven and au-

tonomous methods are to be adopted. This requirement makes adoption quite challeng-

ing as multiple actors in the supply chain contribute to the development and optimization 

of a new material. When a company is developing a new material, they often rely on: (1) 

laboratory instruments produced by another company, (2) data management systems pro-

duced by another company, and (3) AI/ML platforms produced by another company. This 

means the adoption of autonomous or on-the-fly data-driven methodologies requires co-

operation and standards across many actors within the supply chain.

Academic-Industry Divide — Workshop participants also noted a number of issues causing 

a divide between academia (where novel data-driven methodologies are often developed) 

and industry where they will ultimately be used to solve real-world problems. Industry and 

academia are driven by different incentive structures, which can inhibit technology trans-

fer. The software aspects of this challenge are discussed in the next section. There is also a 

divide in hardware where academia and national labs have the funds to build and assem-

ble customized laboratory equipment. The research and development involved in creating 

autonomous laboratories in academia and national laboratories is not necessarily lowering 

the costs and barriers to entry for industry to do the same. Thus, industry would be faced 

with the same startup costs. Workshop participants highlighted a desire for economies of 

scale and lessons learned in hardware development to be broadly shared.

Intellectual Property Issues — Some of these issues can be addressed if industry collab-

orates directly with academia, but workshop participants noted that intellectual prop-

erty (IP) concerns are a major issue when setting up collaborations with academic insti-

tutions. Academia’s mission to generate public knowledge and publish in scholarly jour-

nals is at odds with industry’s mission to have a competitive advantage. Some partici-
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pants noted that funding for transitional research can be helpful while others suggested 

a user facility model. The user facility model could also help academic and industrial re-

searchers clearly separate the concerns of public contributions (e.g., open-source software 

and equipment designs) from proprietary problems (e.g., materials discovery for specific 

companies), where open-source platforms can also be used for both proprietary and open 

science. Workshop participants also noted regulatory compliance and IT security require-

ments, which may be less cumbersome in academia.

3.5.4. Convening and Coordination

Workshop participants highlighted the need for new convening and coordinating efforts, 

such as working groups and consortia. Expanded participation in working groups will be 

an important mechanism to make progress on specific opportunities identified during the 

workshop. The cards within this category are shown in Tables 31-33.

Table 31. Goal note cards for Convening and Coordination

Votes Content

4 Wholistic adoption / integration

3 Data Consumption: Who needs the results?

0 Incentive mechanism engagement of community/data owner to share data

Table 32. Challenge note cards for Convening and Coordination

Votes Content

3 Involvement of instrument vendors in discussion on programs and standards

3 Standardization of interfaces requires cooperation between instrument manufactures and users

3 Need community engagement around existing standards (CIF) to extend it for new functionality

3 Communication across fields (HTE, instrumentation, industry) – educational content – confer-

ence symposia

3 How to build multidisciplinary teams, need AI, HPC, UX, Domain (science) experts

2 End-users are not connected to industry needs or artifacts

2 Need to introduce industry, in particular, manufacturers who cater to industry, to programs, 

apps, and languages that will work with their software.

1 Too much fragmentation and parallel development – it is not possible to keep up with all the 

different frameworks and tools

1 Data and automation infrastructure development needs to be organized as a community level 

effort to avoid unsustainable duplication of work. Needs to integrate existing technology 

(Bluesky)

0 Every customer having their own particular solution is the worst possible situation for instru-

ment vendors
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Table 33. Potential Solution for Convening and Coordination

Votes Content

10 Consortia for databases + models

3 Increase collaboration between manufacturers and developers

3 Form dedicated working groups for priority problems

1 Look at the OME & OPTIMADE example of vendor participation

1 Hackathons for dark data

1 Hackathons & Coordination for Software Projects

0 Larger workshop with more practitioners

0 New Working Groups for Data/Control Interface Standards

Consortia — Workshop participants expressed considerable interest in forming a consor-

tia. While details were not discussed, there are many successful examples of public-private 

cooperation. On a smaller scale, examples such as the NIST Flow Cytometry Standards 

Consortium show how consortia can be focused around a measurement technique. On a 

larger scale, the numerous Manufacturing USA institutes have tackled a number of impor-

tant problems. Several cards in various categories mentioned funding and perhaps some 

funding will be required to overcome barriers that have plagued the community for some 

time.

Gaining Momentum — Workshop participants enthusiastically supported this workshop, 

which highlighted the critical role of instrument vendors. Where many previous workshops 

overlooked this stakeholder, this workshop placed them centerstage. Workshop partici-

pants suggested that NIST and ICDD continue and expand communication and collabora-

tion between instrument vendors and AI developers.

New Working Groups — Workshop participants highlighted the need to establish new 

working groups. This was highlighted in general terms and specifically to address FAIR for 

data, models, and tools. In the domain of experimental data, examples such as the Open 

Microscopy Environment (OME) data model and the NeXus Data Format for neutron, X-ray, 

and muon science are successful examples.
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4. Summary and Outlook

This report presents the findings of the Autonomous Methodologies for Accelerating X-ray 

Measurements Workshop, which was hosted on 17-18 October 2023 at ICDD headquarters 

in Newtown Square, Pennsylvania. The facilitated sessions generated 322 cards, which 

consisted of 83 goals, 164 challenges, and 75 possible solutions.

All 322 cards were listed in Tables 4-33, which were interpreted through the context of: 

(1) data and metadata, (2) physical infrastructure, (3) algorithm and model development, 

and (4) community engagement. The most up-voted cards listed in Tables 1-3 demon-

strated a clear consensus on the most important challenges and opportunities to address 

in the community. In order to address these, stakeholders within industry, government, 

and academia should establish new partnerships and devise actionable plans going for-

ward. Our interpretation of the findings of this workshop suggests that action plans should 

be developed for the following future desired outcomes within the community:

1. FAIRness of XRD and other Experimental Data — The community achieves wide 

adoption of a consensus-based specification for data and metadata. This consensus-

based specification provides a rich plurality of metadata fields to enable wide reuse 

of data and metadata. This consensus-based specification enjoys wide adoption 

across instrument vendors and software providers.

2. Programmatic Control and Administration of XRD and other Experimental Equip-

ment — There is wide adoption of a consensus-based specification for protocols and 

semantics for the programmatic control and administration of experimental instru-

ments. This consensus-based specification provides an extendable mechanism for 

instruments to enumerate and describe the available operations and parameters for 

controlling and administering the instrument. This consensus-based specification 

enjoys wide adoption across instrument vendors and software providers.

3. Comprehensive Datasets for Phase Identification and Quantitative Analysis — Avail-

able data for training data-driven methodologies covers far more real-world use 

cases. For example, labeled data would cover situations of diverse measurement 

quality, sample preparation quality, and diverse chemistry and processing condi-

tions.

4. Robust Tools for Phase Identification, Quantitative Analysis, and Autonomous Lab-

oratories — Operators of autonomous laboratories and other laboratory equipment 

have the ability to leverage a plethora of robust and well-documented tools for au-

tonomous laboratories, phase identification, quantitative analysis, and other labo-

ratory activities. Open-source and for-profit providers coexist in delivering and sup-

porting high-quality software.

5. Vibrant Marketplace for Autonomous Laboratory Equipment and Services — It is 

possible to affordably procure a wide variety of equipment to build an autonomous 
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laboratory. There are a number of industry-lead standards that enable diverse com-

ponents from different vendors to easily plug and play.

6. Workforce Equipped for the Autonomous Laboratory — Next-generation and current-

generation workforce have a plethora of mechanisms to acquire skills and expertise 

in leveraging autonomous labs and data-driven methodologies in the laboratory.

We hope this report stimulates action within the community. We recommend that the 

community organize future workshops to develop consensus-based tactical action plans 

for the desired states described above. Many of these issues are complex and longstand-

ing and cannot be solved without broad perspectives and participation from all applicable 

sectors of industry, government, and academia.
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Appendix A. Acronyms

AE — Autonomous Experimentation

AI — Artificial Intelligence

API — Application Programming Interface.

CEC — Cation Exchange Capacity

CIF — Crystallographic Information File

DOE — Department of Energy

ELN — Electronic Laboratory Notebook

ETL — Extract Transform Load

FAIR — Findable, Accessible, Interoperable, and Reusable

FTNIR — Fourier Transform Near-Infrared Spectroscopy

GIXRD — Grazing Incidence X-ray Diffraction

HEDM — High Energy X-ray Diffraction Microscopy

HPC — High Performance Computing

HTE — High Throughput Experimentation

HTP — High Throughput

ICDD — International Centre for Diffraction Data

ICME — Integrated Computational Materials Engineering

ID — Identification

IP — Intellectual Property

IT — Information Technology

IUCR — International Union of Crystallography

JSON — JavaScript Object Notation

JSON-LD — JavaScript Object Notation for Linked Data

KG — Knowledge Graph

LAMMPS — Large-scale Atomic/Molecular Massively Parallel Simulator

LLM — Large Language Model

MAE — Mean Absolute Error
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MDI — Materials Data Infrastructure

MGI — Materials Genome Initiative

ML — Machine Learning

NIR — Near Infrared spectroscopy

NIST — National Institute of Standards and Technology

NMR — Nuclear Magnetic Resonance

OME — Open Microscopy Environment

OPTIMADE — Open Databases Integration for Materials Design

PONCKS — Partial Or No Known Crystal Structure

PXRD — Powder X-ray Diffraction

QA — Quality Assurance

QC — Quality Control

QPA — Quantitative Phase Analysis

REST — REpresentational State Transfer.

RIR — Reference Intensity Ratio

SOP — Standard Operating Procedure

SRM — Standard Reference Material

TEM — Transmission Electron Microscopy

UQ — Uncertainty Quantification

UX — User Experience

XCT — X-ray Computed Tomography

XML — Extensible Markup Language

XRD — X-ray Diffraction

XRR — X-ray Reflectivity

XRF — X-ray Fluorescence

XRPD — X-ray Powder Diffraction
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Appendix B. Data Availability

Photographs of all easel boards and extracted note card data is available for download:

Trautt, Zachary T., McDannald, Austin S., DeCost, Brian L., Joress, Howie L. (2024), Work-

shop Data on Autonomous Methodologies for Accelerating X-ray Measurements, National 

Institute of Standards and Technology, https://doi.org/10.18434/mds2-3498
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