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Abstract

Mass spectrometry (MS) is an analytic tool for measuring mass-to-charge ratios of molecules 

or molecular fragments. It is often used to identify and classify compounds. A mass spec-

trometer measures the mass of molecules and produces a signal proportional to the num-

ber detected fragments, thus, intensity can be interpreted as a function of mass-to-charge. 

One objective in mass spectrometry is distinguishing compounds using their measured 

mass spectra. In this technical report we describe the mathematical machinery required 

to compute a new similarity measure posed in a Hilbert space.
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1. Section 1

Mass spectrometry (MS) is an analytic tool for measuring mass-to-charge ratios of molecules 

or molecular fragments. It is often used to identify and classify compounds. A mass spec-

trometer measures the mass of molecules and produces a signal proportional to the num-

ber detected fragments, thus, intensity can be interpreted as a function of mass-to-charge. 

Typically, one is interested in the peak structure in this signal [1, 2] and one objective in 

mass spectrometry is distinguishing compounds using their measured mass spectra.

A centroided mass spectrum, say m, is typically represented as ordered pairs of n positive

real-valued scalars, {(x1,y1),(x2,y2) . . .(xn,yn)} in which the first coordinate is the mass-

to-charge ratio, and the second coordinate is the relative signal intensity. In practice, these 

relative intensities are most often determined by scaling the raw intensities ỹi by the max-

imum value of ỹi. The point in the spectrum in which this maximum occurs is called the

base peak. When scaled this way, the relative intensity of the base peak most often re-

mains 1 from measurement to measurement. For that reason, we chose to normalize with 

respect to the 2-norm. More specifically,

yi =
ỹi√

∑
n
j=1 ỹ2

j

While replicate measurements of the same compound or substance should be similar, they 

are never expected to be identical. Structurally similar compounds may produce very sim-

ilar mass spectra, which can make distinguishing them extremely difficult.

A commonly employed, quantitative method for determining similarity between mass spec-

tra is the cosine similarity measure in Rn, also known as the dot product method [3],[4].

This is done by identifying the mass spectra of two compounds as vectors in Rn, say vm
and vs. The cosine similarity is computed by evaluating the cosine of the angle between

them. There is no loss of generality to assume the vectors are of the same length, though 

in practice they may not be. The vectors vm and vs are determined by discretizing the x-

axis, or mass-to-charge ratio values, into sub-intervals or bins Ik where k = 1,2, · · · ,n, and

it is standard to form the bins Ik of uniform width.

The vector vm is determined by the total relative signal intensity detected in each bin. More

precisely, we define mi = {(x,y) ∈ m : x ∈ Ii} to be the subset of spectra in m to occur in

bin Ii and we define the ith component of vm by

(vm)i = ∑
(x,y)∈mi

y. (1)
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Fig. 1. Left: Replicate measurements of methamphetamine (a1 and a2). Due to 

significant noise, not every peak is representative of a molecule or molecular fragment.

Right: Methamphetamine vs. phentermine (a1 and b).

In the case that mi is empty, (vm)i = 0. In the same way, the vector vs is defined by the 

mass spectrum s and the cosine similarity c(vs,vm) between vs and vm defined by

c(vs,vm) = cos(θvs,vm) =
vs · vm

‖vs‖2‖vm‖2
. (2)

The cosine similarity measure is often employed because it is computationally inexpensive 

and it has been shown to be reliable in many applications [3]. However, in chemical identi-

fication, difficulties often arise when using this measure [5]. One such issue is miss-binning 

of spectra. It is possible for two associated peaks from two different mass spectra to be 

placed into different bins between replicate measurements. Many times this is due to poor 

calibration of the mass spectrometer, or poor selection of bin edges. Since cosine similarity 

is a measure of orthogonality, this means two replicate measurements of the same sub-

stance could be deemed to be dissimilar as they will have very low cosine similarity, [3],[4].

The main issue with the cosine similarity measure is its failure to distinguish certain pairs 

of structurally similar compounds. Measurement-to-measurement variations are inves-

tigated where structurally similar compounds produce similar mass spectra. Metham-

phetamine and phentermine are two structurally similar stimulants that are both con-

trolled substances. Figure 1 shows a mass spectrum for phentermine in blue and two 

replicate mass spectra for methamphetamine in red. After binning, vectors a1,a2 ∈ Rn

correspond to replicate mass spectra of methamphetamine and b ∈ Rn for phentermine. 

The cosine similarity between pairs a1,a2 and a1,b are

c(a1,a2) = 0.9946 , c(a1,b) = 0.9973, (3)

which fails to distinguish methamphetamine from phentermine given only their mass spec-

tra.
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We recently explored incorporating measurement-to-measurement variability to improve 

the discriminability of near identical mass spectra of two structurally similar but unique 

compounds [6]. In this paper, we expand upon and generalize the preliminary work of 

consensus mass spectra [6],[7],[8],[9],[10], showing that one can think of the statistics ac-

quired through replicate mass spectra as functions in a Hilbert space.

By utilizing replicate mass spectra, a collection of statistical parameters, say M, can be dis-

covered related to the measurement m. Using these parameters, a mathematical model 

fM  can be defined for the underlying distribution from which m is sampled. The collection 

of statistical parameters, M, can be referred to as a spectral statistic. In general, the func-

tion model fM  will be an element of some appropriate Hilbert space, say H. Using these 

function models, one can define the generalized cosine similarity measure φ(M,S) in H
between spectral statistics M and S by

φ(M,S) = cos(θ fM , fS) =
〈 fM, fS〉H

‖ fM‖H‖ fS‖H
. (4)

Here, θ fM , fS  is the angle between fM  and fS in H, and will be compared to the standard 

cosine similarity measure c in Rn for pairs of structurally similar compounds.

Mass spectra generally fall into one of two types: High resolution and low resolution. High 

resolution mass spectra, are such that variation in the mass-to-charge ratios are recorded 

to high precision, unlike their low resolution counterpart. This gives rise to two distinct 

spectra statistics M: High dimensional consensus (HDC) spectra for high resolution mass 

spectra and discretized high dimensional consensus (dHDC) spectra for low resolution. 

These two types of spectral statistics lead to different Hilbert spaces in which the func-

tion model fM  exists. For this reason, it is natural to treat these two cases separately, but 

the objective for each case is the same: to generate a spectral statistic in which a func-

tion model can be defined, and use the cosine similarity between these function models 

to determine the similarity between spectral statistics.

2. High Resolution Mass Spectra

A high resolution mass spectrum is measured with an instrument that records mass-to-

charge ratios and relative intensity values with high precision, allowing one to detect vari-

ance in both x and y values across replicate measurements. Therefore, it is natural to 

imagine each peak in a mass spectrum being sampled from a two dimensional probability 

distribution. In doing so, statistical parameters in two dimensions for each peak can be 

computed, and the collection of peak statistics forms an HDC spectrum. Each peak statis-

tic Pi in an HDC spectrum M gives rise to a two dimensional probability distribution fPi

in L2(R2). In turn, M can be identified as the linear combination fM =
n

∑
i=1

ai fPi  of these 
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probability distributions in H = L2(R2). A similarity measure between HDC spectra M and 

S can then be defined by the cosine similarity between fM  and fS in H.

2.1. Peak and Spectral Statistics

Let m1,m2, · · · ,mN  be N replicate mass spectra for a single compound where each mass 

spectrum mi is a collection of points in R2. Lengths of these spectra may vary depending 

on i, but we will assume they are all the same size. We denote p1 as the peak of greatest 

relative intensity among all the replicate mass spectra. The peak from each spectrum mi
that is closest to peak p1 in Euclidean distance can easily be determined, and from this one 

can form the set of peaks S1 = {p1,1, p1,2, · · · , p1,N}, where p1, j is the peak from spectrum 

m j. Here, p1,i = p1 since p1 ∈ mi. Thus S1 consists of the replicate measurements of peak 

p1 when grouped this way.

Once the set S1 has been determined, these peaks can be removed from the spectra 

m1,m2, · · · ,mN . Repeating this process with the newly defined spectra m1,m2, · · · ,mN , 

the peak p2 and the set S2 = {p2,1, p2,2, · · · , p2,N} are defined in the same fashion. Thus

S j = {p j,1, p j,2, · · · , p j,N}, (5)

where p j,k is the peak in mk closest to peak p j in Euclidean distance after removing peaks 

p1,k, p2,k, · · · p j−1,k from the set mk. The peaks p1, p2, · · · , pn are referred to as prominent 

peaks.

Determining an appropriate or desirbale value of n, or equivalently, how many promi-

nent peaks p1, p2, · · · , pn should be considered when constructing sets S1,S2, · · · ,Sn can 

be a challenge. In the analysis presented here, 20 prominent peaks are used, but in gen-

eral the largest n peaks can be equal to the size of the smallest of the replicate spectra 

m1,m2, · · · ,mN . One seeks to maximize n such that S j, for any j, does not contain peaks 

that appear due exclusively to measurement noise. In essence, S j is the set of replicate 

measurements of prominent peak p j, thus the sample mean p̄ j = ( p̄x, j, p̄y, j) and the sam-

ple standard deviation sp j =
(
spx, j ,spy, j

)
 of S j yield important information about the lo-

cation and variance of prominent peak p j. The peak statistic Pj is then defined by the 

4-tuple,

Pj = (p̄x, j, p̄y, j,spx, j ,spy, j), (6)

and the collection M of n peak statistics

M = {P1,P2, · · · ,Pn} (7)

is the HDC mass spectrum of m1,m2, · · · ,mN  using n prominent peaks [6].
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Fig. 2. Measured 60V spectra of three replicates for methamphetamine together with the 

sets S j for the top 8 largest prominent peaks for methamphetamine for m/z 90 to m/z 95.

2.2. Peak Similarity with Peak Statistics

A peak statistic P = (p̄x, p̄y,spx ,spy) can be identified with the 2D normal probability dis-

tribution

fP(x,y) =
1

2πspxspy

e
− 1

2

[(
x−p̄x
spx

)2
+
(

y−p̄y
spy

)2
]
. (8)

Similarly, a peak statistic Q = (q̄x, q̄y,sqx ,sqy) can be identified with

fQ(x,y) =
1

2πsqxsqy

e
− 1

2

[(
x−q̄x
sqx

)2
+
(

y−q̄y
sqy

)2
]
. (9)

A natural way to determine the similarity between peak statistics P and Q is by computing 

the cosine similarity between fp and fq in the space L2(R2) [6]. The inner product of this 

space is given by

〈 fP, fQ〉L2(R2) =
∫∫
R2

fP(x,y) fQ(x,y) dy dx. (10)
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Fig. 3. Left: Peak statistics P and Q with mean and 1 standard deviation in x and y
directions. Red Point: (p̄x, p̄y), Green Point: (q̄x, q̄y). Right: Plot of probability 

distributions fP(x,y) and fQ(x,y).
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Therefore, the norm ‖ fP‖L2(R2) is given by

‖ fP‖L2(R2) =
√

〈 fP, fP〉L2(R2) =

√√√√∫∫
R2

fP(x,y)2 dy dx. (11)

The cosine of the angle between fP and fQ in L2(R2) can be written,

cos(θ fP, fQ) =
〈 fP, fQ〉L2(R2)

‖ fP‖L2(R2)‖ fQ‖L2(R2)

=

∫∫
R2

fP(x,y) fQ(x,y) dy dx

√√√√∫∫
R2

fP(x,y)2 dy dx

√√√√∫∫
R2

fQ(x,y)2 dy dx

.

Here, θ fP, fQ  is the angle between fP and fQ, and cos(θ fP, fQ) is computed exactly by the 

formula

cos(θ fP, fQ) =

√√√√ 4spxsqxspysqy(
s2

px
+ s2

qx

)(
s2

py
+ s2

qy

)e
− 1

2

( p̄x−q̄x√
s2px+s2qx

)2

+

(
p̄y−q̄y√
s2py+s2qy

)2

. (12)

Separating this formula into x and y components, yields

cos(θ fP, fQ) =

√ 2spxsqx

s2
px
+ s2

qx

e
− 1

2

(
p̄x−q̄x√
s2px+s2qx

)2
√ 2spysqy

s2
py
+ s2

qy

e
− 1

2

(
p̄y−q̄y√
s2py+s2qy

)2 . (13)

The similarity measure between two peak statistics P and Q, denoted by θ(P,Q), is given 

by the formula

θ(P,Q) = cos(θ fP, fQ), (14)

takes on a value between 0 and 1. If fP and fQ are orthogonal in L2(R2), θ(P,Q) = 0, 

θ(P,Q) ≈ 0 if fP and fQ nearly orthogonal and if fP and fQ are scalar multiples, then 

θ(P,Q) = 1. Using the similarity measure θ , the similarity between function models fM
and fS, can be defined as linear combinations in H, for HDC mass spectra M and S.

7
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2.3. Similarity between HDC Spectra

Consider M = {P1,P2, · · · ,PnM} and S = {Q1,Q2, · · · ,QnS}, both HDC spectra. For each 

peak statistic Pi = (p̄x,i, p̄y,i,spx,i,spy,i), define fPi ∈ L2(R2) by

fPi(x,y) =
1

√
πspx,ispy,i

e
− 1

2

[(
x−p̄x,i
spx,i

)2
+

(
y−p̄y,i
spy,i

)2
]
. (15)

The scalar-valued function fPi  is similar to what was defined in Section 2.2 by equation (8), 

but differs in that it is normalized in L2(R2). Similarly for Q j = (q̄x, j, q̄y, j,sqx, j ,sqy, j) one can 

define

fQ j(x,y) =
1

√
πsqx, jsqy, j

e
− 1

2

[(
x−q̄x, j
sqx, j

)2
+

(
y−q̄y, j
sqy, j

)2
]
. (16)

Since fPi  and fQ j  are normalized in L2(R2),

〈 fPi, fQ j〉L2(R2) =
〈 fPi, fQ j〉L2(R2)

‖ fPi‖L2(R2)‖ fQ j‖L2(R2)

= θ(Pi,Q j). (17)

If fM  and fS are defined as linear combinations of fPi  and fQ j  respectively, each weighted 

by the mean relative peak intensities p̄y,i and q̄y, j, then

fM =
nM

∑
i=1

p̄y,i fPi , fS =
nS

∑
j=1

q̄y, j fQ j . (18)

One can define the similarity φ(M,S) between HDC spectra M and S to be the cosine sim-

ilarity between fM  and fS in H = L2(R2) yielding

φ(M,S) = cos(θ fM , fS) =
〈 fM, fS〉H

‖ fM‖H‖ fS‖H
, (19)

where, θ fM , fS  is the angle between fM  and fS in H. To compute equation (19), it is advan-

tageous to first compute 〈 fM, fS〉H ,

〈 fM, fS〉H =

〈
nM

∑
i=1

p̄y,i fPi,
nS

∑
j=1

q̄y, j fQ j

〉
H

=
nM

∑
i=1

nS

∑
j=1

p̄y,iq̄y, j〈 fPi, fQ j〉H

=
nM

∑
i=1

nS

∑
j=1

p̄y,iq̄y, jθ(Pi,Q j).

By a similar calculation,

‖ fM‖2
H = 〈 fM, fM〉H =

nM

∑
i=1

nM

∑
j=1

p̄y,i p̄y, jθ(Pi,Pj).

8
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Putting these results together, one arrives at the formula

φ(M,S) =
〈 fM, fS〉H

‖ fM‖H‖ fS‖H
(20)

=

nM

∑
i=1

nS

∑
j=1

p̄y,iq̄y, jθ(Pi,Q j)√√√√ nM

∑
i=1

nM

∑
j=1

p̄y,i p̄y, jθ(Pi,Pj)

√√√√ nS

∑
i=1

nS

∑
j=1

q̄y,iq̄y, jθ(Qi,Q j)

. (21)

2.4. Peak Matching with HDC Spectra

Let M = {P1,P2, · · · ,PnM} be an HDC mass spectrum such that the peak statistics Pi are 

well separated, that is

δ =

 p̄x,i − p̄x, j√
s2

px,i
+ s2

px, j

2

+

 p̄y,i − p̄y, j√
s2

py,i
+ s2

py, j

2

(22)

is larger than a prescribed tolerance, say D, when i 6= j. Therefore, for two distinct peak 

statistics Pi and Pj,

θ(Pi,Pj) =

√√√√ 4spxsqxspysqy(
s2

px
+ s2

qx

)(
s2

py
+ s2

qy

)e
− 1

2

( p̄x−q̄x√
s2px+s2qx

)2

+

(
p̄y−q̄y√
s2py+s2qy

)2


≤ e−
D
2 ≈ 0.

Therefore,

nM

∑
i=1

(p̄y,i)
2
θ(Pi,Pi)≈

nM

∑
i=1

nS

∑
j=1

p̄y,iq̄y, jθ(Pi,Q j),

and because θ(Pi,Pi) = 1 for each i,

‖p̄y‖2
2 =

n

∑
i=1

p̄2
y,i =

nM

∑
i=1

p̄2
y,iθ(Pi,Pi).

Here, p̄y is the vector in RnM  containing the average relative intensities for each prominent 

peak pi. More precisely,

(p̄y)i = p̄y,i , for i = 1,2, · · · ,nM.

9
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When the HDC mass spectra M and S are similar to each other, the peak statistics Q j from 

S are similar to those Pi from M. From this it is fair to assume that for a given Pi1  from M, 

there is a Q j1  from S such that θ(Pi1 ,Q j1)≈ 1, so

‖ fPi1
− fQ j1

‖2
H = 〈 fPi1

, fPi1
〉H −2〈 fPi1

, fQ j1
〉H + 〈 fQ j1

, fQ j1
〉H ≈ 0.

From this it can be concluded that for any i 6= i1,

θ(Q j1,Pi) = 〈 fQi1
, fPi〉H = 〈 fQi1

− fPi1
, fPi〉H + 〈 fPi1

, fPi〉H

≤ ‖ fQi1
− fPi1

‖H‖ fPi‖H +
∣∣∣〈 fPi1

, fPi〉H

∣∣∣≈ 0.

In this way, it follows that for a given peak Pi1  from M, there is a peak Q j1  in S such that

θ(Pi1,Q j1)≈ 1 and θ(Pi,Q j1)≈ 0 for i 6= i1.

By matching peaks appropriately, the peak pairs (Pik ,Qik) can be determined and

n

∑
k=1

p̄y,ik q̄y, jkθ(Pik ,Q jk)≈
nM

∑
i=1

nS

∑
j=1

p̄y,iq̄y, jθ(Pi,Q j).

Here, n is less than or equal to min(nM,nS), leading to the approximation for θ(M,S):

θ(M,S)≈

n

∑
k=1

p̄y,ik q̄y, jkθ(Pik ,Q jk)

‖py‖2‖qy‖2
. (23)

In this case, p̄y and q̄y are determined by

(p̄y)k = p̄y,ik , (q̄y)k = q̄y, jk . (24)

In most cases, equation (23) is a good approximation for θ(M,S) due to the high mea-

surement precision of mass-to-charge ratios in mass spectrometry. Because of this, it is 

expected that each distinct prominent peak pi will have small sample standard deviation 

spx,i . Hence, when pi is distinct from p j, the value of δ  in (22) will be large. When M and S
are similar, the optimal pairing (Pik ,Q jk) of peak statistics is made apparent and a greedy 

algorithm can be employed, beginning with the peak statistics of highest relative intensity 

[6].

3. Low Resolution Mass Spectra

In low resolution mass spectra, the mass-to-charge ratio values are reported with low pre-

cision, usually to one decimal place or an integer value. It is natural to identify low resolu-

tion mass spectra with vectors in Rn using the same discretization as the cosine similarity 
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method in Rn. These resulting vectors are called spectral vectors or binned spectra. Uti-

lizing replicate measurements of mass spectra, statistical parameters of a spectral vector, 

of length n, can be computed. Here, n is the number of subintervals used to discretize the 

spectral vector/mass spectra. It is reasonable to refer to the pair of n dimensional vec-

tors that form these parameters, as a discretized high dimensional consensus (dHDC) mass 

spectrum of dimension n. A dHDC mass spectrum U  of dimension n gives rise then to an 

underlying distribution fU  in the Hilbert space [L2(R)]n = L2(R)×L2(R)×·· ·×L2(R). A 

similarity measure can then be defined between dHDC mass spectra U  and V  by using the 

cosine similarity between fU  and fV  in H.

Let u1,u2, · · · ,uN ∈ Rn be N spectral vectors that are constructed from discretizing repli-

cate low resolution mass spectra. Define the n dimensional dHDC mass spectrum U ∈Rn×2

by

U = (ū,su), (25)

where, ū ∈ Rn and su ∈ Rn are the sample mean and sample standard deviation, respec-

tively, of u1,u2, · · · ,uN . The ith row of U , (ūi,(su)i), therefore contains the statistical pa-

rameters of the relative signal intensity observed over the ith subinterval. The value of this 

intensity can be modeled by a one-dimensional probability distribution, for example,

gi
U(x) =

1
sui

√
2π

e
− 1

2

(
x−ūi
sui

)2

. (26)

Normalizing this distribution in L2(R) yields,

f i
U(x) =

1√
sui

√
π

e
− 1

2

(
x−ūi
sui

)2

. (27)

Similarly, if V ∈ Rn×2 is the dHDC mass spectrum from spectral vectors v1,v2, · · · ,vN , the 

ith row of V , (v̄i,(sv)i), gives rise to the scaled distribution

f i
V (x) =

1√
svi

√
π

e
− 1

2

(
x−v̄i
svi

)2

. (28)

The similarity between component i statistics Ui,∗ and Vi,∗ is determined by the cosine of 

the angle between f i
U  and f i

V  in L2(R) and is given by

cos(θ f i
U , f i

V
) =

〈 f i
U , f i

V 〉L2(R)

‖ f i
U‖L2(R)‖ f i

V‖L2(R)
= 〈 f i

U , f i
V 〉L2(R) =

∫
∞

−∞

f i
U(x) f i

V (x) dx

=

√
2suisvi

s2
ui
+ s2

vi

e
− 1

2

(
ūi−v̄i√
s2ui+s2vi

)2

,
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Fig. 4. Left: Artificial example of a discrete consensus mass spectrum with 4 peaks. Right:

The same discrete consensus mass spectrum with scaled probability distributions f i
U  for 

each bin i.
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where θ f i
U , f i

V
 is the angle between f i

U  and f i
V  in L2(R).

One can identify n dimensional dHDC mass spectra in the Hilbert space H = [L2(R)]n, 

where for f ∈ H,

f = ( f1, f2, · · · , fn) , fi ∈ L2(R).

In this way, for f ,g ∈ H, the inner product 〈 f ,g〉H  is defined by

〈 f ,g〉H =
n

∑
i=1

〈 fi,gi〉L2(R). (29)

For a dHDC mass spectrum U  of dimension n, the function model, fU , can be defined by

fU = (ū1 f 1
U , ū2 f 2

U , · · · , ūn f n
U). (30)

Unlike HDC mass spectra, dHDC mass spectra represent discretized mass spectra, so each 

subinterval corresponds to a one-dimensional slice of the Cartesian plane. In this way, 

fU  represents the collection of scaled probability distributions for the relative intensity of 

mass spectra observed over each subinterval, with subintervals considered independently. 

Here it is useful to define the similarity measure ψ(U,V ) to be the cosine of the angle 

between fU  and fV  in H, thus,

ψ(U,V ) = cos(θ fU , fV ) =
〈 fU , fV 〉H

‖ fU‖H‖ fV‖H
.

The numerator of this expression can be computed,

〈 fU , fV 〉H =
n

∑
i=1

〈ūi f i
U , v̄i f i

V 〉L2(R) =
n

∑
i=1

ūiv̄i

√
2suisvi

s2
ui
+ s2

vi

e
− 1

2

(
ūi−v̄i√
s2ui+s2vi

)2

,

and the denominator,

‖ fU‖2
H =

n

∑
i=1

〈ūi f i
U , ūi f i

U〉L2(R) =
n

∑
i=1

ū2
i = ‖ū‖2

2.

Gathering these two things yields the formula,

ψ(U,V ) =

n

∑
i=1

ūiv̄i

√
2suisvi

s2
ui
+ s2

vi

e
− 1

2

(
ūi−v̄i√
s2ui+s2vi

)2

‖ū‖2‖v̄‖2
. (31)

Equation (31) is similar to the cosine similarity c(ū, v̄) between ū and v̄ given by equation

(2). But with similarity measure ψ , each term ūiv̄i is weighted by the similarity between f i
U

and f i
V  in L2(R). In this way, the similarity measure ψ  between dHDC mass spectra takes 

into account the statistical nature of mass spectra over each subinterval that is novel to 

the traditional methods that use consensus mass spectra [7],[8],[9],[10] [6].

13



NIST TN 2297

July 2024

Table 1. Table of 7 pairs of structurally similar compounds.

 Pairs of Similar Compounds Considered

 1  Cotinine , Serotonin

 2  Phenibut , MDA

 3  MMDPPA , Methylone

 4  5-methoxy MET , Norfentanyl

 5  Cocaine , Scopolamine

 6  HU-210 , Testosterone Isocaprionate

 7  Methamphetamine, Phentermine

4. Numerical Results

Using the generalized cosine similarity method in the spaces L2(R2) and [L2(R)]n, 7 pairs 

of structurally similar compounds with similar spectra are considered. For each of these 

compounds, listed in Table 1, 30 measurements of mass spectra were collected at a frag-

mentation intensity of 30V using direct analysis in real time mass spectrometry (DART-MS), 

[11]. These mass spectra are high resolution, so both methods of generalized cosine simi-

larity are applicable.

Using these replicate measurements, both HDC and dHDC mass spectra for each com-

pound were generated. Replicate spectral statistics were computed using 15 of the 30 

replicate spectra. For each pair of compounds, HDC spectra, quantities Ai and B j are gen-

erated. By taking random subsets of 15 replicates from the collection of 30, 50 pairs of 

HDC spectra were produced in which each pair of HDC spectra were fashioned using dis-

joint sets of replicate mass spectra.

To assess the performance of the similarity measure φ , a comparison was made between 

the maximum values of φ(Ai,B j) to the minimum values of φ(Ai,A j) and φ(Bi,B j). These 

values are recorded in Table 2. In this way, it can be determined if the similarity measure φ

accurately distinguishes HDC spectra Ai and B j from its replicates, or not. According to the 

min-max test developed by Moorthy and Sisco [12], the similarity measure φ  successfully 

and accurately distinguishes every pair of structurally similar compounds.

Similarly, the same analysis can be performed, with similarity measure ψ  when comparing 

dHDC spectra Ui and Vj. Here, Ui and Vj are replicate dHDC spectra constructed from each 

compound in the pair respectively. For each compound, 50 pairs of dHDC spectra were 

generated using random subsets of 15 replicate spectra from the total of 30 in the same 

way the HDC spectra were. The maximum similarity between ψ(Ui,Vj) was then com-

pared to the minimum similarity of ψ(Ui,U j) and ψ(Vi,Vj). These values are displayed in 

Table 3.
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Table 2. Table comparing the maximum of φ(Ai,B j) to the minimum of φ(Ai,A j) and 

φ(Bi,B j). Here, Ai and B j are replicate HDC spectra i and j coming from each compound 

respectively. Pairs of minimum and maximum values that fail the min-max test are 

displayed in bold.

 Min and Max

 values φ

 Maximum Value

φ(Ai,B j)
 Minimum Value

φ(Ai,A j) and φ(Bi,B j)
 Cotinine and Serotonin  6.7575e-05  0.8380

 Phenibut and MDA  0.0088  0.9287

 MMDPA and Methylone  0.0010  0.6108

 5-methoxy MET and Norfentanyl  0.9331  0.9491

 Cocaine and Scopolamine  0.2435  0.6165

 HU-210 and Testosterone  0.1538  0.6450

 Methamphetamine and Phentermine  0.0150  0.3403

Table 3. Table comparing the maximum of ψ(Ui,Vj) to the minimum of ψ(Ui,U j) and 

ψ(Vi,Vj). Here, Ui and Vj are replicate dHDC spectra i and j coming from each 

compound respectively. Pairs of minimum and maximum values that fail the min-max 

test are displayed in bold.

 Min and Max

 values ψ

 Maximum Value

ψ(Ui,Vj)
 Minimum Value

ψ(Ui,U j) and ψ(Vi,Vj)
 Cotinine and Serotonin  8.1079e-04  0.8079

 Phenibut and MDA  0.0096  0.8396

 MMDPA and Methylone  0.1326  0.4053

 5-methoxy MET and Norfentanyl  0.9347  0.8714

 Cocaine and Scopolamine  0.2933  0.5693

 HU-210 and Testosterone  0.2022  0.5935

 Methamphetamine and Phentermine  0.2458  0.4187
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Table 4. Table comparing the maximum of c(ai,b j) to the minimum of c(ai,a j) and 

c(bi,b j). Pairs of minimum and maximum values that fail the min-max test are displayed 

in bold.

 Min and Max values

 Cosine Similarity Rn
 Maximum Value

c(ai,b j)
 Minimum Value

c(ai,a j) and c(bi,b j)
 Cotinine and Serotonin  0.3067  0.9414

 Phenibut and MDA  0.4424  0.7438

 MMDPA and Methylone  0.4803  0.3404

 5-methoxy MET and Norfentanyl  0.9700  0.9545

 Cocaine and Scopolamine  0.9344  0.8339

 HU-210 and Testosterone  0.9754  0.6962

 Methamphetamine and Phentermine  0.4956  0.7490

A comparison was then made between the performance of the traditional cosine simi-

larity method using the dot product, and the new method proposed here. For a given 

pair of compounds from Table 1, the similarity of replicate measurements a1,a2, · · · ,a30
of one compound was compared to replicate measurements b1,b2, · · · ,b30 of the other 

compound. Here, the mass spectra ai and b j are identified as vectors in Rn using classi-

cal binning with a bin width of 0.1 and with the last bin from 899.9m/z to 900m/z, thus 

n = 9000. The maximum cosine similarity score between any two ai and b j coming from 

the two sets of replicate measurements [12], was then considered. This similarity is deter-

mined by the formula

c(ai,b j) = cos(θai,b j) =
ai ·b j

‖ai‖2‖b j‖2
.

Here, θai,b j  is the angle between ai and b j in Rn. To assess the performance of the cosine 

similarity measure, the maximum of c(ai,b j) was compared to the minimum of c(ai,a j)
and c(bi,b j). Results are displayed in Table 4. According to the min-max test, the cosine 

similarity measure frequently fails to accurately distinguish structurally similar compounds.

The similarity measures φ  and ψ  between HDC and dHDC spectra respectively outperform 

the classical cosine similarity method for discriminating structurally similar compounds. 

Computationally, the three methods are comparable. What is being leveraged, however, 

in the similarity measures φ  and ψ , is the additional information coming from HDC and 

dHDC spectra.

5. Discussion and Conclusion

The use of replicate mass spectra to understand and utilize the statistical properties of 

measuring a mass spectrum is a novel idea in which a mass spectrum is replaced by the 

underlying probability distribution in which it is sampled from [6]. In this way, mass spectra 
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m and s are identified with the probability models fM  and fS that incorporate the statisti-

cal behavior of measuring m and s, respectively. The concept of cosine similarity between 

mass spectra m and s can then be generalized to the cosine similarity between fM  and fS
in an appropriate Hilbert space.

The mass spectral statistics M and S generated from replicate measurements of m and s
respectively determine the probability models fM  and fS and two types of spectral statis-

tics; HDC mass spectra for high resolution mass spectra and dHDC mass spectra for low 

resolution have been presented. In both cases, the position and variance of points in a 

mass spectrum are approximated leading to what appears to be an improved method of 

compound identification. To generate HDC mass spectra, points between replicate mass 

spectra were grouped according to Euclidean distance, where each group corresponds to 

replicate measurements of a particular peak in the spectrum. Using the statistical prop-

erties of each prominent peak, a regrouping could be performed to improve grouping of 

points as could various choices of distance in lieu of Euclidean distance. By utilizing other 

statistical parameters such as higher order moments, it may be possible to generate a prob-

ability model fM  that more accurately models the underlying distribution of mass spectral 

measurements for a mass spectrum.

Once the spectra statistics M and S have been collected, the similarity between M and 

S is determined by the cosine similarity between probability models fM  and fS in an ap-

propriate Hilbert space H. For HDC mass spectra and dHDC mass spectra, it appears natu-

ral to consider fM  and fS as collections of normal distributions in the spaces H = L2(R2)
and H = [L2(R)]n. Though these choices for fM, fS, and H  yielded desirable results com-

putationally, other choices for these objects may be more satisfactory depending on the 

spectral statistics M and S.

The use of replicate measurements to better understand the mass spectrum of a substance 

is an idea that is gaining popularity [6],[7],[8],[9],[10]. This method has been recently im-

plemented [13] and employed to discriminate between terpene isomers [14]. The concept 

of identifying a mass spectrum with the probability distribution is a novel idea that has not 

been explored and may benefit from more advanced mathematical analysis.
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