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Challenges to extracting spatial 
information about double P 
dopants in Si from STM images
Piotr T. Różański 1, Garnett W. Bryant 2 & Michał Zieliński 1*

The design and implementation of dopant-based silicon nanoscale devices rely heavily on knowing 
precisely the locations of phosphorous dopants in their host crystal. One potential solution combines 
scanning tunneling microscopy (STM) imaging with atomistic tight-binding simulations to reverse-
engineer dopant coordinates. This work shows that such an approach may not be straightforwardly 
extended to double-dopant systems. We find that the ground (quasi-molecular) state of a pair of 
coupled phosphorous dopants often cannot be fully explained by the linear combination of single-
dopant ground states. Although the contributions from excited single-dopant states are relatively 
small, they can lead to ambiguity in determining individual dopant positions from a multi-dopant 
STM image. To overcome that, we exploit knowledge about dopant-pair wave functions and propose a 
simple yet effective scheme for finding double-dopant positions based on STM images.
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Precise spatial placement of phosphorous dopants in silicon is essential for fabricating atom-scale quantum 
devices in silicon with potential applications in quantum computing1 and quantum simulation2. Dopant place-
ment is achieved via hydrogen-based lithography, allowing dopants to be located in small patches of dangling 
(unpassivated) bonds, formed on the silicon surface with a scanning tunneling microscope (STM), and then 
covered by a protective silicon overgrowth. At the current stage of technology, neither the dopant position 
nor the number of dopants in a patch can routinely be controlled precisely enough. Detailed knowledge of the 
dopant positions in a fabricated device is necessary to understand the connection between device performance 
and dopant arrangement when aiming at systems of dopants, coupled dopants, and dopant clusters in chains 
and arrays2,3. As demonstrated in recent works4–7, the position of a single buried P dopant close to a Si surface 
can be determined from the structure of its STM image4. However, modeling this structure is far from trivial 
and often ambiguous8, even for a single dopant. Moreover, STM imaging of buried dopants needs to be extended 
to study multi-dopant structures1,2, presenting further challenges. Such STM image simulations, obtained with 
a machine learning approach5, have been presented recently. A more fundamental understanding of imaging 
multi-dopants is needed.

Double dopants are the simplest multi-dopant structures. In fabricated device structures, double-dopant 
structures in various unintended spatial configurations are expected to occur when another specific double-
dopant structure is the intended target and even when single dopants and multi(more than two)-dopants are the 
intended targets. Coupled, P dopant pairs buried in Si are a solid-state analog to diatomic molecules9. This should 
provide a context for building a better understanding. However, unlike real diatomic molecules, double-dopant 
artificial molecules in Si will be fabricated with different separations and placement in the host crystal lattice. 
There will be many versions of the same double-dopant pair that must be imaged and identified. Moreover, the 
simple picture of a double dopant as a diatomic molecule is further complicated by the valley physics of the Si 
host, leading to strong oscillatory behavior of exchange integrals that couple the pair9.

Here, we present the results of atomistic calculations for nearly two thousand random placements of P 
dopant pairs in the Si host. The quasi-molecular wave function of the double dopant is then decomposed in the 
basis of wave functions of the two single-dopants that make up the pair. This analysis reveals that the simple 
picture of a double-dopant ground state understood in terms of a symmetric combination of uncoupled-dopant 
ground-state wave functions often fails, especially, but not only, for closely spaced dopants, due to non-negligible 
contributions from higher excited, single-dopant levels. This picture gets further complicated for double-dopant 
systems near the Si surface, as in fabricated, experimental devices. This, in turn, leads to a situation where the 
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STM-image simulation based on combining contributions from the images of two single-dopants fails to describe 
a double-dopant STM image. Thus, when using a simple model involving only the single-dopant ground states, 
the complicated quasi-molecular character of double-dopant states produces ambiguity in determining multi-
dopant positions from STM images. However, when we extend the model to account for the first excited, dopant 
states, combined with additional optimizations discussed in the text, we overcome this problem. We propose a 
conceptually simple and computationally efficient yet effective algorithm to determine double-dopant positions 
from their STM images.

Results
To understand how well the double-dopant STM image can be represented by a combination of the STM images 
of the two dopants, we first investigate how well the double-dopant ground-state wave function can be repre-
sented by the symmetric combination of the ground-state wave functions of the two (uncoupled) single-dopants. 
In Fig. 1, we show the double-dopant ground state decomposition into single (uncoupled) P dopant, orthogonal-
ized, wave function components as a function of the inter-dopant separation distance (see “Methods”) for 561 
different, random realizations of the double dopant corresponding to different spatial placements of P dopants 
buried in the Si host. The double-dopant ground-state wave function |�0� is strongly dominated by contribu-
tions from ground states of separate dopant wave functions ( ��0|ϕ

′
1�

2 and ��0|ψ
′
1�

2 , where ϕ′
1 and ψ ′

1 are the 
single-dopant contributions and ′  indicates the orthogonalized single dopant wave functions) altogether reaching 
close to 100% for large inter-dopant separations. Such a result strongly supports understanding a double-dopant 
wave function in terms of a simple combination of two ground-state dopant orbitals of A symmetry (e1 points 
in Fig. 1).

However, for reduced inter-dopant distance, contributions from these lowest components get reduced, typi-
cally varying from 75% to 95% for distances between 6 to 10 lattice constatns (l.c.) (i.e., 3.25 to 5.43 nm). At this 
range of inter-dopant distances, a non-negligible contribution from excited single-dopant states T 2 (e2, e3, and 
e4) and E (e5, e6) starts to emerge, reaching over 20% in several cases.

We note that the contributions from the 2s manifold of single-dopant states (e7…e12) do not play a significant 
role in any considered cases, although these states are important for many-body properties of dopant10,11, and 
are studied here for completeness.

For even lower inter-dopant spacing (below 3 l.c. or 1.6 nm), single-dopant ground-state contributions can 
be as low as 65-70%. Moreover, the decomposition of the quasi-molecular wave function into all considered 
(e1…e12) components reaches only about 95% of the total wave function. Therefore, even higher (3s, 4s, …) 
single-dopant multiplets would be necessary to decompose the double-dopant wave function into single-dopant 
states completely. However, the possibility of performing such analysis was constrained by the intrinsic limits of 
eigenvector solvers available to us (see the “Methods”).

To investigate the problem further, Figs. 2, and  3 show the charge densities for an inter-dopant distance of 
approximately 3.3 nm (6 l.c.), corresponding to the two extreme cases for overlap with the linear combination 
of single-dopant ground states of 80% and 90% displayed in Fig. 1 for that dopant separation. In the top row of 

Figure 1.   Expansion of a double-dopant representation in the basis obtained by orthogonalizing 
representations of the first n eigenstates of both dopants (2n eigenstates in total). The horizontal axis represents 
the distance between dopants in lattice constants. The vertical axis represents the squared coefficients of 
the linear combination that best matches the double-dopant representation. The representation used here 
corresponds directly to the tight-binding coefficients. Both dopants are placed far away from the surface, near 
the center of the computational box. Although we show expansion in the basis of all considered (12) single 
dopant states, the results are dominated by e1 and e2–e6 states.



3

Vol.:(0123456789)

Scientific Reports |        (2024) 14:18062  | https://doi.org/10.1038/s41598-024-67903-z

www.nature.com/scientificreports/

each figure, the charge densities of the individual uncoupled dopants are shown. The ground state A 1 (e1), T 2 (e2, 
e3, e4), and E (e5, e6) states are shown. The T 2 and E states have similar densities. The A 1 states are less spread 
out. These figures also compare the full tight-binding (TB) calculation involving two coupled dopants ( �12 ) with 
the model assuming a linear combination of individual ground states of dopants only ( �LC = αϕ1 + βψ1 , with 
α and β obtained by fitting to a full model). Notably, both cases (Figs. 2 and  3) have very similar inter-dopant 
spacing (3.27 vs. 3.31 nm), differing by only 0.4 Å (related to a different dopant placement within the unit cell). 
In Fig. 3, the simplified model produces a small residual difference between the two approaches. However, Fig. 2 
shows notable differences both in 1D (middle row) and in 2D (bottom row) plots. The difference is manifested 
in both the charge density plots in the region between the dopants and in the (squared modulus) wave-function 
difference between the two models. The susceptibility of various properties9 of a double-dopant system to small 
changes of atomic position is a known phenomenon resulting from the complicated multi-valley character of 

Figure 2.   (Top row) Total charge on planes perpendicular to the [110] direction plotted as a one-dimensional 
charge density along the [110] line for the six lowest states of a system with two uncoupled single-dopants 
placed at (−4.5,−1.0, 0.5)l.c. and (−0.75, 3.75,−0.25)l.c.. This one-dimensional charge density is found by 
summing the squares of LCAO coefficients over all atomic sites on each plane perpendicular to a line in the 
[110] direction. Each dopant sits on one of these planes. The plane that passes through the midpoint between 
the dopants is chosen to be the plane at zero. (Middle row) One-dimensional charge density of a double-dopant 
ground state |�12|

2 from a full tight-binding calculation compared with idealized linear combination |�LC |
2 

involving single-dopant ground states only; dopants are separated by 3.31 nm, |�LC |
2 matches only 80% of 

|�12|
2 . (Bottom row) Comparison of |�12|

2 (left) and |�LC |
2 (right) shown as a 2D plot. The two-dimensional 

densities at points P in the plane are the charges summed over all sites on the [001] line passing through P and 
shown at P on the (001) plane.
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dopant wave-functions. Here, it manifests itself by leading to the more complicated character of the quasi-
molecular double-dopant wave function. In some cases, the double-dopant wavefunction can be well described 
by a linear combination ( αϕ1 + βψ2 ) of single dopant functions. This approximation is, however, inadequate in 
other cases (with nearly the same inter-dopant separation). In both figures, the difference between the charge 
densities of the simplified model and the full TB calculation is small at the dopant sites. However, the (square-
modulus) wave-function difference can be significant at the dopant sites, again showing the complicated valley 
effects on the wave-function interference. Fig. 2 illustrates that even a relatively large (80%) contribution of single 
ground dopant states to a full double-dopant wave-function may produce a notably different outcome should 
other terms be neglected.

This will profoundly impact understanding double-dopant STM pictures, as discussed later. More generally, 
this means that higher energy single-dopant states must be accounted for in the modeling on equal footing with 

Figure 3.   (Top row) One-dimensional charge densities plotted along the [100] line for the six lowest states of 
the system of two uncoupled single-dopants located at (5.00, 2.00, 1.00)l.c, and (−0.75, 0.75,−0.25)l.c.. The one-
dimensional densities are shown along the [100] direction as the sum of the charge on each plane perpendicular 
to [100]. (Middle row) The one-dimensional charge density of a double-dopant ground state |�12|

2 from a full 
tight-binding calculation compared with idealized linear combination |�LC |

2 involving single-dopant ground 
states only; dopants are again separated by very similar distance (3.27 nm), but one of the dopants is placed 
differently within the unit cell position compared to Fig. 2, |�LC |

2 now matches over 90% of |�12|
2 . (Bottom 

row) Comparison of |�12|
2 and |�LC |

2 shown as a 2D plot illustrating different spatial alignment of double 
dopants compared to Fig. 2, but with very similar inter-dopant distance. Again, the two-dimensional densities 
are the charges summed over all atomic sites along the [001] line through the point and shown on the (001) 
plane.
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single-dopant ground states. The importance of higher single-dopant levels is also apparent in many-body studies 
of dopant charging energies10,11. The importance of excited single-dopant states is also consistent with the recent 
work of one of our coauthors12 that presented calculations of dopant pairs, including inter-orbital couplings of 
excited single-dopants. The knowledge of coupling between various pairs of orbitals will also be essential for 
constructing multi-orbital models (such as a Hubbard model) for chains and arrays of multiple donors, thus 
going far beyond the context of STM simulations.

Near‑surface dopants
The deep-buried dopant cases considered so far provide a better, more fundamental understanding of dopants 
in Si. However, in dopant-based quantum devices that STM can image, the dopants must be shallow-placed 
donors just below the surface and can be affected by surface proximity. Therefore, in Fig. 4, we repeat the analysis 
presented in Fig. 1. However, here, we performed the calculations for 1128 random placements of dopant pairs 
at most 3 l.c. (16.3 nm) below the 2× 1 (dimer) reconstructed and hydrogen-passivated Si surface.

As shown in Fig. 4, the surface substantially modifies the wave-function character of quasi-molecular double-
dopant ground states. Here, even for the large inter-dopant distance of 5 nm considered, A 1 components com-
prise from 75% to 95% of the double dopant wave function, with most results grouping between 80% and 90%. 
Moreover, because the presence of surface breaks the bulk symmetry, one of the T 2 states (e2 in Fig. 4) makes an 
important contribution, reaching up to approximately 10% to 15%. (We emphasize that states of dopants close to 
the surface no longer possess exact bulk A, T, or E symmetry.) Since this decomposition is performed with a basis 
defined by single, shallow dopants, the proximity of the surface modifies not only single-particle contributions 
to dopant states but also the basis expansion (spectral composition) of double-dopant states.

STM image relevance
From the eigenstate decomposition, we know that the largest contributions to the double-dopant quasi-molecular 
ground-state wave function typically are the A 1 terms originating from the single-dopant wave functions. Based 
on the above, one could expect that STM image simulation of a double-dopant system could be adequately recon-
structed from two single-dopant A 1 wave functions. However, Fig. 5 shows this may not necessarily be true. To 
simulate an STM image from a dopant wave function, following Chen’s13 approach, the STM image is effectively 
created as a functional of the wave function on a plane above the Si surface. STM images strongly depend on the 
orbital character of the STM4,8 tip. Specifically, the STM image is built on a plane at the tip distance from the Si 
top surface and is obtained by combining contributions for s, p, and d tip-orbitals (see the “Methods” section). In 
particular, the contribution of p and d tip orbitals can and will affect the resulting pictures significantly4,8. Here, 
we take the tip composition with a notable contribution from p and d orbitals, as this combination has been 
found in our previous work8 to reproduce very well the experimental STM image of a single dopant.

Figure 5 shows a decomposition of the double-dopant wave-function; however, using values of the STM-like 
wave function functional near the top 2D surface, which is relevant for the image construction, instead of the 3D 
wave function, as was done before. Effectively, this is a projection restricted to the 2D STM-image plane to deter-
mine the overlap relevant to the STM image. This difference is shown schematically in Fig. 6. We reiterate that, 
in Figs. 1 and  4, the dopant wave function has been projected in the basis of single dopant states. This projection 
captures the overlap everywhere. Here, in Fig. 5, we emphasize that a two-dimensional wave-function image (i.e. 
before applying absolute square in Eq. (1) from “Methods” Section) is decomposed into terms originating from 
the single dopant states capturing only the contribution from the image plane.
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Figure 4.   Linear combination analysis similar to Fig. 1, with both dopants placed close to a reconstructed and 
hydrogen-passivated Si surface.
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Comparing Figs. 4 and  5 shows that there is a broader spread in the contributions from the single-dopant 
ground states. This is especially noticeable for small dopant separation. The contribution can be almost as low as 
50% even though the sum more completely exhausts the 2D projection. The presence of tip-orbitals with non-
trivial (other than s) spatial dependence apparently further enhances the role of T 2 states and higher spectral 
components, reaching over 20% of the STM image weight in many cases. Again, this is especially true for small 
dopant separations, suggesting a contribution that limits the STM resolution.

Figure 5.   Linear combination analysis similar to Fig. 1. Here, the dopants are placed near the top hydrogen-
passivated surface of the computational box, and the values of the STM-like functional of the wave function 
(on the 2D image plane) near the top surface are used as the representation instead of the linear combination of 
dopant orbitals.

Figure 6.   Schematic representation of the analysis. The results of tight-binding calculations are converted to 
one of two representations: either coefficients of the wave function in tight-binding (linear combination of 
atomic orbitals—LCAO form) used in Figs. 1 and  4, or values of the wave function functional (see the text) on 
the top surface (the latter can be used to simulate the STM image) utilized in Fig. 5. The linear combination of 
single-dopant representations then approximates the representation of the double-dopant system.
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STM image ambiguity
The above findings profoundly affect STM image simulation, as shown in Fig. 7. The top row on the left part 
of Fig. 7 demonstrates how a double-dopant image can be created from two (a and b) separate, single-dopant 
(ground – e1) wave functions to form a simulated image (c) that matches with very high (pixel-by-pixel 92.3%) 
accuracy (see the “Methods” section for the definition of the pixel-by-pixel comparator) the STM simulation 
done with a full tight-binding calculation for the double-dopant system and shown in (d). It must be empha-
sized here that (c) was not obtained by combining STM images (a, b) of individual dopants but by combining 
underlying wave functions of individual dopants to obtain the best possible fit to a full double-dopant simulation 
(Fig. 6). Thus, this allows for the onset of complicated interference patterns that occur in Si due to its multi-
valley character.

The correct dopant positions can lead to a good match with the exact image. However, other choices for the 
dopant positions can give a better match. As shown in the bottom row of Fig. 7, one can find another erroneous, 
spatial combination of single-dopant positions (e,f) that will lead to an STM simulation (g) with even better 
pixel-by-pixel (94.4%) accuracy with respect to the double-dopant STM image (d). Importantly, the STM image 
from full TB calculations involving alternative positions bears no resemblance to (c), (d), or (g). Thus, combining 
single-dopant, ground-state wave functions into a double-dopant wave function may lead to ambiguity as it can 
produce an STM image that better matches the target picture despite the incorrect dopant positions. As shown 
by previous work5,8, dopants occupying different spatial positions can have very different STM images. This can 
be seen by comparing (a), (b), (e) and (f). However, this sensitivity to lattice position is obscured in the double 
dopant STM images found using the ground-state wave functions of the two individual dopants.

Spatial metrology of double dopants
Determining double-dopant positions from their STM images is a formidable task. Even assuming that calculated 
pictures accurately match experimental positions8, the most straightforward approach, i.e., running calculations 
for all possible cases of dopants occupying, e.g. 10 nm × 10 nm × 5 nm box, would involve approximately 25 ×103 
atoms, and thus lead to a prohibitive number of over 6 ×108 full tight-binding calculations. Recently, a solution 
utilizing machine learning has been proposed5 that reduces this complexity severely but still involves 105 full 
calculations at the training stage (although this number can be reduced using spatial symmetries). Dramatic 
efficiencies can be achieved, in terms of many fewer TB calculations if the wave functions of the individual 
dopants can be used to simulate double-dopant STM images. Even greater efficiencies could be achieved for 
imaging multi(i.e., greater than 2)-dopants. As we have shown, significant issues arise if only the ground-state 
single-dopant wave functions are used to simulate double-dopant wave functions and images. We now show 
that significant improvement in simulating double-dopant STM images with single-dopant wave functions can 
be achieved by including contributions from single-dopant excited states.

To study the problem further and aim for a practical, computationally efficient way to determine the double-
dopant position from their images, we use a fitting approach combining not only the single-dopant ground states 
(e1) but also higher (e2–e6) dopant states to obtain the best possible fit. Fig. 8 (e1) shows the efficiency of such fits 
measured as the success ratio that a fit for the correct positions also produces an STM image that best matches the 
double-dopant image. 665 randomly selected, shallowly placed, double dopant systems are studied. The dopant 
positions are randomly selected from a uniform distribution centered at the middle of the computational box to 
avoid boundary effects, with inter-dopant separations varying from 3 to 12 lattice constants, i.e., from 1.6 to 6.5 

Figure 7.   Example of an ambiguous multi-dopant configuration. The top row corresponds to dopants in their 
actual positions, (2,−1.5,−4.5) l.c., and (−0.75, 1.75,−4.25) l.c., while the bottom row references dopants in 
different positions, i.e. (0.5, 0.5,−3) l.c. and (0.75,−0.25,−5.25)l.c., for which the linear combination of wave 
functions gives a quantitatively better match to the multi-dopant STM image (on the right-hand side). The full 
TB picture for alternative dopant positions (not shown here) is very different from (c,g,d).
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nm. A threshold is used in Fig. 8 to limit the separation of double-dopants, e.g., 5 corresponds to an inter-dopant 
distance equal to or larger than five lattice constants. As shown in Fig. 8, due to problems discussed earlier, fitting 
the STM image with single dopants (e1) states is successful for only 65% of all considered cases (including small 
and large inter-dopant separations), and at most 82% for the largest separation shown on the plot.

Based on Fig. 5, we propose a simple, brute-force scheme in which one first aims to find a solution with 
single-dopant ground states (e1) only. A full tight-binding calculation verifies the result to exclude the possibility 
of finding a spurious solution discussed earlier in Fig. 7. At this stage, more than 64% of dopant positions are 
correctly resolved, consistent with earlier discussions. If no match is found with e1 states, the rest of the cases 
(i.e., 35.6%) are processed/searched with another fit, that now includes both e1 and e2 states (we note that e2 
is non-degenerate due to the presence of the reconstructed surface). Finally, a potential result is accepted (or 
rejected) by a second full tight-binding calculation.

Including the e2 state in the fitting process (at a price of a moderate increase in computational complexity), 
i.e., fitting a total 4 expansion coefficients, can be done straightforwardly because the nearby surface lifts the 
degeneracy of of the T 2 states. Adding the e2 state to the fitting leads to significantly increased efficiency reaching 
over 90% threshold for inter-dopants distances equal to 5 l.c. (2.7 nm) or more. It must be emphasized here that 
these fits are obtained without multiple tight-binding calculations performed for a double-dopant system but 
by combining only several dozen8 wave functions (pre-computed) from a single-dopant calculation. The time-
consuming double-dopant tight-binding calculation is thus performed only twice, and for validation reasons 
only (accuracy check calculation after the fitting process).

Because this is important, let’s rephrase it: we start with a target STM image of a double dopant. Next, we 
do a fit using the two e1 states to generate possible STM images. We adjust the coefficient in the simulation to 
get the best fit of the simulated image to the target. We do this for multiple possible dopant positions to get the 
best of the best fits. This gives us a best guess for the dopant positions. Next, we check with a full TB calculation 
using the best guess dopant positions. If this exact calculation for the best positions matches the target (using a 
pixel-by-pixel comparator), we call it a success. If the best guess for positions does not match, then we add the 
e2 states and repeat. We can use test cases to guide the choice of a matching criteria for success.

Such a scheme, despite the large search space, is computationally effective since it avoids multiple time-con-
suming tight-binding computations for many double-dopant pairs and should provide >90% efficiency, with only 
two full double-dopant tight-binding calculations (as well as clear information on whether it succeeded or not) 
for experimentally relevant cases of double-dopants with spacings greater than 2.7 nm. Although the inclusion 
of higher dopant states (e3, e4, e5, and e6) can somewhat improve the accuracy (especially for closely-spaced 
systems), we found it comes with prohibitive computational complexity (especially when e5 and e6 are included).

The presented algorithm can be further optimized: even with the simple fit using only e1, most mismatched 
cases are expected to lie close to the correct positions. In fact, a significant fraction of incorrectly assigned test 
cases happened when only one of the dopants was misassigned (see Supporting information). This happens, on 
average, in over 1/2 of all missed cases and in about 80% of the cases when the dopants are separated by more 
than 5 l.c. When we know that one dopant has been misassigned, our algorithm can utilize this information by 
performing secondary (including both e1 and e2) fits starting in the vicinity of the dopant wrongfully assigned 
in the simple fit, thus considerably speeding up a search. Our scheme is also much simpler than an alternative 
machine (deep) learning approach involving complicated neural networks5 and resource greedy learning process, 
although at a price of somewhat smaller efficiency.

We also note that the range of distances studied in Fig. 8 forms the biggest challenge. For even larger distances 
and (effectively) decoupled dopants, the theoretical accuracy starts to approach 100%, yet with all the limitations 
and pitfalls occurring for single dopants.8

Figure 8.   Efficiency of an inverse, position-finding approach as a function of cutoff distance for inter-dopant 
separation, e.g. ”5 l.c.” corresponds to all double-dopant pairs with five lattice-constants inter-dopant spacing 
or more. The plot has been obtained by a fitting involving dopant ground states (e1) only, as well as first excited 
(e2) and higher excited states using a scheme described in the text.
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For the smallest distance ( ≤ 2 l.c.) inter-dopant spacings, where the quasi-molecular wave functions are the 
most complicated, the search space is reduced and is relatively small. It is also further reduced substantially by 
taking into account underlying (reconstructed) lattice symmetries5 and at most 104 full TB calculations should 
be performed to build a simple library of images of closely spaced dopants that could be directly compared 
with experiment to resolve dopant positions. Although large, such a number is still smaller than the number of 
learning cases ( 105 ) necessary at the stage of neural network learning, which must handle both large and small 
inter-dopant separation. Such a library approach for closely spaced dopants could work provided problems with 
spatial metrology of single dopants8 are resolved, that is, matching theory with experiment, and provided factors 
like noise, etc., can be effectively handled.

To conclude, if an inverse approach is used to determine the positions of dopant atoms forming a double 
dopant, and such an approach is based on utilizing single-dopant ground-state wave functions, erroneous results 
can occur. This problem stems from the complicated, multi-orbital character of the double-dopant wave function. 
The accuracy of the solution can be increased significantly by adding e2 states to the modeling at a moderate 
computational cost.

Discussion
To summarize, we performed a large series of STM simulations for double phosphorous dopants in silicon using a 
state-of-the-art, empirical tight-binding approach with d-orbitals. Our model achieves high-quality STM simula-
tions for single dopants, in excellent agreement with recent theoretical and experimental works. Here, we used 
this theory to study a statistically meaningful ensemble of 1689 double dopants placed at different sites of a host 
Si lattice. We aimed to understand how the double-dopant ground state, the quasi-molecular wave function, 
can be re-expressed in terms of single-dopant wave functions. As a result, already for the buried dopant (deep 
below the Si surface), we found that the double-dopant wave function has components originating from excited 
dopant T and E 2 states. This result immediately suggests that modeling a multi-dopant system2 using a theory 
neglecting the presence of higher dopant states may be inaccurate for some cases.

This effect is even more pronounced for shallow-buried, double dopants that are affected by the presence of 
reconstructed and passivated silicon surfaces. In this case, the double-dopant wave function has up to 20% con-
tribution from single-dopant excited states. The surface modifies not only the individual dopant wave functions 
but also the expansion coefficients of the quasi-molecular ground state calculated in the basis of single-dopant 
states. The simplest approach, which uses single-dopant ground states to simulate the STM image of a double-
dopant, can fail routinely. It is possible to find incorrect solutions corresponding to erroneous positions of two 
dopants that match the double-dopant STM image better than the image obtained for the correct placement of 
two dopants. However, the image simulation can be improved, especially for distantly spaced dopants, by includ-
ing the first excited (e2) dopants states in modeling, resulting in over 90% success rate for dopants separated 
from each other by more than 5 l.c. (2.7 nm) and in a success rate of more than 80% for all dopant separations 
studied. Most of the improvements in simulating STM images and extracting dopant positions can be achieved by 
including only the e1 and e2 single-dopant states. The computationally expensive inclusion of higher states (e3-
e6) into the fitting, especially for closely spaced dopants, does not allow for reaching the 90% accuracy threshold.

Double-dopant wave functions have complicated multi-orbital character, which stems from mixing between 
ground and excited single-dopant states occupying the different sites of the double dopant. This is important for 
simulating STM images and accurately extracting dopant positions for double-dopant pairs. In other contexts, 
this further indicates the importance of carefully modeling inter-orbital hopping integrals, consistent with our 
recent work12 and using such results to build accurate Fermi-Hubbard models for carrying out analog quantum 
simulation on dopant arrays.

Methods
Tight‑binding calculations
The ground state of single and double dopants is obtained with the nearest neighbor, empirical tight-binding 
method accounting for d-orbitals14–17 with reconstructed surface-atom positions18, and with explicit surface 
passivation that accounts for the presence of hydrogen atoms19. Here, for Si we use the sp3d5 s* parametrization 
of Boykin et al.20, accounting for multi-band and multi-valley couplings. The details of the sp3d5 s* tight-binding 
calculations were discussed thoroughly in our earlier papers15,16,21–23.

The computational domain is a cubic box of 30 lattice constants (approximately 16.2 nm) in each spatial 
direction, which is large enough for the STM simulations to converge. It uses a relatively small (0.22 million) 
number of atoms in the computational box. Since we found that the STM image simulation does not depend 
on spin-orbit interaction, we neglect the spin-orbit mixing term in the Hamiltonian, allowing us to work with 
a real Hamiltonian matrix with significant benefits in terms of computational efficiency and time. Thousands 
of separate atomistic simulations were performed on a 128 CPU-core system using Jacobi-Davidson solver as 
implemented in the SLEPc/PETSc library.

Each phosphorous dopant is represented by a dynamically-screened electrostatic potential (ε(r) r)−1 with 
central-cell correction values tuned so the energy levels of the lowest six dopant bound states match the respec-
tive experimental values. We have used the dynamic dielectric screening4,24,25 model of Ref.25 with ǫ∞ = 11.4ǫ0 , 
with central-cell correction equal to −3.755 eV, reproducing the binding energy ( −45.585 meV), in excellent 
agreement with the experimental value of −45.58 meV26. We have also incorporated separate central-cell shifts 
of p and d orbital energies ( �Ep = 1.195 eV, and �Ed = 1.211 eV respectively) to reproduce better the ener-
gies of excited dopant levels, again with excellent (within several µeV) agreements with experimental values 
(T2 = −33.9 meV, E = −32.6 meV). Additionally, we accounted for strain introduced by incorporating phos-
phorus into the silicon lattice, which causes the extension of the Si-P bond by 1.7%. The effect of strain was 
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incorporated in the Hamiltonian by re-scaling the Si-P hopping matrix elements using Harrison’s law. We note, 
however, that neither the screening model nor the inclusion of strain has any visually discernible effect on 
resulting STM images. Although this leads to a different conclusion as compared to Ref.27, this should not come 
as a surprise since a static screening model with ǫ∞ = 11.4ǫ0 and without strain (with central cell correction of 
−3.689 eV, and �Ep = 1.146 eV �Ed = 1.099 eV) also provides excellent agreement with experimental dopant 
levels energies. We emphasize that in any (static or non-static) screening model, the actual choice of ǫ∞ seems to 
play a crucial role. Moreover, contrary to a model studied in Ref.28, our static screening model already provides 
a good value of a squared magnitude of the ground state wave function at the donor nuclear site |ψ(r0)|

2 equal 
to 0.495× 1030 m−3 , as compared to 0.43× 1030 m−3 given in the experiment29. Including dynamic screening 
and strain provides a result even closer to the experiment and equal to 0.466× 1030 m−3 . Finally, we note that 
allowing for a separate central-cell shift of s* orbitals (with a central cell correction of −4.418 eV, �Ep = 1.858 eV, 
�Ed = 1.874 eV, and �Es∗ = 1.839 eV) allowed us to reproduce the experimental result exactly, emphasizing 
the need for future studies to tight-binding dopant models. However, this work does not focus on modeling 
hyperfine properties. For consistency with our previous work (Ref.8), we use the dynamic screening model with 
strain but without s* optimization throughout this paper.

2D STM image simulation
For STM image simulation (as shown in Fig. 7), we have augmented the tight-binding basis4,23 with Slater-type 
orbitals (STO) to model the atomic orbitals30. We modify the s* orbital exponent, resulting in excellent agree-
ment with experimental images from Ref.4. Finally, we note that an STM image is simulated by summing up 
contributions from the STOs associated with atoms on the silicon surface and below, with a cut-off radius of 2 nm.

A single tip orbital cannot capture all features in the experimental STM image4,8. The STM image value I(r) 
from a general tip orbital and the dopant-state wave function in the imaging plane ψ(r) with contributions from 
s, p z and d z2− 1

3 r
2 tip orbitals, according to Chen’s approach13, is directly proportional to

where contributions from s, p z and d z2− 1
3 r

2 orbitals, are defined as c2s  , c2p and c2d , respectively, with c2s + c2p + c2d = 1 
and z is the vertical direction perpendicular to the surface. Parameter κ quantifying the vacuum decay of the 
Slater orbitals is assumed to have a constant value of 1.3 Å−1 = 0.013 pm−1 , in agreement with the methodology 
presented in Ref.4, and our earlier work8.

2D charge density simulation
Based on the wave function in LCAO form, i.e. ciα (where i is the index of an atom and α is the index of the orbital 
in sp3d5 s* basis set) it is possible to calculate the charge corresponding to each atom as 

∑

α c
2
iα . For strain-free 

systems analyzed in this paper (apart from the surface reconstruction effects), one can superimpose a regular 
three-dimensional grid on the diamond cubic lattice of silicon atoms11. By combining the charge correspond-
ing to the grid points along the z axis, this approach allows to calculate a two-dimensional charge density map 
without using any auxiliary orbital set, as shown in Figs. 2 and  3.

Wave function representation
Each single- or multi-dopant eigenstate can be associated with a representation. In our analysis, we will use two 
different representations. 

1.	 Tight-binding coefficients of given eigenstate. This way (used in Figs. 1, 2, 3, 4), each eigenstate is represented 
as a vector of coefficients of size equal to the number of orbitals per atom × the number of atoms. The scalar 
product is defined as with regular vectors.

2.	 Functional of the wave function on a given surface. This way (used in Figs. 5 and 7), for each eigenstate, we 
calculate the values of the wave function and its derivatives on a regular grid on a given surface perpendicular 
to the z direction. The resulting representation consists of the values of the specific functional corresponding 
to the STM tip of mixed s, p z , and d orbitals (squared coefficients of 14.6%, 72.5%, and 12.9%, respectively), 
according to Chen’s approach13. As a result, the STM image can be obtained by taking the squares of the 
representation values. The scalar product is defined as pixel-by-pixel multiplication and summation over 
the entire surface.

Both representations allow us to model eigenstates’ charge densities on two-dimensional surfaces. In representa-
tion 1, as described in section 2D charge density simulation above, atoms of the strain-free system can be overlaid 
on a regular, three-dimensional grid11 and the charge (sum of squared TB coefficients corresponding to each 
atom) summed in a direction perpendicular to a surface on which we need to visualize the charge distribution 
(bottom rows of Figs. 2 and 3). In the second representation, as described in section 2D STM image simulation, 
the charge is calculated as squared values of STM-like functional associated with Slater orbitals. The latter variant 
can be visualized on a grid of arbitrary resolution (as in Fig. 7).

Given two 2D images I(x, y) and J(x, y) corresponding to the same representation and L2-normalized 
( 
∑

(x,y) I(x, y)
2 =

∑

(x,y) J(x, y)
2 = 1 ), the accuracy, or difference between two images can be calculated using 

a pixel-by-pixel least squares comparator i.e. 
∑

(x,y)

(

I(x, y)− J(x, y)
)2.

(1)I ∝
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Contribution analysis of two‑dopant systems
Regardless of the representation chosen, one can compare the ground state of the two-dopant system with the 
eigenstates of two systems consisting of individual dopants. The problem is, since the latter comes from two sepa-
rate diagonalizations (one for each dopant position), these are not pairwise orthogonal. As a result, coefficients 
calculated as scalar products between the two-dopant ground state and single-dopant eigenstate, squared, would 
not add up to one and, therefore, would not be suitable for a contribution analysis.

Therefore, an orthogonalization scheme must be used and with this in mind, the double-dopant representa-
tion �0 can be approximated as a linear combination of n representations of each dopant

where ϕ′ and ψ ′ are Gram-Schmidt orthogonalized representations corresponding to consecutive eigenstates of 
the first and second dopant, respectively:

where ϕ′
n and ψ ′

n are re-normalized after the n-th step.
The similarity between �0 and � is then calculated as ��0|�� =

∑n
i=1 ��0|ϕ

′
i�
2
+

∑n
i=1 ��0|ψ

′
i �
2 , giving 

quantitative contributions of ψ ′
i  in the two-dopant ground state �0 . In the same way, one can calculate the 

similarity between �0 and any given pair of n-th states ϕn and ψn . The results are the same as would be obtained 
with any equivalent method, e.g., based on inverting the covariance matrix formed between all eigenstates. 
Moreover, the apparent asymmetry between ϕ and ψ in Eq. (3) does not affect the results, as we always account 
for both dopants for each n.

The resulting contributions are shown for many different spatial dopants configurations in Figs. 1 and  4 
(representation 1) as well as in Fig. 5 (representation 2).

Data availibility
The data supporting this study’s findings are available within the article. Further requests can be made to the 
corresponding author.
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