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Abstract

We develop a model of the individual term structure of inflation expectations across fore-

casting horizons. Using the Survey of Professional Forecasters, we decompose disagreement

about inflation expectations into individuals’ long-term beliefs, private information, and

public information. We find that in normal times, long-horizon disagreement is predom-

inantly driven by individuals’ long-term beliefs, while short-horizon disagreement stems

from private information. During economic downturns, heterogeneous reactions to public

information become a key driver of disagreement at all horizons. When forecasters disagree

about public information, monetary policy exhibits a delayed response and a price puzzle

emerges, underscoring the importance of anchoring inflation expectations.
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“Of course, an extended period of high goods and services inflation resulting from a
series of demand and supply shocks associated with the pandemic and the war could
lead to a rise in inflation expectations, which would make it much more difficult to
bring inflation down. That is why it has been important for monetary policy to take a
risk-management posture to defend the expectations anchor. And the evidence from
market- and survey-based measures suggests that longer-term inflation expectations
are well anchored, while year-ahead measures have recently declined but remain
elevated." — Lael Brainard (January 19, 2023)

1 Introduction

Households, firms, financial market participants, and policy makers disagree on future economic

conditions (Cornand and Hubert, 2022). This disagreement has significant implications for the

effectiveness of monetary policy and the anchoring of inflation expectation (Falck et al., 2021;

Reis, 2020; Fofana and Reis, 2024). Heterogeneity in agents’ expectations has also been central

to macroeconomic modeling, serving as a key driver of business cycle dynamics (Lorenzoni,

2009; Angeletos and La’O, 2013; Ilut and Schneider, 2014), inflation dynamics (Michael, 2002;

Mackowiak and Wiederholt, 2009), and asset pricing (Scheinkman and Xiong, 2003; Burnside

et al., 2016; Barillas and Nimark, 2017). A growing body of literature on expectation formation

has focused on disagreement and its time variation to explain departures from rational expecta-

tions and to explore the structural mechanisms underlying agents’ expectation formation (e.g.,

Andrade et al., 2016; Maćkowiak et al., 2023; Fofana and Reis, 2024).

Despite the growing interest in disagreement among economic agents, no research has yet

fully characterized the cross-sectional distribution of individual inflation expectations across

the entire path of forecasting horizons. As Fofana and Reis (2024) note, most academic studies

on expectation formation have focused primarily on short-term inflation expectations, typically

with a horizon of one year or less. However, central banks closely monitor long-term expectations

to assess how well expectations are anchored. Thus, a comprehensive understanding of the

term structure of inflation expectations is essential. Unfortunately, expectations data are often

aggregated into broad categories of forecasting horizons, leading to an incomplete picture of the

term structure.

When evaluating the extent to which monetary policy anchors inflation expectations, it is

crucial to identify the information sources driving disagreement over time and across forecasting

horizons. If short-term expectations are primarily based on forecasters’ private information or
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long-term beliefs, the effectiveness of monetary policy communication in reducing disagreement

about near-term inflation projections may be limited. Conversely, if long-term expectations

are mainly influenced by public information, effective monetary policy communication could

significantly reduce long-term disagreement and aid in anchoring inflation expectations. In

this context, it is important to understand the extent to which each information source shapes

forecasters’ projections and their disagreement across forecast horizons.

This paper makes three original contributions. First, we develop a new individual-level model

of inflation expectations across forecasting horizons, which we call the individual term-structure

of inflation expectations. This model describes a forecaster’s trajectory of inflation forecasts

across different horizons using two factors: level and slope. This approach is inspired by Nelson

and Siegel’s term structure of interest rates (Nelson and Siegel, 1987). The level reflects long-term

inflation projections, which we refer to as the long end. The slope captures the overall difference

between the long end and the current quarter’s inflation nowcast.1 We estimate the model

using Bayesian methods, applying it to forecaster-level data from the Survey of Professional

Forecasters (SPF). Although the SPF provides only a partial snapshot of a forecaster’s term

structure of inflation projections, our model is able to recover the cross-sectional distribution of

inflation expectations across all forecasting horizons at each point in time.

The estimated short- and long-term inflation expectations exhibit different dynamics. Al-

though the 6-month and 1-year ahead consensus forecasts closely track realized CPI inflation,

the 10-year ahead consensus expectation trends downward during the 1990s and stabilizes just

below 2.5% from 2000 onward. Even during the COVID-19 pandemic, the 10-year consensus

shows limited variation, rising slightly before returning to its pre-pandemic level. Although

the estimated consensus forecasts suggest well-anchored long-term inflation expectations, the

estimated disagreement across forecasting horizons reveals a more nuanced picture. Forecast-

ers exhibited greater disagreement about long-run inflation during the Great Recession and its

recovery than in the early 1990s, when inflation was estimated to have been nonstationary. In par-

ticular, during the pandemic, both the variance and skewness of long-term expectations spiked

above levels seen in the early 1990s, suggesting that expectations were weakly anchored when

measured by higher moments. Our model shows that the consensus forecast and disagreement

often yield distinct insights into the anchoring of agents’ inflation expectations.

1For the sake of parsimony, we consider the curvature only in an appendix (Appendix H), as it plays a limited role
in the observed individual-level term structure of inflation expectations.
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Second, we develop a novel dynamic factor model where the individual term structure

elements are characterized by a common component, an idiosyncratic component, and an

individual fixed effect. We provide an economic interpretation to each element by building a

noisy information model. In this structural model, a forecaster who has own long-run beliefs

observes both public and private signals when updating inflation projections. We demonstrate

that this structural model naturally aligns with the dynamic factor characterization, and captures

the key empirical results of the statistical model with a simulation exercise. Thus, we interpret

the common and idiosyncratic components as reflecting the contributions of public and private

information to the forecaster’s inflation expectations, while the individual fixed effect captures

the forecaster’s long-term beliefs.2 Unlike previous studies (e.g., Herbst and Winkler, 2021), we

allow for heterogeneous reactions to public information, which are captured by the individual

factor loadings on the common component. To the best of our knowledge, this paper is the first

to recover the distribution of sensitivity to public information across forecasters and identify the

role of public and private information in disagreement based on a formal statistical model.

We observe distinct roles for the three sources of information in contributing to disagreement

across forecasting horizons. Long-term beliefs and private information account for the majority

of disagreement in long-run and short-run expectations respectively. We also find that forecast-

ers exhibit heterogeneous reactions to public information, as evidenced by the non-degenerate

distribution of individual-level loadings on the common component. The role of public in-

formation in disagreement is small on average.3 However, during economic downturns and

periods of high inflation uncertainty, public information becomes a key driver of disagreement.

At the peak of the Great Recession, public information accounted for about half of long-term

disagreement. Similarly, during the deflation at the onset of the pandemic, public information

drove the majority of disagreement, and it contributed to about one-third of disagreement during

the subsequent period of high inflation.

Finally, we investigate the effects of each component of disagreement on the effectiveness of

monetary policy. First, we show that the Fed’s responses to recent data releases (Bauer and Swan-

son, 2023) reduce the portion of disagreement about 2-year-ahead inflation attributable to public

2Throughout the paper we will use the term long-term belief to refer to an unconditional bias in an individual’s
forecast relative to rational expectations. This bias can be interpreted as arising due to some cognitive limitation /
behavioral bias, or from the persistent effect of priors about long-run inflation dynamics as in Farmer et al. (2021).
We remain agnostic as to the source of this bias throughout our analysis.

3This result is in line with previous studies such as Patton and Timmermann (2010), Farmer et al. (2021), and
Lahiri and Sheng (2008).
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information, but not the components attributable to private information or individual long-run

means. Next, we explore how disagreement attributable to public information influences the

effectiveness of monetary policy. For this analysis, we construct a new measure, the sensitivity of

disagreement to public information, and use it to estimate the nonlinear effects of monetary

policy shocks. We find that when public information is the main source of disagreement, the

economy’s responses to monetary policy shock are delayed and a price puzzle emerges. In

contrast, when non-public information is the primary source of disagreement, monetary policy

has rapid and statistically significant stabilizing effects on the macroeconomy.

Our empirical findings have important implications for the conduct of monetary policy.

First, our approach identifies at each point in time why professional forecasters disagree about

future inflation. Second, our results suggest that at important junctures (such as the Covid

inflation), public information is a key source of disagreement and, thus, a potential contributor

to the de-anchoring of inflation. Clear communication from the monetary authority about the

macroeconomic landscape can help anchor the expectations of economic agents by reducing

their disagreement about future macroeconomic conditions. Lastly, our findings offer a new

perspective on the source of the price puzzle. Our results suggest that the sensitivity of disagree-

ment to public information contributes to delivering a price puzzle, and that this price puzzle

can be mitigated through effective expectation management by the monetary authority. We

leave further exploration of these implications for future research.

Related Literature This paper makes contributions to several strands of the literature.

The first is the literature on the aggregate term structure of inflation expectations. Aruoba

(2020) models the term structure of inflation expectations using a Nelson-Siegel yield curve

(Nelson and Siegel, 1987). Aruoba treats the level, slope, and curvature factors as latent states

and estimates them with a linear state-space model using consensus SPF and Blue Chip forecasts.

Clark et al. (2022) construct the term structure of inflation expectations and uncertainty using a

state space model in which stochastic volatility and persistent biases in forecasts are allowed.

Diebold et al. (2008) employ a Nelson-Siegel model from Diebold and Li (2006) to predict govern-

ment bond yields in the international context. To model global bond-yield dynamics, Diebold

et al. (2008) consider a dynamic factor structure, similar to our modeling scheme, but different

in that our main interest is forecaster-specific inflation expectations.

Recent studies focus on modeling individuals’ inflation expectations (e.g., Herbst and Winkler,
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2021; Crump et al., 2023; Fisher et al., 2022).4 This paper is closest to Herbst and Winkler (2021) in

that inflation forecasts across forecasting horizons are modeled and estimated at the individual

level. However, there are some key differences. First, our focus is on the term structure of

inflation expectations at the individual level, and hence we model the complete term structure

of inflation expectations from the current quarter through ten years out with flexible Laguerre

polynomials from the Nelson-Siegel model. Herbst and Winkler only model individual-level

inflation expectations over horizons up to one year out, since their goal is to characterize the

joint dynamics of various macroeconomic variables.5 Second, we compute the extent to which

public and private information account for changing disagreement about future inflation at

each forecasting horizon, with a particular emphasis on forecasters’ heterogeneous responses

to public information. These heterogeneous responses are not explicitly considered in Herbst

and Winkler (2021). Lastly, we provide a unique decomposition that summarizes the role of

long-term beliefs, public, and private information in disagreement at each point in time.

Our research directly speaks to a vast literature on disagreement. Studies on learning models

have focused on the source of disagreement. For example, Lahiri and Sheng (2008) develop a

theoretical Bayesian learning model in which experts’ forecasts are shaped by their long-term

beliefs and their interpretations of public information. This model accounts for the evolution of

both within-forecaster variability and between-forecaster disagreement in GDP projections over

various forecast horizons. Lahiri and Sheng estimate the model parameters using forecaster-level

data from seven different countries provided by Consensus Economics. Second, Patton and Tim-

mermann (2010) find that the key source of persistent disagreement stems from heterogeneity

in priors and show that the differences in opinion move countercyclically. Farmer et al. (2021)

document the importance of long-term beliefs in the formation of macroeconomic expectations

by professional forecasters. Compared to previous studies, our paper offers three distinct contri-

butions. First, we incorporate long-term beliefs, public information, and private information

into a coherent empirical framework, allowing for heterogeneous responses to public informa-

tion. Second, we estimate the contribution of each information source to individual forecasters’

4Crump et al. (2021) estimate a multivariate trend-cycle model using the universe of professional forecasts for
the U.S., and show that the multivariate model better fits the data than estimating individual univariate models on
each time series. Fisher et al. (2022) model people’s expectations of inflation using a trend-cycle decomposition and
estimate the term structure of expectations using the full panel structure of the SPF assuming agents receive private
and public signals.

5They adopt three common factors and an idiosyncratic component, and estimate the model with Bayesian
methods.
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inflation expectations using a formal statistical model with minimal a priori structure. Third, we

explicitly demonstrate how each information source contributes to the disagreement in inflation

expectations across various forecasting horizons and at each point in time.

Our paper also relates to recent studies on the interaction between monetary policy and

disagreement of economic agents. Andrade et al. (2016) provide empirical evidence for heteroge-

neous beliefs about forward guidance and analyze the effect of monetary policy in the context of

a new Keynesian model. Glas and Hartmann (2016) distinguish individual inflation uncertainty

and disagreement between forecasters, and show that overall disagreement increases during

periods of contractionary policy. Ehrmann et al. (2019) shows long-horizon time-contingent and

state-contingent forward guidance effectively reduces disagreement, while short-horizon time-

contingent forward guidance does not. Falck et al. (2021) show that a price puzzle arises in states

with high disagreement but disappears in states with low disagreement using a state-dependent

local projection. Dong et al. (2024) empirically show that inflation disagreement weakens the

power of forward guidance and conventional monetary policy and provide a structural model

where households have heterogeneous beliefs about the inflation target of central banks. Our

research differs from recent studies in that we further identify the source of disagreement and

explicitly show that disagreement attributable to public information is the component that

delays monetary-policy effects and creates the price puzzle.

Lastly, we contribute to the discussion on how to assess the anchoring of inflation expecta-

tions. Clarida (2021) mentions that the assessment of anchored long-run inflation expectations

is pivotal to outcome-based forward guidance. Bundick and Smith (2020) analyze the effect of

monetary policy on inflation expectations measured from the Michigan Survey of Consumers

and TIPS break-even rates, and find that inflation became more anchored after the announce-

ment of the inflation target in 2012. In contrast, Reis (2020) develop a parsimonious structural

model that can characterize discrepancies in inflation expectations between financial markets

and households, and find that inflation became gradually more unanchored from 2014 onwards,

which poses a trade-off in the conduct of monetary policy. Our novel empirical approach con-

tributes to the literature in two key ways: First, it demonstrates that disagreement can serve as

an independent metric for assessing anchored explanations; Second, it introduces an empirical

method to quantify the extent to which communication about public information, including

monetary policy announcements, can reduce inflation expectations and disagreement about

future inflation.
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The paper is organized as follows. Section 2 discusses the data on inflation expectations

from the Survey of Professional Forecasters. Section 3 introduces the individual-level parametric

model used for the term structure of inflation expectations. Section 4 presents the estimation

results. Section 5 introduces a noisy information model that decomposes each forecaster’s

inflation projection into contributions from long-term beliefs, private information, and public

information. Section 6 shows how to decompose disagreement about inflation expectations into

contributions from the three information sources. Section 7 analyzes the effects of disagreement

attributable to public and non-public information on the effectiveness of monetary policy.

Section 8 concludes.

2 Data: The Survey of Professional Forecasters

This section discusses inflation expectations data from the Survey of Professional Forecasters.

2.1 Notation

First, we define some notation that we will use throughout the rest of the paper. Denote the

price level at time t by Pt (in our case this will refer to the consumer price index). Let πs→t be

the continuously compounded inflation rate between time s and time t :

πs→t ≡ l og (Pt )− log (Ps). (1)

Throughout we will work with continuously compounded inflation rates because of their time-

additive properties. Define the forecast, made at time t , of the inflation rate between times r and

s, as πr→s|t . Finally, let qa−1(t ) denote the final quarter of the year prior to the year time t is in.

2.2 Definition of Forecasted Quantities

We collect data on CPI inflation forecasts from the SPF, conducted by the Federal Reserve Bank

of Philadelphia. The survey is sent out in the first month of each quarter and responses are

collected around the middle of the quarter, e.g. mid-February in Q1. Survey participants are

asked to forecast the average quarterly level of the CPI (or transformations of this quantity) at

various horizons. The SPF CPI Inflation Forecasts can be broken into 4 categories:
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• 1-period backcasts to 4-quarter ahead forecasts of annualized quarter-over-quarter CPI infla-

tion :

100×
[(

Pt+h

Pt+h−1

)4

−1

]
for h =−1, . . . ,4.

• 1 to 3-year ahead forecasts of Q4 over Q4 CPI inflation:

100×
[

Pqa−1(t )+4 j

Pqa−1(t )+4( j−1)
−1

]

for j = 1, . . . ,3.

• Forecasts of average Q4 over Q4 CPI inflation over the next 5 years:

100×
(

5∏
j=1

Pqa−1(t )+4 j

Pqa−1(t )+4( j−1)

) 1
5

−1


• Forecasts of average Q4 over Q4 CPI inflation over the next 10 years:

100×
(

10∏
j=1

Pqa−1(t )+4 j

Pqa−1(t )+4( j−1)

) 1
10

−1


The first type of forecast is what’s known as a fixed horizon forecast and the other three types

are known as fixed event forecasts. We assume that these forecasts correspond to forecasts of

continuously compounded inflation so that they line up with our model specification directly.6

That is, we assume

100×Et

[(
Pt+h

Pt+h−1

)4

−1

]
≈ 400×πt+h−1→t+h|t

100×Et

[
Pqa−1(t )+4 j

Pqa−1(t )+4( j−1)
−1

]
≈ 100×πqa−1(t )+4( j−1)→qa−1(t )+4 j |t

100×Et

(
5∏

j=1

Pqa−1(t )+4 j

Pqa−1(t )+4( j−1)

) 1
5

−1

≈ 20×πqa−1(t )→qa−1(t )+19|t

100×Et

(
10∏

j=1

Pqa−1(t )+4 j

Pqa−1(t )+4( j−1)

) 1
10

−1

≈ 10×πqa−1(t )→qa−1(t )+39|t .

6This turns out to be relatively innocuous assumption, see Aruoba (2020) for a discussion.
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Our sample begins in 1991Q4, which is the first time that forecasts of average Q4 over Q4

inflation over the subsequent ten years become available, and runs through 2023Q3. This is

necessary to be able to estimate the long-end of the term structure. Three-year ahead forecasts

of Q4 of Q4 inflation and forecasts of average Q4 over Q4 inflation over the subsequent five years

first become available in 2005Q3. We restrict our sample to forecasters who report nowcasts

to four-quarter ahead forecasts and either a 5-year or 10-year average forecast in at least one

quarter to ensure that we can identify long-run forecasts.

2.3 Properties of SPF CPI Forecasts

There are 172 unique forecasters in the data set during our sample period. In any given quarter,

there are between 28 and 53 forecasters who report a forecast and a median of 37. Forecasters

remain in the data set for between 1 and 112 quarters with a median tenure of 14 quarters (3 and

a half years).

Figure 1 displays the distribution of 1-quarter ahead forecasts and 10-year ahead forecasts.

The upper panels display the mean (which we will refer to as consensus) of the forecasts and the

projections of two individual forecasters. The upper-left panel shows 1-quarter ahead forecasts

and the upper-right panel reports 10-year ahead forecasts. The gray bars represent NBER

recessions. In the first ten to fifteen years of the sample there is a downward trend in both short-

and long-run inflation forecasts from around 4% to 2%. Short-run forecasts tend to exhibit more

time series volatility than long-run forecasts as they react more strongly to transitory shocks.

The bottom panels also show the cross-sectional standard deviation (which we will refer to as

dispersion or disagreement) of projections one quarter ahead and a 10 years ahead. Short-run

forecasts typically exhibit higher dispersion than long-run forecasts, with a notable exception

being the early 1990s.

In addition to Figure 1 which captures the aggregate properties of the SPF forecasts, we also

wish to explore how the expectations of the individual forecasters evolve over time. To this

end, Figure 2 plots the reported forecasts over all horizons of two different forecasters for three

different time periods: 1) 2007Q3, 2) 2009Q2 and 3) 2022Q3. The solid black line is the consensus,

and the dashed lines are the 5th and 95th percentiles of the distribution. The three dates reported

in the figure help illustrate the wide variety of shapes the term structure of inflation expectations

can take and how different an individual forecaster can be relative to the consensus. The levels

of forecasts, as well as the trajectories over the forecasting horizons, are all different.
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Figure 1: SPF FORECAST SUMMARY STATISTICS AND EXAMPLES

Notes: The black lines in the upper two panels show the average of inflation forecasts 1 quarter (left panel) and 10
years (right panel) ahead. The colored lines are the forecasts of two forecasters whose IDs are 107 and 122 in the
survey. The bottom two panels report the cross-sectional standard deviation of the forecasts.

Sources: SPF and authors’ calculation.

Figure 2: THREE TERM STRUCTURES OF OBSERVED SPF FORECASTS
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Notes: The left panel displays short-horizon forecasts, while the right panel displays long-horizon forecasts. The top
panels present a snapshot of SPF forecasts for 2007Q3, the middle panels show the snapshot for 2009Q2, and the
bottom panels display the snapshot for 2022Q3. The black lines capture consensus forecasts. The colored lines
capture the forecasts of two forecasters whose IDs are 107 and 122 in the survey. The dashed lines are the forecasts
at the 5th and 95th percentiles of the distribution.

Sources: SPF and authors’ calculation.
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Following Patton and Timmermann (2010), we only keep forecasters who submit 12 or more

forecasts. This allows us to have a higher degree of confidence in our dynamic factor model

decomposition. However, information loss from this treatment is not substantial, as it only

lowers the number of forecasters in a given quarter by a few people on average.

3 An Individual Term Structure of Inflation Forecasts

In this section, we specify and estimate a model to recover the complete path of inflation forecasts

over a 10-year horizon at each point in time, for all forecasters.

3.1 Model

Following Aruoba (2020), we set up a Nelson-Siegel model for the term structure of inflation

expectations:

πi ,t→t+h|t = Li ,t −
(

1−e−λi h

λi h

)
Si ,t , (2)

where Li ,t and Si ,t are forecaster-specific level and slope factors, and theλi are forecaster-specific

shape parameters. Given this representation, the forecast of inflation between any two horizons

h1 and h2 is given by

πi ,t+h1→t+h2|t = Li ,t −
(

e−λi h1 −e−λi h2

λi (h2 −h1)

)
Si ,t .

Following Diebold et al. (2008), we specify the following decomposition for the factors

Li ,t =αL
i +βL

i Lt +εL
i ,t (3)

Si ,t =αS
i +βS

i St +εS
i ,t (4)

where Lt and ,St are level and slope factors which are common to all forecasters, αL
i , and αS

i are

forecaster-specific constant terms which govern the overall level of the individual factors, βL
i and

βS
i are forecaster-specific loadings on the common factors, and εL

i ,t and εS
i ,t capture the purely

idiosyncratic components of the individual factors.7

7In this decomposition, we assume that the loadings are time-invariant. In the dynamic factor model, what
is identified is the common component, which is the product of the loading and the time-varying factor. This
common component is sufficient to capture forecaster i ’s heterogeneous reactions to common shocks. Therefore,
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Our goal is to specify a model which can capture rich heterogeneity across forecasters while

remaining parsimonious and interpretable. For this reason, we omit the curvature factor. We

find that curvature plays a limited role in the observed individual-level trajectories of inflation

expectations.8 We also assume λi =λ. Since λi primarily determines the peak of the curvature,

this simplification does not have material effects in the estimation given the absence of the

curvature factor.

We assume that the common factors follow independent AR(1) processes:

Lt = ρLLt−1 +uL
t

St = ρSSt−1 +uS
t . (5)

Since the scale of the common factors and the factor loadings are not separately identified, we

normalize the shocks to the common factors uL
t and uS

t to have unit variance, and we assume

the shocks are uncorrelated.9  uL
t

uS
t

∼ N

 0

0

 ,

 1 0

0 1

 (6)

In addition, we assume that the idiosyncratic components evolve according to AR(1) processes

which are independent across forecasters.10

εL
i ,t = ρL

i ,εε
L
i ,t−1 +uL

i ,t

εS
i ,t = ρS

i ,εε
S
i ,t−1 +uS

i ,t (7)

We also assume that the covariance matrix is diagonal, so that the factors evolve indepen-

in principle, our model does not preclude time-varying loadings. We could allow for slow time variation in the
loading parameters, but this would require identifying assumptions about the dynamic process of both the loading
and the factor to explicitly estimate the time-varying loading and factor. In this paper, we follow the most standard
approach—constant loadings and time-varying factors—in the dynamic factor model literature.

8We consider the curvature and a more flexible factor dynamics (AR(3)) in Appendix H. Our empirical results
remain robust.

9This treatment is a standard approach in the literature of dynamic factor model (e.g., Diebold et al., 2008).
10The dynamics of the common and idiosyncratic components can be generalized to follow VARs with additional

lags at minimal computational cost. This makes little difference in the estimated factors and loadings which is why
we stick with AR(1) processes in our baseline specification.
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dently:  uL
i ,t

uS
i ,t

∼ N

 0

0

 ,

 σ2
i ,L 0

0 σ2
i ,S

 . (8)

For parsimony, we make the further simplifying assumption that ρL
i ,ε,ρS

i ,ε,σ2
i ,L , and σ2

i ,S are the

same for all forecasters i and equal to ρL
ε ,ρS

ε ,σ2
L , and σ2

S respectively.11

Since the model is specified for continuously compounded inflation at the quarterly fre-

quency, mapping the model predictions to observed SPF forecasts is straightforward. Our model

can be cast as a linear Gaussian state space model of the form

xt = Fxt−1 +ut , ut ∼ N (0,Q) (9)

yt =µy +Hxt +vt , vt ∼ N (0,R) (10)

where xt is a vector of states containing the common and idiosyncratic factors, F captures the

dynamics of the states over time, µy is a vector of forecaster-specific fixed effects, H details the

mapping from the states to the observed forecasts, and Q and R are the covariance matrices of

the innovations to the state equation and the measurement errors respectively. The details of the

state-space representation are presented in Appendix A.

3.2 Estimation

Our baseline model has a total of 431 parameters consisting of

• Forecaster-specific means
{
αL

i ,αS
i

}n
i=1

• Forecaster-specific factor loadings
{
βL

i ,βS
i

}n
i=1

• Factor autocorrelation parameters ρL ,ρS ,ρL
ε , and ρS

ε

• Idiosyncratic factor conditional variances σ2
L and σ2

S

• Shape parameter λ

11See Appendix G.1 for more discussions on the modeling assumptions and their implication. The simplifying as-
sumptions do not imply that the realized idiosyncratic components are identical; rather, the estimated idiosyncratic
components can still differ substantially across individuals. Even with these simplifying assumptions, we have 431
parameters to estimate. While it is in principle possible to allow these parameters to vary across individuals, this
more flexible approach would add over 200 additional parameters, likely increasing the uncertainty of the estimates.
Therefore, our current approach strikes a good balance between flexibility and parsimony.
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• Measurement error variances σ2
v,1, . . . ,σ2

v,20.12

The parameter vector is denoted as

θ = [
αL

1 , . . . ,αS
n ,βL

1 , . . . ,βS
n ,ρL ,ρS ,ρL

ε ,ρS
ε ,σ2

L ,σ2
S ,λ,σ2

v,1, . . . ,σ2
v,20

]′
.

Since our model is a linear Gaussian state-space model, we employ the Kalman filter to con-

duct inference on the latent variables and form the likelihood function. The model is estimated

with a Gibbs sampler, detailed in Appendix B.13

4 Estimation Results

This section reports and discusses our results from the estimation of the term-structure model.

4.1 Parameter Estimates

Table 1 reports the median, 5th, and 95th percentiles of the posterior distributions for our model

parameters. In the case of the forecaster fixed-effects and factor loadings αL
i ,αS

i ,βL
i , and βS

i ,

we report the median, 5th, and 95th percentiles across posterior draws of the average value

across forecasters. The average value of αL
i is consistent with the Fed’s 2% inflation anchor,

since CPI inflation is known to be slightly higher—by about half a percentage point on average—

than PCE inflation which the Fed explicitly targets. On average, the term structure of inflation

expectations is upward sloping as indicated by a positive value of αS
i . Both the common and

idiosyncratic factors are estimated to be highly persistent, with autocorrelation coefficients of

between 0.73 and 0.95 at the quarterly frequency. Finally, measurement error standard deviations

are estimated to be between 10 basis points (for three year forward expectations) and 67 basis

points (for one quarter ahead expectations).

12See Appendix ?? for more details on the measurement equation. In summary, we use one-quarter to four-quarter
ahead fixed-horizon forecasts, along with two-year forward, three-year forward, five-year average, and ten-year
average fixed-event forecasts. For each quarter of the year, the fixed-event forecasts cover different forecast horizons,
resulting in four distinct measurements. Consequently, the measurement model comprises twenty equations: four
from the fixed-horizon forecasts and sixteen from the fixed-event forecasts.

13Alternatively, we also considered a Frequentist approach for robustness checks, which is outlined in Appendix
G.2. The overall results, available upon request, remain qualitatively robust.
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Table 1: POSTERIOR PARAMETER DISTRIBUTION STATISTICS

Parameter Median 95% CI Parameter Median 95% CI

αL
i 2.482 [2.422,2.548] σv,6 0.261 [0.247,0.276]

αS
i 0.192 [0.071,0.319] σv,7 0.216 [0.202,0.232]

βL
i 0.011 [-0.027,0.051] σv,8 0.095 [0.079,0.112]

βS
i 0.375 [0.315,0.447] σv,9 0.304 [0.285,0.326]

ρL 0.904 [0.786,0.996] σv,10 0.323 [0.303,0.346]
ρS 0.835 [0.685,0.979] σv,11 0.297 [0.279,0.318]
ρL
ε 0.947 [0.928,0.964] σv,12 0.331 [0.311,0.352]
ρS
ε 0.732 [0.696,0.767] σv,13 0.185 [0.172,0.199]

σL 0.125 [0.117,0.134] σv,14 0.197 [0.183,0.211]
σS 0.440 [0.421,0.458] σv,15 0.237 [0.222,0.254]
λ 0.174 [0.166,0.182] σv,16 0.258 [0.242,0.275]
σv,1 0.672 [0.656,0.688] σv,17 0.193 [0.181,0.206]
σv,2 0.469 [0.458,0.480] σv,18 0.188 [0.176,0.201]
σv,3 0.444 [0.434,0.454] σv,19 0.181 [0.169,0.194]
σv,4 0.443 [0.433,0.454] σv,20 0.221 [0.208,0.235]
σv,5 0.270 [0.256,0.285]

Notes: The “Median" column reports the posterior median of the corresponding parameter and the “95% CI"
column reports the parameter’s 95-percent credible interval. For the parameters αL

i , αS
i , βL

i , and βS
i , the table

reports statistics for the average value across forecasters.

Sources: Authors’ calculation

4.2 Consensus

Figure 3 plots the median of the posterior distribution for the smoothed common factors, Lt |T
and St |T , along with 95 percent credible intervals. Note that both series are normalized so that

their conditional variances are 1. The top panel plots the smoothed common level factor. The

estimate closely tracks variations in long-run inflation expectations. The estimate exhibits a

sharp downward trend in the 1990s. In the later part of the sample, the estimate drops sharply

after the Great Recession and stays depressed for several years afterwards. During the COVID-19

pandemic, the estimate dips in the early phase of the pandemic, quickly recovers, and does not

exhibit any notable changes thereafter.

The bottom panel plots the smoothed common slope factor. The estimate tracks expected

changes in inflation between the current quarter and the long run at each point in time. The slope

is typically positive, indicating that the term structure of inflation expectations is upward sloping

on average. The steepest positive slopes occur in the years following the dotcom bubble and

in the Great Recession. The slope systematically declined over the 2010s, reflecting the decade
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Figure 3: SMOOTHED COMMON FACTORS

Notes: The upper panel plots the posterior median of the smoothed common level factor (blue line) along with 95
percent credible intervals (black dashed line). The bottom panel plots the posterior median of the smoothed
common slope factor (blue line) along with the 95 percent credible intervals (black dashed line). The shaded areas
denote NBER recessions.

Sources: Authors’ calculation

of low and stable inflation after the Great Recession. The slope increases with the onset of the

COVID-19 pandemic. This reflects that forecasters expect inflation to increase relative to inflation

in the current quarter, given that inflation plunged in the early phase of the pandemic and long-

run expectations did not change much. From 2021 onward, when inflation picked up rapidly,

the slope estimate sharply declined and stayed negative, reflecting forecasters’ expectation that

inflation would eventually decline.

Figure 4 plots the median and 95-percent credible interval for the mean of the forecasting

distribution (across forecasters) at four different forecast horizons. The top panels plot mean

6-month and 1-year ahead inflation expectations, which track the consensus inflation nowcast

and thus realized inflation to a large extent. The bottom panels display mean 5-year and 10-

year ahead inflation expectations, which are significantly less variable than the short-term

expectations as they incorporate less of the variation in realized inflation. The 10-year-ahead

inflation consensus forecast largely tracks changes in the common level factor.
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Figure 4: SMOOTHED CONSENSUS FORECASTS

Notes: This figure plots the posterior median of the average inflation forecast posterior distribution (blue line)
recovered from the individual-level term structure model along with 95-percent credible intervals (black dashed
line). The four panels correspond to different forecasting horizons, 6-month, 1-year, 5-year, and 10-year
respectively. The shaded areas denote NBER recessions.

Sources: Authors’ calculation

4.3 Dispersion: A Proxy for Disagreement

This section discusses the distribution of individual term-structure components and forecasts,

with a particular emphasis on dispersion, as our primary interest lies in understanding disagree-

ment.

Figure 5 plots the distributions of forecasters’ smoothed level and slope factors. Specifically,

we plot posterior medians of the 5th, 25th, 50th, 75th, and 95th percentiles of forecasts across

forecasters. The factors are in units of annualized percentage points. The top panel displays

the distribution of individual smoothed level factors. Although consensus long-run inflation

expectations remain low and stable after 2005, the dispersion of estimates changes substantially

over time. In particular, the dispersion seen after the Great Recession is larger than that seen

in the early 1990s, when consensus long-run inflation expectations were around four percent

and trending down. During the COVID-19 pandemic, the median level factor edged up slightly,

but the distribution dramatically skewed to the right, reflecting the perceived upside risk in

long-run inflation. The bottom panel displays the distribution of individual smoothed slope

factors. Similar to the level estimates, the slope dispersion increases substantially over the course
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Figure 5: SMOOTHED FACTOR DISTRIBUTIONS

Notes: The figure shows the cross-sectional distributions of the individual level factors (upper panel) and individual
slope factors (bottom panel). The solid blue line is the posterior median of the median factor across forecasters. The
dashed-dotted lines depict the posterior medians of the 25th and 75th percentiles. The dashed lines depict the
posterior medians of the 5th and 95th percentiles. The shaded areas denote NBER recessions.

Sources: Authors’ calculation

of the Great Recession and the COVID-19 pandemic. In particular, the distribution becomes

skewed to the right at the onset of the pandemic, but it becomes skewed dramatically to the left

following a rapid rise in inflation in 2021.

Figure 6 plots the cross-sectional distribution of the constants (αL
i and αS

i ) and the factor

loadings (βL
i and βS

i ). We plot the distribubtion across forecasters of the posterior median of each

parameter. The upper panels show that forecasters exhibit significant disagreement about the

long-run means of the level and slope factors. Although most forecasters expect the long-term

mean level to be between 2% and 2.5%, a significant fraction anticipates it to be above 2.5% (the

upper right graph). For the long-run slope, the majority of forecasters have a long-run mean

close to zero, though the distribution shows a large dispersion ranging from -0.7 to 1.4. The

bottom panels display the distributions of factor loadings. For both the level factor and the

slope factor, the loadings show significant dispersion. Specifically, the loading for the level factor

ranges from -1 to 2, while the loading for the slope factor spans from -1.5 to 1.5. The distributions

of long-run means show that forecasters exhibit considerable heterogeneity in their reactions to

common shocks when forming expectations about future inflation.
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Figure 6: DISTRIBUTIONS OF POSTERIOR MEDIANS: CONSTANTS AND FACTOR LOADINGS

Notes: The figure shows the cross-sectional distribution of posterior median constant terms and factor loadings for
both the level and slope factors.

Sources: Authors’ calculation

Figure 7 displays the distribution of inflation forecasts at four different horizons: 6 months, 1

year, 5 years, and 10 years from top left to bottom right. This figure reveals stark changes in the

forecast distributions that are obscured in the consensus expectations, offering insights into the

anchoring of inflation expectations that differ significantly from what the consensus suggests.

For example, when the mean inflation projections are low and stable, from 2005 onward, the

dispersions become larger than those observed in the 1990s (when the level of inflation was

higher and more volatile). It is also notable that right skewness increased significantly during the

COVID-19 pandemic, indicating that forecasters had differing opinions about the upside risk of

inflation, even as consensus expectations appeared relatively stable.

To ensure that our conclusions from Figure 7 are not purely driven by outliers, we examine

the standard deviation (disagreement) and skewness of the forecasting distribution, displayed

in Figure 8. Consistent with our observation in Figure 7, disagreement increased dramatically

over the course of the Great Recession and stayed elevated for a few years after the end of the

recession. During this time, disagreement is much larger than in the 1990s across forecasting

horizons. In addition, skewness also increased during the pandemic and reached its highest
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Figure 7: DISTRIBUTION OF FORECASTS

Notes: The figure shows the cross-sectional distribution of individual inflation forecasts at four different forecast
horizons. The solid blue line is the posterior median of the mean forecast across forecasters. The dotted lines depict
the posterior medians of the 25th and 75th percentiles. The dashed lines depict the posterior medians of the 5th
and 95th percentiles. The shaded areas denote NBER recessions.

Sources: Authors’ calculation

levels in the sample period. Both disagreement and skewness declined after 2022 but remained

elevated relative to the pre-pandemic levels at the end of 2023. This observation suggests that

disagreement carries information about the degree of anchoring in inflation expectations quite

different from what is captured by the consensus.

4.4 Individual Dynamics

Next, we examine the individual-level term structure of inflation expectations. The purpose

of this section is to show that the individual term structures of inflation expectations differ

significantly from the consensus term structure, revealing that forecasters have substantively

different views about the overall path of inflation in the future. This disagreement regarding

the term structure of inflation expectations cannot be captured by a model based solely on

the consensus term structure. Meanwhile, the individual term structures not only comove but

also exhibit distinct variations across individuals, which our dynamic factor model successfully

captures. It is important to note that our parsimonious individual-level model is flexible enough

to accommodate the various patterns of disagreement across different forecasting horizons.
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Figure 8: DISAGREEMENT ABOUT AND SKEWNESS OF FORECASTS

Notes: The figure shows the standard deviation and skewness of individual inflation forecasts at four different
forecast horizons. The solid blue line is the posterior median of the disagreement across forecasters. The solid red
line is the posterior median of the skewness across forecasters. The dashed lines depict the posterior 5th and 95th
percentiles of the disagreement and skewness. The shaded areas denote NBER recessions.

Sources: Authors’ calculation

Figure 9 shows the term structure of inflation forecasts of two individual forecasters along

with the consensus (left panels) and the disagreement across forecasting horizons (right panels).

First, we consider 2007Q3 (upper panels). This was the final survey conducted before the

start of the Great Recession. The consensus term structure is relatively flat, with the nowcast

and 10-year ahead inflation expectations being around 2.25%. Meanwhile, the two forecasters

disagree about the nowcasts and the direction of slopes, as shown in the downward sloping term

structure of forecaster 535 (red line) and the upward sloping term structure of forecaster 518

(blue line). Overall, disagreement is largest in the short run at 70 basis points but decreases over

the forecasting horizon to about 30 basis points, yielding a downward-sloping term structure of

disagreement (upper right panel).

A very different pattern is observed in 2009Q2 – the peak of the Great Recession. The term

structures are upward-sloping for both individual forecasters and the consensus. Although the

two forecasters significantly disagree about near-term inflation, they are still expecting a rise in

inflation over the forecast horizon, in line with the consensus. The disagreement is high in the

short run at 1%, smallest at about the one-year horizon at 85 basis points, and then increases

again in the long run to about 1.05% (middle right panel). This non-linearity signals higher

21



Figure 9: TERM STRUCTURE OF INFLATION EXPECTATIONS AT THREE DATES
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Notes: The left panels display estimated posterior medians of the term structure of inflation expectations for the
consensus (black line) and two individual forecasters (forecaster 518 in blue and forecaster 535 in red). The right
panels display posterior medians of the term structure of disagreement (solid blue line) along with 90% credible
intervals (dashed black lines) over the corresponding forecast horizon. The three rows correspond to the dates
2007Q3, 2009Q2, and 2022Q2, respectively.

Sources: Authors’ calculation

uncertainty in the immediate future and in the long run than in the short to medium run.

Finally, we consider 2022Q2 (bottom panels). Inflation expectations are monotonically

decreasing for both forecasters and in the consensus. The disagreement is largest in the current

quarter but reduces over the forecasting horizon, producing a downward-sloping term structure

of disagreement (lower right panel). Although the term structure of disagreement is similar to

that prior to the Great Recession, the magnitude of disagreement is three times as large as that

seen in 2007 in the short run.

5 A Noisy Information Model of Disagreement

This section introduces a noisy information model that provides economic interpretations of the

three components of the individual-level and slope factors: the individual-specific constants,

common components, and idiosyncratic components. The structural model also helps to

motivate the disagreement decomposition we will present in Section 6. In the noisy information

model, a forecaster with individual long-term beliefs updates inflation projections based on
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both public and private signals. We demonstrate that this structural model naturally aligns with

the dynamic factor characterization presented in Section 3. We show that the common and

idiosyncratic components of the factor model reflect the contributions of public and private

information to a forecaster’s inflation expectations, while the individual fixed effect captures a

forecaster’s long-run belief.14

Following Stock and Watson (2016), we describe inflation at time t (πt ) as the sum of its low-

frequency component (τt ) and transitory component (ct ). Consider the following trend-cycle

state-space model for inflation:

πt = τt + ct

τt = τt−1 +ετt , ετt ∼ N
(
0,

(
στε

)2
)

ct = ρc ct−1 +εc
t , εc

t ∼ N
(
0,

(
σc
ε

)2
)

.

As in Beveridge and Nelson (1981), the trend component of a variable captures its long-run fore-

cast (πt→t+∞|t ), whereas the forecast for a shorter horizon represents transitory deviations from

this long-run forecast. Deviations of current inflation from its trend component are captured by

the transitory component. This notion of Beveridge and Nelson decomposition naturally maps

the trend to the level element of the term-structure model and the transitory component to the

slope element of the model.15

We assume that forecasters receive signals about both the trend and cycle components

separately16, which are subject to private noise shocks vτi ,t and vc
i ,t , and public noise shocks uτ

t

and uc
t :

yτt = τt +uτ
t , uτ

t ∼ N
(
0,

(
στu

)2
)

zτi ,t = τt + vτi ,t , vτi ,t ∼ N

(
0,

(
στi ,v

)2
)

14Our structural characterization combines elements from both noisy information models (e.g., Coibion and
Gorodnichenko, 2012a) and learning models (e.g., Lahiri and Sheng, 2008). The noisy information model includes
both public and private information but lacks a long-run belief component. In contrast, the learning model
incorporates public information and a long-run belief component but does not account for private information.

15The deviation of h-period-ahead inflation (for h < 10 years) formed at time t (denoted πt→t+h|t ) from its trend
(πt→t+∞|t ) is also considered transitory, with the magnitude of the deviation being captured by the slope element at
time t within the term-structure model.

16This assumption is not necessary but serves to simplify the exposition. If only signals of inflation are observed,
then the dynamics of the slope and level factors in our statistical model become a vector autoregression instead of
independent univariate autoregressive processes.
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yc
t = ct +uc

t , uc
t ∼ N

(
0,

(
σc

u

)2
)

zc
i ,t = ct + vc

i ,t , vc
i ,t ∼ N

(
0,

(
σc

i ,v

)2
)

yτt and yc
t are public signals of the trend and cycle components respectively, while zτi ,t and zc

i ,t

are private signals of the trend and cycle components respectively. We allow for the possibility

that the variance of the private signal, σi ,v , is different across forecasters for both the trend and

cycle components.

Forecasters maintain time-invariant long-run beliefs about the trend and cycle components

of inflation. For simplicity, we assume that these long-run beliefs are zero for all forecasters. This

assumption can be easily relaxed to allow for individual-specific non-zero constants. Although

the transitory component is modeled as a mean-zero stationary process, empirically, forecaster

i ’s realized mean prediction of the transitory component can be non-zero. In fact, while the

median of the estimatedαi ,s is close to zero, the distribution ofαi ,s is non-degenerate.17 Further-

more, we characterize the trend component as a non-stationary process without a well-defined

first moment. Nevertheless, we can still estimate the empirical average of each forecaster’s

prediction for the trend.18 These empirical estimates of individual forecasters’ mean trend and

transitory components reflect their time-invariant long-run beliefs. 19

Define the gains that forecaster i places on errors made in forecasting the public and private

signals of the trend component as g τi ,y and g τi ,z respectively. We define g c
i ,y and g c

i ,z analogously

for the cyclical component. If all agents are rational, the gains placed on forecasts of the public

signals will be the same for all agents. Similarly, if the variance of private signals is the same

across all agents, then the gains placed on forecasts of private signals will be the same across

all agents. In our model, agents can have different forecasts either because they are rational

but have heterogeneous private signal precisions or because they have different gains due to

behavioral reasons or cognitive limitations.

Let Fi ,t be the expectation of agent i formed with time t information. In steady-state, agent i

17See the upper right panel of Figure 6.
18See the upper left panel of Figure 6.
19These long-run beliefs can be thought of as coming from some type of behavioral bias or cognitive limitation, or

as capturing deviations from the truth which result from learning about the long run starting from an informative
but biased prior belief (Farmer et al., 2021).
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updates their beliefs according to the following equations

Fi ,tτt = Fi ,t−1τt + g τi ,y

(
yτt −Fi ,t−1τt

)+ g τi ,z

(
zτi ,t −Fi ,t−1τt

)
Fi ,t ct = Fi ,t−1ct + g c

i ,y

(
yc

t −Fi ,t−1ct
)+ g c

i ,z

(
zc

i ,t −Fi ,t−1ct

)
.

After some simplification the above equations can be rewritten as

Fi ,tτt =
(
1− g τi

)
Fi ,t−1τt−1 + g τi τt + g τi ,y uτ

t + g τi ,z vτi ,t

Fi ,t ct =
(
1− g c

i

)
ρc Fi ,t−1ct−1 + g c

i ct + g c
i ,y uc

t + g c
i ,z vc

i ,t ,

where g τi := g τi ,y + g τi ,z and g c
i := g c

i ,y + g c
i ,z .

We are now ready to state our main proposition:

Proposition 1. Given the dynamic factor model characterized by equations (3) – (8), there is an

exact equivalence with the noisy information model for the parameters

ρS = ρc ρL = 1

ρS
i ,ε =

(
1− g c

i

)
ρc ρL

i ,ε = 1− g τi

αS
i = 0 αL

i = 0

βS
i =


(
g c

i

)2 (σc
ε)2 +

(
g c

i ,y

)2
(σc

u)2
(
1−ρ2

c

)
1+ (

ρc ḡ c
)2 −ρ2

c


1/2

βL
i =

[(
g τi

)2 (στε)2 +
(
g τi ,y

)2
(στu)2

]1/2

σS
i ,v =

[(
g c

i ,zσ
c
i ,v

)2 −
(
βS

i

)2 [(
g c

i − ḡ c
)
ρc

]2

1−ρ2
c

]1/2

σL
i ,v = g τi ,zσ

τ
i ,v

where ḡ c is the cross-sectional population average of g c
i .

See Appendix C for the proof. Our individual-level dynamic factor model aligns with the eco-

nomic interpretations of the noisy information model. Specifically, the common components Lt

and St capture the influence of public information, while the idiosyncratic components ϵL
i ,t and

ϵS
i ,t capture the influence of private information. Note that reactions to public information—βS

i

and βL
i —differ across forecasters. Finally, we set the long-run mean parameters—αS

i and αL
i —to

zero for simplicity, to clearly demonstrate the mapping between our statistical model and the

standard noisy information model. As mentioned earlier, these parameters can take non-zero
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values without compromising the structural characterization or the mapping to the statistical

model. In other words, if we assume that agents believe the permanent component has a drift

and the cyclical component has a non-zero mean, these beliefs will be captured by the empirical

fixed effects αL
i and αS

i , respectively.20 This will introduce an additional source of disagreement,

which we characterize as the ‘long-term beliefs’ component of disagreement.

6 Empirical Decomposition of Disagreement

In this section, we show how our statistical model decomposes individual inflation forecasts at

each point in time into three distinct components: (1) individual long-term beliefs (or individual

fixed effects); (2) heterogeneous responses to public information (the common component); and

(3) private information (the idiosyncratic component). Section 6.1 illustrates the decomposition

of individual forecasts. Section 6.2 provides a new measure for the sensitivity of disagreement

to each source of information. Section 6.3 discusses the results of the decomposition. Section

6.4 provides a simulation exercise based on the noisy information model to further justify our

economic interpretations of the statistical results. The simulation confirms that the empirical

findings align with the theoretical predictions, even in the absence of individual long-term

beliefs.

6.1 Decomposing Disagreement

We proceed in two steps. First, we decompose forecaster i ’s inflation forecast at each forecasting

horizon into the three components outlined above. Second, we decompose the cross-sectional

variance into contributions from the three sources at each point in time.

Equations (3) and (4) decompose individual level and slope factors into the three information

sources. Here, we give economic interpretations to each component using the level factor as an

example.

Li ,t = αL
i︸︷︷︸

long-term belief

+ βL
i Lt︸ ︷︷ ︸

public info.

+ εL
i ,t︸︷︷︸

private info.

(11)

The level factor of forecaster i , Li ,t , is decomposed into portions representing long-term

20In this case, the time-varying elements in the noisy information model will be demeaned values, analogous to
those in the dynamic factor model.
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beliefs (αL
i ), public information (βL

i Lt ), and private information (εL
i ,t ).21 Note thatαL

i is estimated

with individual fixed effects, and βL
i Lt and εL

i ,t are the common component and the idiosyncratic

component, respectively, in the dynamic factor model for the level factor.

Define the long-term belief component of Li ,t to be Ll tb
i =αL

i , the common component of

Li ,t to be Lpub
i ,t =βL

i Lt , and the idiosyncratic component of Li ,t to be Lpr i v
i ,t = εL

i ,t . We then rewrite

Li ,t as

Li ,t = Ll tb
i +Lpub

i ,t +Lpr i v
i ,t . (12)

Likewise, we give similar economic interpretations to each component of Si ,t in Equation (4).22

Thus, Si ,t is rewritten as:

Si ,t = Sl tb
i +Spub

i ,t +Spr i v
i ,t . (13)

Using the decompositions in Equations (12) and (13), forecaster i ’s h-quarter-ahead inflation

forecast at time t , πi ,t→t+h|t , is expressed as three components representing long-run beliefs

(πl tb
i ,t→t+h|t ), public information ( πpub

i ,t→t+h|t ), and private information (πpr i v
i ,t→t+h|t ):

πi ,t→t+h|t = Li ,t −
(

1−e−λh

λh

)
Si ,t

=αL
i +βL

i Lt +εL
i ,t −

(
1−e−λh

λh

)(
αS

i +βS
i St +εS

i ,t

)
=αL

i −
(

1−e−λh

λh

)
αS

i +βL
i Lt −

(
1−e−λh

λh

)
βS

i St +εL
i ,t −

(
1−e−λh

λh

)
εS

i ,t

= Ll tb
i −

(
1−e−λh

λh

)
Sl tb

i︸ ︷︷ ︸
long-term belief

+Lpub
i ,t −

(
1−e−λh

λh

)
Spub

i ,t︸ ︷︷ ︸
public information

+Lpr i v
i ,t −

(
1−e−λh

λh

)
Spr i v

i ,t︸ ︷︷ ︸
private information

=πl tb
i ,t→t+h|t +π

pub
i ,t→t+h|t +π

pr i v
i ,t→t+h|t

The factor structure leads us to decompose the cross-sectional dispersion of πi ,t→t+h|t into

the dispersion components driven by the three information sources.

Vari (πi ,t→t+h|t ) ≈ Vari (πl tb
i ,t→t+h|t )+Vari (πpub

i ,t→t+h|t )+Vari (πpr i v
i ,t→t+h|t ) (14)

21We use public (private) information and common (idiosyncratic) information interchangeably, but will use
public (private) information in this section given the economic interpretation from the noisy information model.

22Analogous to the level factor, αS
i is estimated with the individual fixed effects, and βS

i St and εS
i ,t are the common

component and the idiosyncratic component, respectively, in the dynamic factor model for the slope factor.
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Note that the variance of individual long-term beliefs (the first term in (14)) will not create

changes in the dispersion, if the pool of forecasters does not change over time. Since each

forecaster has different average forecasts, the compositional change in forecasters over time

creates variation in long-term belief dispersion. In this sense, dispersion due to long-term beliefs

is interpreted as the natural level of disagreement or fundamental disagreement (Andrade et al.,

2016).

This variance decomposition is possible because innovations to the common and idiosyn-

cratic components are assumed to be independent of each other in the dynamic factor model.

However, realized shocks to the common and idiosyncratic components can exhibit finite sample

comovement. This comovement creates a wedge between the two sides of (14). Nonetheless, the

finite-sample comovement will be close to zero in large samples.

6.2 Disagreement Shares

This section provides an alternative decomposition of disagreement about inflation h periods

ahead into the components of three information sources—what we call the disagreement shares.

Our goal is to assess the extent to which each information source influences the overall cross-

sectional variance in forecasts of inflation h periods ahead at each point in time. This new

measure avoids the caveat of (14) that obscures the contribution of each information source in

the disagreement.

Conceptually, our disagreement shares resemble the idea of beta in finance, which gauges the

sensitivity of stocks to a common factor. As an alternative to simply looking at the cross-sectional

variance of each component, we construct the information share β for disagreement using an

approach proposed in Fujita and Ramey (2009).23 This new measure overcomes the issue that

finite-sample comovements among components cause the individual variance shares not add

up to one, which is a well-known issue in the literature on dynamic factor models (e.g., Ahn

and Luciani, 2024). Fujita and Ramey (2009) show when a variable is expressed as the sum of

different sub-components, the ratio of the covariance between the sum and each component

divided by the variance of the sum — the beta — add up to one. Note that the h-period ahead

inflation forecast of individual i at time t is composed of the portion accounted for by long-term

23Fujita and Ramey (2009) provide a decomposition for the contribution of inflows to unemployment and that
of outflows from unemployment to the variance of unemployment rate, a similar problem in the literature of
unemployment dynamics.
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beliefs, public information, and private information. Therefore, we can apply Fujita and Ramey’s

decomposition to our case.

Restating our decomposition of inflation projections we have that:

πi ,t→t+h|t =πl tb
i ,t→t+h|t +π

pub
i ,t→t+h|t +π

pr i v
i ,t→t+h|t . (15)

Taking the covariance of both sides with πi ,t→t+h|t and dividing through by the variance of

πi ,t→t+h|t , we obtain the following expression:

1 =βl tb
h,t +β

pub
h,t +βpr i v

h,t , (16)

where

βl tb
h,t =

Covi

(
πi ,t→t+h|t ,πl tb

i ,t→t+h|t
)

Vari (πi ,t→t+h|t )

β
pub
h,t =

Covi

(
πi ,t→t+h|t ,πpub

i ,t→t+h|t
)

Vari (πi ,t→t+h|t )

β
pr i v
h,t =

Covi

(
πi ,t→t+h|t ,πpr i v

i ,t→t+h|t
)

Vari (πi ,t→t+h|t )
.

Note that βl tb
h,t , βpub

h,t , and βpr i v
h,t can technically be negative or go above 1.

6.3 Decomposition Results

Figure 10 presents the results of estimating Equation (16) for each time period and forecasting

horizon. For clarity, we will focus on discussing the results for the 1-year and 10-year ahead

forecast horizons.24 The upper panels show the level of disagreement about 1-year and 10-

year ahead inflation: total (black line), the portion attributable to long-term beliefs (blue line),

the portion attributable to public information (orange line), and the portion attributable to

private information (yellow line). The bottom panels display the disagreement shares of public

information for 1-year and 10-year ahead inflation projections.

We make a few key observations. First, private information is the primary source of short-run

(1-year ahead) disagreement, explaining approximately 60 percent of the dispersion. Second,

24Results for additional forecasting horizons can be found in Section Appendix D of the appendix.
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individual long-term beliefs are the main source of disagreement for long-run inflation forecasts,

accounting for about 55 percent of the dispersion. Finally, public information contributes the

smallest share of disagreement across all forecasting horizons, making up around 10 percent for

both short-run and long-run forecasts. However, public information plays a significantly larger

role in explaining disagreement during three major periods: the early and mid-1990s, the Great

Recession, and the COVID-19 pandemic. These periods correspond to economic recessions or

episodes of heightened inflation uncertainty.

Figure 10: FORECAST VARIANCE DECOMPOSITION

Notes: The top two panels show the decomposition of the cross-sectional variance of inflation forecasts (black line)
into the components driven by individual long-term beliefs (denoted by ltb, blue line), heterogeneous responses to
public information (denoted by pub, red line), and private information (denoted by priv, yellow line). Each line

corresponds to the posterior median. The bottom panels show the variance share of public information, βpub
h,t . The

solid blue line corresponds to the posterior median and the dotted black lines correspond to pointwise 95% credible
intervals. The left and right columns correspond to 1- and 10-year forecasting horizons respectively. The shaded
areas denote NBER recessions. The bottom panels show the variance share of public information.

Sources: Authors’ calculation

To better understand this time-varying role of public information as a driver of disagreement,

we examine βpub
h,t in the bottom panels of Figure 10 more closely.25 The contribution of public

information to disagreement changes dramatically over time. Typically it fluctuates at values

under 10 percent for both short- and long-horizon forecasts. However, the share exhibits strong

countercyclicality, increasing in times of large economic shocks across forecasting horizons. For

25Section Appendix D of the appendix provides the disagreement shares of public information for additional
forecasting horizons.
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Figure 11: TERM STRUCTURE OF VARIANCE SHARES AT THREE DATES
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Notes: The figure shows the fraction of overall disagreement about inflation expectations driven by heterogeneous
responses to common information over a ten-year forecast horizon at three different points in time as measured by
the β measure proposed in Fujita and Ramey (2009). The top panel reports the estimates as of 2007:Q3, the middle
panel as of 2009:Q2, and the bottom panel as of 2022:Q3. The shaded areas denote NBER recessions.

Sources: Authors’ calculation

example, it spikes to approximately 65 percent for short-horizon forecasts and 90 percent for

long-horizon forecasts during the pandemic. This observation suggests that forecasters pay more

attention to public information during economic downturns and periods of higher inflation

uncertainty, but translate the public information into their forecasts in different ways.

Furthermore, the term structure of common disagreement varies dramatically over time

as well. Figure 11 shows the share of public information in disagreement across forecasting

horizons for three particular time periods. In 2007Q3, just before the Great Recession, the role

of common information in disagreement is low, near 2%, across all forecasting horizons. In

contrast, at the height of the Great Recession in 2009Q2, public information plays a much larger

role. The share is larger for long-run forecasts than for short-run forecasts (middle panel), about

50% compared to 20%. The COVID-19 pandemic is unique in that public information was the

primary driver of increased disagreement across all forecasting horizons (bottom panel). The

share is greater than 30 percent across all forecasting horizons, declining from about 60% in the

short run to just below 35% in the long run. In the presence of shocks that are unprecedented in

nature and magnitude and the consequent policy response, forecasters paid attention to public

31



information during the pandemic. However, due to high economic uncertainty, forecasters had

very different interpretations about the same public information and produced quite different

inflation expectations across forecasting horizons.

The importance of public information in long-run disagreement in times of high economic

uncertainty suggests that monetary policy may be able to anchor long-horizon expectations

effectively with clearer communication.

6.4 Relation to Noisy Information Model

Next, we conduct a simulation exercise based on the noisy information model described in

Section 5, and show that our empirical disagreement decomposition results are consistent with

our theoretical model’s predictions.

Our model allows forecasters to respond heterogeneously to the same public news. These

heterogeneous responses drive the significant increase in disagreement attributable to public

information during periods of large shocks, even though we do not account for individual-

level uncertainty. Moreover, by allowing for varying sensitivity to public information across

different forecasting horizons for each individual, our model captures the distinct roles of public

information in driving disagreement in the short run versus the long run. In contrast, previous

literature on the noisy information model has typically assumed uniform reactions to public

information across individuals and has not accounted for differing reactions across forecasting

horizons.26

Using simulated data, we demonstrate how the noisy information model presented in Section

5 can account for the stylized facts on time-varying disagreement and time-varying shares of

disagreement. We assume that g c
i = g and σc

i ,v = σv for all agents i , and we assume that the

trend component τt is known to be constant over time and equal to 0. Thus, all time-variation

in inflation comes from the cyclical component ct . These simplifications are for illustrative

purposes only, to help isolate the time variation in the relative importance public vs private

information. By allowing for a non-zero trend component, we can generate variations in the

source of disagreement across forecasting horizons over time. Similarly, we abstract from long-

term beliefs, because they do not contribute to time-variation in disagreement unless we also

26A few previous studies have considered a noisy information model where agents update their information at
different frequencies, resulting in limited dispersion of forecasts in response to public information. A detailed
literature review on this topic is provided in Section Appendix F of the appendix.
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model forecaster turnover, as is observed in the SPF.

Given the above simplifications, beliefs of agent i about inflation follow the stochastic process

Fi ,tπt =
(
1− g

)
ρc Fi ,t−1πt−1 + gπt + g c

i ,y uc
t + g c

i ,z vc
i ,t

Let g c
y denote the cross-sectional population average of g c

i ,y . Furthermore, let σ2
g ,y and σ2

g ,z

denote the cross-sectional population variances of g c
i ,y and g c

i ,z respectively. The cross-sectional

mean of beliefs follows

F̄i ,tπt =
(
1− g

)
ρc F̄i ,t−1πt−1 + gπt + ḡ c

y uc
t (17)

and the cross-sectional variance follows

Vari
(
Fi ,tπt

)= [(
1− g

)
ρc

]2 Vari
(
Fi ,t−1πt−1

)+σ2
g ,y

(
uc

t

)2 +σ2
g ,zσ

2
v (18)

Equation (18) implies that time-variation in disagreement is driven entirely by public noise

shocks uc
t . The magnitude of the impact on cross-sectional disagreement is driven by the

magnitude of the shock and the variance of the gains g c
i ,y , σ2

g ,y , across agents. Larger shocks

(in magnitude) and a larger dispersion of gains on the public signal lead to larger and more

persistent swings in disagreement.

To illustrate the connection between the noisy information model and our statistical model,

we consider a simulation experiment. We parameterize the process for beliefs using ρc = 0.95,

σc
ε = 0.83, g = 0.4, σu = 2.1, σv = 2.1, ḡ c

y = 0.2, and σg ,y = 0.1. The volatility of shocks to the

cyclical component, σc
ε, is chosen so that the unconditional variance of ct is the same as the

unconditional variance of inflation over our sample period. The variance of the public and private

noise shocks are both chosen to be equal to twice the variance of the cyclical component.27 The

overall gain and average public signal gain g and ḡ c
y are set to be the gains that would be chosen

by a rational agent facing the specified signal extraction problem. The g c
i ,y are randomly drawn

from a Normal distribution with mean ḡ c
y and standard deviation σg ,y . The g c

i ,z are set equal to

g − g c
i ,y for each i .

We simulate a balanced panel of forty forecasters for three-hundred time periods. We then

construct common and idiosyncratic components by decomposing the simulated nowcasts

using our statistical dynamic factor model in Section 3 assuming no measurement error. The

27This implies a signal to noise ratio of one third for both the public and private signals. This is chosen to
approximately match the observed cross-sectional dispersion in inflation nowcasts from the SPF.
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Figure 12: NOISY INFORMATION MODEL SIMULATIONS
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Notes: The figure shows the dynamics of disagreement and disagreement shares in a simulation experiment from
our noisy information model. The top panel plots the overall cross-sectional variance of beliefs about inflation in
black, the variance attributable to public information in red, and the variance attributable to private information in
yellow. The bottom panel plots the share of the total variance attributable to public information.

Sources: Authors’ calculation

disagreement and variance share measures are constructed exactly as in Section 6.

Figure 12 presents the results for disagreement. The top panel plots the total variance of

beliefs in black along with the portions of variance driven by public and private information in

red and yellow respectively. The bottom panel plots the share of the variance driven by public

information. These panels broadly match the patterns observed in Figure 7. Disagreement

exhibits conditional heteroskedasticity corresponding to periods of large public noise shocks. In

periods of large public noise shocks, the share of disagreement explained by public information

rises. There are also spikes in disagreement which arise from a large realized dispersion of

private signals, and in these periods there is no corresponding rise in the variance share of public

information, as predicted by our theory.

The structural model effectively captures our key empirical finding—the increased impor-

tance of public information in driving disagreement during periods of large inflationary shocks. It

is important to note that this result was achieved even without allowing for changes in individual-

level uncertainty. This observation further validates the economic interpretations of the three

elements of the dynamic factor model as long-term beliefs, heterogeneous reactions to public

information, and private information.
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7 Implications for Monetary Policy

This section explores the link between the source of disagreement and the effectiveness of mone-

tary policy. Section 7.1 examines whether the news component of monetary policy surprises

reduces the disagreement attributable to public information and discusses implications for

anchoring inflation expectations. Section 7.2 investigates the effect of disagreement about public

information on the transmission of monetary policy shocks.

7.1 Effect of the Fed’s Response to News on Disagreement

So far, we have implicitly assumed that disagreement about public information can be mitigated

through monetary policy communication. We now examine whether this is the case empirically.

For this analysis, we consider a local projection (LP) with an externally identified shock. We use

the Fed’s response to economic news from Bauer and Swanson (2022), as the externally identified

shock. This news component of monetary policy surprises, reflecting the Fed’s interpretation

of recent data releases, is measured as the difference between high-frequency monetary policy

surprises and the orthogonalized monetary policy shock. If forecasters pay attention to the Fed’s

reactions to data releases, this news component should reduce the disagreement about public

information among forecasters.

Let y p
t+h denote the disagreement about 8-quarter-ahead inflation attributable to public

information. Similarly, let yo
t+h denote the disagreement about 8-quarter-ahead inflation at-

tributable to non-public information, which includes both private information and long-term

beliefs. We measure disagreement using the standard deviation of the portion of individual-level

forecasts attributable to each information source. We focus on an 8-quarter horizon to account

for policy lags.

The local projection model is specified as follows:

y j
t+h =α j

h +β j
h zt +Γ j

hXt−1 +e j
t+h for j ∈ [p,o] h = 0,1, · · · , H , (19)

where α j
h is a constant, zt is the news-component shock, β j

h captures the magnitude of pass-

trough of the shock h quarters after impact, and e j
t+h is an error term. The notation Xt−1 denotes

a set of macroeconomic controls, all lagged by one period. The controls include four lags of the

two-year Treasury yield, the first differenced log of industrial production (IP), the first differenced
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log of the consumer price index (CPI),the unemployment rate, the excess bond premium from

Gilchrist and Zakrajšek (2012), the level of disagreement attributable to public information and

that attributable to non-public information. We also include two lags of zt in the controls.28 Note

that the parameter draws from the Gibbs sampler are used to construct y p
t+h and yo

t+h . For each

draw, we compute the corresponding impulse response. We then obtain posterior distributions

of the impulse responses. The sample period is 1991:Q4-2019:Q4.29

Figure 13 displays the responses of two disagreement measures to the news component of a

monetary policy shock. We report the effects of a one-standard-deviation innovation in the news

component. As shown in Panel A, the Fed’s positive reaction to economic news immediately

and significantly reduces disagreement about 8-quarter-ahead inflation attributable to public

information. However, the same shock has a smaller and statistically insignificant effect on the

corresponding disagreement attributable to non-public information. This result confirms that

disagreement about public information is the portion that can be reduced by monetary policy

communication and is therefore relevant for anchoring inflation expectations.

We further investigate whether the effects of the Fed’s reactions to news change when fore-

casters have recently experienced substantial disagreement about public information. To explore

this possibility, we consider two regimes: in Regime 1, non-public information is the source of

disagreement, while in Regime 2, public information is the source. These regimes are distin-

guished by the disagreement share of public information, as introduced in Section 6, with a focus

on disagreement regarding 8-quarter-ahead inflation. Consider the following nonlinear local

projection model.

y j
t+h =α j

h +β j
1,h(1− st−1)zt +β j

2,h st−1zt +Γ j
hXt−1 +e j

t+h for j ∈ [p,o], h = 0,1, · · · , H (20)

In this model, st−1 is the indicator of Regime 2 and is measured using βc
8,t−1 from Equation

(16). The indicator of Regime 1 is thus (1− st−1), measured with (1−βc
8,t−1). The parameter β j

1,h

captures the magnitude of pass-through when disagreement is driven by non-public information

(Regime 1), while β j
2,h reflects the magnitude when public information is the source of disagree-

ment (Regime 2). We use a one-quarter lag of st to avoid contemporaneous feedback from policy

actions (Auerbach and Gorodnichenko, 2013). The parameter draws from the Gibbs sampler are

28We use the controls of macroeconomic variables as considered by Bauer and Swanson (2022).
29The sample period of Bauer and Swanson’s orthogonalized shock ends in February 2020. For this reason, we end

the sample period of this local projection analysis in 2019:Q4.
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Figure 13: PROPAGATION OF FED’S REACTIONS TO NEWS

Panel A. Average Responses
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Notes: The figure shows the responses of disagreement about 8-quarter-ahead inflation expectations attributable to
public information and non-public information following the Fed’s response to news from Bauer and Swanson
(2023). HAC standard errors are reported. Panel A presents the results from the linear model in Equation. (19), while
Panel B shows the results from the nonlinear model in Equation (20). In Panel B, the blue lines represent the
responses in Regime 1, while the magenta lines represent those in Regime 2. Non-public information is the primary
source of disagreement in Regime 1, whereas public information is the main source in Regime 2. The average
disagreement shares of non-public and public information are 0.9 and 0.1, respectively. In Panel B, the estimated
responses for Regimes 1 and 2 are scaled by 0.9 and 0.1, respectively, so that their sum closely approximates the
average impulse responses in Panel A. The dashed lines indicate the 95% posterior intervals.

Source: Authors’ calculation

used to estimate βc
8,t−1 and hence st−1, which are then used to compute impulse responses.

Panel B of Figure 13 shows the impulse responses for the two regimes. We report the effects

of a one-standard-deviation innovation in the news component. The responses of regimes 1

and 2 are scaled by 0.9 and 0.1, corresponding to the average disagreement shares of non-public

information and public information, respectively. This approach ensures that the sum of the two

impulse responses closely approximates the average responses reported in Panel A. Notable dif-
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ferences emerge across the two regimes. When public information is the source of disagreement

(magenta lines), the news component does not statistically significantly reduce disagreement. In

contrast, when non-public information is the source, the reduction of disagreement is statistically

significant on impact. This finding suggests that increased disagreement about public informa-

tion may reflect situations where forecasters disagree about monetary policy communication,

given that the Fed’s communication is also public information. Thus, heightened disagreement

attributable to public information may suggest a weakened effectiveness of monetary policy

communication in anchoring inflation expectations.

This result has a few important implications. First, our empirical model effectively iden-

tifies the sources of information contributing to disagreement, highlighting that the portion

attributable to public information is the amount that is reducible by monetary policy commu-

nication and is relevant in anchoring inflation expectations. Second, the Fed’s interpretation

of economic news plays a crucial role in shaping public information essential for inflation

forecasting. In this sense, clear communication of the monetary authority can help anchor

economic agents’ expectations by reducing their disagreement about future macroeconomic

conditions. Finally, the extent of disagreement driven by public information can serve as an

auxiliary indicator of how well-anchored inflation expectations are.

In appendix E.1, we provide extensive robustness checks for the analysis presented in this

section. First, we further consider disagreement about 10-year-ahead inflation instead of about

8-quarter ahead inflation projections. Second, we consider expanding the macroeconomic

controls to include a measure of individual uncertainty from Binder (2017) and the consensus

inflation expectations about next year.30 Third, we consider not including lags for the news

component of the monetary policy shock. Fourth, we also consider alternative methodologies

such as the two-stage local projection with external instrumental variable (LP-IV). The results

are robust.

7.2 Disagreement and Monetary Policy Effectiveness

This section explores the relationship between the role of public information in disagreement

and the stabilizing effects of monetary policy shocks. Specifically, we assess the extent to which

the disagreement share of public information affects the effectiveness of monetary policy.

30For this robustness check, we also include an external consensus measure, rather than using the model estimates,
to ensure that our results are robust to the inclusion of external data.
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Figure 14: PROPAGATION OF MONETARY POLICY SHOCKS OF THE TWO REGIMES (8-QUARTER AHEAD)

Notes: The figure reports the responses of four macroeconomic variables to the orthogonalized monetary policy
shock from Bauer and Swanson (2023). The figure shows the impulse responses of Regimes 1 and 2 scaled by 0.9
and 0.1, respectively. The blue lines show the responses when non-public information is the source of disagreement
(Regime 1), while the magenta lines represent the responses when public information is the source of disagreement
(Regime 2). The upper left figure shows the cumulative response of percent changes in industrial production; the
upper right figure shows the cumulative responses of percent changes in the CPI; the bottom left figure shows the
responses of the unemployment rate; and the bottom right figure displays the response of the excess bond premium
(EBP). The dashed lines represent the 90% posterior intervals.

Sources: Authors’ calculation

For this analysis, we utilize a nonlinear local projection model similar to the one in equation

(20), with some modifications. First, the dependent variables are macroeconomic variables,

namely the growth rate of industrial production, CPI inflation, the unemployment rate, and the

excess bond premium. Second, we use the orthogonalized monetary policy shock from Bauer

and Swanson (2022) as the externally identified shock. Finally, to maintain consistency with

previous studies, our local projection model is specified at a monthly frequency. We consider 12

lags for the macroeconomic controls and two lags for the monetary policy shocks.31

31As a robustness check, we include the uncertainty measure from Binder (2017) and the consensus inflation
expectations from the SPF (long-run and next year) as macro controls. For the consensus expectations, we use the
data as they are instead of using the model-implied consensus to avoid potential issues specific to our model. The
estimation results are robust to the inclusion of additional macro controls. All robustness checks are reported in the
appendix.
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The nonlinear model has two regimes which are the same as those in equation (20). Non-

public information is the source of the disagreement in Regime 1, and public information in

Regime 2. Each regime is also distinguished by the disagreement share of public information 8

quarters ahead. Again, to avoid contemporaneous feedback from policy actions, we consider

a one-period lag for the regime indicator. Since the disagreement share is quarterly, we assign

the same quarterly value to the three months of the corresponding quarter and use the previous

quarter’s share as the regime indicator for month t .32 The sample period is from October 1991 to

December 2019.

Figure 14 presents the impulse responses for the two regimes. We report the effects of a

one-standard-deviation innovation in the orthogonalized monetary policy shock. In Panel A, the

responses of regimes 1 and 2 are scaled by 0.9 and 0.1, respectively, again reflecting the average

disagreement shares of non-public information and public information.33 For the responses

of IP growth and CPI inflation, we report the cumulative effects of the monetary policy shock,

providing estimates that directly reflect changes in levels (Stock and Watson, 2018). Significant

differences in the effects of monetary policy are observed between the two regimes. In regime

1 (blue lines), where non-public information is the source of disagreement, contractionary

monetary policy has rapid and statistically significant effects on macroeconomic variables. In

contrast, in regime 2 (magenta lines), where public information is the source of disagreement,

the overall monetary policy effects become weaker and macroeconomic variables show delayed

responses. Notably, a price puzzle emerges in the second regime.

Our empirical findings have important implications for the effectiveness of monetary policy.

First, the sensitivity of disagreement to public information—captured by the disagreement

share of public information—is an important determinant of monetary policy effectiveness.

When forecasters disagree about public information, including the stance of monetary policy,

the stabilizing effects of monetary policy weaken significantly.34 Second, our empirical result

also offers a new perspective on the source of the price puzzle. Our result suggests that the

32As a robustness check, we also consider a one-month lag for st . Since the SPF is conducted during the first
week in the second month of each quarter, the submitted forecasts largely reflect the information set through the
previous quarter. For this reason, the one-month lag for st is less likely to create a feedback effect in the current
period. The estimation results remain robust regardless.

33This approach ensures that the sum of the two impulse responses closely approximates the average responses.
34Our finding aligns with Dong et al. (2024), who report that households’ disagreement, as measured in the

Michigan survey, weakens the effectiveness of monetary policy. However, beyond the difference data source, we
further identify that the key component of disagreement that weakens the effectiveness of monetary policy is the
portion of that disagreement which is attributable to public information.
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contribution of public information to disagreement is an important channel driving the price

puzzle. This implies that the price puzzle may be related to the effectiveness of monetary policy

communication or the credibility of the central bank.35 Overall, our empirical results suggest

that clear communication of monetary policy can enhance policy effectiveness by reducing

disagreement attributable to public information.

Appendix E.2 provides extensive robustness checks for the analysis presented in this section.

First, we consider the disagreement share for 10-year-ahead inflation instead of 8-quarter-ahead

inflation projections. Second, we explore the use of regime indicators based on both a one-month

lag and the current quarter to assess the sensitivity of the results to the timing of the regime

indicator. Third, we expand the macroeconomic controls to include the uncertainty measure

from Binder (2017), the monetary policy uncertainty from Husted et al. (2020), and the consensus

inflation expectations for the next year. Note that we control for individual-level uncertainty

and uncertainty regarding monetary policy to isolate the effects of disagreement about public

information on the effectiveness of monetary policy. Fourth, we present the impulse responses

with the average disagreement shares seen during economic recessions. The empirical results

remain robust across these alternative specifications.36

8 Conclusion

This paper makes three key contributions. First, we develop a parametric model which we

call the ‘individual term-structure of inflation expectations,’ which uses two factors—level and

slope—to describe forecasters’ inflation predictions across different time horizons. Second, we

extend this model to a dynamic factor framework, decomposing individual-level elements into

35Falck et al. (2021) also observe that the price puzzle becomes more pronounced when professional forecasters
disagree, based on SPF data. Our finding differs from Falck et al. (2021) in that we identify public information as
the key driver. The sensitivity of disagreement to public information increases when overall disagreement rises,
explaining the observed consistency between the two findings.

36Additionally, we examine alternative regimes based on high- and low- level disagreement without further
decomposing by information source. See Appendix E.2 for more details. In this analysis, the regimes are determined
by whether total 4-quarter-ahead disagreement—the forecast horizon frequently often considered by previous
studies. Similar to the earlier findings, we find larger and more statistically significant contractionary effects of
monetary policy in the regime of low disagreement, while the effects are muted and less statistically significant in
the regime of high disagreement. However, the price puzzle is observed in the low disagreement regime not in the
high disagreement regime, which is somewhat different from the earlier studies. The difference may stem from
differences in data and the sample period. All told, the difference in policy effectiveness between the two regimes is
less pronounced when distinguishing the regimes based on the level of disagreement compared to our baseline.
This observation reinforces the importance of the information source in evaluating the effectiveness of monetary
policy.
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common and idiosyncratic components and an individual constant term. We build a noisy

information model where forecasters exhibit heterogeneous reactions to public information.

We show that our structural model maps directly into the estimates from our dynamic factor

model, which allows to interpret the common and idiosyncratic components as responses to

public and private information, respectively, and the individual fixed effects as long-term beliefs.

This unique decomposition allows us to separate disagreement about inflation projections into

these three sources at each point in time and across forecasting horizons. Third, we investigate

how the sensitivity of disagreement to public information impacts the effectiveness of monetary

policy and the anchoring of inflation expectations. All of these contributions are entirely novel

to the literature.

Our research highlights the importance of considering disagreement when evaluating the

anchoring of inflation expectations. Although consensus forecasts suggest well-anchored long-

term expectations, inflation forecasts across forecasting horizons show greater disagreement and

increased skewness, particularly during the Great Recession and the COVID-19 pandemic. This

observation indicates that expectations were likely less well-anchored than previously thought.

Our model shows that the consensus forecast and disagreement often yield distinct insights into

the anchoring of agents’ inflation expectations.

We find distinct roles for the three sources of disagreement across forecasting horizons.

Long-term beliefs and private information account for the majority of disagreement in long-run

and short-run expectations respectively. The role of public information in disagreement is small

on average. However, during economic downturns and periods of high inflation uncertainty,

public information becomes a key driver of disagreement. A noisy information model with

heterogeneous reactions to public information predicts that this varying importance of public

information in the disagreement arises in response to large public news shocks.

Finally, we find that when public information is the main source of disagreement, the econ-

omy’s responses to monetary policy shock are delayed significantly and a price puzzle emerges.

When public information is not important in disagreement, monetary policy has rapid and

statistically significant stabilizing effects. These results suggests that disagreement about public

information is an important determinant of the effectiveness of monetary policy, underscoring

the importance of anchoring inflation expectations.

Central bank communication about the macroeconomic outlook plays a crucial role in

managing inflation expectations, especially during times when economic agents are highly
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attentive to monetary policy and macroeconomic news. Clear communication by policymakers

can reduce disagreement and provide a stronger anchor for inflation expectations during periods

of heightened uncertainty. Our findings offer a new perspective on the source of the price puzzle

and its relationship with central banks’ expectations management. We leave this topic to future

research.
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Appendix A State-Space Representation of Nelson-Siegel Model

This section provides a full characterization of the state-space representation of the Nelson-

Siegel model’s equations, along with detailed definitions of all of the coefficient vectors and

matrices.

A.1 State Equation

We start with the state equation. Let the (2(n +1)×1) state vector xt be defined as

xt :=
[

Lt ,St ,εL
1,t ,εS

1,t , · · · ,εL
n,t ,εS

n,t

]′
(A1)

Define the transition matrix F as

F :=



ρL 0 0 0 . . . 0 0

0 ρS 0 0 . . . 0 0

0 0 ρL
ε 0 0. . . 0 0

0 0 0 ρS
ε . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . ρL
ε 0

0 0 0 0 . . . 0 ρS
ε



. (A2)

Let ut be the vector of shocks to the state vector defined as follows:

ut :=
[

uL
t ,uS

t ,uL
1,t ,uS

1,t , · · · ,uL
n,t ,uS

n,t

]′
. (A3)
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The covariance matrix of the shocks is given by:

Q =



1 0 0 0 . . . 0 0

0 1 0 0 . . . 0 0

0 0 σ2
L 0 0. . . 0 0

0 0 0 σ2
S . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . σ2
L 0

0 0 0 0 . . . 0 σ2
S



. (A4)

Finally, we arrive at the state equation:

xt = Fxt−1 +ut , ut ∼ N (0,Q). (A5)

A.2 Measurement Equation

The measurement equation is of the form:

yt =µy +Hxt +vt , vt ∼ N (0,R), (A6)

where µy is a vector of forecaster fixed effects, H is a matrix of factor loadings on the aggregate

and idiosyncratic level and slope factors, and vt is a vector of measurement errors. The rest of

the section details each component in Equation (10).

A.2.1 The Vector of Observations: yt

For estimation, we use one-quarter to four-quarter ahead fixed-horizon forecasts and two-year

forward, three-year forward, five-year average, and ten-year average fixed event forecasts. For the

five-year and ten-year average forecasts, we use observed nowcasts and one-quarter backcasts
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when available, and realized inflation two quarters and three quarters prior from the most recent

CPI vintage at the time the survey was conducted to capture realized inflation.

The observation vector for any period yt is given by

yt =



π1,t→t+1|t , π1,t+1→t+2|t , π1,t+2→t+3|t , π1,t+3→t+4|t , · · ·
π1,t+3→t+7|t , π1,t+2→t+6|t , π1,t+1→t+5|t , π1,t→t+4|t , · · ·

π1,t+7→t+11|t , π1,t+6→t+10|t , π1,t+5→t+9|t , π1,t+4→t+8|t , · · ·
π1,t→t+19|t , π1,t→t+18|t , π1,t→t+17|t , π1,t→t+16|t , · · ·
π1,t→t+39|t , π1,t→t+38|t , π1,t→t+37|t , π1,t→t+36|t , · · ·

· · · · · ·
· · · πn,t→t+37|t , πn,t→t+36|t



′

. (A7)

The first four elements of yt correspond to fixed horizon forecasts of one to four quarters ahead

and are typically observed every period. Only four of the final sixteen elements of yt are observed

in any given quarter. These final sixteen elements correspond to fixed event forecasts, where

each group of four correspond to the fixed event correctly mapped to the quarter in which the

survey was conducted.

For the final eight elements, which correspond to forecasts of average inflation over five and

ten year periods including the current calendar year, we must adjust them to account for the fact

that they include realized inflation over previous quarters. Specifically,

• In Q1, we define

πi ,t→t+19|t = 4

19

(
5πi ,t−1→t+19|t − 1

4
πi ,t−1→t |t

)
πi ,t→t+39|t = 4

39

(
10πi ,t−1→t+19|t − 1

4
πi ,t−1→t |t

)

• In Q2, we define

πi ,t→t+18|t = 4

18

(
5πi ,t−1→t+19|t − 1

4
πi ,t−1→t |t − 1

4
πi ,t−2→t−1|t

)
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πi ,t→t+38|t = 4

38

(
10πi ,t−1→t+19|t − 1

4
πi ,t−1→t |t − 1

4
πi ,t−2→t−1|t

)

• In Q3, we define

πi ,t→t+17|t = 4

17

(
5πi ,t−1→t+19|t − 1

4
πi ,t−1→t |t − 1

4
πi ,t−2→t−1|t − 1

4
πi ,t−3→t−2|t

)
πi ,t→t+37|t = 4

37

(
10πi ,t−1→t+19|t − 1

4
πi ,t−1→t |t − 1

4
πi ,t−2→t−1|t − 1

4
πi ,t−3→t−2|t

)

• In Q4, we define

πi ,t→t+16|t = 4

16

(
5πi ,t−1→t+19|t − 1

4
πi ,t−1→t |t − 1

4
πi ,t−2→t−1|t − 1

4
πi ,t−3→t−2|t − 1

4
πi ,t−4→t−3|t

)
πi ,t→t+36|t = 4

36

(
10πi ,t−1→t+19|t − 1

4
πi ,t−1→t |t − 1

4
πi ,t−2→t−1|t − 1

4
πi ,t−3→t−2|t − 1

4
πi ,t−4→t−3|t

)

For the nowcasts πi ,t−1→t |t and backcasts πi ,t−2→t−1|t , we use the reported values from the SPF.

For the two and three period backcasts πi ,t−3→t−2|t and πi ,t−4→t−3|t , we use the most recently

available vintage of the CPI at the time that the forecast was made.

A.2.2 The Vector of Forecaster Fixed Effects: µy

We define the loading function on the slope factor for forecasts of inflation between horizons at

two dates t +h1 and t +h2 as

fS(h1,h2) = e−λh1 −e−λh2

λ(h2 −h1)
(A8)
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This expression is used in µy and H. Define the constant vector in the measurement equation,

µy , as

µy :=



αL −αS fS(0,1), αL −αS fS(1,2), αL −αS fS(2,3), αL −αS fS(3,4),

αL −αS fS(3,7), αL −αS fS(2,6), αL −αS fS(1,5), αL −αS fS(0,4),

αL −αS fS(7,11), αL −αS fS(6,10), αL −αS fS(5,9), αL −αS fS(4,8)

αL −αS fS(0,19), αL −αS fS(0,18), αL −αS fS(0,17), αL −αS fS(0,16),

αL −αS fS(0,39), αL −αS fS(0,38), αL −αS fS(0,37), αL −αS fS(0,36),

· · · · · ·
· · · · · ·αL −αS fS(0,37), αL −αS fS(0,36)



′

. (A9)

Define the error term in the measurement equation, vt , as

vt :=



v1,1,t , v1,2,t , v1,3,t , v1,4,t ,

v1,5,t , v1,6,t , v1,7,t , v1,8,t ,

v1,9,t , v1,10,t , v1,11,t , v1,12,t ,

v1,13,t , v1,14,t , v1,15,t , v1,16,t ,

v1,17,t , v1,18,t , v1,19,t , v1,20,t ,

· · · · · ·
· · · · · ·vn,19,t , vn,20,t



′

. (A10)

The covariance matrix of the measurement error vector (vt ), R, is given by the following
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diagonal matrix.

R := diag





σ2
v,1, σ2

v,2, σ2
v,3, σ2

v,4,

σ2
v,5, σ2

v,6, σ2
v,7, σ2

v,8,

σ2
v,9, σ2

v,10, σ2
v,11, σ2

v,12,

σ2
v,13, σ2

v,14, σ2
v,15, σ2

v,16

σ2
v,17, σ2

v,18, σ2
v,19, σ2

v,20

· · · · · ·
· · · · · · ,σ2

v,19, σ2
v,20



′

(A11)

Note that the argument in the square bracket is a vector.
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Finally, we define the measurement equation mapping matrix H as

H :=



βL
1 −βS

1 fS(0,1) 1 fS(0,1) . . . 0 0

βL
1 −βS

1 fS(1,2) 1 fS(1,2) . . . 0 0

βL
1 −βS

1 fS(2,3) 1 fS(2,3) . . . 0 0

βL
1 −βS

1 fS(3,4) 1 fS(3,4) . . . 0 0

βL
1 −βS

1 fS(3,7) 1 fS(3,7) . . . 0 0

βL
1 −βS

1 fS(2,6) 1 fS(2,6) . . . 0 0

βL
1 −βS

1 fS(1,5) 1 fS(1,5) . . . 0 0

βL
1 −βS

1 fS(0,4) 1 fS(0,4) . . . 0 0

βL
1 −βS

1 fS(7,11) 1 fS(7,11) . . . 0 0

βL
1 −βS

1 fS(6,10) 1 fS(6,10) . . . 0 0

βL
1 −βS

1 fS(5,9) 1 fS(5,9) . . . 0 0

βL
1 −βS

1 fS(4,8) 1 fS(4,8) . . . 0 0

βL
1 −βS

1 fS(0,19) 1 fS(0,19) . . . 0 0

βL
1 −βS

1 fS(0,18) 1 fS(0,18) . . . 0 0

βL
1 −βS

1 fS(0,17) 1 fS(0,17) . . . 0 0

βL
1 −βS

1 fS(0,16) 1 fS(0,16) . . . 0 0

βL
1 −βS

1 fS(0,39) 1 fS(0,39) . . . 0 0

βL
1 −βS

1 fS(0,38) 1 fS(0,38) . . . 0 0

βL
1 −βS

1 fS(0,37) 1 fS(0,37) . . . 0 0

βL
1 −βS

1 fS(0,36) 1 fS(0,36) . . . 0 0

...
...

...
...

. . .
...

...

βL
n −βS

n fS(0,37) 0 0 . . . 1 fS(0,37)

βL
n −βS

n fS(0,36) 0 0 . . . 1 fS(0,36)



. (A12)
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A.2.3 Remark

In the measurement equation, each series in yt is assumed to be observed with measurement

error. The fixed event forecasts are treated separately in each quarter throughout the calendar

year to reflect the fact that the forecasting horizon shrinks as the calendar year progresses. This

leaves us with a total of 20 observables for each forecaster in each quarter, 12 of which are missing

by construction.
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Appendix B Gibbs Sampler

1. Sample θ1 =
{
αL

i ,αS
i ,βL

i ,βS
i

}N
i=1

conditional on remaining parameters.

Since all of the shocks are assumed to be independent, this can be treated as a separate

regression model for each forecaster i . We assume independent, multivariate normal

priors for each group of four parameters
[
αL

i ,αS
i ,βL

i ,βS
i

]′
across each foracaster i , where



αL
i

αS
i

βL
i

βS
i


∼ N

(
µi ,Σi

)

2. Sample θ2 = vec(A) conditional on remaining parameters. Since Lt and St are observed,

this is a standard multivariate regression model.

3. Sample θ3 = vec(B ) conditional on remaining parameters. Since εL
i ,t and εS

i ,t are observed

for every forecaster i = 1, . . . ,n, this is a standard multivariate regression model with known

covariance matrix where we pool the data across forecasters.

4. Sampleθ4 =
[
σ2

L ,σ2
S

]′
conditional on remaining parameters. Since εL

i ,t and εS
i ,t are observed

for every forecaster i = 1, . . . ,n, this is a standard variance estimation problem with known

regression coefficients where we pool the data across forecasters.

5. Sample θ5 =λ with a Metropolis Hastings step conditional on remaining parameters. It

boils down to a nonlinear regression problem.

6. Sample θ6 =
[
σ2

v,1, . . . ,σ2
v,20

]′
conditional on remaining parameters. Given other parame-

ters, vt is directly observed.

7. Sample θ7 = {xt }T
t=1 conditional on remaining parameters using a simulation smoother.
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Appendix C Noisy Information Model Proofs

Proof of Proposition 1. After some algebraic manipulation one can show that

Li ,t = ρL
i ,εLi ,t−1 +βL

i

[(
1−

ρL
i ,ε

ρL

)
Lt +

ρL
i ,ε

ρL
uL

t

]
+ vL

i ,t

Si ,t = ρS
i ,εSi ,t−1 +βS

i

[(
1−

ρS
i ,ε

ρS

)
St +

ρS
i ,ε

ρS
uS

t

]
+ vS

i ,t

Taking the cross-sectional mean across forecasters of the common term (involving βi ) and

adding and subtracting we get

Li ,t = ρL
i ,εLi ,t−1 +βL

i

[(
1− ρ̄L

ε

ρL

)
Lt +

ρ̄L
ε

ρL
uL

t

]
+ vL

i ,t −βL
i

ρL
i ,ε− ρ̄L

ε

ρL

(
Lt −uL

t

)
Si ,t = ρS

i ,εSi ,t−1 +βS
i

[(
1− ρ̄S

ε

ρS

)
St +

ρ̄S
ε

ρS
uS

t

]
+ vS

i ,t −βS
i

ρS
i ,ε− ρ̄S

ε

ρS

(
St −uS

t

)

Matching terms to those in the equations which govern the evolution of beliefs in the noisy

information model, we can solve for the statistical model parameters as functions of the noisy

information model parameters. Starting with the slope dynamics we have

ρS
i ,εSi ,t−1 =

(
1− g c

i

)
ρc Fi ,t−1ct−1 (C13)

βS
i

[(
1− ρ̄S

ε

ρS

)
St +

ρ̄S
ε

ρS
uS

t

]
= g c

i ct + g c
i ,y uc

t (C14)

vS
i ,t −βS

i

ρS
i ,ε− ρ̄S

ε

ρS

(
St −uS

t

)= g c
i vc

i ,t (C15)

We start by recognizing that Si ,t = Fi ,t ct , and thus from the first equation we immediately

obtain

ρS
i ,ε =

(
1− g c

i

)
ρc (C16)

We now assume that g c
i ∼ i .i .d .

(
ḡ c , (σc

g )2
)

across forecasters (this can be justified by agents

having different variances of private signals).
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Working with equation (C14) and assuming that ρS = ρc ,

βS
i

[(
1− ρ̄S

ε

ρS

)
St +

ρ̄S
ε

ρS
uS

t

]
=βS

i

[(
1−

(
1− ḡ c

)
ρc

ρS

)
St +

(
1− ḡ c

)
ρc

ρS
uS

t

]
=βS

i

[
ḡ c St +

(
1− ḡ c)uS

t

]
=βS

i

[
ḡ c (

ρSSt−1 +uS
t

)+ (
1− ḡ c)uS

t

]
=βS

i

[
ρc ḡ c St−1 +uS

t

]
= g c

i ct + g c
i ,y uc

t

We know that the last two expressions must have the same time-series variance, thus

(
ρcβ

S
i ḡ c

)2

1−ρ2
c

+ (
βS

i

)2 = (
g c

i

)2 (σc
ε)2

1−ρ2
c
+

(
g c

i ,y

)2
(σc

u)2

Solving for βS
i gives

βS
i =


(
g c

i

)2 (σc
ε)2 +

(
g c

i ,y

)2
(σc

u)2
(
1−ρ2

c

)
1+ (

ρc ḡ c
)2 −ρ2

c


1/2

(C17)

Next we work with equation (C15),

vS
i ,t −βS

i

ρS
i ,ε− ρ̄S

ε

ρS

(
St −uS

t

)
= vS

i ,t +βS
i

(
g c

i − ḡ c)ρc St−1

= g c
i ,z vc

i ,t

As before, we know that the last two expressions must have the same time-series variance,

thus

(σS
i ,v )2 +

(
βS

i

)2 [(
g c

i − ḡ c
)
ρc

]2

1−ρ2
c

=
(
g c

i ,zσ
c
i ,v

)2
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Solving for (σS
i ,v )2 gives

(σS
i ,v )2 =

(
g c

i ,zσ
c
i ,v

)2 −
(
βS

i

)2 [(
g c

i − ḡ c
)
ρc

]2

1−ρ2
c

(C18)

Using similar arguments for the level factor / permanent component (but matching the

conditional variance instead of the unconditional variance), we obtain

ρL
i ,ε = 1− g τi (C19)

βL
i =

[(
g τi

)2 (στε)2 +
(
g τi ,y

)2
(στu)2

]1/2

(C20)

σL
i ,v = g τi ,zσ

τ
i ,v (C21)
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Appendix D Additional Distributional Results

This section shows figures on moments of the factor distributions, the forecast variance decom-

position, and the forecast variance share of public information, that are not included in the main

text.

Figure D1: SMOOTHED IDIOSYNCRATIC FACTOR DISPERSION

Notes: The shaded areas denote the NBER recessions.

Sources: Authors’ calculation

Figure D2: SMOOTHED IDIOSYNCRATIC FACTOR SKEWNESS

Notes: The shaded areas denote the NBER recessions.

Sources: Authors’ calculation
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Figure D3: SMOOTHED IDIOSYNCRATIC FACTOR KURTOSIS

5
Notes: The shaded areas denote the NBER recessions.

Sources: Authors’ calculation

Figure D4: FORECAST VARIANCE DECOMPOSITION

Notes: The figure shows the decomposition of the cross-sectional variance of inflation forecasts (black line) into the
components driven by individual long-term beliefs (denoted by ltb, blue line), heterogeneous responses to public
information (denoted by pub, red line), and private information (denoted by priv, yellow line). Each line
corresponds to the posterior median. The shaded areas denote NBER recessions.

Sources: Authors’ calculation
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Figure D5: FORECAST VARIANCE SHARE OF COMMON COMPONENT

Notes: The figure shows the fraction of overall disagreement about four sets of inflation expectations driven by
heterogeneous responses to common information over time as measured by the β measure proposed in Fujita and
Ramey (2009). The shaded areas denote NBER recessions.

Sources: Authors’ calculation
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Appendix E Additional Results on Monetary Policy Effective-

ness

E.1 Effects of News Component on Disagreement

Figure E6: (ROBUSTNESS CHECK 1) PROPAGATION OF FED’S REACTIONS TO NEWS: 10-YEAR AHEAD

Panel A. Average Responses
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Panel B. Nonlinear Responses
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Notes: The figure shows the responses of disagreement about 40-quarter-ahead inflation expectations attributable
to public information and non-public information following the Fed’s response to news from Bauer and Swanson
(2022). The alternative model also includes the individual-level uncertainty from Binder (2017) and the consensus
inflation expectation for the next year as the additional controls. In addition, the regimes are determined by the
disagreement shares for 40-quarter ahead. HAC standard errors are reported. Panel A presents the results from the
linear model in Equation. (19), while Panel B shows the results from the nonlinear model in Equation (20). In Panel
B, the magenta lines represent the responses when the previous period’s disagreement is attributable to public
information, and the blue lines represent the responses when the previous period’s disagreement is attributable to
non-public information. Estimates for regimes 1 and 2 are scaled by 0.9 and 0.1, respectively, corresponding to the
average values of the disagreement shares for public and non-public information for 10-year ahead. The dashed
lines indicate the 95% posterior intervals.

Source: Authors’ calculation
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Figure E7: (ROBUSTNESS CHECK 2) PROPAGATION OF FED’S REACTIONS TO NEWS: ALTERNATIVE

CONTROLS

Panel A. Average Responses
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Notes: The figure shows the responses of disagreement about 8-quarter-ahead inflation expectations attributable to
public information and non-public information following the Fed’s response to news from Bauer and Swanson
(2022). The alternative model with the individual-level uncertainty measure from Binder (2017) and the consensus
inflation expectations for the next year are additionally considered as the controls. HAC standard errors are
reported. Panel A presents the results from the linear model in Equation. (19), while Panel B shows the results from
the nonlinear model in Equation (20). In Panel B, the magenta lines represent the responses when the previous
period’s disagreement is attributable to public information, and the blue lines represent the responses when the
previous period’s disagreement is attributable to non-public information. Estimates for regimes 1 and 2 are scaled
by 0.9 and 0.1, respectively, corresponding to the average values of the disagreement shares for public and
non-public information for 8-quarter ahead. The dashed lines indicate the 95% posterior intervals.

Source: Authors’ calculation
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Figure E8: (ROBUSTNESS CHECK 3) PROPAGATION OF FED’S REACTIONS TO NEWS: NO LAGS OF zt

Panel A. Average Responses
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Panel B. Nonlinear Responses
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Notes: The figure shows the responses of disagreement about 8-quarter-ahead inflation expectations attributable to
public information and non-public information following the Fed’s response to news from Bauer and Swanson
(2022). The alternative model with zero lags for zt is considered. HAC standard errors are reported. Panel A presents
the results from the linear model in Equation. (19), while Panel B shows the results from the nonlinear model in
Equation (20). In Panel B, the magenta lines represent the responses when the previous period’s disagreement is
attributable to public information, and the blue lines represent the responses when the previous period’s
disagreement is attributable to non-public information. Estimates for regimes 1 and 2 are scaled by 0.9 and 0.1,
respectively, corresponding to the average values of the disagreement shares for public and non-public information
8-quarter ahead. The dashed lines indicate the 95% posterior intervals.

Source: Authors’ calculation
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Figure E9: (ROBUSTNESS CHECK 4) PROPAGATION OF FED’S REACTIONS TO NEWS: LP-IV

0 2 4 6 8
0

0.2

0.4

0.6
Treasury

0 2 4 6 8
0

0.5

1

1.5

2
IP

0 2 4 6 8
0

0.2

0.4

0.6
CPI

0 2 4 6 8

-0.2

-0.1

0

0.1

0.2
EBP

0 2 4 6 8
-0.06

-0.04

-0.02

0

Public (8-quarter)

Impulse response (LP with controls)

0 2 4 6 8

-0.02

-0.01

0

0.01

0.02
Private (8-quarter)

Notes: The figure shows the responses of four macroeconomic variables and the disagreement about
8-quarter-ahead inflation expectations driven by public and private information (including long-term beliefs) to
Fed’s response to news from Bauer and Swanson (2023). The LP-IV is employed for the estimation. The LP-IV
includes four lags of dependent variables and four lags of external shocks in the first stage regression. The
F-statistics is significantly larger than 10. The cumulative responses are reported for the IP growth and CPI inflation.
The dashed line captures the 90 percent posterior intervals.

Source: Authors’ calculation
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E.2 Nonlinear Effects of a Traditional Monetary Policy Shock

Figure E10: (ROBUSTNESS CHECK 1) PROPAGATION OF MONETARY POLICY SHOCKS: 10-YEAR

AHEAD
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Notes: The figure reports the responses of four macroeconomic variables to the orthogonalized monetary policy
shock from Bauer and Swanson (2022). For the regime indicator, 10-year ahead disagreement shares of the previous
quarter are considered. Panel A shows the impulse responses of regimes 1 and 2 scaled by 0.9 and 0.1, respectively.
The blue lines represent the responses when disagreement is attributable non-public information (regime 1), while
the magenta lines show the responses when disagreement is attributable to public information (regime 2). In each
panel, the upper left figure shows the cumulative response of percent changes in industrial production; the upper
right figure shows the cumulative responses of percent changes in the CPI; the bottom left figure shows the
responses of the unemployment rate; and the bottom right figure displays the response of the excess bond premium
(EBP). The dashed lines represent the 90% posterior intervals.

Sources: Authors’ calculation
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Figure E11: (ROBUSTNESS CHECK 2) PROPAGATION OF MONETARY POLICY SHOCKS OF THE TWO

REGIMES: 1-MONTH LAG FOR THE REGIME INDICATOR)
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Notes: The figure reports the responses of four macroeconomic variables to the orthogonalized monetary policy
shock from Bauer and Swanson (2022). For the regime indicator, the one-month lags of 8-quarter-ahead
disagreement shares are considered. The panels show the impulse responses of regimes 1 and 2 scaled by 0.9 and
0.1, respectively. The blue lines represent the responses when disagreement is attributable non-public information
(regime 1), while the magenta lines show the responses when disagreement is attributable to public information
(regime 2). In each panel, the upper left figure shows the cumulative response of percent changes in industrial
production; the upper right figure shows the cumulative responses of percent changes in the CPI; the bottom left
figure shows the responses of the unemployment rate; and the bottom right figure displays the response of the
excess bond premium (EBP). The dashed lines represent the 90% posterior intervals.

Sources: Authors’ calculation
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Figure E12: (ROBUSTNESS CHECK 3) PROPAGATION OF MONETARY POLICY SHOCKS OF THE TWO

REGIMES: NO LAG FOR THE REGIME INDICATOR)
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Notes: The figure reports the responses of four macroeconomic variables to the orthogonalized monetary policy
shock from Bauer and Swanson (2022). For the regime indicator, 8-quarter-ahead disagreement shares are
considered without a lag. The panels show the impulse responses of regimes 1 and 2 scaled by 0.9 and 0.1,
respectively. The blue lines represent the responses when disagreement is attributable non-public information
(regime 1), while the magenta lines show the responses when disagreement is attributable to public information
(regime 2). In each panel, the upper left figure shows the cumulative response of percent changes in industrial
production; the upper right figure shows the cumulative responses of percent changes in the CPI; the bottom left
figure shows the responses of the unemployment rate; and the bottom right figure displays the response of the
excess bond premium (EBP). The dashed lines represent the 90% posterior intervals.

Sources: Authors’ calculation
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Figure E13: (ROBUSTNESS CHECK 4) PROPAGATION OF MONETARY POLICY SHOCKS OF THE TWO

REGIMES: ALTERNATIVE CONTROLS (1)
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Notes: The figure reports the responses of four macroeconomic variables to the orthogonalized monetary policy
shock from Bauer and Swanson (2022). For the regime indicator, 8-quarter ahead disagreement shares of the
previous quarter are considered. As the controls, the uncertainty measure from Binder (2017) and the consensus
expectations for the next year are additionally included. The panels show the impulse responses of regimes 1 and 2
scaled by 0.9 and 0.1, respectively. The blue lines represent the responses when disagreement is attributable
non-public information (regime 1), while the magenta lines show the responses when disagreement is attributable
to public information (regime 2). In each panel, the upper left figure shows the cumulative response of percent
changes in industrial production; the upper right figure shows the cumulative responses of percent changes in the
CPI; the bottom left figure shows the responses of the unemployment rate; and the bottom right figure displays the
response of the excess bond premium (EBP). The dashed lines represent the 90% posterior intervals.

Sources: Authors’ calculation
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Figure E14: (ROBUSTNESS CHECK 4) PROPAGATION OF MONETARY POLICY SHOCKS OF THE TWO

REGIMES: ALTERNATIVE CONTROLS WITH MONETARY POLICY UNCERTAINTY (2)
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Notes: The figure reports the responses of four macroeconomic variables to the orthogonalized monetary policy
shock from Bauer and Swanson (2022). For the regime indicator, 8-quarter ahead disagreement shares of the
previous quarter are considered. As the controls, the uncertainty measure from Binder (2017), the measure of
monetary policy uncertainty from Husted et al. (2020), and the consensus expectations for the next year are
additionally included. The panels show the impulse responses of regimes 1 and 2 scaled by 0.9 and 0.1, respectively.
The blue lines represent the responses when disagreement is attributable non-public information (regime 1), while
the magenta lines show the responses when disagreement is attributable to public information (regime 2). In each
panel, the upper left figure shows the cumulative response of percent changes in industrial production; the upper
right figure shows the cumulative responses of percent changes in the CPI; the bottom left figure shows the
responses of the unemployment rate; and the bottom right figure displays the response of the excess bond premium
(EBP). The dashed lines represent the 90% posterior intervals.

Sources: Authors’ calculation
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Figure E15: (ROBUSTNESS CHECK 5) PROPAGATION OF MONETARY POLICY SHOCKS OF THE TWO

REGIMES WITH RECESSION WEIGHTS (8-QUARTER AHEAD)
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Notes: The figure reports the responses of four macroeconomic variables to the orthogonalized monetary policy
shock from Bauer and Swanson (2022). For the regime indicator, 8-quarter ahead disagreement shares of the
previous quarter are considered. The figure shows the impulse responses of regimes 1 and 2 scaled by 0.6 and 0.4,
respectively. These weights represent the disagreement shares of non-public and public information during an
average economic downturn of the period of high inflation uncertainty. The blue lines show the responses when
non-public information is the source of disagreement (regime 1), while the magenta lines represent the responses
when public information is the source of disagreement (regime 2). The upper left figure shows the cumulative
response of percent changes in industrial production; the upper right figure shows the cumulative responses of
percent changes in the CPI; the bottom left figure shows the responses of the unemployment rate; and the bottom
right figure displays the response of the excess bond premium (EBP). The dashed lines represent the 90% posterior
intervals.

Sources: Authors’ calculation

Here, we further examine the responses during periods of economic recessions and height-

ened inflation risks. The responses of regimes 1 and 2 are scaled by 0.6 and 0.4, reflecting the

average disagreement shares of non-public information and public information during these

periods, respectively. Compared to normal times, the responses in regime 2 become dominant.

Overall, the effects of monetary policy are not statistically significant. For unemployment rate

and the EBP, the statistically significant effects appear but with substantial delays.
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Figure E16: (ROBUSTNESS CHECK 6) PROPAGATION OF MONETARY POLICY SHOCKS: HIGH AND LOW

DISAGREEMENT REGIMES
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Notes: The figure presents the responses of four macroeconomic variables to the orthogonalized monetary policy
shock from Bauer and Swanson (2022). The responses to a one-standard-deviation innovation shock are reported.
The panels show the impulse responses of the low-disagreement and high-disagreement regimes scaled by 0.35 and
0.65, respectively, representing the average regime probabilities. Each regime probability is computed as follows.
After standardizing the level of 4-quarter-ahead disagreement computed with the variance of forecasts, we plug in
the standardized value into a logit function with the smoothing parameter 5 to produce the probability of
low-disagreement regime. The probability of high-disagreement regime is one minus the probability of
low-disagreement regime. For the controls of local projection, we consider the individual-level uncertainty from
Binder (2017) and next year’s consensus inflation expectations in addition to the baseline controls. The blue lines
represent the responses of the high-disagreement regime, while the magenta lines show the responses of the
low-disagreement regime. In each panel, the upper left figure shows the cumulative response of percent changes in
industrial production; the upper right figure shows the cumulative response of percent changes in the CPI; the
bottom left figure displays the response of the unemployment rate; and the bottom right figure presents the
response of the excess bond premium (EBP). The dashed lines represent the 95% posterior intervals.

Sources: Authors’ calculation
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Appendix F Literature Review of Related Theory

This section discusses implications of our empirical findings for theoretical models.

To the best of our knowledge, we contribute to the theoretical literature in the following ways.

First, the core innovation that we bring to the literature is to uncover “heterogeneous responses"

to public information as an important source of disagreement. Second, we found the differential

contributions of three distinct information sources to changes in the term structure of inflation

expectations. Specifically, the individual long-term beliefs is the main contributor to the long-

run disagreement followed by private information, while private information is the main factor

driving short-run disagreement. Last, heterogeneous responses to public information are the

key driver of increased disagreement about both short-run and long-run inflation forecasts in

times of economic downturns or high inflation uncertainty. We review the features of existing

theoretical models and identify the features that could be added to make the models account for

our empirical findings.

We discuss the literature on the sticky information model, the noisy information model, and

disagreement about means and long-run priors. Table F1 summarizes the main features of each

model in the context of our empirical findings. Note that there is no scope for disagreement

in the full-information rational expectation (FIRE) model, where economic agents are ex ante

identical and efficiently process all available information. Therefore, we focus on the remaining

models.

To begin with, the importance of individual prior beliefs in long-run disagreement aligns

with the findings of Patton and Timmermann (2010) and Farmer et al. (2021), which emphasize

the significance of beliefs about long-run means and individual forecasters’ priors for their

long-term macroeconomic forecasts. It is worth noting that our statistical model captures a

forecaster-specific long-run prior through individual fixed effects. In contrast to these studies, we

also uncover both private and public information as additional important factors that contribute

to disagreement about the long run.
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Second, disagreement driven by private information can be accounted for by the noisy in-

formation model. The noisy information model Woodford (2001) can generate disagreement

among forecasters, but is limited in characterizing countercyclical disagreement or increased

disagreement in response to a large shock. In the model, forecasters are ex-ante identical with

time-invariant information precision which is the same across forecasters, but they are faced with

idiosyncratic signals which are uncorrelated over time. This feature generates time-varying dis-

agreement, but is limited in generating the countercyclicality seen in disagreement attributable

to public information. Thus, the noisy information model can account for disagreement at-

tributable to private information but not the portion attributable to public information.

Both the noisy information model with heterogeneity and the sticky information model

offer insights into characterizing disagreement driven by heterogeneous responses to public

information. To begin with, the noisy information model with heterogeneous information

precision across forecasters, as demonstrated by Coibion and Gorodnichenko (2012b), can

generate increased disagreement to economic shocks compared to the model without such

heterogeneity. Notably, in our statistical model, the differences in factor loadings on the level and

slope can be interpreted as reflecting heterogeneous information precision, thereby contributing

to disagreement arising from public information.

Additionally, the sticky information model is capable of generating disagreement at all

times and capturing increased disagreement in times of large shocks under specific conditions.

In this model, economic agents update their information set periodically due to the cost of

information acquisition, as explained by Mankiw and Reis (2002). Consequently, disagreement

arises because only a fraction of forecasters update their forecasts in response to macroeconomic

news, while others do not. While this model can capture increased disagreement in response

to macroeconomic news, the increased disagreement tends to dissipate quickly over time as

more forecasters update their information set. This feature allows the model to characterize the

limited role of public information in normal times, but the model is limited in capturing the

increased and persistent importance of public information in disagreement during an economic
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Table F1: DISAGREEMENT IN THE MODELS OF EXPECTATION FORMATION

FIRE Sticky Noisy info.Noisy info.Disagreement
Information (Same) (Different) about means

Scope of disagreement X ✓ ✓ ✓ ✓
Long-term beliefs (heterogeneity) X X X X ✓
Changing idiosyncratic disagreement X X ✓ X X
Countercyclical common disagreement X ✓ X ✓ X
Forecast-horizon differences X X X X X

downturn.37

Lastly, while existing models can account for certain aspects of our empirical findings, they

are constrained in their ability to fully capture the time-varying importance of public and private

information, as well as long-run beliefs, in short- and long-term inflation forecasts. Note that the

factor loadings on the level and slope factors play a crucial role in generating differential effects

of public information on disagreement across forecasting horizons, which is the missing piece

in the literature. The two sets of loadings suggest a need for two-dimensional heterogeneity

in reactions to news: one related to the long run and another concerning the transition from

the near term to the long run. All told, our empirical findings suggest directions for improving

existing models of expectation formation and helping them capture the observed patterns of

diasgreement.

37It’s worth noting that if the frequency of economic shocks exceeds the frequency of information updating, the
sticky information model can also generate disagreement at all times.
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Appendix G Discussion of Modeling Choices

This section discusses an alternative model and methodology. Section G.1 considers a time-

varying parameter model. Section G.2 considers a non-parametric approach as an alternative of

our parametric model.

G.1 Dynamic Factor Model

A. Fixed Factor Loadings

In our model, the factor loadings of each forecaster are fixed. A potential concern is that our

model is limited in capturing the changing responsiveness of forecasters to common information.

However, an individual forecaster stays in the sample for only 27 quarters on average, which is

too short to allow for regime changes in the factor loadings for each individual.

Note that our model allows each forecaster to have unique loadings, although the loadings

are constant for a forecaster. Therefore, in our model, two similar forecasters observed at two

different points in time have different loadings, reflecting increased or decreased attention to

potentially similar policy changes, for instance.

Our goal is to parse out the portion of cross-sectional variance attributed to common infor-

mation. In other words, as long as the common component—the product of common factor

and factor loading—is distinguished from the idiosyncrasy, the distinction of factor loading

from common factor is not necessary. For instance, if the common component does not change

in spite of an increase in the factor loading, the portion of disagreement driven by common

information does not change and hence the increase in the factor loading does not matter.

B. Stochastic Volatility

We do not allow for time-varying variances in the dynamics of the factors. However, by

allowing forecaster-specific loadings on the common factor and accounting for forecasters

moving in and out of the sample, the model can indirectly capture the stochastic volatility of
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aggregate inflation projections. As the composition of forecasters changes, these forecaster-

specific loadings can effectively represent slow-moving stochastic volatility in the aggregate.

The resilience of the model estimates to the COVID-19 shock is a practical concern. If the

pandemic observations dramatically alter the parameter estimates, the pre-pandemic inference

may dramatically with the inclusion of a handful of pandemic observations. In this case, includ-

ing stochastic volatility may robustify the inference, as it discounts the pandemic observations

and largely prevents the model from carrying backward the COVID shock for pre-pandemic

inference. To check how reliable the estimates are to the COVID shock, we compare the model

estimates through 2019:Q4 with those through 2023:Q3. In particular, the estimates and the main

conclusion are robust to the inclusion of the pandemic observations for the period prior to the

COVID era. This observation suggests that our result is robust even in the absence of stochastic

volatility. The results are available upon request.

G.2 Evidence from a Non-Parametric Model

Our baseline model is a highly parameterized model with a large number of parameters. Since

the model is estimated with MCMC sampling, the estimation is costly and time-consuming. One

may argue that our conclusions are sensitive to the particular parametric assumptions that we

impose and that the parameter estimates may be unstable because of the size of the model.

Alternatively, we can consider a non-parametric two-step model that is estimable least

squares and MLE. The first step is to construct a non-parametric model that describes the

individual term structure of inflation expectations. In this model, we use Legendre polynomials

to fit the short-term (less than 1 year ahead) inflation forecasts and a log function to fit the

long-term (more than 1 year ahead) inflation forecasts. We fit each forecaster’s observed inflation

forecasts in each quarter with least squares. This results in individual level and slope factor

estimates. In the second step, we estimate a dynamic factor model for each factor to parse out

common and idiosyncratic components using the algorithm of Banbura and Modugno (2014).

Finally, we recover the fractions of the term structure attributable to long-term beliefs, common

78



information, and idiosyncratic information.

Relative to the baseline model, the alternative model is less costly to estimate. In addition,

we can allow for more than one common factor for the level or slope without much additional

effort. However, this convenience comes at a cost. The log function is not flexible enough

to capture observed forecasts beyond one year out and hence produces unrealistic long-end

estimates—a noticeable decline in the long end— during the COVID-19 pandemic. This problem

is not observed in our baseline model. That said, the overall conclusions about the drivers of

disagreement are robust. Further details on the empirical approach and the results are available

upon request.
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Appendix H Model with Curvature and AR(3) Dynamics

In this section, we present some results from a more generalized model that incorporates the

curvature factor and an AR(3) process for factor dynamics. We provide the distribution of

smoothed factors, the distribution of forecasts, the dispersion and skewness of forecasts, and the

contribution of public information to disagreement.38 Overall, the estimation results are very

similar to those obtained from our baseline two-factor model with AR(1) dynamics.

Figure H17: SMOOTHED FACTOR DISTRIBUTIONS

Notes: The figure shows the cross-sectional distributions of the individual level factors (upper panel) and individual
slope factors (bottom panel). The solid blue line is the posterior median of the median factor across forecasters. The
dashed-dotted lines depict the posterior medians of the 25th and 75th percentiles. The dashed lines depict the
posterior medians of the 5th and 95th percentiles. The shaded areas denote NBER recessions.

Sources: Authors’ calculation

38Additional results are available upon request.
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Figure H18: DISTRIBUTION OF FORECASTS

Notes: The figure shows the cross-sectional distribution of individual inflation forecasts at four different forecast
horizons. The solid blue line is the posterior median of the mean forecast across forecasters. The dotted lines depict
the posterior medians of the 25th and 75th percentiles. The dashed lines depict the posterior medians of the 5th
and 95th percentiles. The shaded areas denote NBER recessions.

Sources: Authors’ calculation

Figure H19: DISAGREEMENT ABOUT AND SKEWNESS OF FORECASTS

Notes: The figure shows the standard deviation and skewness of individual inflation forecasts at four different
forecast horizons. The solid blue line is the posterior median of the disagreement across forecasters. The solid red
line is the posterior median of the skewness across forecasters. The dashed lines depict the posterior 5th and 95th
percentiles of the disagreement and skewness. The shaded areas denote NBER recessions.

Sources: Authors’ calculation
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Figure H20: FORECAST VARIANCE DECOMPOSITION

Notes: The top two panels show the decomposition of the cross-sectional variance of inflation forecasts (black line)
into the components driven by individual long-term beliefs (denoted by ltb, blue line), heterogeneous responses to
public information (denoted by pub, red line), and private information (denoted by priv, yellow line). Each line

corresponds to the posterior median. The bottom panels show the variance share of public information, βpub
h,t . The

solid blue line corresponds to the posterior median and the dotted black lines correspond to pointwise 95% credible
intervals. The left and right columns correspond to 1- and 10-year forecasting horizons respectively. The shaded
areas denote NBER recessions. The bottom panels show the variance share of public information.

Sources: Authors’ calculation
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