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Abstract

Machine learning and artificial intelligence are often described as “black boxes.”

Traditional linear regression is interpreted through its marginal relationships as cap-

tured by regression coefficients. We show that the same marginal relationship can be

described rigorously for any machine learning model by calculating the slope of the par-

tial dependence functions, which we call the partial marginal effect (PME). We prove

that the PME of OLS is analytically equivalent to the OLS regression coefficient. Boot-

strapping provides standard errors and confidence intervals around the point estimates

of the PMEs. We apply the PME to a hedonic house pricing example and demon-

strate that the PMEs of neural networks, support vector machines, random forests, and

gradient boosting models reveal the non-linear relationships discovered by the machine

learning models and allow direct comparison between those models and a traditional

linear regression. Finally we extend PME to a Shapley value decomposition and explore

how it can be used to further explain model outputs.

JEL Classifications: C14, C18, C15, C45, C52

1 Introduction

Machine learning (ML) and artificial intelligence (AI) methods are often regarded as a black

box: they may capture useful interactions and nonlinearities in data, but the shape and
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†The views expressed in this article are those of the authors and do not necessarily reflect the views of

the Federal Reserve Board, the Federal Reserve Bank of Kansas City or the Federal Reserve System.
‡Federal Reserve Board of Governors Email: nathan.m.palmer@frb.gov
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nature of the relationships are difficult to ascertain. There is a growing appetite to use ML

models in finance and economics for purposes ranging from academic study to credit under-

writing. Simultaneously, machine learning interpretability is of growing interest to financial

regulators. In 2021 five US financial agencies jointly issued a request for information on

financial institutions’ use of ML and AI that included a specific sub-section discussing ML

explainability1. Likewise, Brainard (2021) notes that the lack of interpretability is one of

the key problems facing the use of ML methods for financial services, and outlines several

ways these difficulties are manifest.

Traditional regression models are often interpreted through their marginal effects, both

through point estimates and the uncertainty in those point estimates. In a simple linear

model the marginal effects are captured in the coefficient parameters, and the point esti-

mates and variances for each coefficient are typically displayed in a regression table. By

contrast, an ML model has no simple relationship between deep model parameters and the

model’s marginal relationships. For example, a deep neural network may have thousands

of parameters related to any single marginal relationship.

This paper proposes a solution: directly construct marginal effects for any ML model

as the slope of Friedman’s (2001) partial dependency function (also know as the partial

dependency plot or PDP). Traditionally in the ML literature the PDP is displayed in levels,

and only the point estimate of the PDP is calculated. However, it is straightforward to

demonstrate that when applied to linear regression, the slope of the PDP directly replicates

the regression coefficients, and bootstrapping produces standard errors comparable to the

analytical results of OLS. When applied to non-linear ML models, this approach generalizes

the concept of the regression coefficient in a model-agnostic way. We refer to the slope of

the PDP as the Partial Marginal Effect, or PME. This approach allows direct comparison

between a regression coefficient from a linear model and the PME of a non-linear ML model.

We further examine Shapley values to extend the logic of the PDP and PME and assess

variable importance.

To demonstrate the method we apply it in two hedonic house pricing exercises. We

select the hedonic housing problem for a number of reasons. First, the pricing of housing is

an important part of the credit-extension decision. Currently, housing appraisal are often

conducted by human specialists, but it is not hard to imagine a future world in which part

1The five agencies were the OCC, the Federal Reserve Board, the FDIC, the CFPB, an the NCUA.
The RFI was titled ”Request for Information and Comment on Financial Institutions’ Use of Artificial
Intelligence, Including Machine Learning,” and more details can be found at this link: 86 FR 16837.
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of that process involves machine learning. Second, house prices themselves are an important

channel of economic activity, particularly during business cycles (see Leamer et al. (2007),

Leamer (2015), Glaeser and Sinai (2013), or Piazzesi and Schneider (2016) for an excellent

overview). Understanding these channels can directly and indirectly aid policy practitioners.

Finally, pricing a house is perhaps the oldest financial situation in which a machine learning

method has been applied. We refer, of course, to nearest-neighbor regression: predicting

the expected value for an observation as the average of the N most similar observations2.

1.1 Literature

This paper contributes to the extensive and fast-growing interpretability literature in ma-

chine learning. Breiman (2001) provides an introduction to interpretability vs prediction in

machine learning. Semenova, Rudin, and Parr (2019) and Molnar (2021) are two modern

overviews of ML interpretability that provide a wide survey of the field. This paper in par-

ticular extends the partial dependence plot (PDP) described in Friedman (2001)3. Section

3 provides similar discussion with respect to Shapley values (Shapley, 1953) and in response

to two additional aspects of model interpretation: the effect of feature inclusion and feature

importance. Discussion of both the PDP and Shapley values demonstrate their equivalence

to parameter estimates in the context of a linear model.

This paper is most closely related to Joseph (2019), in which the author constructs a

regression table using a Shapley-Taylor decomposition of an arbitrary model. The current

paper differs from Joseph (ibid.) in terms of what is examined; the current paper directly

examines the slope of the partial dependency function directly to characterize the non-

linear marginal relationships of arbitrary models, as well as extensions of Shapley values

that include partial dependence operations, while Joseph (ibid.) employs a Shapley-Taylor

decomposition to summarize model properties.

This paper also contributes to the literature on house pricing with machine learning.

Machine learning models have been widely explored for house pricing models, however, these

studies either focus on the accuracy of the ML model (See Limsombunchai, 2004; McCluskey

2For completeness, we include PMEs of nearest-neighbor regression of our main model in the suplemetary
appendix.

3The PDP is closely related to the “observed-value” approach described in Hanmer and Ozan Kalkan
(2013). A related method are the ICE plots developed in Goldstein et al. (2015), which are a visualization of
the marginal distribution discussed in Section 2.2, Equation 3. Apley and Zhu (2020) derive an alternative
to PDP functions. We discuss the relationship between their approach and PMEs in the online Appendix
A.
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et al., 2013) or focus on model-specific interpretation of less-complex ML type models (See,

for example, Čeh et al., 2018; McMillen and Redfearn, 2010). The current paper examines

hedonic house pricing to conduct general inference and describe the underlying non-linear

relationships discovered in the micro-level house pricing data.

The illustrative hedonic house pricing model employed is inspired by the meta-analysis

in Sirmans, Macpherson, and Zietz (2005) and Zietz, Zietz, and Sirmans (2008), and the

data used is described in De Cock (2011).

The rest of this paper is organized as follows: Section 2 outlines how PDP and the

corresponding PME can be constructed as a generalization of linear model coefficients.

Section 3 provides a similar discussion with regard to Shapley values. Section 4 applies our

results to the hedonic house-pricing exercise, Section 5 extends the analysis to changes in

preferences driven by the COVID housing boom in Boise Idaho. Section 6 concludes.

2 Model Agnostic Inference via Partial Marginal Effects

There are two common purposes for constructing statistical models that relate a left-hand

side (target) variable to a right-hand side (input) variable. In machine learning parlance,

this is a supervised learning problem.

The first purpose is prediction: given a new observation of inputs, predict the associated

target. This is a common use case, and improved predictive performance is an often-cited

reason for employing ML and AI models in place of traditional models.4

The second purpose is inference: rather than predict the target, the emphasis is on

describing the world by examining the relationship between the target and the inputs that

is captured when the model is fit to the data, as well as describing the statistical properties of

that relationship. For example, does a particular input variable have a positive or negative

relationship with the target? Is that relationship statistically significant?

Inference is one of economists’ primary use cases for statistical models, and an extensive

history of statisticians and economists have developed theoretical foundations for inference

in econometrics. In the economics literature, a lack of inference tools for ML and AI models

reveals itself in slow adoptions rates in the field (though quickly changing)5. In the ML and

4See chapter 2 of James et al. (2013) for a discussion of prediction and inference in ML and traditional
models, and discussion of ML models’ improved forecast accuracy versus traditional models.

5Although see Athey and Imbens (2019) and Coulombe (2021b) for examples of inference on some ML
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AI literatures, the lack of inference tools reveals itself in the rapidly growing literature on

explainability and interpretability.

Fortunately there is a promising path forward for AI/ML inference, driven by two ob-

servations. First, the marginal relationships between the target and model inputs that

are captured by coefficients in a traditional linear regression model can be estimated in a

more general way that applies to any model. The approach we focus on in this paper is de-

scribed in Friedman (2001) as the partial dependency function or “partial dependency plot”

(PDP).6 As described in the following section, the slope of the PDP is exactly the coefficient

in a traditional linear regression7. This is due to the fact that Friedman (ibid.) constructed

the PDP to be a generalization of the ceteris paribus reasoning that is taught regarding

regression coefficients in introductory statistics courses. We refer to the slope of the PDP

as the Partial Marginal Effect (PME) for reasons outlined below. Second, as described in

Efron and Hastie (2016), the bootstrap and related methods can provide a straightforward

if computationally intense way to calculate variance of a wide range of functions of data.

We employ the bootstrap to find the variance in the marginal relationships captured by the

PME.

When we apply the PME to a traditional linear regression model and bootstrap to obtain

the variance, we replicate the traditional point estimates and variances of the coefficients

that one obtains in a standard regression table. When applied to an ML model, we obtain

a generalization of the regression table, which allows us to conduct inference on the ML

model analogous to inference on a traditional econometric model.

2.1 PME: An Intuitive Discussion

This section uses two analogies to provide an intuitive description of what the PME cap-

tures, before turning to the mathematical details. A key insight is that the PME helps an

economist understand the properties of a fitted model itself.

For the first analogy, suppose that we have a fitted model. We can think of the PME as

providing a summary statistic about the distribution of results for the following experiment:

Take an observation and plug it into the fitted model and get a prediction.

models and applications in economics.
6As we will describe in more detail later, there are a number of ways to generalize the marginal relation-

ships that OLS coefficients embody. See Appendix A.
7see Appendix B for proofs
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Change nothing else about this observation except for a single characteristic.

For example, change square footage for a house, but leave number of rooms,

lot size, etc, unchanged. How much does the model output change? Do this

with many observations to obtain a distribution of these effects. What is the

average of this distribution of these experiments, over the domain of the variable

in question?

In this sense, the PME is communicating something about what a fitted model would

predict, if it were asked to predict an observation where only one characteristic was changed.

We are learning something about the fitted model itself through this process: the distribu-

tion of these outcomes over the variable of interest.

Alternatively, we can think of the PME as analogous to conducting a type of field

experiment applied to a model that makes predictions. For example, in Bertrand and

Mullainathan (2004), the authors submitted a number of resumes to a hiring process and

then change a single characteristic of the resumes (the name) to examine how changes in

the outcomes (number of call-backs). The PME essentially implements this experiment on

a fitted model.

If this sounds like the interpretation of coefficients in multiple regression, that’s because

it is. Friedman (2001) constructed PDPs to implement and generalize the ceteris paribus

reasoning for interpreting multiple regression coefficients as taught in most introductory

econometrics courses. The main difference is that Friedman (ibid.), and almost all subse-

quent ML and AI literature, discusses the PDP in terms of the level of the relationship,

not the slope of the relationship, which is what traditional multiple regression coefficients

capture8. Appendix B proves that the PME (the slope of the PDP) is equivalent to the

traditional multiple regression coefficients.

2.2 PME: Mathematics and Multiple Regression Coefficients

Consider a typical description of multiple regression coefficients, drawn from Abdi (2004)

in the Encyclopedia of Social Sciences Research Methods:

8The reason for this is likely that tree-based models (what Friedman (2001) invented the PDP to describe)
do not have smooth slopes in their PDP, unlike other methods like support vector machines, deep neural
nets, or kernel ridge regressions (SVMs/SVRs, DNNs, KRRs, respectively), and looking at the PDP level is
natural for a tree. However even for tree-based methods, approximations of the slope can be examined and
provide insights similar to those of smooth methods.
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“[A] regression coefficient. . . gives the amount by which the dependent variable

(DV) increases when one independent variable (IV) is increased by one unit and

all the other independent variables are held constant.”

The partial dependency function in Friedman (2001) is defined so as to directly capture

this reasoning for any fitted model, in levels of model outcome.

This is useful because it means a student who has internalized the intuition of multiple

regression coefficients can employ the same reasoning (and the same caveats!) to understand

the relationships in data represented by an ML or AI model.

This reasoning is implemented in the mathematics of Friedman’s PDP applied to a fitted

model f̂ . Write the fitted model as:

f̂(x) = f̂(x(k), x(¬k)) (1)

where f̂ is the fitted model, x is a vector of input variables, and (x(k), x(¬k)) simply

separate out the single input variable x(k) from all other input variables, x(¬k). For example,

in the hedonic house pricing model to be described, x(k) might represent square footage;

then x(¬k) would represent all other variables which are not square footage, such as number

of bedrooms, age, neighborhood, etc..

As in Friedman (ibid.), the PDP, denoted ν, of fitted model f̂ for an input variable k at

a value q is

νk(q) = Ex(¬k) [f̂(q, x(¬k))|q] (2)

=

∫
x(¬k)

f̂(q, x(¬k))P(x(¬k))dx(¬k) (3)

where P(x(¬k)) in equation 3 is the marginal distribution over the input data. Thus the

PDP holds all other independent variables constant by employing the marginal distribution

directly and holding it fixed9. This is a direct construction of the ceteris paribus logic

employed in the traditional interpretation of regression coefficients.

9The alternative, using the conditional distribution P(x(¬k)|x(k) = q), would no longer effectively hold
other variables constant. In fact different ways of employing the conditional distribution instead of marginal
distribution produces alternatives to PDP; see Section A for further discussion.
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Using the fitted model and data, the PDP can be estimated via Monte Carlo as

ν̂k(q) =
1

N

N∑
i=1

f̂(q, x
(¬k)
i ) (4)

where N is the total number of observations and n̂uk(q) is calculated for each q in some

range of interest over x(k).

That is, for each q ∈
[
x
(k)
low, x

(k)
high

]
, the above mean is taken over the empirical marginal

distribution of the fitted values f̂(q, x
(¬k)
n ), where the x(¬k) values in the data are literally

held constant. The resulting PDP function is in levels of the predicted ŷ variable; the

slope of this function is the PME which can be obtained analytically or by first difference

approximation. Appendix B proves that for a linear model, the PME is equivalent to the

traditional multiple regressions coefficient.

This partial dependence function of course is a point estimate. If we want the variance

in the estimate, then we can employ the non-parametric (pairs) bootstrap to the entire

process as described in Algorithm 1.

Algorithm 1 Bootstrap PDP

Preallocate output matrix Z with dimensions (J ×B)

Allocate vector Q as a J-length vector of equally spaced values from
[
x
(k)
low, x

(k)
high

]
for b in 1 to B: do:

Xb, yb =bootstrap(X)
Estimate fb s.t. ŷb = fb(Xb)
for j in [1,J]: do

q = Qj

Z
(b)
j = fb(q,X

(¬k)
b )

Return Z

This is computationally expensive but also an embarrassingly parallel problem.

2.3 Partial Marginal Effect Terminology

The PME is a version of marginal effects in economometrics; see eg. Cameron and Trivedi

(2005), or Williams (2012) for extensive discussion. In other fields these have different

names. For example Gelman, Hill, and Vehtari (2020) refers to the marginal effects as

“average predicted comparison,” and Hanmer and Ozan Kalkan (2013) uses the terminology

8



of “observed-value approach.”

It is also important to note that the termmarginal takes on different meanings depending

on the context. In economics marginal often refers to taking a derivative of a function –

hence marginal utility is the first derivative of the utility function.

In statistics and other related disciplines, marginal can be shorthand for integration over

the marginal distribution. The PME is marginal in both senses: as the slope of the PDP it

is marginal in the sense of being the first derivative, and the PDP itself is constructed by

integrating over the marginal distribution of the data. Appendix A describes alternative

approaches to constructing these effects. These alternatives differ from the PDP primarily

by using conditional (instead of marginal) distributions.

The PME is also partial in the sense that it only describes the effect of a single right-

hand side input variable at a time, independently of all others. Importantly, if one has done

manual variable transformation on a dataset that mechanically induces perfect dependency

between two input variables – for example, if one has added a squared term, or added an

interaction – the PME will treat each as if they are independent of one another10.

3 Shapley Values

While the PME provides useful insights into the marginal effect of a feature – the change in

model prediction as x
(k)
i increases or decreases – it does not provide as much insight about

the more general questions such as whether a feature should be included in the model in the

first place, or which features are most important to a model’s prediction. We can answer

these types of questions with Shapley values (Shapley, 1953; Štrumbelj and Kononenko,

2014). Further we can extend our understanding by combining Shapley values PDP and

bootstrapping.

The Shapley value ψkf(x
(k)
i ) ≡ ψkf(x

(k)
i , x

(¬k)
i ) is the marginal contribution of a vari-

able, k, to a model’s prediction, f(xi), for a particular observation, i averaged over all

possible combinations with its covariates (x
(¬k)
i ). Write the demeaned PDP of f(x(l) = q)

as ν̃(x(l) = q) = Ex(¬l) [f(q, x(¬l)) − Ex[f(x)]], then we can write the Shapley value of x
(k)
i

as

10In such a case, the PME must be adjusted to properly recover the complete marginal effect. An example
of how to do this is provided in an online appendix.

9



ψkf(xi) =
1

K

∑
s⊆x(¬k)

i

(
K − 1

|s|

)−1(
ν̃(x

(k)
i ∪ s)− ν̃(s)

)
. (5)

Where s is a subset of covariates at values observed in x¬ki and K is the total number of

variables. The Shapley decomposition of a model’s output, Ψ(f(xi)) = {ψ1f(xi), . . . ψKf(xi)},
is a linear decomposition that can be described as an additive feature attribution (Lund-

berg and Lee, 2017) of f i.e.
∑

k ψkf(x
(k)
i ) = f(xi)−E[f(x)]. This property of the Shapley

decomposition makes interpretation straightforward; ψkf(x
(k)
i ) tells us the gain11 in model

output on observation i from including variable k at its value for observation i, marginalized

over its inclusion with all possible combinations of covariates as observed for observation i.

To better understand the intuition and interpretation of the Shapley value, consider a

linear model, f(x) = xB. OLS estimates of B provide a summary interpretation of the effect

of x on f(x). That is, βk =
∂f(x)

∂x(k)
tells us about the overall effect of x(k) on f(x) regardless

of its observed value. By contrast, ψkf(x
(k)
i ) incorporates the value of xi directly. In the

linear model case12, ψkf(x
(k)
i ) = (x

(k)
i − E[x(k)])βk.

Non-parametric models and machine learning models are more complex than linear

models and generally explore various nonlinearities in the data. In these circumstances, the

effect of x
(k)
i on f(x

(k)
i ) is not necessarily independent of x

(¬k)
i . By producing the average

contribution of including x
(k)
i over all possible combinations of observed covariates in x

(¬k)
i ,

Shapley values resolve the attribution of the effect of x
(k)
i on f(x

(k)
i ) in a way that is ‘fair’13.

As a consequence however, ψkf(x
(k)
i ) is dependent on the specific covariate profile x

(¬k)
i .

We can gain a more general understanding of the effect of including x(k) in the model

by marginalizing out the covariate profile (x(¬k)), i.e. by calculating Ex(¬k) [ψkf(x
(k)
i )|x(k)i ].

We can estimate this quantity as SPDP (x) = ν(ψkf(x)) and we can produce bootstrap

estimates of SPDP (x) by applying the following algorithm:

Note that the quantities contained in Z̃ are just a normalized version of the quantities in

11This gain is expressed relative to E[f(x)] allowing for comparison between different models.
12see Appendix B for discussion
13The properties of fairness are discussed in Young (1985). Crucially, for a decomposition to fairly describe

feature attribution, it must be accurate (i.e. the sum of feature attributions must sum to the model output)

and it must exhibit coalitional monotonicity whereby if f(x
(k)
i )−E[f(x)] ≥ g(x

(k)
i )−E[f(x)] then ψkf(x

(k)
i ) ≥

ψkg(x
(k)
i ). See discussion in Lundberg and Lee (2017) for application of fairness to feature attributions

specifically and in which the authors establish that the only linear decomposition approaches to feature
attribution that can be described as fair are those that are derived from Shapley values.
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Algorithm 2 Estimate SPDP and SFIPDP

Preallocate output matrix Z with dimensions (J ×B)
Preallocate output matrix Z̃ with dimensions (J ×B)

Allocate vector Q as a J-length vector of equally spaced values from
[
x
(k)
low, x

(k)
high

]
for for b in 1 to B do

xb, yb =bootstrap(x)
Estimate fb s.t. ŷb = fb(xb)
for for j in 1 to J do

q = Qj

Z
(b)
j = 1

N

∑
i ψkf(q, x

(¬k)
bi )

Z̃
(b)
j = 1

N

∑
i

|ψkf(q,x
(¬k)
bi )|∑

h∈{k,¬k} |ψhf(x
(h)
bi )|

Return Z as SPDP, and Z̃ as SFIPDP

Z, which gives us the Shapley feature importance partial dependency plot (SFIPDP). The

SFIPDP values can be plotted against quantiles of k to give a sense of how much influence

k would have at a specific value and how likely it would be to actually observe such a value.

4 Applied Exercise: Ames Housing Data

To concretely illustrate the PDP, PME, SPDP, and SFIPDP methods discussed in sections

2 and 3 we apply them to a hedonic house pricing model run on tax assessor data. The

data, described in De Cock (2011), is comprised of houses sold from 2006 through 2010

in Ames, Iowa. The data contains approximately 3000 observations with models spanning

roughly 90 different variables, including square footage, number of beds and baths, number

of fireplaces, and neighborhood and amenities information.

Our hedonic model measures the response of the log of house prices to the most-often

included dependent variables across the two meta-studies on hedonic house pricing, Sirmans,

Macpherson, and Zietz (2005) and Zietz, Zietz, and Sirmans (2008).

The estimated model, for both OLS and the ML models, is presented in Table 1. In this

discussion, we focus on the results from five models. The simplest model is a linear model

estimated via OLS. Two of the models are ensemble models based on decision-trees: random

forest (RF) and gradient boosting machine (GBM). These ensemble models are notable in

that they essentially learn complex piecewise functions to fit the data. By contrast, the

other two models we discuss – support vector machine (SVM) and deep neural networks

11



Table 1: Model Specification

Target Input Features Additional Controls

Log(sale price) Square Footage Neighborhood
Age Sale Condition
Lot Area Central Air
Garage Area Condition 1
Bathrooms
Bedrooms
Bathrooms:Bedrooms
Fireplaces
Time Trend

(DNN) – learn ‘smooth’ (i.e. continuous) functions that fit the data.

Generally, each of the five models performed well. In-sample and out of sample R2

scores are presented in Table 2. In sample, the linear model exhibits inferior fit to the other

models while the random forest model exhibits near perfect fit14. The difference between

the linear model and the ML models is less striking with regard to out of sample fit (R2

measured via 10-fold cross-validation), where the OLS model performs better than the DNN

and only slightly worse than other models. In this particular problem, the ML models may

not dominate the OLS model in terms of out-of-sample prediction, but as shown below they

contribute additional insights regarding non-linearities in the marginal relationships via the

PME.

Finally, note that as is often the case, the random forest model obtains very high in-

sample fit, while remaining competitive out-of-sample as well. See Coulombe (2021a) for

discussion of this property. An implication is that random forests may be particularly useful

for inference if we can describe the marginal relationships well.

Table 2: OLS and ML model performance

OLS GBR RF SVR DNN
In-sample R2 0.847 0.897 0.979 0.914 0.887
Out-of-sample R2 0.837 0.842 0.841 0.839 0.808

14This result is consistent with Coulombe (2021a).

12



4.1 PDP of Linear Model and OLS Estimates

Turning to the OLS model results, we can interpret the effect of each of the variables in

Table 1 by examining the OLS coefficient estimates. These are presented in Table 3. The

PME-based coefficient estimates are presented in the second column of Table 3 along with

bootstrap estimates of the standard error. The PME-based coefficient estimates are equal

to the OLS based estimates (to machine precision) and the corresponding estimates of

standard errors are only slightly different.

The OLS estimates show effects that are generally consistent with findings documented

in the meta analyses in Sirmans, Macpherson, and Zietz (2005) and Zietz, Zietz, and Sirmans

(2008). That is, it finds square footage, lot size, number of bathrooms, garage area and

number of fireplaces as statistically significant with a positive effect on house price while

Age is statistically significant with a negative effect. The time trend is not estimated to

be statistically significant, which fits with the mixed findings regarding the time trend

in Sirmans, Macpherson, and Zietz (2005). The total effect of bedrooms is estimated as

negative as long as the home has at least 1 bathroom, but it is not necessarily always

statistically significant. This is likewise consistent with the mixed findings in Sirmans,

Macpherson, and Zietz (ibid.). See Appendix C for additional discussion.

13



Table 3: OLS and PME-derived model
estimates

OLS PME

Square Footage 0.000235* 0.000235*
(9.45e-06) (9.28e-06)

Age -0.00242* -0.00242*
(0.000313) (0.000308)

Lot Area 3.95e-06* 3.95e-06*
(1.19e-06) (1.26e-06)

Bedrooms 0.0142 0.0142
(0.0108) (0.00976)

Bathrooms 0.0914* 0.0913*
(0.0184) (0.017)

Bed x Bath -0.015* -0.015*
(0.0051) (0.00448)

Time Trend -5.56e-05 -5.56e-05
(0.000203) (0.000191)

Garage Area 0.000201* 0.000201*
(2.8e-05) (2.69e-05)

Fireplaces 0.061* 0.061*
(0.006) (0.00642)

Adj. R2 0.845 0.845
N 2874 2874

Robust standard errors presented in parentheses for OLS
model. Bootstrap estimated standard errors presented
for ∆ PME model.
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4.2 ML Models and PMEs

The nonlinear nature of the ML models makes it difficult to present the marginal effects

of the ML models in tabular form. Though less concise than Table 3, examining the PME

reveals interesting nonlinear relationships learned by the ML models. These relationships

often vary considerably and cannot be easily summarized with a single number or concisely

described using a table15.

Consider the PME of the SVM for square footage in Figure 1. Inspecting the PME

graphically tells us that the premium on each additional square foot of a home grows rapidly

until a home reaches about 2000 feet in size, at which point the SVM estimates a 2.5%

increase in home price per each additional 100 square feet. But beyond 2000 square feet,

there are diminishing returns to this premium and, per the SVM, the premium effectively

drops to zero as square footage exceeds 5000 feet.

The SVM’s PME in Figure 1 also reveal an interesting, nonlinear effect of age on home

price. For a new house, increasing its age by one year corresponds with a reduction in

predicted price of about 40 basis points. This is true for houses that are 0-25 years old,

and then the marginal effect steadily moves towards zero as the age of a house increases.

For a house around 80 years old there is approximately no change in predicted price due to

a change in age, and past around 110 years a 1-year increase in age is actually predicted

increase the value of the house by around 10-20 bps.

Lot area depicts an intuitive pattern: the PME increases between 0 and 5000 square feet

before falling to zero near 15000 square feet (about 1/3 of an acre). Beyond 15000 square

feet, the bootstrap standard error of the PME render it statistically indistinguishable from

zero. The shape of the lot area PME suggests that for small, likely urban lots where space

is scarce, lot area commands the largest premium. In more suburban areas, space is less

scarce and lot sizes are larger but command less of a premium per square foot. Lot sizes

above 1/3 of an may be in more remote portions of the metro and thus command even less

of a premium per square foot.

As in the OLS model, the PME for bedrooms in location (2,1) in Figure 1 is largely

indistinguisable from zero over essentially the entire range, and the same is true for the

time trend in location (3,1). Baths and the beds*baths interaction both are significant for

15It might be possible to accomplish this for a pre-specified nonlinearity but the advantage of many ML
models is precisely that they will find nonlinear relationships without ex-ante specification.
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Figure 1: SVM Partial Marginal Effects
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much but not all of their range, and garage area and fireplaces both depict a similar trend

– the marginal effect is significant and positive for low values, with the PME dropping until

it is indistinguishable from zero by the end of the range.

Figure 2: PME for smooth models (SVM, DNN)
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PME: linear vs smooth ML models

PMEs can be used to compare across multiple models. Figure 2 compares the OLS model

with two ML models that have smooth marginals: the support vector machine (SVM) and

a deep neural network (DNN). These figures show distinct non-linear effects. Notably, we

see diminishing effects for a number of variables as they approach values far outside of their

mean.

Square footage in the first row displays the most stylistic difference across models,

although it is positive and significant over nearly the entire range in all models.16 For age,

16Many machine learning methods are universal function approximators, and discover non-linearities and
interactions endogenously. If multiple ML methods do not converge on the same approximate form for a
given estimation task this may imply that there is not yet enough data.
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both ML models show that younger houses experience a greater negative marginal price

imapct versus older houses. 17. For lot area, both ML models display a similar path for the

marginal effect: houses with small lots expect the greatest price increase due to a lot size

increase, and this effect steadily decreases until about 15,000 square feet, or approximately

1/3 acre.

The PMEs are most useful for models with smooth marginal functions, such as the

SVM and DNN depicted already. For models with non-smooth marginals, such as tree-

based models, the PDP in levels18 are likely a better tool for model interpretation.

Figures 3 and 5 depict the PMEs and PDPs, respectively, for OLS versus two tree-based

models: a gradient-boosted machine (GBM) and a random forest (RF). These tree methods

do not have inherently smooth marginal effects under the basic tree structure. Accordingly,

the PME plot is quite volatile; non-zero effects are only observed in the differences between

points that straddle ‘jumps’ in the piecewise model function. The PME can be made more

legible by evaluating it on fewer points over the range of the input variable, but this comes

with the risk of imprecision in interpretation. For tree based models it may be preferable to

interpret the PDP directly, although this is necessarily more qualitative. Future work will

explore trees with natural non-zero slopes and explore additional solutions for tree-based

models.

The broad patterns seen in the SVM and DNN models in Figure 4 are reflected in the

GBM and RF in Figure 5. Increasing square footage is associated with increased price,

with tight 5% confidence bounds over much of the range. For homes aged 0 to about 35

years old, any increase in age is associated with a steep drop in price, but after that, an

increase in age is only associated with a modest drop in price, often indistiguishable from

zero. For houses with a lot size of about 0 to about 12,000 square feet (a little over 1/4

acre), an increase in lot size corresponds with an increase in predicted price; otherwise lot

size increases don’t appear to increase expected price (seen most clearly in the RF).

17This nonlinearity in the effect of age on house price is well known; see Goodman and Thibodeau (1995).
This discussion highlights (1) that the ML models account for the nonlinearity without prior specification
and (2) that PMEs allow us to depict the nonlinear relationship that the ML models have learned.

18That is, the effect function in log(price).
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Figure 3: PME for non-smooth models (GBM, RF)
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Figure 4: PDP of linear model and smooth ML models
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Figure 5: PDP of linear model and non-smooth ML models
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4.3 Feature importance and marginal effect of inclusion via SPDP and

SFIPDP

Recall that SPDP and SFIPDP are complimentary measures to PME. In general, the PME

values can be interpreted as coefficient estimates in the spirit of statistical regression ped-

agogy. That is, we can think of the PME as telling us about the effect of a variable as it

increases or decreases and taking as a given that the variable will be included in the model.

The SPDP is subtly different in that it tells us about the expected effect of including a

variable in a model at a given value. The SFIPDP is more distinct from the PME and

can be thought of as a measure of feature importance. As such, the SFIPDP enables us to

compare input features to one another in terms of their overall impact on model output.

Figures 6 and 7 plot SPDP and SFIPDP results for Total Square Feet, Year Built, and

Lot Area as constructed for OLS, SVR, and GBM modelling approaches. As discussed in

Section 3, the SPDP for the linear model is linear with a slope equal to the estimated OLS

coefficients.

For the SVM model, the nonlinearities are less pronounced for some variables (square

footage and age), but are more readily apparent for others (lot area). It is also notable that

for age, the SPDP of the SVM model is nearly flat and close to zero. This suggests that the

inclusion of age has a relatively limited impact on the model output. The corresponding

panel from Figure 7 supports this, showing that, on average, the inclusion of age in the

SVM model accounts for between 5% and 10% of the model output19.

For the GBM model, the SPDPs follow the same general direction of the linear model,

but are nonlinear, reflecting the nonlinearities captured by these models. Unlike the SVM

model, the SPDP of age for the GBM model in figure 6 is quite sizable. Here, the the

inclusion of the age of a home variable will, on average, reduce the estimated price by about

20% for houses more than 80 years old. For newer houses, the inclusion of the age variable

increases the estimated home price. For the newest homes, including the age variable causes

the model to attach a 15% premium to the estimated home price. This premium declines

rapidly with the age of the home until age 30, whereupon the inclusion of age begins to act

as a drag on the estimated home price. The drag from including age grows more slowly with

age after age 35. In terms of relative importance, the GBM model appears to place more

19It is additionally notable that both the SPDP and SFIPDP for the SVM exhibit rather wide bootstrap
confidence intervals (for age and other variables, when compared to OLS and GBM models). This suggests
sensitivity to the composition of the training data that might otherwise be corrected through more careful
hyperparameter tuning.
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weight on the age variable than the SVM model. This is highlighted in Figure 7 where we

can see the SFIPDP of the age variable for the GBM model accounts for as much as 50%

of the model output20

20There is a notable decline in the SFIPDP as the age variable approaches the average age of homes in
the dataset. As discussed in Section 3, this is expected behavior for the SFIPDP.
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Figure 6: SPDP for Linear, SVM and GBM models for selected variables
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Figure 7: SFIPDP for Linear, SVM and GBM models for selected variables
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5 Changes in preferences over time in Boise Idaho

This project was started just prior to the COVID19 pandemic. In the time that has followed,

changes in work patterns, namely the rising prevelance of remote work has led to a migration

of people away from high-cost of living areas and into smaller cities and towns. Of particular

note San Francisco has seen a decline in population by as much as 6% from 2020 to 202121.

One of the more popular destinations for those leaving the Bay area has been Boise Idaho.

How has the influx of migration from wealthy, high cost of living areas into these areas

influenced house prices? To answer this, we extend the DNN and GBM models developed

for the previous exercise to predict to house sales in the Boise metro area. By comparing

models fit on 2019 home sales data with models fit on 2021 home sales data, we can see

how home preferences have changed in response to the COVID-driven housing boom.

The data we use for this analysis comes from the Multiple Listing Service (MLS) dataset

from the CoreLogic Real Estate database. We filter the data to include only home purchases

in Ada and Canyon counties22 in 2019 and 2021. The variables Generally, we include the

same variables discussed in the previous section23.

We focus here on two types of models: GBM and DNN. For each model type, we

produce separate model fits on sample data from 2019 and again on sample data from 2021.

This yields four total models: DNN-2019, DNN-2021, GBM-2019, and GBM-2021. We

also fit linear regression models (linear-2019, linear-2021) to use as a performance baseline.

Performance metrics are provided in Table 4. They show that the nonlinear, ML models

better predict home pricing for both the 2019 and 2021 data, suggesting that the ML

methods capture important nonlinearities in the data.

Generating the PME and SPDP from the fitted models allows us to understand how

models changed between 2019 and 2021. The DNN models tend to produce smooth PME

and SPDP plots. They are less smooth for GBM and somewhat more difficult to interpret24.

For most variables, the PME and SPDP are similar for 2019 and 2021 models. There are,

however, two notable exceptions that we highlight here: year built and lot size.

21Toukabri, Amel and Crystal Delbe. 2022. “New Data Reveal Most Populous Cities Experienced Some
of the Largest Decreases.” America Counts: Stories Behind the Numbers. May 26,2022. Census.

22This captures, primarily, the Boise-Nampa metro, though it also includes rural/exurban areas surround-
ing the metro.

23The primary differences are that we replace the neighborhood and ”condition 1” – a measure of proximity
to various neighborhood ammenities – with a school district fixed effect.

24As discussed in Section 4.2, this is due to the fact that GBM models are based on decision trees.
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Table 4: Linear and ML Model Performance on Boise Idaho
Data

2019 2021
Linear DNN GBM Linear DNN GBM

RMSE 7.25 6.79 5.96 11.5 10.8 10.3
MAE 4.29 3.83 3.31 7.04 6.68 5.78
R2 0.747 0.751 0.828 0.718 0.786 0.792

RMSE and MAE shown in $10,000’s. All metrics measure out of sample
performance.

Figure 8 (left) compares the PME for GBM-2019 and GBM-2021 for lot size. The PMEs

diverge at various points, but most dramatically at values below 0.25 acres (close to the

size of a typical suburban lot), where the 2021 effects are positive and the 2019 effects are 0

or negative. Thus, compared to 2019, the GBM-2021 model suggests increased competition

in suburban and urban parts of the metro and increased willingness of buyers to pay a

premium for larger lots in desirable urban and suburban areas near urban centers.

The SFIPDP provides some additional insight (Figure 8, right). Broadly, GBM-2021

places a considerably higher importance on lot sizes when compared to GBM2019 and the

difference in importance grows25with distance from the mean lot size (0.25 acres). This

suggests that, at least from the perspective of the GBM models, lot size rose (broadly) in

priority for home pricing.

The effect of a home’s year of construction (i.e. age) also seemed to change notably

between 2019 and 2021. For older homes, such as those built between 1880 and 1975, the

effect of a home’s age was similar between 2019 and 2021. However, for more recent homes,

our models suggest that newer homes commanded a lower premium than they would have

in 2019. Figure 9 shows the PME of the DNN model for the year built variable. Note

that for much of the figure, the PME for the 2021 model and 2019 model overlap and are

linear, suggesting an effect on home price that decreases quadratically in age26. For homes

built after about 1980, the PME for the 2019 model and 2021 model diverge. The PME

for the 2019 model continues along its previous trajectory, suggesting that newer homes

command a premium that increases quadratically with year of construction through 2019.

In contrast,the PME for the 2021 model flattens at around 0.025, indicating a diminished

25This also notably diverges from the SFIPDP for the DNN models. The SFIPDP for GBM-2019, DNN-
2019, and DNN-2021 are all fairly similar.

26The PME for the GBM model is provided in the appendix but bears similar (though more noisy )
interpretation
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premium on newer homes as long as they were built relatively recently (within the last 40

years). It is not yet obvious why the premium on newer homes would taper in 2021. One

potential explaination might be that more homebuyers in 2021 intended on renovating their

newly-purchased homes. If this were the case, it might limit the premium paid for newer

home features (since they would presumably be removed in the remodel).

Figure 8: The effect of lot size grew in 2021, especially for suburban sized lots

Left: PME Right: SFIPDP
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Figure 9: The importance of year of development changed in
2021
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6 Conclusion

This paper has explored the use of model-agnostic tools to aid in the interpretation of ma-

chine learning models analogous to our interpretation of standard econometric models. It

identifies the partial dependence function (PDP) of Friedman (2001) as directly implement-

ing the paribus reasoning of multiple regression coefficients in a model agnostic way. It

extends this framework by demonstrating that the slope of the PDP, the partial marginal

effect (PME), reproduces the coefficients of a traditional linear regression. Bootstrapping

the PME allows for the construction of a ’visual regression table’ analogous to a standard

regression table, displaying both point estimates and the variance in the point estimates

of the PME. This approach allows traditional econometric inference to be conducted with

non-linear ML models.

Furthermore, this paper demonstrates that SPDP likewise replicates the OLS coefficient

estimates in the linear case and that, for the PDP in particular, the nonparametric boot-

strap produces variances in those point estimates comparable to OLS standard errors. By

understanding these tools in the linear context, we expect that researchers will feel more

comfortable using them to interpreting ML models in the future. The hedonic house-pricing

exercise demonstrates such an application and shows that ML models can both replicate

the results of meta-analysis of the literature, add new insights about non-linear behavior of

variables in the house-pricing models and help us understand changes in preferences over

time.

Despite the promise of PMEs, Shapley Values and the SPDP, their use in interpreting

’black-box’ models is not without caveats. Perhaps most crucially, these techniques require

nuanced interpretation where interactions between variables are concerned; the ceterus

paribus assumption cannot be forgotten (just as with traditional regression coefficients).

Indeed a crucial avenue for further development will be the extension of these techniques

to more fully illustrate interactions captured by a model.
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A Additional Generalizations of Marginal Relationships

The structure of the PDP and PME calculations, as well as the ALE calculattions discussed

in the online appendix, suggest that there are in fact a number of estimators of the slopes of

the marginal relationship of interest that may have different advantages either theoretically

or in practice. We suggest a few here but otherwise simply note these for future work.

For example, one potential extension of ALE, not pursued in our current paper, is

to apply the “derivate first, then integrate” reasoning of ALE to the conditional PDP

described earlier. This would combine the “full information” benefit of PDP with the

“local information” benefit of ALE, and may produce a smoother, more intuitive descriptive

statistic. We suggest “conditional local effects” (CLE) as a descriptive name. Under such

a setup the ICE lines and ŷ points would still be useful and appropriate to display to

potentially further aiding interpretation.

A simpler extension would be to use the “derivate first, then integrate” reasoning of

ALE with the marginal distribution of PDP, resulting in something like a “partial local

effects” (PLE) model which retains the ceteris paribus reasoning of PDP as well as some

of the controls for correlations between variables that Apley and Zhu (2020) note is an

advantage of the “derivate first” approach of ALE.

In fact, we can describe several different estimators for the marginal effect as a profile

of three distinct choices:

1. Order of operation of calculating expected slope: (1) integrate then derivate:
∂E[f̂(.)]
∂x

(k)
i

,

vs (2) derivate then integrate: E
[
∂f̂(.)

∂x
(k)
i

]
2. Using the (1) marginal distribution vs (2) conditional distribution for the expectation

(using 1
N vs conditional kernel-density-based weights for the expectation over ICE

lines vs slopes), and

3. Using (1) global or (2) local data to form the expectation (eg. kernel density vs local

sample).

PDP is {1, 1, 1} while ALE is {2, 2, 2}. The cPDP suggested above is {1, 2, 1}, m-plots

as described in Apley and Zhu (ibid.) (not discussed here) are {1, 2, 2}, the “conditional

local effects” (CLE) suggested above would be {2, 2, 1}, and the “partial local effects”
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(PLE) would be {2, 1, 1}.27 Other permutations are possible but may not yield much

practical advantage. There are likely tradeoffs between how quickly these converge under

the bootstrap, how variable they are, and how efficiently these can be calculated taking

advantage of computational tricks (for example, using kernel density estimates to accelerate

calculation).

Future research should examine the speed, variance, and convergence properties of the

different estimators of marginal slope described above. In particular, it is important to

understand how quickly bootstrapping converges for the different methods listed here. The

method that converges with the nicest properties (for example, in the higher-order moments

of the bootstrapped distributions) will allow for the most efficient bootstrapping estimate

of of confidence intervals around the marginal slope relationships.

B Claims about PME, SPDP in linear models

Denote the PDP of a function f as νk(f(x
(k) = q)) or νk(q) for short. And let νk(q) =

Ex(¬k) [f(q, x(¬k))|q] =
∫
x(¬k) f(q, x(¬k))P(x(¬k))dx(¬k).

Claim 1: νk(q) = qβk + E(x(¬k))β¬k if f is linear and ∂νk/∂q = βk.

Proof: If f is linear, it can be written as XB =
∑

j xjβj . Accordingly, we can write

f(q) as qβk + x(¬k)B¬k and

νk(q) = E[qβk + x(¬k)B¬k|q]

= qβk + E[x(¬k)]B¬k

From this it follows that ∂νk/∂q = βk and thus the slope of the PDP, the PME, is equal

to β ■

Write the de-meaned PDF as ν̃k = Ex(¬k) [f(q, x(¬k))− Ex[f(x)]|q]

Claim 2: If f is linear, then ∂ν̃k(q)/∂q = βk

27Note that if this approach does not employ the quantiles-based slope approximation of ALE, it will
simply replicate the PME as the derivation and integration will be interchangable in order.
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Proof: If f is linear, then we can write

ν̃k(q) = qβk + Ex(¬k) [x(¬k)B¬k]− Ex(k) [x
(k)]βk − Ex(¬k) [x(¬k)]B¬k

= (q − Ex(k) [x
(k)])βk.

From this it follows ∂ν̃k(q)/∂q = βk ■

Claim 3: If f is linear, then ψkf(q) = (q − E[xk])βk

Proof: Recall that we write the shapley value as

ψkf(q) =
1

K

∑
s⊂S(x)\k

(
K

|s|

)−1

ν̃k(q ∪ s)− ν̃k(s)

From the proof of Claim 2, it follows that if f is linear,

ν̃k(q ∪ s)− ν̃k(s) = (q − E[x(k)])βk − (s− E[xs])βs − (s− E[xs])βs

= (q − Ex(k) [x
(k)])βk ∀s ⊂ S(x)

Further, denote S(x, i) as the set of all subsets of covariates in x of size i, then we can

write

ψkf(q) =
1

K

K∑
i

(Es⊂S(x,i)\k[q]− E[xk])βk

= (q − E[xk])βk■

C Stylized Facts

This appendix presents an excerpt of Exhibit 1 from Zietz, Zietz, and Sirmans (2008), and

extends it to illustrate the stylized facts discussed in Section 4.1.

Column (1) is the name of the variable that is closest to the similar variable in the

De Cock (2011) data. Columns (2)-(5) are drawn from Exhibit 1 in Zietz, Zietz, and
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Sirmans (2008), and are, respectively, (2) the number of times the variables appear across

the hedonic house pricing examples considered by Zietz, Zietz, and Sirmans (ibid.), then (3)

the number of times the variable has a positive significant effect, (4) the number of times

it has a negative significant effect, and (5) the number of times it is not significant in the

studies considered.

Then columns (6)-(8) are constructed from columns (2)-(5) to indentify variables for

which there are interesting stylized facts. Column (6) is simply the fraction represented

by columns (3) divided by (4). When these values are close to zero or very large, then

variables have a consistently positve or netagive effect across studies. When they are close

to 1, then the relevant variable shows up has having opposite effects with equal frequencies,

and we consider values close to the range 0.5-2 to be interesting in this regard: Bedrooms,

Distance, and Time Trend.

Column (7) is the ratio: column (5) / (column (3) + column (4)), the ration of number

of times not significant to significant. As with column (6), we look for variables with values

close to the 0.5-2 range and find: Bedrooms, Distance, and the Time Trend.

Column (8), the final column, combines all three counts of significance for a unified

measure of disagreement in results. It is a ratio of: the lesser of (column (3), column(4))

/ (the greater of column (3) or (4) + column (5)). Thus it is (non-signicant results + the

lesser count of negative or positive signicant results) / (the greater count of negative or

positive results). The goal is to identify whether there are times in which one direction

of results is close to equal to the number of times that results are not significant, or in

the opposite direction. As before the interesting variables are close to 1. We identify the

following variables that are close to the 0.5-2 range: Bedrooms, Time Trend, Distance, and

there are a few additional values as well: total # Rooms and Fireplaces.

D Boise Analysis, additional discussion

In some ways the differing effects of age between the 2019 and 2021 appears more dramatic

when considering the GBM model. Though more noisy than the DNN model, looking at

the demeaned PME in figure 10 shows that the 2019 and 2021 models follow one another

reasonably closely until about 2010, when they diverge substantially. This divergence in the

effect of age occurs substantially later than it does for the DNN, but it also is more dramatic.

For the 2019 model, the premium on newer homes continues to increase quadratically for
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Table 5: Exhibit 1 Reproduced from Zietz, Zietz, and Sirmans (ibid.)

Variable #Obs #Pos #Neg #NotSig Pos/Neg NotSig/Sig DisagreeRatio*

Age 78 7 63 8 0.11 0.11 0.24
Square Feet 69 62 4 3 15.50 0.05 0.11
Garage Spaces 61 48 0 13 0.00 0.27 0.27
Fireplace 57 43 3 11 14.33 0.24 0.33
Lot Size 52 45 0 7 0.00 0.16 0.16
Bathrooms 40 34 1 5 34.00 0.14 0.18
Bedrooms 40 21 9 10 2.33 0.33 0.90
Full Baths 37 31 1 5 31.00 0.16 0.19
AirCondition 37 34 1 2 34.00 0.06 0.09
Distance 15 5 5 5 1.00 0.50 2.00
# Rooms 14 10 1 3 10.00 0.27 0.40
Time Trend 13 2 3 8 0.67 1.60 3.33

*The ratio of (non-significant results + the lesser count of negative or positive significant results) / (the
greater count of negative or positive results). This combines the three counts of significance into a single
measure of ”disagreement in results.”

homes built after 2010. However for the 2021 model, newer homes bring zero premium or

even demand a discount if they were built after 2010. According to the GBM, in 2019, a

home built in 2019 commanded a 20% premium over a similar home built in 2010 while

in 2021, a home built in 2019 would be priced similarly to (or even slightly lower than) a

home built in 2010.

Looking at the SFIPDP provides a similar intuition. Here, we can see that for the 2021

model, a home’s year of construction declines in importance around 5% for homes built

after 2000 while the importance of a home’s year of construction grows substantially over

the same period in the 2019 model, reaching as high as 25% for homes built in 2019. This

means that in 2019, newer homes had an increasing effect on the price of a home while in

2021, the age of a home did not matter as much, as long as it was built somewhat recently.

Figure 11 (left) shows the comparison of the PME for DNN-2019 and DNN-2021 for lot

size. While the curves overlap at the upper range, they begin to separate for lower lot sizes

and are meaningfully different in the region around .25 acres (around the size of a typical

suburban size lot). Compared to 2019, this suggests increased competition in suburban and

urban parts of the metro and an increased willingness of buyers to pay a premium for larger

lots in desirable urban and suburban areas near urban centers.

Unlike the GBM, the SFIPDP values do not meaningfully shift between 2019 and 2021.
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Figure 10: Year Built: PME and SFIPDP of GBM models

Left: demeaned PME Right: SFIPDP

This suggests that the increased priority in lot-size that is notable in the GBM model is

otherwise captured by other variables in the DNN model. In some ways, this is unsuprising

because the GBM model is forced to more aggressively choose among variables whereas

the DNN models can more easily distribute effects across many features. Thus, the large

shift in importance of lot size between GBM-2019 and GBM-2021 is distributed as small

(insignificant) shifts in the SFIPDP of correlated features in the SFIPDP of the DNN models

(e.g. bedrooms/bathrooms, school district, etc).

Figure 11: Lot Area: PME and SFIPDP of DNN models

Left: demeaned PME Right: SFIPDP
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