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Abstract

Post-meeting central bank communication often moves markets, but researchers have paid less at-
tention to the more frequent central bankers’ speeches. We create a novel dataset of U.S. Federal
Reserve speeches and develop supervised multimodal natural language processing methods to identify
how monetary policy news affect bond and stock market volatility and tail risk through implied changes
in forecasts of GDP, inflation, and unemployment. We find that forecast revisions derived from FOMC-
member speech can help explain volatility and tail risk in both equity and bond markets. Speeches
from Chairs tend to produce larger forecast revisions and unconditionally raise volatility and tail risk.
There is some evidence that a speaker’s monetary policy views, i.e, hawkishness vs. dovishness, may
affect the impact of implied forecast revisions after conditioning on GDP growth. We show that central
bank communication may calm markets, depending on the signals conveyed.
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1 Introduction

A large branch of monetary policy research seeks to explain how central bank communication (CBC)
influences market dynamics and expectations (Blinder, 2018). Theory suggests that if central bank an-
nouncements and speeches convey information on economic conditions, market participants will update
their beliefs and therefore their portfolio choices. Central bank communication can thus contribute to
revaluing assets and stabilizing market conditions by reducing uncertainty (Bernanke et al., 2005). Em-
pirical research largely corroborates this theoretical prediction and establishes a consensus that central
bank communication influences asset prices through its effects on market participants’ expectations about
economic outlook and policy decisions (Bernanke and Kuttner, 2005; Ramey, 2016). Monetary policy
communication also appears to influence the risk premium (Hanson and Stein, 2015; Cieslak and Schrimpf,
2019; Swanson, 2021; Cieslak and McMahon, 2023).

Despite these findings, there are still at least two major challenges: (i) how to identify the news in
central bank communication, and (ii) how to identify the effects of such news on market volatility and tail
risk. In this paper, we develop a novel multimodal natural language processing (NLP) method to identify
macroeconomic signals in central bank speeches and we assess their impact on market volatility and tail
risk.

Signals about the economic situation can affect asset prices in different ways. While speeches provide
information, we don’t think the channel is necessarily the same as the classic “Fed Information Effect”
as emphasised in, for example, Romer and Romer (2000) and Nakamura and Steinsson (2018). The
“Fed Information Effect” implies that the central bank, either explicitly or implicitly through its policy
decision, releases superior information about the economy that is then incorporated into private sector
forecasts. Instead, the central bank’s alternative economic assessment (as in Byrne et al., 2023) could
heighten concerns about a possible monetary policy mistake and thereby create volatility (Caballero and
Simsek, 2022; Cieslak and McMahon, 2023). Or, the central bank’s views may influence private views
about uncertainty (Hansen et al., 2019; Aruoba and Drechsel, 2022). Finally, a cacophony of economic
assessments, even if just reflecting different views on the economic outlook, might raise uncertainty (Ahrens
and McMahon, 2021).

Furthermore, we introduce novel empirical measures that capture macroeconomic news from the central
bank and show that releasing these signals via speeches gives rise to effects on market volatility and tail
risk. However, our novel measures cannot distinguish between these possible channels.

The focus on speeches is important because, while central bank policy announcements occur infre-
quently, i.e., typically every 4-8 weeks, policy makers’ speeches influence market expectations much more
frequently (Neuhierl and Weber, 2019). Although recent developments in natural language processing
(NLP) have allowed economists to analyse text with machine learning methods (see e.g., Bholat et al.,
2015; Hansen et al., 2018; Ahrens and McMahon, 2021), researchers have paid only limited attention to
speeches so far,1 partly because their content is difficult to quantify and the field still lacks easily accessible

1Recently, Neuhierl and Weber (2019) have investigated the tone of speeches by central bank chairs and vice-chairs while
Petropoulos and Siakoulis (2021) use a mixture of machine learning and dictionary methods to calculate sentiment indices
from central bank speeches. The latter authors argue that this sentiment predicts financial turmoil. Swanson (2023) highlights
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datasets of central bank speeches.
Our methodological framework has two parts. First, we use machine learning methods from the field of

multimodal natural language processing to infer implied macroeconomic forecasts from Fed officials’ public
speeches. Our training dataset consists of Greenbook texts and their respective forecasts, which allows
us to learn a mapping from central bank language to central bank forecasts (see Ahrens and McMahon,
2021). In our test dataset, we then apply the learned mapping to central bank speeches to infer how news
signals in speeches can predict revisions of public macroeconomic forecasts. Second, we investigate the
high-frequency (intradaily) responses of market volatility and tail risk to speech-implied revisions in CPI,
GDP, and unemployment outlooks.2

Our paper contributes to the literature in several ways. Most importantly, we show that central bankers’
speeches significantly influence volatility and tail risk in financial markets. Our novel, multimodal frame-
work identifies the news component of policymakers’ signals about GDP growth, CPI, and unemployment
outlooks. We compare and contrast the performance of an extensive array of modern machine learning
methods for multimodal NLP on our datasets. Our speech-implied forecast revisions predict changes in
Survey of Professional Forecasters (SPF) forecasts substantially better than models that use purely tabu-
lar data and ignore the textual content of the speeches. These speech-implied forecast revisions explain a
sizeable part of realized volatility and tail risk in financial markets, particularly if the speech comes from
the Chair.

The remainder of the paper is organized as follows. In the next section, we review the related literature.
Section 3 describes the data and section 4 introduces our methodological framework. In sections 5 and 6, we
discuss the results of language mapping model performance and nature of speeches, respectively. Section 7
presents our empirical results pertaining to the analyses of speech-implied news and high-frequency market
responses. Section 8 concludes the paper.

2 Related Literature

A large literature studies the effects of central bank communication around announcements, and a growing
part looks at the effect of speeches. To the best of our knowledge, we are the first to study how bank
communication about the economic outlook affects market volatility and tail risk. We focus on financial
market uncertainty rather than uncertainty about monetary policy (as in Bauer et al., 2022; Husted et al.,
2020; Ozdagli and Velikov, 2020; Tillmann, 2020) or the uncertainty that monetary policymakers face
(Cieslak et al., 2023).

2.1 Central Bank Communication Effects on Market Volatility and Tail Risk

Our paper is most closely related to studies of the high-frequency effects of CBC on market uncertainty
and volatility. Earlier research has focused on how central bank communication and decisions affect asset

the importance of Fed Chair speeches using an event-study revision decomposition, and Cieslak and McMahon (2023) focus
on the communication of Fed stance and its effects on the risk premium.

2High-frequency market analysis is common in monetary research; see, for example, Gurkaynak et al. (2005); Gertler and
Karadi (2015); Nakamura and Steinsson (2018); Jarociński and Karadi (2020) and Miranda-Agrippino and Ricco (2021).
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prices or volatility in financial markets.3

To our knowledge, only Hattori et al. (2016) has studied stock and bond market tail risk in response
to unconventional policy announcements. Unconventional monetary policy (UMP) increases (decreases)
the realized volatility of stocks (bonds), but lowers the tail risk in both markets. Forward guidance (and
hence communication) appears to have stronger “dampening effects,” compared to other UMP events.4

We extend this line of research in three ways. First, we focus on the intraday market responses to
policymaker speeches rather than responses to FOMC announcements. Second, we measure the realized
tail risk instead of the implied tail risk from derivatives. The use of realized measures, rather than those
from derivatives, allows us to characterize the dynamics of volatility and tails at much higher frequency.
In contrast with Hattori et al. (2016), we find that Fed Chair speeches interacted with forecast revision
surprises decrease realized volatility and tail risk. CBC may reduce uncertainty and calm financial markets,
depending on the message in the speech, position of the Fed member (Chair versus other FOMC members)
and type of macro news, i.e., CPI, unemployment or GDP. Third, we employ a more flexible model that
allows for time-varying tails and better captures news-induced persistence in intradaily volatility and tail
risk. This model allows us to separate extreme volatility responses from the tail responses and, more
importantly, to identify the speeches that create tail cascades. Unlike the previous studies treating jumps
as independent events, e.g., Bauer et al. (2022), we accommodate the stochastic jump intensity that
potentially results from heterogeneous interpretation of news by market participants.

2.2 Text Analysis for Monetary Policy

We also contribute to a burgeoning literature that uses natural language processing to analyse monetary
policy. Various text analysis methods have been tested in this field. For example, researchers have used
topic models (Hansen et al., 2018), combined dictionary methods with classic machine learning models
such as XGBoost (Petropoulos and Siakoulis, 2021), and have deployed deep neural network models such
as transformers (Cai et al., 2021). In our work, we take a model-agnostic, data-driven approach to reduce
modeler bias. That is, we train a variety of NLP models and choose the algorithm that works best in our
validation set.

Similarly, researchers have employed various frameworks and datasets to identify monetary policy news.
In particular, researchers have often studied the market effects of central bank policy announcements.
For instance, Lucca and Trebbi (2009) and Hansen and McMahon (2016) both leverage approaches from

3Cieslak and Schrimpf (2019) study the high-frequency effects of the non-monetary news component of communication on
risk premiums. Leombroni et al. (2021) explore how CBC influences credit risk premia through high-frequency changes in
the yield curve. Ehrmann and Talmi (2020) measure textual differences between central bank announcements and find that
higher levels of textual similarity to the previous announcement statement are usually associated with lower market volatility
after the announcement date. Bekaert et al. (2013) find evidence that looser policy reduces risk aversion and uncertainty.
Gómez-Cram and Grotteria (2022) explore the price discovery process for several asset classes on FOMC announcement days.

4In the context of forward guidance, Ehrmann et al. (2019) put forward a model where forward guidance can amplify the
reaction of expectations to macroeconomic news. Empirically, they show that the type and horizon of forward guidance—
time-contingent, state-contingent, open-ended, short or long horizon—influences the sensitivity of bond yields to news and
degree of disagreement among forecasters. For example, while long-horizon forward guidance reduces interest rate sensitivity
to macroeconomic news, short-horizon guidance amplifies it. Similarly, state-contingent forward guidance limits bond price
responses to macro news but open-ended forward guidance essentially has no statistically significant effect on the response.
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computational linguistics within a VAR framework to examine the effect of the content in FOMC statements
on macroeconomic variables.5 Using a deep neural network architecture to identify text-based shocks in
FOMC announcements, Handlan (2020) assesses the impact on Fed funds futures and finds that forward
guidance in FOMC statements account for four times the variation in Fed funds future prices than do federal
funds rate target changes. Gardner et al. (2022) introduce a new FOMC sentiment index using textual
analysis, and show that announcement effects on equities depend on good versus bad times. Gómez-Cram
and Grotteria (2022) apply a video analysis on words mentioned during central bank press conference
videos. Nesbit (2020) proposes a word count based instrumental variable framework to identify monetary
policy shocks in FOMC transcripts. Aruoba and Drechsel (2022) use NLP techniques to analyse FOMC
meetings in order to measure the information set of the FOMC at the time of policy decisions. Gáti
and Handlan (2022) use regularized regressions to map the wording of FOMC statements to Greenbook
forecasts of output growth, unemployment and the federal funds rate, arguing that the statement wording
implies FOMC expectations fairly well, with the exception of short-run inflation expectations. The authors
note that these patterns have changed over time with Fed Chairs.

Rather than focus on FOMC announcements, we join a few recent papers in studying central bankers’
speeches that happen with much higher frequency, making central bank communication more nearly con-
tinuous (Neuhierl and Weber, 2019).6 We use a two-step macroeconomic news identification framework, in
which we first learn a mapping from central bank language to central bank forecasts with Greenbook data,
and then use these learned mappings to infer how FOMC member speeches imply revisions to SPF fore-
casts of GDP, inflation, and unemployment — an approach which is motivated by Ahrens and McMahon
(2021).

To identify the news content of a speech, we control for market expectations with the latest forecasts
from the Survey of Professional Forecasters (SPF) conducted by the Federal Reserve Bank of Philadelphia.
SPF forecasts directly measure expected GDP growth, inflation, and unemployment. We define a speech-
induced news shock as the difference between a speech-implied forecast revision and the latest SPF forecast
for that variable at speech time. 7

3 Federal Reserve and Markets Data

We use several types of data in our paper: Greenbook forecasts, SPF forecasts, intraday volatility and tail
risk measures for US stock and bond markets, as well as unstructured text data from the Greenbook and

5Lucca and Trebbi (2009) find CBC to be a more important factor than contemporaneous policy rate decisions. Hansen
and McMahon (2016) conclude that shocks to forward guidance have stronger effects on markets than communication of
current economic conditions.

6Neuhierl and Weber (2019) find that the tone of US Fed chair and vice-chair speeches, measured via word count methods,
can explain stock market price dynamics. Using a mixture of machine learning and dictionary methods, Petropoulos and
Siakoulis (2021) derive sentiment indices from central bank speeches and find that the sentiment predicts financial turmoil.
Swanson and Jayawickrema (2023) compare high-frequency changes in interest rates after Fed Chair versus Fed Vice Chair
speeches and find that Chair speeches have a much higher impact.

7Other researchers have used news media coverage to control for market expectations. Ellen et al. (2022), for example,
construct a monetary news series from the difference in narrative between central bank statements and news media coverage.
Similarly, Cai et al. (2021) analyse FOMC announcements using BERT (Devlin et al., 2019) and identify monetary policy and
information shocks, controlling for market expectations by analysing relevant New York Times articles with NLP methods.
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FOMC speeches.8 These data are split into a training and a test set. We describe these datasets below.

3.1 Federal Reserve Text and Forecast Data

To impute macroeconomic news signals from central bank speeches, we must learn a mapping from Fed
words to forecasts. For this, we map Greenbook text sections on forecasts to the respective internal
Greenbook forecasts. We then apply this learned mapping to FOMC members’ external speeches and
assess how speech-implied forecast revisions affect volatility and tail risk in financial markets.

Our key underlying assumption in this approach is that central bankers use similar vocabulary in
Greenbooks and speeches when talking about revisions to the outlook. We believe this to be the case
despite the fact that Board of Governors staff economists write the Greenbook text but FOMC members
or regional reserve bank economists write the speeches, and despite the fact the two texts are often
directed at different audiences for somewhat different purposes. We believe this to be reasonable because
the language used to describe economic concepts and data is similar, the staff analysis provides inputs
into the speeches, and our use of a supervised topic model to map word co-occurrences to forecasts will
capture when different words are semantically similar. Whether this assumption is reasonable is ultimately
an empirical question. The out-of-sample R2 values from our test data confirm that the mappings must
be indeed similar.9 Gáti and Handlan (2022) also find that FOMC statements, another form of externally
focused communication, is a good textual description of Greenbook forecasts.

Training set: In the training phase, we learn the mapping of the Fed’s Greenbook texts associated
with the descriptions of GDP growth, CPI, and unemployment outlooks to the change in the Greenbook
forecasts of those variables from the previous forecast. That is, we target the difference in a current
period’s one-quarter-ahead Greenbook forecast to the previous quarter’s forecast, such that for any of our
macroeconomic key figures of interest, y, we define ∆ym = ym − ym−1, where m indicates the date of the
Greenbook forecast.

We focus on near-term forecasts to capture policymakers’ assessments of the current state of the
economy while avoiding the endogeneity of longer-term forecasts to policy and the tendency of forecasts to
revert to long-run values. This is consistent with the approach used in Coibion and Gorodnichenko (2012).
Experiments with a one-year-ahead forecast horizon produced a slightly less precise but similar mapping.

The training sample spans 145 Greenbook documents, from January 1, 1995 to December 31, 2013. We
only consider the 8,155 Greenbook sections that directly relate to GDP growth, CPI, and unemployment
(see Appendix D for a detailed list of section allocations). The average Greenbook section in our dataset
has about 3, 000 words; the longest section consists of 31, 000 words and the shortest section contains
around 140 words. At any date, we concatenate all Greenbook sections that relate to the same forecasting
variable.

Test set: Training the NLP models consists of estimating complex mappings from Greenbook text on each
date, for each variable, to the associated revisions from the previous Greenbook to the one-quarter-ahead

8The Greenbook forecast information is, in recent years, presented together with Bluebook information in the Tealbook.
We continue to refer to it as Greenbook information to make clear we are using the Fed’s economic forecasts.

9In section 6.2, we explore the individual-specific nature of speeches.
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Greenbook forecasts on each date, for each variable. Once the models are trained, we apply the learned
mappings to each element of a test set consisting of FOMC members’ speeches made from August 1, 2008
to December 31, 2020. The applied mappings imply one-quarter-ahead forecast revisions for GDP growth,
CPI, and unemployment.

Table 1 reports the summary statistics of the speeches used in our data. Specifically, it reports the
speakers and the characteristics of his/her body of speeches. The table indicates that the time spans
in which the speakers gave speeches (i.e., the time between first and last speech in our sample) vary
considerably across speakers due to their different terms on the FOMC.

Table 1: Summary statistics of the speeches by FOMC members

FOMC Member Role First Speech Last Speech Speeches Time Stamped

Fisher DAL 18 Aug 2008 9 Mar 2015 106 0
Bernanke Board 22 Aug 2008 16 Dec 2013 151 144
Lockhart ATL 27 Aug 2008 14 Feb 2017 114 0
Kroszner Board 1 Sep 2008 8 Dec 2008 6 0
Plosser PHL 8 Oct 2008 17 Feb 2015 91 0
Duke Board 23 Oct 2008 9 May 2013 51 51
Warsh Board 6 Nov 2008 8 Nov 2010 8 8
Pianalto DAL 14 Nov 2008 27 Mar 2014 51 0
Kohn Board 8 Dec 2008 13 May 2010 21 17
Tarullo Board 19 Mar 2009 4 Apr 2017 77 77
Raskin Board 15 Jul 2010 17 Jul 2013 19 18
Yellen Board 15 Jul 2010 29 Nov 2017 82 79
Stein Board 11 Oct 2012 6 May 2014 16 15
Powell Board 22 Feb 2013 6 Oct 2020 91 91
Fischer Board 10 Jul 2014 28 Sep 2017 45 45
Brainard Board 2 Dec 2014 17 Dec 2020 81 79
Harker PHL 2 Oct 2015 2 Dec 2020 80 0
Kaplan DAL 18 Nov 2015 29 Sep 2020 27 0
Quarles Board 30 Nov 2017 11 Dec 2020 48 48
Clarida Board 25 Oct 2018 16 Nov 2020 30 30
Bowman Board 11 Feb 2019 4 Dec 2020 19 19

Notes: The table reports the summary statistics of the statements and speeches by the Fed officials FOMC members in our
text dataset. The table presents the names of the speakers, their role, their first and last speech dates in our sample, and the
number of speeches overall and for which we have time stamps.

In order to analyse the market effects of the speech signals on the market measures of volatility, we
need to have carefully time-stamped speech data. This is not possible for all the speeches in our sample.
In fact, it is limited to members of the Board of Governors. Even though they are not time stamped, we
nonetheless found it useful to be able to make use of the speeches of some regional Fed presidents in order
to control for time and member fixed effects. We describe this adjustment in Section 6.
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Figure 1: Comparison of Greenbook and SPF forecasts

Notes: The figure displays the Greenbook and SPF forecasts over time for CPI (top left panel), GDP (top right panel)
and unemployment (bottom panel). SPF forecasts are the mean across SPF participants. The two forecasts match quite
closely for the majority of the inspected time-series.

The target variables in the test set are the respective changes in one-quarter-ahead SPF forecasts of
GDP growth, CPI, and unemployment. The SPF is a publicly available and widely referenced source for
economic forecasts. We use the mean SPF forecasts across SPF participants as our proxy for expectations,
rather than Greenbook forecasts, because the latter are released to the public with a 5-year delay. We
expect that central bank speeches should have similar predictive power for Greenbook and SPF forecast
revisions. Figure 1 illustrates that the SPF forecasts are highly correlated with the Greenbook forecasts
during 1993 to 2016. We assume that this pattern also holds post 2016, for which there was no public
Greenbook data available when the data for this paper were collected.
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3.2 High-Frequency Market Data

We use high-frequency transaction prices for 22 Dow Jones Industrial Average (DJIA) stocks, together with
2-year, 5-year, and 10-year U.S. Treasury note and bond futures traded on the Chicago Board of Trade
(CBOT). Appendix E lists the individual stocks and bonds. Wharton Research Data Services (WRDS)
and Tick Data LLC provide data for individual stocks and bond futures, respectively. As is standard in the
literature, we exclude U.S. holidays, Christmas periods, and weekends from our sample. We only consider
trading hours from 9:30 EST−16:00 EST and 7:30 CT−14:00 CT, for stock and bond markets, respectively.
To reduce the potential impact of market microstructure noise, we filter out bouncebacks and irregular
quotes that typically occur in ultra high-frequency data. Using our adjusted data, we create equally-
spaced 15-second observations, which is an appropriate frequency to implement our response measures.
Our sample runs from January 1, 2014 through December 31, 2021.

4 Methodological Framework

Our methodological framework can be broken down into two parts. Section 4.1 explains our multimodal
NLP framework used to estimate the mapping from central bank language to forecasts. We test and
compare our estimation framework with a variety of machine learning algorithms. Section 4.2 then describes
the measurements of the asset price dynamics and their relationship with the speech signals.

4.1 Multimodal NLP Framework

We estimate how central bank speeches influence financial markets. To do so, we map central bank
language to macroeconomic forecasts, controlling for the macroeconomic conditions at the time by using
macro data as inputs to the mapping function. Conditioning on the macroeconomic situation may be
important because the effect of a given forecast revision on financial markets may depend on economic
conditions. This economic context requires the multimodal modelling approach. For example, a speech
that raised forecast inflation would be a positive signal of improving conditions if inflation was below its
desired level. However, the same speech would convey a negative signal if inflation was substantially above
target. We employ multimodal machine learning approaches that allow us to use both text and tabular
data when mapping central bank language to central bank forecasts and then predicting output, inflation,
and unemployment outlook revisions.

4.1.1 Learning Mapping from Central Bank Language to Forecasts

We learn the mapping from the Fed’s Greenbook text to the respective Greenbook forecasts. The Green-
books contain dedicated sections on the Fed’s forecasts of GDP growth, CPI, and unemployment, as well
as the rationales for the forecasts. These sections allow us to map the Greenbook text - ergo central bank
language - to central bank forecasts.

In the training phase, we estimate a separate mapping for each of the three variables, i.e., the one-
quarter-ahead forecast change in CPI, GDP growth, or unemployment. We measure the change from the
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previous (m − 1) Greenbook to the current (m) in the one-quarter-ahead forecasts (q1). We denote CPI
by π, GDP growth by g, and unemployment by u. Hence, our three target variables are: ∆πq1,m, ∆gq1,m,
and ∆uq1,m. For ease of notation in the following equations of our modelling framework, let y serve as
a placeholder variable for any of the CPI, GDP growth, and unemployment variables. Our placeholder
target variable is ∆yq1,m.

To capture the economic context, we control for both change and level of the CPI, GDP, and unemploy-
ment of the previous Greenbook report, denoted as Xm−1. We fit a function, f , that learns parameters, Ω,
to map the Greenbook text and tabular inputs to the target output. The equations for CPI, GDP growth,
and unemployment have the same explanatory variables, except for the text input, which is specific to
the respective Greenbook forecast section. That is, θπ represents the text features for the CPI corpus, θg
represents GDP-related text, and θu unemployment-related text. We use θy as a placeholder for any of the
three text inputs, while θy,k represents the kth text feature for the respective target variable y. We can
now write out our regression equation as

∆yq1,m = f (Xm−1, θym ; Ω) . (1)

If we assume linearity in function f , the regression equation can be written as follows:

∆yq1,m = ωππq1,m−1 + ωggq1,m−1 + ωuuq1,m−1

+ ω∆u∆uq1,m−1 + ω∆π∆πq1,m−1 + ω∆g∆gq1,m−1

+
K∑
k=1

ωkθy,k,m + ϵm. (2)

Here, the ωs represent the regression parameters and ϵ is the measurement error. We use the first 80%
of the Greenbook dataset for training and the remaining 20% for validation. The data are demeaned and
standardized based on training set values. A respect for the time-series characteristics in the data, i.e., the
potential for information leakage, deterred us from randomly splitting the training and validation sets.

We then train the machine learning models to map central bank texts and control variables to the
respective target variables. We treat this as a regression problem and use a least squares error loss
function, as is typical in econometric applications to monetary policy.

4.1.2 Identifying Information Signals in Central Bank Speeches

In the test phase, we apply the trained models for each of the macroeconomic variables, i.e., CPI, GDP
growth, unemployment, to the FOMC member speeches to infer macroeconomic forecast revisions. The
coincident tabular data inputs on current economic conditions are the most recent SPF forecast levels and
changes on GDP growth, CPI, and unemployment.10 This procedure maps each central bank speech into
an implied revision of the forecasts for CPI, GDP growth, and unemployment. Importantly, speeches that
are not about the economic situation will not use many forecast-related words and so will be estimated

10As shown in Figure 1, the SPF forecasts track the Greenbook forecasts quite closely.
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to have very little signal value.11 Asset prices should only react to relevant news that has not yet been
incorporated into asset prices. To isolate the new, i.e., surprising, components of revision signals we thus
adjust the speech implied forecasts, ∆ŷspeech,s, in two ways. We outline these two adjustments in Section
6.

4.1.3 Machine Learning Methods

We do not know, a priori, which statistical learning model would best approximate the function, f , in
equation (1). We have relatively few data points compared to many machine learning projects (e.g.
hundreds or thousands rather than millions or billions of data points). Each data point itself is rich in
information, however, consisting of a high dimensional feature set. That is, each set of text can be several
thousand words long, which presents a problem for many modern language models such as transformer
family models (e.g. BERT-based models), which can usually only handle up to around 100-1,000 tokens
per data point (Das et al., 2021). Some extensions based on sparse transformers have been proposed such
as Child et al. (2019); Zaheer et al. (2020), which can handle sequences of a couple of thousand tokens.
However, document lengths of 20, 000+ words would still pose a challenge. Lacking reason to favour a
specific class of models, we search broadly for the best model to reduce the a priori modeler bias. That is,
we deploy an extensive array of multimodal machine learning algorithms to approximate function f and
to learn parameters Ω. We use the multimodal machine learning benchmark suite, AutoGluon (AutoGL)
(Erickson et al., 2020), and we add to it the class of multimodal supervised topic models (Card et al., 2018;
Ahrens et al., 2021).

4.1.4 AutoGluon

AutoGL is an automated machine learning (AutoML) framework that has been developed to fuse mul-
timodal features such as text, images, and tabular data. We chose this AutoML framework because it
outperformed competing frameworks in multimodal benchmark tasks (see Erickson et al., 2020).

Base models: AutoGL fits machine learning base models and then combines them through ensembling
and stacking to boost performance. AutoGL allows us to apply hyperparameter optimization over all
models. The base models in AutoGL span the following broad machine learning algorithm classes (See
Appendix A for a full description):

1. K-nearest neighbours (Dudani, 1976): AutoGL uses two variations of k-nearest neighbours (KNN)
that differ in their weighting approaches. One allocates uniform weights to all points while the other
weights points according to the inverse of their respective distances.

2. Random forests (Breiman, 2001): AutoGL again deploys two variations of this algorithm class.
One option uses the information gain of nodes for the assessment of the split quality. The other
option uses Gini impurity instead.

11We discuss this in more detail in Remark 3 in Appendix C.
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3. Extremely randomized trees (Geurts et al., 2006): For the random tree class, AutoGL deploys
both an implementation resorting to information gain and another option that uses Gini impurity
for the assessment of split quality.

4. Boosted decision trees: AutoGL runs (where applicable to the task) Extreme Gradient Boost-
ing (Chen and Guestrin, 2016), Light Gradient Boosting (Ke et al., 2017), Categorical Boosting
(Prokhorenkova et al., 2018).

5. Neural networks: Figure 2 schematically outlines AutoGL’s neural network architecture, which
Erickson et al. (2020) details. The architecture has been specifically designed for the multimodal use
of categorical (text, images) and numerical data. It uses variable-specific embeddings for each of the
categorical features. These are then concatenated with the numerical features into one overall input
vector. This vector is in turn fed through a 3-layer feed-forward network as well as through a linear
skip-connection (for details see Erickson et al., 2020). Model ensembling and stacking can be applied
and are optimally chosen in the validation process.

Figure 2: AutoGL schematic neural network architecture

Notes: The figure displays the AutoGluon schematic neural network architecture, based on the design by Erickson et al.
(2020), p. 3. Layers with learnable parameters coloured in blue.

Text representation options: We must also choose how to represent the text in machine-readable
format. We define the following approaches:

1. AutoTab: Only tabular features are used. Text is excluded. AutoTab is our tabular data baseline
next to an OLS regression that only uses tabular data.12

12AutoGL’s TabularPredictor approach.
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2. AutoTab + tf-idf : Use tf-idf weighted word counts of the text as features. Standard text cleaning
procedures of removing stopwords and punctuation have been applied.

3. AutoTab + topics: Use topic shares from supervised topic models as features (using rSCHOLAR
without tabular data for the topic estimation).

4. AutoMM transformer: Use the AutoGL’s multimodal modelling infrastructure that is based on
a large language model (we use Roberta-base (Liu et al., 2019)) for multimodal fine-tuning. Tabular
data can be fused into this process as well.13

5. AutoTab + embed: Use AutoMM transformer as well as AutoTab models that featurize text data
as n-grams and ensemble over this zoo of models.14

We now proceed to characterize asset price dynamics to assess how forecast-revisions affect financial
market volatility and tail risk.

4.2 Asset Price Dynamics

In this section, we first present the continuous-time model for asset prices. Section 4.2.2 then outlines how
we measure volatility and realized tail risk from the high-frequency data.

4.2.1 Underlying Continuous-Time Model

We model the intraday behaviour of asset prices with the following continuous-time model: The log-price
X of each asset (stock or bond) follows an Itô semimartingale defined on a filtered space (Ω, Ft, (Ft)t∈[0,T ],
P) over an interval [0, T ]. The Grigelionis decomposition (see e.g., Erdemlioglu and Yang, 2022; Boswijk
et al., 2018; Dungey et al., 2018) implies that Xt has the following specification:

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs + δ ∗ (µt − ψt) + (δ − h(δ)) ∗ µt, (3)

where bs is the drift term, σs is the stochastic volatility component, W is a standard Brownian motion, δ
is a predictable function, h is a truncation function (e.g., h(x) = x1{∥X∥≤1}), µ is the jump measure of X,
and ψ is its jump compensator, which adopts the decomposition,

ψt(dt, dx) = [ft(x)λtdx]dt,

where the function, ft(x), controls the jump size distribution and λt denotes the jump intensity as in
Erdemlioglu and Yang (2022) and Boswijk et al. (2018). We focus on the tail component of this jump

13AutoGL’s MultimodalPredictor approach.
14AutoGL’s TabularPredictor approach with the hyperparameter option being set to multimodal.
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compensator or λt, which captures the jump intensity dynamics.15 We can specify λt as

λt = λ0 +

∫ t

0
b′sds+

∫ t

0
σ′sdWs +

∫ t

0
σ′′sdBs + δ′ ∗ µt + δ′′ ∗ µ⊥t , (4)

where B is a standard Brownian motion, independent of W , µ⊥t is orthogonal to µt, and δ′, δ′′ are
predictable. This model, given by equations (3) and (4), satisfies no-arbitrage conditions and leaves the
volatility and jump components unrestricted. We now present this model’s volatility and tail risk measures.

4.2.2 High-Frequency Measurement of Volatility and Tail Risk

Given the price dynamics in equations (3) and (4), let us define the ith intradaily return on a trading day
as ri,t = Xi,t - Xi−1,t. The daily realized volatility (RV ) is the square root of realized variance, which is
the sum of the squared intraday returns (1, . . . ,M). That is,

RV =

√√√√ M∑
i=1

r2i . (5)

It is well-known that realized variance converges to quadratic variation (see e.g., Andersen et al., 2003,
2001 and Barndorff-Nielsen and Shephard, 2002 for in-depth discussion). We use the scaled version of
realized variance and compute RV in the post-signal windows.

Turning to the estimation of λi,t in equation (4), we define the realized intensity (RI) measure as

RI =
∆ϖβ̂i

n

kn∆

kn∑
j=1

g

(
|ri|
α∆ϖ

)
αβ̂

C
β̂i
(kn)

, (6)

where ∆ is incremental change between observations, α∆ϖ is threshold to retain only large jumps, g(·)
admits a specific functional form, kn is a constant which admits (1/K ≤ kn∆

ρ ≤ K) for (0 < ρ < 1)

and (0 < K < ∞), and βi is the estimator of jump activity index that controls the vibrancy of sharp
fluctuations. In equation (6), g(·) is an auxiliary function that separates jump-type movements from the
diffusive volatility, based on an α deviation (e.g., α = 2, 3, 6) from the continuous component of the
model.16 We use RI as a proxy for time-varying (high-frequency) tail risk (TR), which is very accurate
at high frequency, similar to the measures adapted in Bollerslev et al. (2015).17

Our tail risk measure RI (equation (6)) has several advantages. RI is relatively easy to implement
but does not require strong assumptions about the underlying asset pricing process (see Appendix B.1).
Because it simultaneously accounts for time-varying volatility, clustering in extreme price changes (jump
clustering) and accommodates tail (jump) activity of the price variation around speeches, it allows us to

15See Andersen et al. (2020), who exploit jump intensity process to measure tail risk and assess its equity premium
implications.

16See e.g., Erdemlioglu and Yang (2022), Boswijk et al. (2018) and Dungey et al. (2018) for implementation details,
particularly on the selection of the functional form for Cβ̂i

(kn) in (6).
17Our tail risk indicator RI is also quite similar to the estimator of Hill (1975). See also Aït-Sahalia and Jacod (2009) for

a related discussion on the role of βi in (6).
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accurately measure tail responses to FOMC speeches and to disentangle jumps from shifts in volatility,
thereby solving an econometric identification problem. Large (small) values of RI indicate that the returns
generate heavy (light) tails.18

In summary, communication can create sudden changes in realized volatility as well as asset price jumps
and persistently elevated jump intensity. Our approach allows us to first detect the speech-implied jumps,
and then assess the ‘intensity’ of the jump responses.19

4.3 Identifying Association Between News and Market Reactions

To measure how realized volatility and tail risk in equity and bond markets react to central bankers’
speeches, we regress the market reactions on the forecast revisions implied by the corresponding speech.
As the forecast revision itself is a linear combination of the central bank signal and the latest public forecast,
we already control for the partial correlation between the SPF forecasts and the market reactions.20 We
do not include additional low-frequency macroeconomic control variables because market prices should
already incorporate such publicly available information.

5 Results: Language Mapping and SPF Prediction

In this section, we discuss the language mapping procedure and present the results of model performance.
We first learn the mapping from central bank language to central bank forecasts by training our model on
the first 80% of the Greenbook sample, holding out the last 20% for validation. In our validation set, we
assess the out-of-sample performance of mappings from Greenbook language to Greenbook forecasts.

For each machine-learning class, we select the best performing model from the validation set and then
assess how well each maps post-2013 speeches to SPF forecasts. Tables 2, 3, and 4 report the R2s associated
with test set predictions of revisions to CPI, GDP and unemployment SPF forecasts, respectively. Two
key takeaways are: (i) the high R2 values confirm that the Greenbook text and speeches have significant
commonality regarding revisions to the economic outlook; (ii) the FOMC member speeches clearly predict
changes in public macroeconomic forecasts. For example, the third row of Table 2 indicates that the
multimodal neural topic model (MM NTM non-linear) has an R2 of 0.670 in predicting CPI forecast
revisions in the Greenbook training set, 0.830 in the Greenbook validation set, and 0.735 in the test set
(speeches).21

For each of the three macroeconomic target variables, the best multimodal NLP models markedly
outperform models that only use tabular data. Specifically, the multimodal neural topic model (MM
NTM) class performs best both in the validation and in the test set. For CPI, Table 2 shows that the MM

18The term intensity in RI refers to the stochastic intensity of the jump process. While RV in equation (5) estimates the
stochastic volatility, RI estimates the stochastic intensity.

19As Bollerslev et al. (2018) document, heterogeneous investors often release private information as they trade in the wake
of such jumps, creating large price moves, which amplify high-frequency TR. It is also worth mentioning that we aggregate
the information in measures by equally weighting the stocks in the panel. We apply the measures to all stocks, obtain the
estimates of response measures, equally weight and use the cross-sectional average for a given speech.

20See e.g., Frisch and Waugh (1933) and Lovell (1963) for Frisch-Waugh-Lovel theorem.
21Appendix F presents all tested machine learning approaches.
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NTM (non-linear) model has an R2 of 0.735 in the test set, which is 15% better than MM NTM (linear)
and 44% better than the R2 of the next best method. Likewise, Table 3 shows that MM NTM (non-linear)
has an R2 of 0.797 in the test set, which is right behind MM NTM (linear)’s R2 of 0.825. Finally, Table 4
shows that MM NTM (non-linear) performs best again for unemployment, with an R2 of 0.208, which is
markedly better than the second best R2 of 0.131, achieved by AutoTab.

Interestingly, while both are worse than the best-performing MM approaches, AutoGL’s models un-
derperform an OLS regression for CPI inflation and GDP growth. There might be several explanations
for this underperformance. First, these datasets contain relatively few data points — a common challenge
in macroeconomics and macro-finance, especially for ‘data hungry’ machine learning methods. AutoGL’s
machine learning models might therefore struggle to converge or might easily overfit on the limited train-
ing data. Second, a linear model might do a good job approximating macroeconomic forecasts (or the
revisions).

Table 2: Central bank language to forecast mapping - CPI Q1

Metric: R2 train (GB) val (GB) test (speeches)

OLS 0.288 0.510
MM NTM (linear) 0.600 0.650 0.640
MM NTM (non-linear) 0.670 0.830 0.735
AutoTab 0.565 0.302 0.475
AutoTab + tfidf 0.953 0.305 0.299
AutoTab + topics 0.370 0.284 0.358
AutoTab + embed 0.573 0.139 0.132
AutoMM transformer -0.155 -† -0.292

Notes: The table reports R2 for training, validation, and test sets for each of the models. Best performing model in validation
and test set in bold. †: Model only reports MSE for validation set.

Table 3: Central bank language to forecast mapping - GDP Q1

Metric: R2 train (GB) val (GB) test (speeches)

OLS 0.301 0.785
MM NTM (linear) 0.372 0.426 0.825
MM NTM (non-linear) 0.483 0.371 0.797
AutoTab 0.497 0.304 0.380
AutoTab + tfidf 0.752 0.240 0.268
AutoTab + topics 0.730 0.253 0.285
AutoTab + embed 0.587 0.220 0.142
AutoMM transformer 0.013 -† -0.044

Notes: The table reports R2 for training, validation, and test sets for each of the models. Best performing model in validation
and test set in bold. †: Model only reports MSE for validation set.
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Table 4: Central bank language to forecast mapping - unemployment Q1

Metric: R2 train (GB) val (GB) test (speeches)

OLS 0.231 -0.377
MM NTM (linear) 0.197 0.109 0.066
MM NTM (non-linear) 0.285 0.457 0.208
AutoTab 0.191 0.058 0.131
AutoTab + tfidf 0.577 0.113 -0.045
AutoTab + topics 0.278 0.053 -0.010
AutoTab + embed 0.415 0.145 -0.044
AutoMM transformer -0.737 -† -1.177

Notes: The table reports R2 for training, validation, and test sets for each of the models. Best performing model in validation
and test set in bold. †: Model only reports MSE for validation set.

6 Forecast Revisions from Speeches

We use the model that performed best in the validation set (Greenbook data) to estimate the speech-
implied GDP, CPI, and unemployment forecast revisions, ∆ŷspeech,s, in the test set (speech data). However,
markets should only react to relevant news that has not yet been incorporated into asset prices. That is, a
central bank speech must change market expectations to move prices. In this section we first explain how
to create the speech signals (6.1) and then characterize the speech data.

6.1 Forecast Revision News and Implied Speech Signals

We seek to learn how forecast revisions implies by FOMC speeches influence market volatility and tail risk.
Asset prices should only react to new/surprising information, so we must isolate the surprise components
of the forecast revisions. To do so, we calculate deviations from market expectations and then adjust for
existing information at the time-of-speech, ∆ŷspeech,s.

First, we proxy market expectations with the latest public SPF forecast for each target variable. We
then calculate the difference between the most recent SPF forecast change (∆ySPF,s) available at the time
of each speech and the implied forecast change in each speech (∆ŷspeech,s). This difference is our raw signal
(capturing the implied forecast revision) given the language in speech s which we label ψy,s for target
variable, y:

ψy,s = ∆ySPF,s −∆ŷspeech,s. (7)

Second, we adjust for views common to FOMC members at the time of speech s, as well as positions
of specific FOMC members that may be predictable. To do this, we regress their macro-variable-specific
signal on month and member fixed effects. This leaves us with an adjusted forecast revision, νy,s, for each
speech, s, given by member, m, in month, τ , as:

νy,s = ψy,s − τs − αm, (8)
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where τs is the average forecast revision signal in the month in which speech s is delivered, and αm is the
average forecast revision of all speeches by member m. We denote the CPI revision surprise as νπ,s, the
GDP revision surprise as νg,s, and the unemployment revision as νu,s for each speech, s.

Figure 3 shows the raw speech signals, ψy,s, for each of the macro variables in the left column. The
figure shows that FOMC language often moves together in such a way as to lead to quite large variation.

However, once we adjust for likely predictable signals in the forecast, the implied surprises, νy,s, in
the right column show much less variation, although they display still time-variation, extreme peaks and
heterogeneity across the three macro news factors (CPI, GDP, unemployment). We use these νy,s surprises
in our market analysis.

6.2 Individual Characteristics of the Speech Data

Table 5 reports the summary statistics of the speech signals. The strength of signals varies by type of
macro forecast (i.e., CPI, GDP, unemployment) and depends on the speaker. This enables us to examine
the heterogeneity that officials convey through their speeches. CPI and GDP forecast revisions tend to be
larger than the unemployment signals. This is not surprising as the unemployment is a state variable and,
thus, tends to be slower moving.

The length of service of the speaker obviously influences the minimum and maximum surprises. Lael
Brainard, Richard W. Fisher, and Richard Clarida have the largest CPI revisions. Lael Brainard, Randal
Quarles and Patrick Harker have the smallest. The specific sample has some effect too. Downside GDP
revisions tend to be larger for those serving at the start of our sample, which includes the Global Financial
Crisis. Though we don’t report the speech lengths for brevity, Chairs and Vice Chairs of the Board of
Governors, i.e., Jerome H. Powell, Janet L. Yellen and Richard H. Clarida, tend to deliver longer speeches.

7 Effects of Speeches on Intraday Market Volatility and Tail Risk

In this section, we investigate the impact of speeches on post-event market volatility and tail risk by regress-
ing the latter variables on speech-implied forecast revisions. We first show our unconditional estimation
results in Section 7.1.22 In Sections 7.2 and 7.3, we explore the effect of the speeches by the Fed Chair and
the sign of forecast revisions, respectively. Section 7.4 presents the characteristics of speech signals from
hawkish versus dovish FOMC members. In Section 7.5, we examine how speech-implied forecast revisions
influence volatility and tail risk when macro variables are low, normal, and high.

7.1 Average News Effects

In Section 4.2.2, we define our volatility and tail risk measures: RV and TR. We regress realized volatility
(RVs) and tail risk (TRs) in the 30-minute window after a speech on all absolute speech-implied forecast

22By “unconditional” we mean that the results are aggregated across all GDP and CPI regimes.
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Figure 3: Speech revision signals and implied revision surprises across time by macro variable
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Notes: The figure shows raw speech signals across time (left) and the implied surprises (right) for three macro news
factors (CPI, GDP and unemployment). The filled blue and red circles indicate the signals that are time stamped and
not time stamped, respectively. Equations (7) and (8) show the construction of raw speech signals and implied surprises,
respectively. The patterns are generated based on the full sample.
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Table 5: Summary statistics of the speech surprises νy,s

CPI GDP U
FOMC Member Role Min Mean Max Min Mean Max Min Mean Max

Bernanke Board -.07 0 .15 -.21 0 .14 -.1 0 .07
Bowman Board -.06 0 .05 -.28 0 .09 -.01 0 .01
Brainard Board -.22 0 .52 -.22 0 .1 -.02 0 .02
Clarida Board -.14 0 .34 -.26 0 .13 -.02 0 .01
Duke Board -.09 0 .1 -.23 0 .17 -.06 0 .13
Fischer Board -.11 0 .1 -.1 0 .15 -.03 0 .02
Fisher DAL -.06 0 .39 -.22 0 .15 -.05 0 .1
Harker PHL -.18 0 .28 -.16 0 .08 -.01 0 .02
Kaplan DAL -.15 0 .17 -.24 0 .06 -.01 0 .01
Kohn Board -.03 0 .03 -.11 0 .12 -.05 0 .06
Kroszner Board -.03 0 .05 -.15 0 .15 -.02 0 .01
Lockhart ATL -.1 0 .26 -.13 0 .16 -.07 0 .07
Pianalto DAL -.13 0 .2 -.18 0 .23 -.05 0 .07
Plosser PHL -.06 0 .28 -.13 0 .11 -.07 0 .04
Powell Board -.12 0 .4 -.11 0 .12 -.03 0 .02
Quarles Board -.23 0 .16 -.2 0 .13 -.02 0 .01
Raskin Board -.03 0 .14 -.13 0 .18 -.04 0 .03
Stein Board -.05 0 .04 -.09 0 .12 -.02 0 .03
Tarullo Board -.09 0 .13 -.18 0 .1 -.08 0 .03
Warsh Board -.06 0 .06 -.15 0 .07 -.03 0 .05
Yellen Board -.17 0 .25 -.22 0 .12 -.04 0 .05

Notes: The table reports the summary statistics of the speech signals. The table presents the names of the speakers, their
role and the descriptive statistics (min, mean, max) of the implied speech signals for each macro revision factor (CPI, GDP,
U).
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revisions across all regimes to get an average effect, that is,

Ys = β0 + β1Ys,pre + β2|νπ,s|+ β3|νg,s|+ β4|νu,s|+ ϵY . (9)

The use of the absolute value means that the β2−β4 coefficients capture whether the magnitude of forecast
news shocks tends to add or reduce short-term market volatility or tail risk after a news-revealing speech.
For example, β2 > 0 means that a larger inflation forecast surprise, regardless of whether it is for higher
or lower inflation, gives rise to greater volatility. A priori, larger (absolute) forecast revision news might
be expected to raise volatility and tail risk. However, if the market was confused about the central bank’s
thinking on economic conditions, a larger signal could reassure them that the central bank is not making
an error and reduce volatility and/or tail risk as in Cieslak and McMahon (2023).

Our first specification considers whether the absolute values of revisions to implied forecasts of CPI,
GDP and U predict RV and TR. Preliminary analysis indicated that lagged RV and TR predicted later
RV and TR, and that speeches by the Chair were associated with unusually high volatility. Therefore, we
always include the pre-speech value of the dependent variable (RV or TR) and a dummy for speeches by
the Chair, D(Chair). These variables are more-or-less always statistically significant. To account for the
fact that the 4 equations for RV /TR might be related to each other, we estimated a seemingly unrelated
regressions (SUR) specification for each 4-equation system for added efficiency.

Table 6 shows the results of each of the two SUR systems. Within each system, most coefficients on
CPI and U revisions were negative, of similar magnitude, but usually not statistically significant. The
point estimates were consistent with larger revisions reducing volatility and tail risk. Coefficients on GDP
revisions were not statistically significant and of varying sign and magnitude. All of the lagged dependent
variables and Chair indicators were statistically significant and positive. That is, volatility and tail risk
tend to rise during Chair speeches.

Because most of the coefficients on CPI and U revisions were of the same sign and similar magnitude,
we considered a pooled version of the model that would restrict the coefficients on each of the three types of
forecast revision in each of the four markets to be the same for RV or TR. That is, instead of estimating 20
coefficients plus 4 constants to predict RV in four markets, we will estimate 5 coefficients plus 4 constants
to predict RV in four markets.

Whether the coefficients should be pooled—especially across equity and bond RV /TR—is an empirical
question. There is no obvious reason that equity RV or TR should behave differently than those of bonds
and, in practice, these variables do not seem to behave very differently across markets. Pooling coefficients
over both bonds and equities seems to fit the data reasonably well.

Table 7 presents the results of estimating these constrained relations in a SUR framework by maximum
likelihood (ML). The BIC narrowly prefers the smaller, pooled models (Table 7) to the unpooled results in
Table 6. That is, BIC for the 4-equation RV model in Table 6 was 2566.2, while the BIC for the analogous
pooled model in Table 7 was 2557.2. Similarly, the BIC for the unpooled and pooled models for tail risk
were 3275.6 and 3275.3.

In contrast to the unpooled results in Table 6, CPI revisions in Table 7 carry negative and significant
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Table 6: The impact of forecast revisions on volatility and tail risk

RVs TRs

(1) (2) (3) (4) (5) (6) (7) (8)
2Y 5Y 10Y Eq 2Y 5Y 10Y Eq

DepV ars,pre 0.435 0.417 0.383 0.846 0.409 0.091 0.090 0.216
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

|νπ,s| -0.048 -0.018 -0.024 -0.015 -0.084 -0.050 -0.026 -0.011
(0.16) (0.31) (0.28) (0.21) (0.03) (0.13) (0.24) (0.33)

|νg,s| 0.034 -0.022 0.009 -0.011 0.021 0.018 0.006 -0.025
(0.22) (0.33) (0.45) (0.35) (0.37) (0.35) (0.45) (0.31)

|νu,s| -0.080 -0.002 0.001 -0.023 -0.044 -0.062 -0.011 -0.056
(0.06) (0.45) (0.55) (0.16) (0.16) (0.10) (0.37) (0.13)

D(Chair) 0.161 0.222 0.219 0.086 0.163 0.297 0.275 0.173
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Constant 0.290 0.239 0.458 0.093 0.347 0.360 0.280 0.135
(0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.10)

R2 0.31 0.40 0.29 0.80 0.22 0.13 0.08 0.11
Obs 348 348 348 348 344 344 344 344

BIC 2566.2 3275.6

Notes: The table presents the results of 2 SUR systems—one for RV , one for TR—in which 4 measures of
RV and 4 measures of TR were regressed on the lagged dependent variable, an indicator for a speech by the
Chair and the absolute revisions to CPI, GDP and unemployment forecasts. The regressors were normalized by
dividing by their standard deviations. P-values, in parentheses, were calculated with bootstrapping. The figures
for the BIC pertain to the 4-equation RV and 4-equation TR systems, respectively. The sample is the whole
sample.

coefficients for predicting TR, and revisions to U carry negative and significant coefficients for both RV

and TR. Larger CPI and U revisions reduce tail risk to a statistically significant degree. The coefficient
on the Chair indicator is again large, positive and significant, meaning that speeches by the Chair are
associated with higher RV and TR.

7.2 Delving Deeper: To Chair, or Not to Chair?

As noted earlier, FOMC Chairs tend give long speeches that produce relatively large forecast revisions.
Moreover, the Chair may strongly influence the overall thinking of the FOMC members, potentially by
choosing and influencing the Federal Reserve staff who develop the Tealbook forecasts. This would suggest
that market reactions place more weight on the Chair’s speeches.

On the other hand, the Chair’s speeches might simply produce larger speech-implied forecast revisions.
Figure 4 plots the kernel density of the speech revision surprises but splits out Chair FOMC speeches from
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Table 7: The impact of forecast revisions on volatility and tail risk using a pooled specification

RVs (pooled) TRs (pooled)

DepV ars,pre 0.647 0.126
(0.00) (0.00)

|νπ,s| -0.018 -0.044
(0.14) (0.04)

|νg,s| -0.006 0.012
(0.39) (0.33)

|νu,s| -0.030 -0.049
(0.08) (0.07)

D(Chair) 0.12 0.22
(0.00) (0.00)

Constant (2YR) 0.166 0.675
(0.00) (0.00)

Constant (5YR) 0.317 0.411
(0.00) (0.00)

Constant (10YR) 0.465 0.331
(0.00) (0.00)

Constant (eq) 0.101 0.191
(0.01) (0.00)

R2 (2YR) 0.30 0.14
R2 (5YR) 0.40 0.13
R2 (10YR) 0.28 0.06
R2 (eq) 0.79 0.06
Obs 348 344

BIC 2557.2 3275.3

Notes: The table presents the results of 2 SUR systems—one for RV , one for TR—in which 4 measures of
RV and 4 measures of TR were regressed on the lagged dependent variable, an indicator for a speech by the
Chair and the absolute revisions to CPI, GDP and unemployment forecasts. The regressors were normalized by
dividing by their standard deviations. The estimates were pooled within each system, requiring each coefficient
on the dynamic regressors to be the same across the 4 equations. P-values, in parentheses, were calculated with
bootstrapping. The figures for the BIC pertain to the 4-equation RV and 4-equation TR systems, respectively.
The sample is the whole sample.

non-Chair speeches (limiting the analysis to the speeches that have time-stamps for our analysis). The
distributions of CPI and GDP forecast revisions from non-Chair speeches are more variable than those for
Chair speeches and appear to have thicker tails. In contrast, the distribution of unemployment forecast
revisions for Chair speeches are more variable than those of non-Chair speeches, as well as possibly slightly
thicker tails.

Then, how does the impact of forecast revisions differ for Fed Chair speeches? As previously noted,
markets consider speeches by the Chair to be especially important in driving Fed policy even though Chair
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Figure 4: Chair vs Non-Chair Speech revision surprises by macro variable
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Notes: The figure shows the kernel density of the implied surprises for three macro news factors (CPI, GDP and unem-
ployment). The blue solid lines show the density of the non-Chair members while the orange dashed lines indicate the
surprises of Chairs. All densities only include speeches that are time stamped.

has only one vote on the Federal Open Market Committee. The consistent importance of the Chair-speech
indicator in Tables 6 and 7 confirm that Chair speeches tend to be associated with higher RV and TR

than non-Chair speeches.
To investigate the marginal effect of the effect of forecast revisions created by Fed-Chair speeches, we

divide CPI, GDP and unemployment forecast revisions into those created by a Chair speech or a Not-Chair
speech. We again estimate the pooled RV and TR SUR systems by maximum likelihood.

Table 8 reports the results of this estimation. Chair interactions with forecast revisions produce negative
and significant coefficients for all three types of revisions and the point estimates for “Chair” coefficients are
always more negative than the “NotChair” coefficients. That is, while chair speeches themselves raise RV
and TR, any forecast revisions implied by those speeches tend to reduce RV and TR. Of the “NotChair”
coefficients, only that on the GDP revision was statistically significant. This GDP revision coefficient was
positive, indicating that larger GDP revisions by non-Chair speakers was associated with higher TR.

Overall, our analysis can be viewed in parallel with the study of Swanson and Jayawickrema (2023)
that also shows that markets often respond differently to Chair speeches. Because Chair speeches seem
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Table 8: Impacts of forecast revisions interacted with the Fed Chair indicator on volatility and tail risk
using a pooled specification

RVs (pooled) TRs (pooled)

DepV ars,pre 0.645 0.121
(0.00) (0.00)

|νπ,s| ×NotChair -0.004 -0.021
(0.40) (0.23)

|νπ,s| × Chair -0.048 -0.091
(0.09) (0.04)

|νg,s| ×NotChair 0.013 0.044
(0.30) (0.08)

|νg,s| × Chair -0.087 -0.137
(0.05) (0.02)

|νu,s| ×NotChair -0.021 -0.039
(0.19) (0.15)

|νu,s| × Chair -0.052 -0.079
(0.10) (0.06)

D(Chair) 0.19 0.34
(0.00) (0.00)

Constant (2YR) 0.127 0.614
(0.01) (0.00)

Constant (5YR) 0.278 0.348
(0.00) (0.00)

Constant (10YR) 0.426 0.268
(0.00) (0.00)

Constant (eq) 0.063 0.129
(0.06) (0.01)

R2 (2YR) 0.31 0.14
R2 (5YR) 0.40 0.13
R2 (10YR) 0.29 0.07
R2 (eq) 0.80 0.07
Obs 348 344

BIC 2568.4 3283.4

Notes: The table presents the results of 2 SUR systems—one for RV , one for TR—in which 4 measures of
RV and 4 measures of TR were regressed on the lagged dependent variable, an indicator for a speech by the
Chair and the absolute revisions to CPI, GDP and unemployment forecasts, as well as the interaction to those
revisions with an indicator for Chair speeches. The regressors were normalized by dividing by the standard
deviation of the underlying series. For example, the series for CPI revisions interacted with Chair speeches was
divided by the standard deviation of all CPI revisions. The estimates were pooled within each system, requiring
each coefficient on the dynamic regressors to be the same across the 4 equations. P-values, in parentheses,
were calculated with bootstrapping. The figures for the BIC pertain to the 4-equation RV and 4-equation TR
systems, respectively.
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to be particularly important, we will break down our further results into 2 sets: results based on the full
sample and results based only on Chair speeches. Regressions involving only the Chair speeches will not
include a Chair dummy because it and the constant would not be separately identified.

7.3 Asymmetric Response: Sign of the Shock

How does asymmetry in the sign of implied forecast revisions predict RV and TR? It is possible that
positive and negative absolute forecast revisions might have different effects on market volatility and TR.
Therefore, we allow the positive and negative forecast revisions to enter the system with different signs
and again estimate system with maximum likelihood. Specifically, we estimate a version of equation (9)
but include an interaction between the forecast revisions and indicators for positive-negative revisions.

Table 9 presents those asymmetric results for the full sample on the left and the Chair speeches on the
right. Most point estimates and all the significant coefficients are consistent with the hypothesis that larger
revisions tend to reduce volatility and tail risk. Negative revisions to CPI and unemployment forecasts are
larger and more significant than positive surprises to those variables. Coefficients associated with Chair
speeches (right panel) tend to be larger and more statistically significant than those based on the full
sample (left panel). As in the previous specifications, speeches by the Fed Chair are associated with higher
volatility and tail risk (left panel).

7.4 Hawks versus Doves

We next examine the effects of monetary policy views on the impact of forecast revisions. For brevity, we
will henceforth refer to monetary policy views as “hawkishness,” although our treatment of hawkish and
dovish views is symmetric.

We classify the monetary policy views of each speaker on a five-point scale running from dove (-1), to
dove/centrist (−0.5), centrist (0), hawk/centrist (0.5), to hawk (1). Descriptions from multiple sources
in the financial press inform our classifications, including those from Reuters, Financial Times, Business
Insider, Deutsche Bank, Marketplace and Mitsubishi UFJ Financial Group, Inc. (MUFG). Our approach
is similar to that of Bordo and Istrefi (2023). According to these sources, the groups are:

• Dovish Stanley Fischer, Ben S. Bernanke, Daniel K. Tarullo, Janet L. Yellen and Lael Brainard.
• Dovish/Centrist Dennis Lockhart, Jeremy C. Stein, Jerome H. Powell
• Centrist Michelle W. Bowman, Patrick T. Harker, Randal K. Quarles, Sandra Pianalto
• Hawkish/Centrist Richard H. Clarida
• Hawkish Richard W. Fisher, Robert S. Kaplan, Charles I. Plosser

The construction of the νy,s surprises adjusts for member-fixed effects, which controls for differences in
mean forecast signals between the groups.23

We interacted our measure of hawkishness with each of the three types of forecast revisions and again
estimated pooled SUR systems by maximum likelihood.

23For instance, the raw GDP signals are, on average, more positive as our hawkish index index increases. But there is no
difference in the νy,s revisions.
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Table 9: Asymmetric impacts of positive/negative forecast revisions on volatility and tail risk using a
pooled specification

Whole Sample Sample of Chair Speeches

RVs (pooled) TRs (pooled) RVs (pooled) TRs (pooled)

DepV ars,pre 0.647 0.127 0.599 0.115
(0.00) (0.00) (0.00) (0.02)

|νπ,s| × I(cpi ≤ 0) -0.059 -0.094 -0.389 -0.559
(0.08) (0.05) (0.02) (0.01)

|νπ,s| × I(cpi > 0) -0.014 -0.042 -0.047 -0.084
(0.20) (0.09) (0.16) (0.10)

|νg,s| × I(gdp ≤ 0) -0.006 0.010 -0.027 -0.058
(0.38) (0.40) (0.37) (0.24)

|νg,s| × I(gdp > 0) -0.007 0.006 -0.002 -0.005
(0.39) (0.50) (0.50) (0.48)

|νu,s| × I(u ≤ 0) -0.057 -0.094 -0.126 -0.219
(0.04) (0.03) (0.09) (0.05)

|νu,s| × I(u > 0) -0.010 -0.020 -0.013 0.003
(0.31) (0.31) (0.36) (0.51)

D(Chair) 0.119 0.217
(0.00) (0.00)

Constant (2YR) 0.183 0.704 0.639 1.425
(0.00) (0.00) (0.00) (0.00)

Constant (5YR) 0.334 0.439 0.904 1.240
(0.00) (0.00) (0.00) (0.00)

Constant (10YR) 0.482 0.359 1.059 1.125
(0.00) (0.00) (0.00) (0.00)

Constant (eq) 0.119 0.220 0.512 0.864
(0.00) (0.00) (0.00) (0.00)

R2 (2YR) 0.31 0.15 0.37 0.06
R2 (5YR) 0.40 0.13 0.26 0.06
R2 (10YR) 0.29 0.06 0.12 0.01
R2 (eq) 0.79 0.06 0.65 0.04

Obs 348 344 128 127

Notes: Each panel of the table presents the results of 2 SUR systems—one for RV , one for TR—in which 4
measures of RV and 4 measures of TR were regressed on the lagged dependent variable, an indicator for a
speech by the Chair (left panel) and the absolute revisions to CPI, GDP and unemployment forecasts. The
latter were split into their positive and negative components. The regressors were normalized by dividing by
the standard deviation of the underlying series. For example, the positive CPI revisions were divided by the
standard deviation of all CPI revisions. The estimates were pooled within each system, requiring each coefficient
on the dynamic regressors to be the same across the 4 equations. P-values, in parentheses, were calculated with
bootstrapping. The left-hand panel shows results for the full sample while the right-hand panel shows results
for speeches by the Chair.
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Table 10: Impacts of forecast revisions interacted with the hawkishness indicator on volatility and tail risk
using a pooled specification

Whole Sample Sample of Chair Speeches

RVs (pooled) TRs (pooled) RVs (pooled) TRs (pooled)

DepV ars,pre 0.645 0.125 0.599 0.116
(0.00) (0.00) (0.00) (0.02)

|νπ,s| -0.031 -0.048 0.105 -0.014
(0.15) (0.15) (0.25) (0.44)

|νπ,s| ×Hawk -0.022 -0.010 0.208 0.106
(0.26) (0.39) (0.13) (0.32)

|νg,s| 0.017 0.035 -0.415 -0.691
(0.33) (0.24) (0.22) (0.20)

|νg,s| ×Hawk 0.038 0.042 -0.382 -0.636
(0.20) (0.27) (0.23) (0.22)

|νu,s| -0.023 -0.037 0.574 4.588
(0.22) (0.20) (0.46) (0.12)

|νu,s| ×Hawk 0.017 0.024 0.633 4.670
(0.40) (0.37) (0.46) (0.12)

D(Chair) 0.13 0.23
(0.00) (0.00)

Constant (2YR) 0.165 0.674 0.59 1.31
(0.00) (0.00) (0.00) (0.00)

Constant (5YR) 0.316 0.410 0.856 1.128
(0.00) (0.00) (0.00) (0.00)

Constant (10YR) 0.465 0.330 1.010 1.013
(0.00) (0.00) (0.00) (0.00)

Constant (eq) 0.101 0.192 0.458 0.754
(0.00) (0.00) (0.00) (0.00)

R2 (2YR) 0.30 0.14 0.35 0.09
R2 (5YR) 0.40 0.13 0.24 0.02
R2 (10YR) 0.28 0.06 0.11 0.00
R2 (eq) 0.80 0.06 0.65 0.03

Obs 348 344 128 127

Notes: Each panel of the table presents the results of 2 SUR systems—one for RV , one for TR—in which 4
measures of RV and 4 measures of TR were regressed on the lagged dependent variable, an indicator for a
speech by the Chair (left panel only) and the absolute revisions to CPI, GDP and unemployment forecasts, as
well as the interaction to those revisions with a measure of “hawkishness" of their monetary policy views. The
regressors were normalized by dividing by the standard deviation of the underlying series. For example, the
series for CPI revisions interacted with hawkishness was divided by the standard deviation of all CPI revisions.
The estimates were pooled within each system, requiring each coefficient on the dynamic regressors to be the
same across the 4 equations. P-values, in parentheses, were calculated with bootstrapping. The left-hand panel
shows results for the full sample while the right-hand panel shows results for speeches by the Chair.
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Table 10 shows that hawkishness interactions are not significant with the pooled model. None of the
forecast-revision coefficients are statistically significant. The hawkishness of a speaker’s views does not
seem to systematically influence the impact of forecast revisions on RV or TR.

Model selection. It is worth highlighting that the BIC for the simple, pooled RV and TR models
in Table 7—the most parsimonious models—are generally smaller than the BIC for the larger models
presented in Tables 8 through Table 10. This is not surprising as it is well known that the BIC prefers
the smaller model for describing the data. We continue to present the results in Tables 8 through Table
10, however, because we think that they do convey useful information. For example, Table 9 shows that
negative forecast revisions to CPI and U forecasts have larger and more statistically significant effects on
both volatility and tail risk. Similarly, Table 8 shows that the revisions from the Chair are consistently
large and statistically significant while those from other FOMC members are consistently not significant.
Finally, Table 10 shows that hawkishness doesn’t matter.

In sum, pooled systems produce a great deal of evidence that several factors consistently predict post-
speech RV and TR. These factors include the lag of the dependent variable, whether the speech is by
the Fed Chair, and several characteristics of forecast revisions, including the sign of the forecast revision
and whether a Fed Chair speech produced the forecast revision. Speeches by the Fed Chair are associated
with higher RV and TR in any specification, while larger (in absolute value) forecast revisions induced by
those speeches consistently reduce RV and TR. Negative CPI and U forecast revisions tend to influence
RV and TR more than do positive forecast revisions. In contrast, there is no evidence that a speaker’s
hawkiness/dovishness influenced the impact of the forecast revision on RV and TR.

7.5 Regime-Specific Effects

To complete our empirical analysis, we ask whether the state of the economy influences the financial
market effects of speech-implied forecast revisions.24 That is, we investigate whether a speech-implied
forecast revision of inflation, GDP or unemployment has a different effect if the underlying macroeconomic
variable is unusually high or low. For this assessment, we categorise each observation on CPI, GDP and
the unemployment rate as a high, normal (medium), or low regime observation. Table 11 outlines the
values that determine each classification, while Figure 5 shows the time-series of the regime indicators.

To explore the regime specificity of the results, we regress post-speech RV and TR on the values of the
dependent (pre-speech) variable and absolute CPI, GDP and unemployment forecast revisions with the
samples split by the regime indicators. In other words, we estimate separate SUR systems for observations

24Both theory and empirical evidence suggests that monetary policy is regime dependent. For instance, the empirical
results of Tenreyro and Thwaites (2016) suggest that medium- to long-run monetary policy shock effects on the real economy
strongly depend on the state of the business cycle. GDP growth is the most consistent factor determining monetary policy
effectiveness, and shocks seem to have a more pronounced effect during economic upswings than during downswings. This
suggests that monetary policy effects might be subdued during recessions. In related work, Mandler (2012) uses a threshold
vector autoregression (VAR) framework to analyse the effectiveness of classical monetary policy shocks, depending on the
respective inflationary regime in the US between 1965-2007. The findings of Mandler (2012) indicate that monetary policy
shocks have markedly different effects in low and high inflation regimes. To the best of our knowledge, we are the first
to investigate regime dependence — with regards to both inflation and GDP growth — of the impact of central bank
communication of economic signals.
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Table 11: Categories of economic regimes

CPI ∆GDP Unemployment Rate

High π > 3.9% g > 3.6% u > 6.4%
Normal 1.2% < π < 3.9% 1.4% < g < 3.6% 4.3% < u < 6.4%
Low π < 1.2% g < 1.4% u < 4.3%

Notes: The table presents the classification of different economic regimes (high, normal, low) for CPI, GDP and
unemployment. The High (Low) regimes are defined by real-time measures of the economic variables being in
the upper (lower) quartile of the data over the period August 2008 to December 2020.

Figure 5: Time-series of regimes
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Notes: The figure displays the evolution of different economic regimes over time. CPI (red squares), GDP (blue
circles) and unemployment (green diamonds).

29



when CPI inflation is low, medium or high. We do the similar sample splits for low, medium and high
GDP growth and unemployment.

The results from these regime-dependent estimations mostly confirmed the patterns noted in the uncon-
ditional data. For example, lagged dependent variables and coefficients on Chair indicators were generally
significant in all regimes. That is, the level of volatility and tail risk tends to be higher during Chair
speeches. We omit the full results for brevity. Intriguingly, however, we noted that the variables interacted
with “hawkish” measures often became statistically significant in high and low GDP periods, particularly
for Chair speeches, despite the smaller samples.

Table 12 shows the results from the estimation of the pooled “hawkish” model during the sample of
Chair speeches. The upper (lower) panel shows the results from the RV (TR) SUR system. In contrast to
the unconditional results in Table 10, the hawkish interactions are often statistically significant, although
their signs vary depending on the type of forecast revision, i.e., CPI, GDP, or U. Most of the coefficients
on the hawkishness interactions are positive, indicating that hawkish forecast revisions are more likely to
be associated with increases in RV (upper panel) and TR (lower panel).

In summary, the role of policy view may be regime-specific: forecast revisions interacted with the
hawkishness indicator have some statistically significant impact on volatility and tail risk, particularly in
periods of low and high GDP regimes. We readily admit, however, that this result is speculative. We leave
explorations of reasons for this finding to future research. We report these results and robustness checks
in our Supplementary Online Appendix.

8 Conclusion

We introduce a supervised multimodal natural language processing method to map central bank language
to forecasts of macroeconomic variables. We benchmark an extensive array of machine learning methods
on this task and compare the performance of our proposed model on a dataset of time-stamped speeches
from Federal Reserve FOMC members in order to create a novel series of monetary policymakers’ implied
forecast revisions. These revisions are the differences between central bank speech-implied forecasts and
the latest corresponding forecasts from the Survey of Professional Forecasters. To further purge predictable
signals, we also control for time and member fixed effects in creating our forecast revision series.

Our multimodal NTM (non-linear) language mappings fit Greenbook forecasts very well in the test
period with very high out-of-sample predictive performance. Forecast revisions derived from FOMC-
member speeches explain volatility and tail risk in both equity and bond markets.

Our results also indicate that speeches from Fed Chairs, i.e., Powell and Yellen in our sample, tend to
produce greater forecast revisions. While Chair speeches are “special” in affecting market volatility and tail
risk, we find no strong evidence that specific monetary policy views influence the impact of speech-implied
forecast revisions on volatility and tail risk. That is, markets don’t react differently to speeches by hawks
and doves.

Our analysis also sheds light on the circumstances in which central bank communication calms financial
markets and reduces uncertainty. Larger forecast revisions (in absolute value) produced by Chair speeches
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Table 12: Regime-specific impacts of forecast revisions interacted with the hawkishness indicator on volatil-
ity and tail risk using a pooled specification

Pooled estimates of the RV system

Low GDP Medium GDP High GDP All observations

DepV ars,pre 0.687 0.518 0.561 0.599
(0.00) (0.00) (0.00) (0.00)

|νπ,s| -0.098 0.098 -0.273 0.105
(0.22) (0.38) (0.02) (0.26)

|νπ,s| ×Hawk 0.298 0.220 -0.541 0.208
(0.01) (0.22) (0.02) (0.14)

|νg,s| 0.057 -0.492 -0.004 -0.415
(0.19) (0.20) (0.47) (0.26)

|νg,s| ×Hawk 0.143 -0.521 -0.001 -0.382
(0.01) (0.19) (0.54) (0.26)

|νu,s| 0.085 1.071 0.072 0.574
(0.01) (0.43) (0.02) (0.45)

|νu,s| ×Hawk 0.115 1.184 0.114 0.633
(0.01) (0.41) (0.00) (0.44)

R2 (2YR) 0.06 0.56 0.00 0.35
R2 (5YR) 0.08 0.35 0.07 0.24
R2 (10YR) 0.07 0.15 0.30 0.11
R2 (eq) 0.72 0.60 0.80 0.65

Pooled estimates of the TR system

Low GDP Medium GDP High GDP All observations

DepV ars,pre 0.443 0.082 1.727 0.116
(0.04) (0.01) (0.00) (0.01)

|νπ,s| 0.111 -0.067 -0.309 -0.014
(0.27) (0.39) (0.03) (0.43)

|νπ,s| ×Hawk 0.089 0.087 -0.615 0.106
(0.27) (0.44) (0.04) (0.32)

|νg,s| -0.088 -0.973 -0.040 -0.691
(0.20) (0.11) (0.28) (0.20)

|νg,s| ×Hawk 0.288 -0.874 0.013 -0.636
(0.01) (0.13) (0.41) (0.21)

|νu,s| 0.054 2.557 0.197 4.588
(0.11) (0.27) (0.00) (0.10)

|νu,s| ×Hawk 0.146 2.616 -0.013 4.670
(0.01) (0.26) (0.35) (0.09)

R2 (2YR) 0.01 0.13 0.15 0.09
R2 (5YR) 0.01 0.03 0.57 0.02
R2 (10YR) 0.00 0.01 0.48 0.00
R2 (eq) 0.12 0.02 0.64 0.03

Obs 37 77 13 127

Notes: The table presents the results of 8 SUR systems—4 for RV and 4 for TR—on samples broken down by low,
medium, and high GDP, as well as all observations. The top panel shows results using RV as the dependent variable,
while the lower panel shows the results for TR as the dependent variable. Each dependent variable was regressed on
the lagged dependent variable, an indicator for a speech by the Chair and the absolute revisions to CPI, GDP and
unemployment forecasts in different regimes, those revisions interacted with a variable characterizing the hawkishness
of the speaker, and a constant. The regressors were normalized by dividing by their standard deviations. P-values (in
parenthesis) were calculated with bootstrapping. The table omits the estimated constants and their p-values for brevity.
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tend to reduce volatility and tail risk more than those of other members. We infer that central bank
communication may calm markets, depending on the message conveyed to markets and if the speech
comes from the Chair. The results of Chair effects remain significant, regardless of the economic regimes.

Our findings underpin the importance of analysing the continuous flow of central bank communication.
In particular, the influence of Chair speeches on tail risk and volatility is consistent with Swanson and
Jayawickrema (2023), who document that such speeches have a high market impact. It would be interesting
to explore how Fed Chair views impact market uncertainty in both the short/long term and under different
market conditions, a direction we leave for future research.
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Appendix

A Description of the Machine Learning Models

In this section, we provide a detailed description of the machine learning models spanned by our base Au-
toGL framework. These classes are K-nearest neighbours (KNN), Random Forest, Extremely Randomized
Trees, Boosted Decision Trees and Neural Networks.

K-nearest neighbours (KNN)

The K-nearest neighbours (KNN) class that we consider is a widely-used machine learning algorithm,
belonging to the family of instance-based, non-parametric learning. It operates on the simple principle of
feature similarity, assuming that similar data points can be found near each other in feature space. In both
classification and regression, KNN works by finding the k closest training samples to a new data point
and then predicts the output based on these neighbours. For classification, the algorithm typically assigns
the class most common among its k nearest neighbours, while in regression, it usually takes the average
of their values. In fact, KNN is easy to implement and understand, but its performance can significantly
decline with high-dimensional data (the curse of dimensionality) and large datasets (due to computational
cost).

Random Forest

The other machine learning algorithm that we implemented for performance comparison is the technique
called Random forest. This machine learning method is versatile and powerful that operates by con-
structing multiple decision trees during training and outputting the class that is the mode of the classes
(classification) or mean prediction (regression) of the individual trees. This ensemble learning technique,
particularly effective for large datasets, enhances predictive accuracy and controls over-fitting by averaging
or voting across various trees. Each tree in the forest is built from a sample drawn with replacement (i.e., a
bootstrap sample) from the training set. Furthermore, when splitting each node during the construction of
a tree, the best split is found either from all input features or a random subset of them. This randomness,
along with the ensemble approach, ensures the model’s robustness against overfitting, making Random
Forest an appealing choice for many applications in diverse domains ranging from finance to healthcare.
We utilize the Random Forest algorithm under the AutoML framework.

Extremely Randomized Trees

Extremely randomized trees (ERT), also known as extra trees, is an ensemble learning technique that
constructs a multitude of decision trees at training time. Similar to Random Forests, it operates by
averaging predictions for regression tasks or using a majority vote in classification. However, it introduces
additional randomness in the way splits are computed: instead of searching for the most discriminating
thresholds, thresholds are drawn at random for each candidate feature and the best of these randomly-
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generated thresholds is picked as the splitting rule. This randomness leads to more diversified trees and
typically faster training than Random Forest, often with comparable performance.

Boosted Decision Trees

Boosted decision trees involve an ensemble learning technique that combines multiple weak decision tree
learners to form a strong predictive model. Unlike methods like Random Forests which build trees in par-
allel, boosting builds them sequentially. Each tree is trained on the dataset with an emphasis on correctly
predicting instances that were misclassified by previous trees. This is achieved through iterative updates
to the weights of data points. The final prediction is made based on a weighted vote (in classification) or
sum (in regression) of the predictions from individual trees. This method often results in high accuracy,
especially for complex datasets, but requires careful tuning to avoid overfitting.

Neural Networks

Neural networks, as our base machine learning model that we put forward in our study, are a foundational
model in machine learning, inspired by the structure and function of the human brain. At their core, neural
networks consist of layers of interconnected nodes, or neurons, each performing simple computations. The
network typically includes an input layer to receive the data, one or more hidden layers that process the
data, and an output layer that produces the prediction. Each neuron in a hidden layer transforms the values
from the previous layer with a weighted linear summation followed by a non-linear activation function.
These weights are learned during training through a process called backpropagation, which iteratively
adjusts the weights to minimize the difference between the network’s prediction and the actual data
outcomes. Deep neural networks, with many hidden layers, can model complex patterns and relationships
in data. They are highly versatile, being applied in fields such as image and speech recognition and natural
language processing, as we adopt and extend in our study via multimodal setting.

B Procedures for the Response Measures

In this section, we present the specifics of our procedures with respect to our high-frequency market
response measures. To proceed, we first outline the estimation steps of the realized intensity as a high-
frequency tail risk measure. We then present a method to assess the accuracy of parameters estimates and
stability for both realized volatility and realized intensity. Finally, we present the estimated responses.

B.1 Estimation Steps of the Realized Intensity

We proceed with the details on the estimation of our RI measure (equation (7)) as follows.

Step 1: Start by defining the jump activity index β:

β =: inf{r ≥ 0;
∑

0≤s≤t

|∆sX|r <∞}, (10)
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where ∆sX = Xs −Xs− is the jump size at time s, and r is the power variation parameter.

Step 2: Compute the jump activity index β in equation (7):

β̂(t,ϖ, θ, θ′) := log
V (ϖ, θ, g)nt
V (ϖ, θ′, g)nt

/log(
θ′

θ
), (11)

for which select 0 < θ < θ′, 0 < ϖ < 1/2 and

V (ϖ, θ, g)nt :=

[t/∆n]∑
i=1

g

(
|∆n

i X|
α∆ϖ

n

)
, (12)

where g(t) is the weight function, choose a form that needs to satisfy the condition g(x) = |x|p if |x| ≤ a

for some constant a > 0 and even integer p > 2.

Step 3: Choose values for the tuning parameters ϖ, kn and α in equation (7).

Step 4: Compute the g function in equation (7) to disentangle volatility component from the jump com-
ponent.

Step 5: Identify the release times (minutes and seconds) of speeches.

Step 6: For each speech, select a window length (e.g., one hour) and estimate RI in equation (7) by using
high-frequency returns in this window.

B.2 Accuracy Assessment

To evaluate the accuracy of the estimated parameters of the response measures, we proceed with the
realized intensity first. Let us use TR for λ̂(kn)tp , instead of λ and continue from this stage. We have√

kn∆n

∆ϖβ
n

(
T̂R− TR

)
Lst−→ N

(
0, TR

αβCβ(2)(
Cβ(1)

)2),
where

Cβ(k) =

∫ ∞

0

(
g(x)

)k
/x1+βdx.

Therefore, the 95% confidence interval for λ̂(kn)tr is given by

T̂R± c.v. ×

√√√√ T̂R(α∆ϖ
n )

βCβ(2)(
Cβ(1)

)2
kn∆n

,

for which we can use critical value such as c.v. = 1.96. The average of the lower and upper bound gives us
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the estimated intensity.
For spot realized volatility, we have√

kσn

(
ĉtr − ctr

)
Lst−→ N(0, 2c2tr),

and the 95% confidence interval is

ctr ± c.v. ×

√
2

kσn
ctr .

In light of these constructed confidence intervals, we assess the fit of the estimates, considering the
lower and upper bounds.

B.3 Estimated Response Measures: Realized Volatility and Tail Risk

As we describe in the main text, we use high-frequency data and identify market responses in the forms
of realized volatility and tail risk (computed based on realized intensity). Figure 6 displays the estimates
of these quantities for each speech in our full sample for both equity and bond markets (upper and lower
panels, respectively).

Figure 6: Estimated market response measures for central bank speeches
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Notes: The figure shows the estimated response measures for each central bank speech (X-axis) in our dataset. Given
the speech release, we compute realized volatility and tail risk—based on the realized intensity (labels RV and TR in the
figure). The figure displays the quantities for the equity market (upper panels) and bond market (lower panels). For the
equity market, RV and TR estimates are the cross-sectional averages of the individual stocks. For the bond market, the
figure shows the estimated RV and TR separately for the 2-year, 5-year and 10-year bond futures.
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The figure exhibits a number of features. First, both realized volatility and tail risk vary across central
bank speeches. Second, looking at the response patterns of the bond market, we see noticeable differences
between the reactions of short- and long-term bonds. That is, while the realized volatility of 2-year bond
futures is clearly lower than the realized volatility of 5-year and 10-year bond futures (lower left panel),
the realized tail risk identified through 2-year bonds is the highest across all maturities (lower right panel).
Finally, central bank speeches tend to create distinct effects on bond and equity markets, which potentially
reflects the importance of information signals embedded in the speeches.

C Further Considerations

Remark 1. It is worth emphasizing that the speeches have a much wider content beyond those key macro
indicators (CPI, GDP, unemployment) that we rely on in our study. Nevertheless, we do not observe dif-
ferences in terms of financial market effects mainly because we train our multimodal NLP model, test its
out-of-sample performance, and construct the implied speech signals, entirely based on these three macro
factors. Our proposed model processes the topics under this setting by utilizing both tabular (macro) data
and text (speech) data. Therefore, our framework helps select the most important topics and those that do
not carry significant explanatory information are directly excluded. This approach brings an advantage,
rather than a setback, as it prevents us from incorrect measurement of market response to other generally
important yet irrelevant speeches. Of course, it is possible to extend our model and feed the model by
focusing also on other variables beyond macro factors.

Remark 2. When we identify the implied speech signals through our multimodal NLP model, we rely on
a time frame for which we evaluate the information content in the entire period. During this process, we
“synchronize” the time stamps of the speech and the SPF releases so that when we create the signal, the
signal utilizes the information up to the same calendar time. Regardless of the time difference between the
SPF release time and the speech release time, the time stamp of the signal is the time stamp of the speech
and it remains the same as long as both SPF release and speech release fall in the same time frame. In
fact, proceeding this way ensures that the process is a martingale. That is, the “speech release time” is the
time that conditional expectations will be formed, based on all available information (including SPF news)
up to speech time. This holds regardless of the past values and the time distance between SPF release and
speech release.

Our high-frequency approach allows us to examine the impact of speech immediately after the public
release by quantifying the changes in market volatility and market tail risk withing seconds and minutes.
When a central bank speech is released a few weeks after an SPF release, investors still tend to use the
most updated information available to them, perhaps related to market efficiency, so they wait for the
release of the central bank speech. As soon as the speech is released and it becomes publicly available, we
quantify the market response through our measures. So, the response already incorporates the information
content in the SPF news, as investors wait for the new SPF release. As another situation, even if a speech
is released, for example, two days after an SPF release, the reaction time that we rely on remains the
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same and hence it is still the speech release time. In this situation, while it is true that investors have a
relatively short period of time to digest the content of the SPF release, the period is sufficient for those
monitoring markets at intradaily levels.

Remark 3: Irrelevant Speeches? One argument would be that only relevant speeches matter and hence
irrelevant speeches should not convey important signals. To test this conjecture, we conduct a simple, yet
insightful, robustness check. We first rank the speeches in our database in order of their implied signal
levels. We then identify the speeches that have the highest and lowest signal estimates (i.e., top ten
and bottom ten). We observe that the highest implied signals often derive from the statements about
topics on monetary policy, financial stability, economic conditions, and economic outlook. In contrast, the
signals with the lowest values are often associated with statements that are indirectly related to the macro
environment, financial markets, or monetary policy. For example, these low signal speeches are about
the situation of middle-income families (unemployment factor), consumer behavior in credit and payment
markets, and small business (GDP factor). Of course, these statements are not necessarily redundant, as
they are made by the Fed members and the Chair. However, they are not as directly relevant and hence
their signal levels that we measured using our model turn out to be low.

In light of this assessment, we also find that the name of the speaker (e.g., Chair or not) does not play
an important role, as we see that Chair speeches can be associated with both lowest and highest signals.
This regularity holds for all three news factors (CPI, GDP, unemployment) and for all other Fed members.
Therefore, it is our understanding that, by looking at the name and whether the speaker is Chair, it is hard
to draw a direct conclusion about which signals should matter. This is largely in line with our additional
analyses on speech characteristics. Statements that look similar in terms of the speaker name, time, and
title of the talk have different levels of implied forecast revision signals.

D List of Relevant Greenbook Sections

Table 13: Considered Greenbook sections per economic indicator

GDP CPI Unemployment

Ec.GDP Ec.Prices Ec.Labor
For.Ec.Overview For.CostPrice For.Labor
For.Ec.Summary Ec.Wages
For.Outlook
For.HH
For.G
For.Inven
For.BusInvest
For.Trade

Notes: In the table, EC = Economic Conditions Section, For = Forecasts Section.
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E Lists of Stocks and Bonds

Table 14: Stock tickers and names

AAPL Apple AXP American BA Boeing CAT Caterpillar
CSCO Cisco CVX Chevron DIS Disney HD Home
IBM IBM INTC Intel JNJ Johnson KO Coca-Cola
MCD McDonald’s MMM 3M MRK Merck MSFT MSFT
NKE Nike PFE Pfizer UNH UnitedHealth VZ Verizon
WMT Wal-Mart XOM Exxon

Notes: The table lists the tickers and descriptions of the individual stocks used in our empirical analysis.

Table 15: Bond names and maturities

US Treasury Note Futures: 2-Year 5-Year 10-Year

Notes: The table lists the tickers and descriptions of the U.S. Treasury bond futures used in our empirical analysis.
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F Additional Results: Language to Forecast Mapping

Table 16: CPI mapping and fit performance

Model \Predictive R2 score test score val score train data source

MM Neural Topic Model (non-lin) 0.735 0.830 0.670 joint MM tabular + topics
MM Neural Topic Model (linear) 0.640 0.650 0.600 joint MM tabular + topics
ExtraTreesMSE_BAG_L1 0.588 0.084 0.880 tabular
RandomForestMSE_BAG_L1 0.584 0.052 0.622 tabular + topics
ExtraTreesMSE_BAG_L1 0.584 0.089 0.595 tabular + topics
RandomForestMSE_BAG_L1 0.568 0.047 0.876 tabular
KNeighborsUnif_BAG_L1 0.559 0.141 0.460 tabular + topics
KNeighborsDist_BAG_L1 0.549 0.128 0.798 tabular + topics
KNeighborsUnif_BAG_L1 0.520 0.152 0.439 tabular + tfidf
KNeighborsDist_BAG_L1 0.519 0.146 1.000 tabular + tfidf
KNeighborsUnif_BAG_L1 0.516 0.142 0.442 tabular
NeuralNetFastAI_BAG_L1 0.515 0.233 0.251 tabular + topics
KNeighborsDist_BAG_L1 0.513 0.121 1.000 tabular
OLS 0.512 0.288 tabular
NeuralNetFastAI_BAG_L1 0.494 0.272 0.594 tabular
RandomForestMSE_BAG_L1 0.482 0.103 0.883 tabular + tfidf
WeightedEnsemble_L2 0.475 0.302 0.565 tabular
CatBoost_BAG_L1 0.386 0.200 0.698 tabular
CatBoost_BAG_L1 0.384 0.170 0.905 tabular + tfidf
XGBoost_BAG_L1 0.377 0.169 0.595 tabular + topics
XGBoost_BAG_L1 0.374 0.155 0.937 tabular + tfidf
LightGBMXT_BAG_L1 0.373 0.126 0.295 tabular
XGBoost_BAG_L1 0.368 0.152 0.770 tabular
WeightedEnsemble_L2 0.358 0.284 0.370 tabular + topics
LightGBMLarge_BAG_L1 0.357 0.080 0.646 tabular + tfidf
LightGBM_BAG_L1 0.327 0.136 0.294 tabular
WeightedEnsemble_L2 0.299 0.305 0.953 tabular + tfidf
LightGBM_BAG_L1 0.289 0.138 0.245 tabular + topics
NeuralNetTorch_BAG_L1 0.269 0.210 0.128 tabular + topics
NeuralNetTorch_BAG_L1 0.262 0.247 0.401 tabular
XGBoost_BAG_L1 0.260 0.056 0.783 tabular + embeddings
LightGBMXT_BAG_L1 0.252 0.092 0.348 tabular + tfidf
LightGBM_BAG_L1 0.252 0.131 0.368 tabular + tfidf
LightGBMLarge_BAG_L1 0.251 0.139 0.302 tabular
LightGBMLarge_BAG_L1 0.202 0.156 0.323 tabular + topics
ExtraTreesMSE_BAG_L1 0.193 0.143 0.889 tabular + tfidf
LightGBMLarge_BAG_L1 0.191 0.074 0.440 tabular + embeddings
CatBoost_BAG_L1 0.177 0.250 0.525 tabular + topics
LightGBMXT_BAG_L1 0.162 0.140 0.192 tabular + topics
NeuralNetFastAI_BAG_L1 0.148 0.280 0.912 tabular + tfidf
WeightedEnsemble_L2 0.132 0.139 0.573 tabular + embeddings
CatBoost_BAG_L1 0.126 0.116 0.633 tabular + embeddings
LightGBMXT_BAG_L1 0.116 0.001 0.520 tabular + embeddings
LightGBM_BAG_L1 0.112 -0.018 0.338 tabular + embeddings
NeuralNetTorch_BAG_L1 0.095 0.153 0.500 tabular + tfidf
NeuralNetTorch_BAG_L1 -0.030 0.076 0.161 tabular + embeddings
AutoGluon Multimodal Transformer -0.292 -0.155 multimodal embeddings

Notes: The table reports the performance (predictive R2) of different models for the language mapping analysis of the CPI.
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Table 17: GDP mapping and fit performance

Model \Predictive R2 score test score val score train data source

MM Neural Topic Model (lin) 0.825 0.426 0.372 joint MM tabular + topics
MM Neural Topic Model (non-lin) 0.797 0.371 0.483 joint MM tabular + topics
WeightedEnsemble_L2 0.380 0.304 0.497 tabular
OLS 0.785 0.301 tabular
NeuralNetFastAI_BAG_L1 0.480 0.270 0.443 tabular
WeightedEnsemble_L2 0.285 0.253 0.730 tabular + topics
WeightedEnsemble_L2 0.268 0.240 0.752 tabular + tfidf
WeightedEnsemble_L2 0.142 0.220 0.587 tabular + embeddings
CatBoost_BAG_L1 0.249 0.211 0.552 tabular
RandomForestMSE_BAG_L1 0.302 0.204 0.892 tabular + tfidf
RandomForestMSE_BAG_L1 0.348 0.202 0.892 tabular + topics
ExtraTreesMSE_BAG_L1 0.408 0.193 0.891 tabular
ExtraTreesMSE_BAG_L1 0.381 0.192 0.890 tabular + topics
ExtraTreesMSE_BAG_L1 0.111 0.188 0.891 tabular + tfidf
CatBoost_BAG_L1 0.207 0.187 0.671 tabular + tfidf
LightGBMXT_BAG_L1 0.203 0.178 0.322 tabular
LightGBM_BAG_L1 0.154 0.172 0.367 tabular
XGBoost_BAG_L1 0.141 0.171 0.580 tabular + topics
CatBoost_BAG_L1 0.006 0.169 0.531 tabular + topics
CatBoost_BAG_L1 0.101 0.169 0.552 tabular + embeddings
LightGBM_BAG_L1 0.099 0.162 0.704 tabular + embeddings
NeuralNetTorch_BAG_L1 0.461 0.160 0.341 tabular
LightGBM_BAG_L1 0.101 0.159 0.734 tabular + tfidf
KNeighborsUnif_BAG_L1 0.253 0.158 0.402 tabular + tfidf
LightGBMLarge_BAG_L1 0.245 0.155 0.598 tabular
KNeighborsDist_BAG_L1 0.256 0.151 1.000 tabular + tfidf
NeuralNetTorch_BAG_L1 0.049 0.150 0.553 tabular + tfidf
LightGBMXT_BAG_L1 0.120 0.150 0.348 tabular + tfidf
RandomForestMSE_BAG_L1 0.394 0.150 0.885 tabular
LightGBMLarge_BAG_L1 0.111 0.149 0.536 tabular + topics
LightGBMLarge_BAG_L1 0.181 0.149 0.665 tabular + embeddings
XGBoost_BAG_L1 0.119 0.142 0.567 tabular
NeuralNetFastAI_BAG_L1 0.060 0.136 0.797 tabular + tfidf
KNeighborsDist_BAG_L1 0.255 0.132 1.000 tabular
KNeighborsUnif_BAG_L1 0.248 0.130 0.407 tabular
LightGBM_BAG_L1 0.111 0.126 0.496 tabular + topics
LightGBMXT_BAG_L1 0.105 0.125 0.505 tabular + embeddings
NeuralNetTorch_BAG_L1 -0.071 0.123 0.275 tabular + embeddings
NeuralNetTorch_BAG_L1 0.151 0.108 0.497 tabular + topics
XGBoost_BAG_L1 -0.015 0.107 0.663 tabular + embeddings
LightGBMLarge_BAG_L1 0.108 0.095 0.581 tabular + tfidf
XGBoost_BAG_L1 0.041 0.083 0.564 tabular + tfidf
KNeighborsUnif_BAG_L1 0.286 0.081 0.400 tabular + topics
KNeighborsDist_BAG_L1 0.274 0.074 1.000 tabular + topics
LightGBMXT_BAG_L1 0.097 0.049 0.318 tabular + topics
TextPredictor_BAG_L1 -0.077 -0.123 -0.103 tabular + embeddings
NeuralNetFastAI_BAG_L1 0.407 -0.126 0.438 tabular + topics
AutoGluon Multimodal Transformer -0.044 0.013 multimodal transformer

Notes: The table reports the performance (predictive R2) of different models for the language mapping analysis of the GDP.
46



Table 18: Unemployment mapping and fit performance

Model \Predictive R2 score_test score_val score_train data source

MM Neural Topic Model (non-lin) 0.208 0.457 0.285 joint MM tabular + topics
WeightedEnsemble_L2 -0.044 0.145 0.415 tabular + embeddings
NeuralNetTorch_BAG_L1 -0.152 0.122 0.313 tabular + embeddings
WeightedEnsemble_L2 -0.045 0.113 0.577 tabular + tfidf
MM Neural Topic Model (linear) 0.066 0.109 0.197 joint MM tabular + topics
CatBoost_BAG_L1 -0.055 0.104 0.690 tabular + tfidf
LightGBMXT_BAG_L1 -0.068 0.074 0.336 tabular + tfidf
NeuralNetTorch_BAG_L1 -0.029 0.070 0.394 tabular + tfidf
WeightedEnsemble_L2 0.131 0.058 0.191 tabular
WeightedEnsemble_L2 -0.010 0.053 0.278 tabular + topics
NeuralNetFastAI_BAG_L1 0.124 0.047 0.237 tabular
CatBoost_BAG_L1 0.021 0.041 0.411 tabular + embeddings
NeuralNetTorch_BAG_L1 0.106 0.033 0.098 tabular
LightGBM_BAG_L1 0.006 0.027 0.349 tabular + embeddings
LightGBM_BAG_L1 -0.035 0.025 0.316 tabular + tfidf
CatBoost_BAG_L1 -0.003 0.021 0.260 tabular + topics
CatBoost_BAG_L1 0.019 0.010 0.095 tabular
RandomForestMSE_BAG_L1 -0.072 0.008 0.868 tabular + tfidf
NeuralNetTorch_BAG_L1 -0.004 0.006 0.022 tabular + topics
XGBoost_BAG_L1 -0.112 0.006 0.883 tabular + tfidf
LightGBMLarge_BAG_L1 -0.001 0.001 0.594 tabular + embeddings
LightGBMLarge_BAG_L1 0.002 -0.003 0.109 tabular + topics
ExtraTreesMSE_BAG_L1 -0.045 -0.003 0.868 tabular + tfidf
LightGBMXT_BAG_L1 -0.001 -0.005 0.084 tabular
LightGBMXT_BAG_L1 0.000 -0.006 0.009 tabular + topics
LightGBM_BAG_L1 0.000 -0.007 0.015 tabular + topics
LightGBMXT_BAG_L1 -0.005 -0.024 0.292 tabular + embeddings
XGBoost_BAG_L1 -0.043 -0.027 0.495 tabular + topics
LightGBM_BAG_L1 -0.002 -0.028 0.170 tabular
LightGBMLarge_BAG_L1 0.013 -0.034 0.094 tabular
NeuralNetFastAI_BAG_L1 0.002 -0.036 0.565 tabular + tfidf
XGBoost_BAG_L1 -0.061 -0.041 0.624 tabular + embeddings
LightGBMLarge_BAG_L1 -0.045 -0.044 0.519 tabular + tfidf
NeuralNetFastAI_BAG_L1 -0.016 -0.058 0.025 tabular + topics
RandomForestMSE_BAG_L1 -0.005 -0.101 0.855 tabular + topics
XGBoost_BAG_L1 -0.048 -0.126 0.277 tabular
ExtraTreesMSE_BAG_L1 0.008 -0.144 0.849 tabular
ExtraTreesMSE_BAG_L1 0.049 -0.163 0.848 tabular + topics
KNeighborsUnif_BAG_L1 -0.013 -0.185 0.188 tabular + tfidf
KNeighborsUnif_BAG_L1 -0.004 -0.187 0.186 tabular
KNeighborsUnif_BAG_L1 -0.048 -0.187 0.195 tabular + topics
TextPredictor_BAG_L1 -0.067 -0.190 -0.070 tabular + embeddings
KNeighborsDist_BAG_L1 -0.003 -0.191 1.000 tabular + tfidf
RandomForestMSE_BAG_L1 -0.034 -0.192 0.842 tabular
KNeighborsDist_BAG_L1 -0.030 -0.210 1.000 tabular + topics
KNeighborsDist_BAG_L1 0.003 -0.215 1.000 tabular
OLS -0.377 0.231 tabular
AutoGluon Multimodal Transformer -1.177 -0.737 multimodal transformer

Notes: The table reports the performance (predictive R2) of different models for the language mapping analysis of the
unemployment.
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