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Empirical researchers using instrumental variables (IV) estimation fre-
quently report first-stage F -statistics – or with multiple endogenous regres-
sors, Cragg and Donald (1993) statistics – to assess instrument relevance.
These statistics are typically compared to critical values tabulated by Stock
and Yogo (2005), which are based on the maximum bias of two-stage least-
squares (2SLS) that can occur when the first-stage coefficients are statistically
close to zero. This “bias-based” testing procedure, however, requires the as-
sumption of conditionally homoskedastic and serially uncorrelated (CHSU)
errors and is generally invalid if that assumption does not hold. As discussed
in a recent survey by Andrews et al. (2019), in practice, this often means that
researchers assume CHSU errors for the purpose of a first-stage test but make
different assumptions when conducting inference for the 2SLS estimates.

In an important paper, Montiel Olea and Pflueger (2013) introduce a new
statistic – the “effective F-statistic” – for models with general non-CHSU
errors. Their test is based on a second-order Taylor approximation of the
2SLS bias relative to a worst-case benchmark, and the limiting distribution
and associated critical values depend on the application-specific structure of
the robust covariance matrix of the reduced-form and first-stage parameters.
A key limitation, however, is that this test only applies to models with a
single endogenous regressor. Andrews et al. (2019) point to the lack of a
robust weak instruments test for models with multiple endogenous regressors
as an important remaining gap in the literature.1

The contribution of this paper is to fill that gap by providing a robust
weak instrument test that allows for an arbitrary number of endogenous re-
gressors and, in doing so, generalizes Stock and Yogo’s (2005) bias-based
test to be heteroskedasticity-and-autocorrelation robust. When applied to a
transformed regression, our test also accommodates the alternative setting of
Sanderson and Windmeijer (2016) in which instruments are weak because the
first-stage coefficient matrix is near to having a rank reduction of one rather
than near rank zero as in the setting of Stock and Yogo (2005). Like that in
Stock and Yogo (2005), the bias criterion for our test is a weighted quadratic
loss in the asymptotic bias of the 2SLS estimates. The bias criterion evaluates
either the (standardized) absolute bias as defined by Stock and Yogo (2005),
which, as in their case, can also be interpreted as the 2SLS bias relative to
the maximum possible OLS bias, or the bias relative to a worst-case bench-

1Researchers sometimes report the robust F -statistic, or the Kleibergen and Paap (2006) statistic
in models with multiple endogenous regressors, along with Stock and Yogo (2005) critical values. Like
Andrews et al. (2019), we are unaware of a theoretical justification for using either statistic to assess
instrument strength, except in the just-identified model with a single endogenous regressor, in which
case both coincide with the effective F -statistic of Montiel Olea and Pflueger (2013).
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mark for the 2SLS bias established by Montiel Olea and Pflueger (2013). As
a further contribution, we demonstrate for both bias criteria how to conduct
robust weak instrument tests when only the 2SLS coefficient on one of several
endogenous regressors is of interest. We restrict attention to 2SLS since it is
by far the most commonly used IV estimator in practice.

A key challenge for a practical robust weak instruments test for models
of arbitrary dimensions is that the critical values depend on the covariance
matrix of the first-stage and reduced-form coefficients. Since this matrix is
application-specific, the critical values cannot be tabulated in advance as for
CHSU models. To develop a test that is computationally feasible, we follow
Montiel Olea and Pflueger (2013) and characterize the boundary of the weak
instrument set in terms of the “Nagar bias”, a second-order Taylor approx-
imation to the bias following Nagar (1959). We show analytically that the
Nagar bias has an upper bound that is inversely proportional to the mini-
mum eigenvalue of the concentration parameter but depends otherwise only
on covariances that can be consistently estimated using heteroskedasticity-
and-autocorrelation- or cluster-robust methods. The minimum eigenvalue of
the concentration parameter is, therefore, the object of the test, as it suffices
to characterize the upper bound on the Nagar bias. The null hypothesis is
that the minimum eigenvalue of the concentration parameter, which quantifies
the strength of the instruments, is in the set of values for which the maximum
bias is greater than a tolerance level τ .

We propose a test statistic that generalizes the Cragg-Donald statistic
adopted by Stock and Yogo (2005) and also nests the effective F-statistic
of Montiel Olea and Pflueger (2013) for models with a single endogenous
regressor. The statistic’s asymptotic distribution is that of the minimum
eigenvalue of a matrix with elements that are traces of block partitions of a
real non-central Wishart random matrix, which, as a result, is intractable.
Just as Stock and Yogo (2005), we therefore make use of a bounding limiting
distribution. Specifically, we show that the second and third cumulants of
our generalized test statistic are bounded by expressions that depend only on
consistently estimable covariances and the minimum eigenvalue of the concen-
tration parameter. The right tail of a bounding limiting distribution for the
test statistic can typically be approximated simply by matching the bound-
ing cumulants using an Imhof (1961) distribution.2 The accompanying code
computes the upper bound on the Nagar bias efficiently, leading to trivial com-
putation times in most applications. For unusually large-dimensional models,
we also provide a simplified – but more conservative – bound on the Nagar

2Our accompanying code ensures a correct bounding distribution even when this is not the case.
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bias that avoids numerical optimization entirely. In addition, we show that
simple adjustments to the tolerance level suffice to test for weak instruments
bias in individual coefficients and that applying the testing procedures to a
transformed regression implements a robust version of the test in Sanderson
and Windmeijer (2016).

We assess the performance of the test through both finite-sample and
asymptotic simulations. In a finite-sample design adapted from Sanderson
and Windmeijer (2016), our test demonstrates good size and power prop-
erties. Despite relying on critical values derived from a bounding limiting
distribution, the test exhibits sharp power increases at bias levels well above
zero and not too far below the chosen tolerance level. Asymptotic simulations
confirm the accurate size and good power of the test across millions of ran-
domly generated DGPs with varying numbers of endogenous regressors and
instruments. They also allow us to verify the accuracy of the Nagar approx-
imations in bounding the 2SLS bias.3 Additional finite-sample simulations
calibrated to our empirical application also demonstrate accurate size and
attractive power.

As an empirical application of our test, we consider the Ramey and Zubairy
(2018) estimates of state-dependent government spending multipliers. Start-
ing from existing empirical specifications, the authors introduce a second en-
dogenous regressor by interacting government spending with an indicator for
the state of the business cycle or for the monetary policy regime. This ap-
plication is an example of how multiple endogenous regressors often arise in
practice, as it is common for researchers to explore specifications with inter-
actions between an endogenous regressor and other variables. We find that
our robust test regularly leads to different conclusions regarding instrument
strength than the Stock and Yogo (2005) test. When results of the Mon-
tiel Olea and Pflueger (2013) test in the separate regime subsamples are in
conflict, the outcome of our generalized test for the full sample is dictated by
the more weakly identified regime. Multiple endogenous regressors, of course,
arise in many other contexts as well, including in time series, cross-sectional,
and panel data models. Our generalized test for weak instruments should,
therefore, be useful for a broad range of applications.

Besides the aforementioned papers, there exist several other approaches
to evaluating instrument strength. In addition to their bias-based test, Stock
and Yogo (2005) propose a test based on the size (the rejection rate under the

3We focus on the median 2SLS bias in just-identified models since the mean 2SLS bias does not
exist in those models. We find that the Nagar approximation can perform poorly when the degree of
overidentification is less than two. We therefore propose different bounds in those cases, which we also
recommend for the Montiel Olea and Pflueger (2013) test when there is a single endogenous regressor.
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null hypothesis) of Wald inference for CHSU models. The test detects whether
instruments are weak enough to lead to size distortions (over-rejection) above
a specified tolerance. Mikusheva and Sun (2021) develop a size-based test
that is robust to heteroskedasticity and potentially many instruments, but not
autocorrelation and is limited to models with one endogenous regressor. While
developing a generalized size-based test is beyond the scope of this paper,
we explore the relationship between our test statistic and the size distortion
in second-stage t-statistic inference in the asymptotic simulations. Andrews
(2018) offers a distinctly different diagnostic for identification strength that
imposes no restrictions on the error covariances and is broadly applicable to
GMM problems. In this approach, both identification-robust and non-robust
confidence sets are computed for the parameters. The relationship between
the sets, which is linked to the size distortion of standard inference, determines
whether identification is strong enough to proceed with inference methods that
are not robust to weak instruments. Finally, Carrasco and Doukali (2021)
introduce a bias-based first-stage test that is robust to heteroskedasticity and
many instruments. However, as the Montiel Olea and Pflueger (2013) test, it
only applies to models with a single endogenous regressor.

1 Model and Summary of Testing Procedures

This section provides a non-technical summary of the model assumptions and
testing procedures.

Model Our test applies to linear instrumental variables models with N

endogenous regressors and K ≥ N instruments,

y = Y β + u,(1)

Y = ZΠ + v,(2)

where β ∈ RN contains the parameters of interest and Π ∈ RK×N contains the
first-stage parameters. The econometrician observes y ∈ RT , Y ∈ RT×N , and
Z ∈ RT×K , where T is the sample size and individual observations are indexed
by t. Without loss of generality, we assume that there are no additional
exogenous regressors and that Z ′Z/T = IK .4

The reduced form of (1) is y = ZΠβ+w, where w = vβ+u. Assume that
T−

1
2 [Z ′w vec(Z ′v)′]′

d→ N (0,W), where vec(·) is the vectorization operator.
Given Z ′Z/T = IK , this is simply the standard high-level assumption that

4In the presence of additional exogenous regressors, y, Y , and Z can simply be replaced by the
residuals of those variables after projection on those regressors.
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the reduced-form and first-stage OLS estimates are asymptotically normal.
The weak instruments test of Stock and Yogo (2005) requires the asymptotic
covariance matrix of the reduced-form and first-stage OLS estimates,W, to be
of the Kronecker product form Σwv ⊗ IK , where Σwv is the covariance matrix
of [wt, v

′
t]
′ and the covariance of Z is standardized to IK . The Kronecker

structure for W generally arises only under the CHSU assumption. The test
in this paper lets W be any positive definite matrix without requiring that
N = 1 as in Montiel Olea and Pflueger (2013). In other words, our test can
be used in models with an arbitrary number of endogenous regressors and
arbitrary patterns of heteroskedasticity, serial correlation, or clustering, as
long as a consistent estimate of W is available.

Testing Procedure and Interpretation Our robust test for weak instru-
ments assesses the null hypothesis that the bias of the 2SLS estimator exceeds
some tolerance level τ , with significance level less than or equal to α. The
baseline test assumes that this bias arises because all elements of the matrix
of first-stage parameters Π are statistically near zero. The magnitude of the
2SLS bias depends on W, which can be consistently estimated by the econo-
metrician, but also on β and Π, which cannot be consistently estimated if the
instruments are weak. To ensure validity regardless of the values of β and
Π, the null hypothesis addresses the bias associated with the most adverse
configuration of those unknown parameters.

To obtain a criterion that aggregates the bias across the multiple elements
of β̂2SLS, we follow Stock and Yogo (2005) and adopt a weighted quadratic
loss function divided by a scalar that determines the criterion’s quantitative
interpretation. We consider two options for the weighting and scaling, both
of which ensure that the bias criterion is invariant to arbitrary full-rank lin-
ear combinations of the model variables. The first criterion uses the same
weights and scaling as the absolute bias criterion of Stock and Yogo (2005).
The weights in this criterion standardize the endogenous regressors such that
they have unit standard deviations and are orthogonal, and the scaling is in
units of σu, the standard deviation of the model error ut. The resulting cri-
terion can be interpreted as the absolute bias in standardized units of σ−1

u Σ
1
2
Y

where ΣY is the asymptotic covariance of Y . As in Stock and Yogo (2005),
the absolute bias criterion also has the interpretation as the bias relative to
the maximum OLS bias after standardizing the endogenous regressors.5 The

5The criterion differs subtly from the relative bias criterion also discussed in Stock and Yogo (2005),
which expresses the 2SLS bias relative to the OLS bias rather than to the maximum OLS bias. In CHSU
settings, the distinction is irrelevant since both criteria are identical under the most adverse choice of β.
In non-CHSU settings, however, the ratio of the 2SLS bias to the OLS bias is not a feasible criterion as it
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criterion, therefore, helps separate the problems of endogeneity and weak in-
struments and allows the econometrician to interpret the units of the bias
using expert judgment on the largest possible magnitude of the OLS bias.
The second bias criterion, which we label the “relative bias” criterion, is a di-
rect extension of the criterion proposed by Montiel Olea and Pflueger (2013).
This criterion uses weights and scaling such that, in a worst-case scenario for
an ad-hoc approximation to the 2SLS bias, the bias criterion equals unity. The
relative bias is, therefore, interpretable in terms of a percentage of this worst-
case benchmark. The relative bias criterion is identical to that of Montiel Olea
and Pflueger (2013) when N = 1, and also coincides with the absolute bias
criterion in the special case of CHSU models.

In practice, our test for weak instruments consists of the following steps:

1. Replace all variables with the residuals from regressions on a constant
and any other included exogenous regressors (Frisch-Waugh-Lovell). Stan-
dardize the instruments such that Z ′Z/T = IK .

2. Regress y on Z (reduced form) and Y on Z (first stage). Obtain the
robust covariance estimator Ŵ of choice (e.g., heteroskedasticity-robust,
heteroskedasticity-and-autocorrelation robust, or clustered) for the reduced-
form and first-stage estimates. For the absolute bias criterion, also ob-
tain an estimate Σ̂wv of the covariance matrix of the reduced-form and
first-stage errors.

3. Compute the test statistic, gmin,

gmin = T−1 mineval{Φ̂−
1
2Y ′ZZ ′Y Φ̂−

1
2},(3)

where

(4) Φ̂ =


Tr(Ŵ2,11) Tr(Ŵ2,12) . . . Tr(Ŵ2,1N)

... . . . ...
Tr(Ŵ2,N1) . . . . . . Tr(Ŵ2,NN)

 .

Ŵ2 is the estimated covariance matrix of the first-stage coefficients (the
lower NK×NK diagonal block of Ŵ), Ŵ2,ij is the block corresponding
to the covariance of coefficients from the Yi equation with those from the
Yj equation, and mineval{·} is the smallest eigenvalue.

can be made arbitrarily large for a suitable choice of β. While the interpretation of the absolute criterion
as a percentage of the maximum OLS bias is ultimately the same as that of the Stock and Yogo (2005)
relative criterion under CHSU, we maintain their “absolute bias” terminology to make a clear distinction
with the criterion of Montiel Olea and Pflueger (2013).
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4. Given a choice of bias criterion (absolute or relative), a user-supplied
bias threshold τ (e.g., 0.10) and a desired significance level α (e.g., 0.05),
compare gmin to the application-specific critical value. The latter depends
on all blocks of Ŵ and, under the absolute bias criterion, on Σ̂wv. If gmin

exceeds the critical value, reject the null hypothesis of weak instruments.

We provide a Matlab file, gweakivtest.m, to implement steps 1-4 us-
ing y, Y, Z, and X as inputs, with several standard options for obtaining
Ŵ. The Matlab function gweakivtest_critical_values.m calculates the
critical value in step 4 given values for τ and α, a choice of bias criterion,
and the estimates Ŵ and Σ̂wv (if needed). The computation of the critical
values is very fast, even in models with fairly large dimensions. For very
large-dimensional models, the code package also provides the option to calcu-
late alternative critical values that are essentially instantaneous to compute,
although these will be more conservative.

Relationship with Existing Tests The test statistic gmin nests existing
test statistics as follows: When N = 1, gmin equals the effective F -statistic of
Montiel Olea and Pflueger (2013). When N = K = 1, gmin equals the robust
F -statistic, and when N = 1 and the CHSU assumption is imposed, it equals
the regular F -statistic. When N > 1 and the CHSU assumption is imposed,
gmin equals the Cragg and Donald (1993) statistic.

As our test relies on the same second-order approximation of the 2SLS bias,
for models with N = 1, the critical values under the relative bias criterion are
essentially identical to those of Montiel Olea and Pflueger (2013). However,
there are two exceptions. First, in just-identified models, the mean bias of
2SLS does not exist. Hence, whenever N = K, we prefer to base the test
on the median bias of 2SLS instead. When N = K = 1, this means that
the critical value for our relative bias test differs from that of Montiel Olea
and Pflueger (2013), and will be smaller for the same τ and α. Second, in
models that are overidentified of degree one, we show – both analytically
and in simulations – that the second-order approximation does not provide a
reliable bound on the 2SLS bias. We therefore recommend a more conservative
bound for those models. For N = 1, K = 2, this means that our test generally
applies larger critical values than Montiel Olea and Pflueger (2013). Under
the absolute bias criterion, our test provides an alternative to the Montiel
Olea and Pflueger (2013) test for models with N = 1 and any K, in case
researchers find the absolute bias criterion more appealing.

Under the CHSU assumption, the absolute and relative versions of test
are identical and essentially the same as the Stock and Yogo (2005) test.
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The critical values are, in that case, very similar to theirs, though they are
not identical since our test uses a second-order approximation rather than
Monte Carlo simulations to evaluate the bias. The other difference is that,
unlike Stock and Yogo (2005), our test covers models with K ≤ N + 1. We
extend the range of models by considering the median bias when K = N , and
by adopting a conservative but numerically reliable bound on the 2SLS bias
when K = N + 1.

Extensions to Other Hypothesis Tests The test described above is con-
cerned with the 2SLS bias in all N coefficients that arises when the rank of
Π is statistically close to zero. In practice, researchers may sometimes be
concerned with the bias in just a single coefficient. We show that the same
testing procedures and code can be applied in that case with only a simple
adjustment to τ , which is developed in Section 3.

Weak instrument bias can occur even if the rank of Π is not statistically
close to zero. For example, instrument relevance can also fail when one of
the columns of Π is statistically close to a linear combination of the other
columns, such that Π is not near rank zero but near a column rank reduction
of one. We show how our test can also be used in this setting by applying
it to a transformed regression that has a single endogenous regressor. The
accompanying program, gweakivtest_LRR1.m, conducts all required steps
automatically. The program allows for testing for bias in all N coefficients in
this setting, thereby generalizing the test described Sanderson and Windmei-
jer (2016). The program also allows testing for bias in the individual 2SLS
estimates in this alternative setting. Section 3 describes in more detail how
to conduct these additional tests for weak instruments in practice.

Proper Use of the Test Weak instruments generally have two conse-
quences: bias in the point estimates and invalidity of standard (i.e. t-statistic)
inference. Our testing procedures are informative about the former but do not
address the latter. Weak-instrument-robust inference methods are necessary
to do so. As best practice for empirical research, we recommend reporting
the results of our generalized weak instruments test alongside the point esti-
mate(s) and weak-instrument-robust confidence intervals or sets using, e.g.,
the Anderson and Rubin (1949) statistic (see Andrews et al. (2019) for fur-
ther discussion). Recent contributions by Lee et al. (2022) and Keane and
Neal (2022) have highlighted the pre-testing problem when conducting a first-
stage F -test for weak instruments and then using t-statistic inference if weak
instruments are rejected. Specifically, even if the instruments are found to
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be strong, the correlation between the first-stage F and t-statistics can in-
duce severe size distortions. While first-stage tests cannot justify the use of
standard inference methods without accounting for this correlation, they are
nevertheless of independent interest since they contain important information
about the bias in the 2SLS point estimates.

2 Testing the Null Hypothesis of Weak Instruments

This section presents the key results underlying our proposed test. Before
doing so, we establish some specific notation: ||U ||2 is the spectral norm of
U (the positive square root of the maximum eigenvalue of UU ′, also the `2-
norm if U is a vector), Pn is the set of positive definite n× n matrices, On×m

is the set of n × m orthonormal real matrices U such that UU ′ = In, Kn,m
denotes the n × m commutation matrix such that Kn,m vec(U) = vec(U ′)

where U ∈ Rn×m. We also define the special matrix Rn,m = In ⊗ vec(Im).
The dimension of Rn,m is nm2 × n. For U ∈ Rnm×nm, the (i, j)-th element of
V = R′n,m(U ⊗ Im)Rn,m ∈ Rn×n is Tr(Uij) where Uij ∈ Rm×m is (i, j)-th block
of U and Tr(·) is the trace (see (4) for an explicit example of such a matrix).
For U ∈ Rnm×m, the i-th element of V = R′n,m vec(U ′) ∈ Rn is equal to Tr(Ui)

where Ui ∈ Rm×m is the i-th row block of U . Note that R′n,mRn,m = mIN .

2.1 Local-to-Zero Asymptotic Representation of 2SLS

The 2SLS estimator for the model in (1)–(2) is

β̂2SLS = (Y ′PZY )−1Y ′PZy,(5)

where PZ = ZZ ′/T is the projection matrix given the normalization Z ′Z/T =

IK . Following Staiger and Stock (1997) and subsequent literature, we model
weak instruments by assuming the first-stage relationship is local-to-zero,

Assumption 1. Π = C/
√
T , where C ∈ RK×N is a fixed full-rank matrix.

While weak instruments are a finite sample problem, the local-to-zero as-
sumption is a modeling device to capture the limited informativeness of the
instruments in an asymptotic framework. Specifically, Assumption 1 implies
that all instruments are uniformly weak and that the OLS estimate of any
element of Π has a nondegenerate limiting distribution even as T grows large.
The Stock and Yogo (2005) test is also based on Assumption 1, but there ex-
ist other approaches for modeling weak identification in models with multiple
endogenous regressors. We maintain Assumption 1 here and show later how
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our test can be used in the alternative weak instruments setting of Sanderson
and Windmeijer (2016).

The next set of assumptions allows us to characterize the asymptotic dis-
tribution of the 2SLS estimator under the local-to-zero assumption.

Assumption 2. The following limits hold as T →∞:

T−
1
2

[
Z ′w

vec(Z ′v)

]
d→ N (0,W),(2.a)

Ŵ
p→W,(2.b)

Σ̂wv
p→ Σwv = E

[[
wt

vt

][
wt

vt

]′]
,(2.c)

where W =

[
W1 W12

W′
12 W2

]
∈ P(N+1)K and Σwv =

[
σ2
w σwv

σ′wv Σv

]
∈ PN+1.

In part (a), a central limit theorem ensures that the first-stage and reduced-
form OLS estimates are asymptotically normal with covariance W. Part (b)
stipulates the availability of a consistent estimator for W, denoted as Ŵ.
Likewise, part (c) specifies the availability of a consistent estimator Σ̂wv for the
covariance of the reduced-form and first-stage errors, Σwv. These high-level
assumptions are standard, but researchers must, of course, confirm within
their specific application whether assuming consistent estimation of W and
Σwv is reasonable.6

The 2SLS estimator in (5) can be written as

β̂2SLS =
(
R′N,K(sZY s

′
ZY ⊗ IK)RN,K

)−1
R′N,K vec(sZys

′
ZY ),(6)

where sZy = T−
1
2Z ′y and sZY = T−

1
2 vec(Z ′Y ). This more complicated ex-

pression reformulates the 2SLS estimator in terms of random vectors whose
asymptotic distributions are given in Assumption 2. Specifically, define the
random vectors η1 ∈ RK , η2 ∈ RNK×1,

(
η1

η2

)
∼ N

((
0K

vec(C)

)
,S

)
(7)

where S ∈ P(N+1)K is the asymptotic covariance of T−
1
2 [Z ′u vec(Z ′v)′]′, and

6The assumption that W is consistently estimable can be questionable, for example, in the presence
of many instruments, see Mikusheva and Sun (2021)
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is partitioned as W with

S1 = W1 + (β′ ⊗ IK)W2(β ⊗ IK)− (β′ ⊗ IK)W′
12 −W12(β ⊗ IK),(8)

S12 = W12 − (β′ ⊗ IK)W2 , S2 = W2.

Proposition 1 characterizes the distribution of β∗2SLS = β̂2SLS − β.

Proposition 1. Under Assumptions 1 and 2, sZY
d→ η2 and sZy

d→ (β′ ⊗
IK)η2 + η1, and thus

β̂2SLS − β
d→ β∗2SLS =

(
R′N,K(η2η

′
2 ⊗ IK)RN,K

)−1
R′N,K vec(η1η

′
2).

Proof. The proposition follows directly from the stated assumptions, the ex-
pression for β̂2SLS in (6), and the continuous mapping theorem.

Under the local-to-zero assumption, β∗2SLS converges to a quotient of quadratic
forms in normal random variables and β̂2SLS is therefore not a consistent es-
timator of β. The asymptotic bias of the 2SLS estimator is the expected
value E[β∗2SLS], which has no known analytical form except for the special
case in which W = Σwv ⊗ IK , N = 1, and K > 1, see Skeels and Windmeijer
(2018). Note that when K = N – and depending on assumptions – also when
K = N + 1, the expected value E[β∗2SLS] generally does not exist.7

Finally, we define the concentration parameter for models with general
W and N ≥ 1. The concentration parameter is the (standardized) mean
of the “denominator” of the 2SLS estimator and measures the signal-to-noise
ratio in the first stage. Since it is the center of the distribution of the 2SLS
denominator, it is critical for characterizing the weak instruments distribution
of β̂2SLS, and thus its asymptotic bias.

Definition 1. The concentration parameter for (2) is

Λ = Φ−
1
2C ′CΦ−

1
2 ,

where Φ = R′N,K(S2 ⊗ IK)RN,K.

Under Assumptions 1 & 2, E[R′N,K(η2η
′
2 ⊗ IK)RN,K ] = C ′C + R′N,K(S2 ⊗

IK)RN,K = C ′C+Φ, so the standardized non-centrality of the denominator of
the 2SLS estimator is given by Λ. The N ×N matrix Φ contains the traces of
the K×K partitions of the NK×NK asymptotic covariance of the first-stage
coefficients, S2 = W2. Here, it standardizes the concentration parameter to

7See, for example, Basmann (1961), Mariano (1972), Kinal (1980), Phillips (1980), or Skeels and
Windmeijer (2018).
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be unitless and invariant to full-rank linear combinations of regressors and
instruments. The concentration parameter in Definition 1 nests special cases
as follows: when W has the Kronecker form, S2 = Σv⊗IK and Φ = KΣv such
that Λ = K−1Σ

− 1
2

v C ′CΣ
− 1

2
v which is the concentration parameter in Stock and

Yogo (2005). For general W and N = 1, Λ = ||C||22 Tr (W2)−1, which is the
concentration parameter in Montiel Olea and Pflueger (2013).

2.2 Definition of Weak Instruments

As in Stock and Yogo (2005) and Montiel Olea and Pflueger (2013), the
subject of our null hypothesis is a criterion for the bias of 2SLS. Specifically,
we consider instruments weak when a weighted quadratic loss function of the
asymptotic bias E[β∗2SLS] is large, either in an absolute or relative sense.

Definition 2. The bias criterion for i ∈ {abs, rel} is

Bi =

√
E [β∗2SLS]′ ΞiE [β∗2SLS]

bi
= ||E [β∗2SLS]′ Ξ

1
2
i ||2/

√
bi

where babs = σ2
u , Ξabs = Σv; brel = TrS1, Ξrel = Φ.

The bias criterion aggregates the N elements of the bias E[β∗2SLS] through a
quadratic loss function with weighting matrix Ξi, such that Bi ≥ 0 and larger
biases are penalized more heavily. The choice of the weighting matrix Ξi and
the scalar bi determines whether the bias criterion is expressed in absolute
or relative terms. As mentioned earlier, later we will also consider tests that
instead place all weight on a single element of E [β∗2SLS].

The absolute bias criterion, Babs, uses the same weighting (Ξabs = Σv)
and scaling (babs = σ2

u) as Stock and Yogo’s (2005) absolute bias criterion.
Under Assumption 1, Y ′Y/T p→ ΣY = Σv, such that ||E [β∗2SLS]′Σ

1
2
v ||2 is

the aggregated asymptotic bias in β̂2SLS after standardizing the endogenous
regressors to be orthogonal and have unit standard deviation. Because this
bias metric still depends on the units of the dependent variable, it is further
divided by the standard deviation of the error term, σu. As in Stock and Yogo
(2005), the criterion can be interpreted as the bias of the 2SLS estimator in the
standardized units of σ−1

u Σ
1
2
Y . The standardization ensures that the criterion

is invariant to taking arbitrary full-rank linear combinations of Y or Z, or
to re-scaling y. Since σu is also the upper bound on the norm of the OLS
bias weighted by Σ

1
2
Y , a value of unity means that the 2SLS bias is equal to

the maximum bias OLS could attain.8 As mentioned earlier, the units of

8Evaluating the absolute bias of OLS yields σ−1
u ||Σ

− 1
2

v [σ′wv : Σv]β̃||2 with σu = ||Σ
1
2
wvβ̃||2 and β̃ = [1 :
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the absolute bias criterion can thus also be interpreted as percentages of the
largest possible OLS bias.

The relative bias criterion in Definition 2, Brel, instead extends the bias
criterion used by Montiel Olea and Pflueger (2013) in their test. Under this
relative criterion, the bias is expressed as a percentage of a “worst-case bench-
mark” for the 2SLS bias. As in Montiel Olea and Pflueger (2013), the magni-
tude of this worst-case benchmark follows from an ad-hoc approximation of
E[β∗2SLS] in terms of a ratio of expectations:

E[β∗2SLS] ≈ Tr(S1)
1
2 Φ−

1
2 (IN + Λ)−1

Φ−
1
2R′N,K vec(S12)

Tr(S1)
1
2

.(9)

Using this approximation, Brel reaches a maximum of unity when the instru-
ments are completely uninformative, so the concentration parameter Λ is zero,
and when the error term u is a perfect linear combination of the first-stage
errors, v, such that the fraction in (9) is an N × 1 unit vector. The weighting
by Ξrel = Φ and scaling by Tr(S1) also imply that the relative bias criterion
is invariant to taking full-rank linear combinations of Y or Z, or re-scaling y.

WhenN = 1 the relative bias becomes Brel = E [β∗2SLS]
√

Tr(S2)/
√

Tr(S1)

which is identical to that in Montiel Olea and Pflueger (2013) after replacing
E [β∗2SLS] with a Nagar (1959) approximation. The relative bias criterion in
Definition 2 is, therefore, a direct generalization of Montiel Olea and Pflueger
(2013) to models with an arbitrary number of endogenous regressors. Note
that, in CHSU models, Tr(S1) = Kσ2

u and Φ = KΣv, so the absolute and
relative bias criterion in Definition 2 are identical in that case.

Given a choice of bias criterion, we define the weak instrument set as the
set of models, over values for β and the first-stage parameters C, such that
the bias exceeds a tolerance level τ .

Definition 3. The weak instrument set for i ∈ {abs, rel} is

Biτ (W) = {C ∈ RN×K , β ∈ RN : Bi > τ} .

The weak instrument set depends on W, which can be consistently estimated
by assumption, but also on the NK parameters in C and the N unknown
parameters in β. Under the absolute bias criterion, i = abs, the weak instru-
ment set also depends on Σwv, but we henceforth suppress this dependence
for compactness. The null hypothesis of our test will be that the model in
question is a member of the weak instrument set: Bi > τ . Since we cannot

−β′]′. This is maximized at the largest singular value of Σ
− 1

2
v [σ′wv : Σv]Σ

− 1
2

wv , which is unity.
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estimate C and β consistently, the null hypothesis will test whether an upper
bound on Bi, given W, is greater than τ .

2.3 Characterizing the Boundary of the Weak Instrument Set

A practical generalized test for weak instruments requires a scalar sufficient
statistic that is informative for whether C lies within the weak instrument
set for any possible value of β. Moreover, the boundary of the set over the
remaining parameters must be relatively easy to compute since – unlike in the
CHSU model – this boundary depends on W (and on Σwv if i = abs) and thus
differs for each application. To address these challenges, we follow Montiel
Olea and Pflueger (2013) and adopt an analytical approximation based on
Nagar (1959).

We start with the following lemma presenting a useful decomposition of
the bias criterion in Definition 2.

Lemma 1. Under Assumptions 1 & 2, the bias criterion in Definition 2 can
be decomposed as Bi = ||Ξ̃

1
2
i hρi||2, where

h = KE
[(
R′N,K(S(l + ψ)(l + ψ)′S ′ ⊗ IK)RN,K

)−1
R′N,K

(
S(l + ψ)ψ′S−1 ⊗ IK

)]
,

ρi =
(
Φ−

1
2 ⊗ IK2

)
vec (S12) /

√
bi ,

Ξ̃i = Φ−
1
2 ΞiΦ

− 1
2 , l = S

− 1
2

2 vec(C ′), ψ = S
− 1

2
2 (η2 − vec(C ′)) ∼ N (0, INK), and

S = ((Φ/K)−
1
2 ⊗ IK)S

1
2
2 .

Proof. See Appendix A.

Lemma 1 formulates the bias as the `2-norm of the product of the N ×N
matrix Ξ̃i, the N ×NK2 matrix h and the NK × 1 vector ρi. The matrix h

is the expected value of a random matrix that is a function of ψ, a vector of
i.i.d standard normal variables. This expected value – when it exists – also
depends on location parameters C and on W2. The vector ρi depends on W

and β and the choice for the scaling factor bi, and Ξ̃i depends on W2 and the
weighting matrix Ξi.

In general, there is no tractable analytical expression for the integral un-
derlying the expectation in h, which is required to evaluate the bias. Whereas
Stock and Yogo (2005) evaluate this integral using Monte Carlo methods, we
adopt a Nagar (1959) approximation to h, which we denote by hn. This ana-
lytical approximation avoids costly numerical approximation over a generally
high-dimensional parameter grid each time critical values are needed. The
approximation leads to the following definition.
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Definition 4. The Nagar bias is Bi,n = ||Ξ̃
1
2
i hnρi||2, where hn is a Nagar

(1959) approximation of h around ψ = 0.

The Nagar approximation hn is derived analytically in Appendix B. The Na-
gar bias Bi,n still depends on C, β, and W (and on Σwv for i = abs). The
following theorem shows that the minimum eigenvalue of the concentration
parameter, λmin, is a sufficient statistic for upper bounds on the Nagar bias.

Theorem 1. The Nagar bias has the following bounds for i = abs, rel:

(i) Bi,n ≤ B∗i,n(W, λmin) = λ−1
minBi(W) , Bi(W) = K−

1
2 ||Ξ̃

1
2
i ||2 sup

L0∈ON×K
{||M1(IN⊗

L0 ⊗ L0)M2Ψi||2},

(ii) B∗i,n(W, λmin) ≤ λ−1
minBsi (W) , Bsi (W) = ||Ξ̃

1
2
i ||2 min{(2(N+1)/K)

1
2 ||M2Ψi||2, ||Ψi||2},

where λmin = mineval{Λ}, and

Ψabs = (SW− 1
2

2 [W12 : W2]′ ⊗ IK)RN+1,KΣ
− 1

2
wv ,

Ψrel = (SW− 1
2

2 [W12 : W2]′ ⊗ IK)RN+1,K(R′N+1,K(W ⊗ IK)RN+1,K)−
1
2 ,

M1 = R′N,N (IN3 + (KN,N ⊗ IN)) , M2 = RN,KR
′
N,K/(N + 1)− INK2 .

Proof. See Appendix B.

Part (i) of the theorem characterizes an upper bound on the Nagar bias,
B∗i,n(W, λmin), that only depends on W (and on Σwv if i = abs) and λmin, the
minimum eigenvalue of the concentration parameter in Definition 1. Impor-
tantly, B∗i,n(W, λmin) is often a sharp upper bound on the Nagar bias, by which
we mean that it is attained for at least some value of β and eigenstructure of
Λ. More specifically, the upper bound is always sharp under the relative bias
criterion since, in that case, Ξ̃i = IN . The bound is also sharp when W has
the Kronecker form regardless of the bias criterion chosen, since Ξ̃i = IN in
that case as well. For general W, the bound is sharp under the absolute bias
criterion when N = 1, but it is not necessarily sharp when N > 1. We will
refer to the upper bound B∗i,n(W, λmin) as the “worst-case Nagar bias”. The
Bi(W) term in the expression for the worst-case Nagar bias is proportional to
the largest singular value of a matrix that depends on the NK−(N+1)/2 nui-
sance parameters in the orthonormal matrix L0, which needs to be obtained
numerically. Part (ii) of the theorem provides an alternative simplified upper
bound that requires no numerical optimization. This alternative bound is, in
general, not sharp and (weakly) larger than the worst-case Nagar bias, but it
is easy to obtain numerically even for very large-dimensional models.
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Theorem 1 addresses two key challenges for a test of weak instruments in
models with multiple endogenous variables. The first is statistical. Theorem
1 provides a straightforward mapping between the upper bound on the Nagar
bias and a scalar parameter, λmin: B∗i,n(W, λmin) = λ−1

minBi(W). The proof of
the theorem shows that the Nagar bias under the most adverse scenario for β
is non-increasing in all eigenvalues of the concentration parameter, such that
the worst-case Nagar bias occurs when all eigenvalues of Λ equal λmin. The
Nagar approximation, therefore, provides an analytical justification for λmin

as the object of the test, whereas the parallel justification in Stock and Yogo
(2005) is based on simulation evidence or the many-weak instruments limit.

Second, more practically, the optimization problem underlying Bi(W) is
relatively straightforward. The general problem of optimizing Bi,n over β and
C subject to mineval{Λ} = λmin is problematic because of the large dimension
and the presence of many local maxima. The proof in Appendix B shows that
optimizing over β reduces to a straightforward maximum eigenvalue problem
for either choice of bias criterion. Moreover, when all eigenvalues of Λ are
equal to λmin, the bias depends additionally only on L0. Optimization over
L0 has a smaller dimension and, importantly, can exploit numerical algorithms
specialized for orthonormal matrices. In the code accompanying this paper,
we use the curvilinear search algorithm of Wen and Yin (2013), which leads to
trivial computation times even for relatively large N and K. When N and/or
K are so large that the optimization becomes prohibitive, the more conserva-
tive simplified bound in part (ii) of Theorem 1 can be used instead. Finally,
because the bounds are inversely proportional to the minimum eigenvalue of
the concentration parameter, the threshold value of that minimum eigenvalue
for a given bias tolerance level τ is given simply by Bi(W)/τ (or Bsi (W)/τ),
and requires no additional root-finding operation.

The computational advantages of the Nagar approximation come at the
cost of a potential loss in accuracy relative to using Monte Carlo integra-
tion to evaluate h, as in Stock and Yogo (2005). Monte Carlo integration,
however, cannot exploit the same simplifications in the optimization over the
nuisance parameters and requires an additional root-finding operation to find
the threshold value of the minimum eigenvalue. Because of the dependence of
Bi(W) on W, this threshold value must be computed separately for each ap-
plication and cannot be tabulated in advance as a function of only K and N ,
unlike when W has the Kronecker form. In Online Appendix G, we compare
the Nagar bias to the bias computed using Monte Carlo integration across mil-
lions of DGPs and for various values of N and K. The main finding is that
the Nagar bias is generally close to the bias obtained via numerical integration
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when the degree of overidentification is greater than one, K > N + 1. Impor-
tantly, the Nagar approximation is especially accurate in the most relevant
range for the bias tolerance in practice, that is, in a neighborhood of 0.10.9

Models with K ≤ N + 1 are more complicated and are discussed separately
in Section 2.5.

2.4 Test Statistic and Critical Values

A test of the null hypothesis of weak instruments can be based on a test of
whether the minimum eigenvalue of Λ is smaller or equal to a threshold value
λ∗min(τ). More formally, the null and alternative hypotheses for the test are

H0 : λmin ≤ λ∗min,i(τ) vs. H1 : λmin > λ∗min,i(τ),(10)

where λ∗min,i(τ) = Bi(W)/τ (or Bsi (W)/τ in the case of the simplified test).
The null hypothesis is that the minimum eigenvalue of the concentration pa-
rameter does not exceed the threshold beyond which the selected upper bound
on the bias becomes smaller than the tolerance level τ . Under the alternative,
the minimum eigenvalue is larger than this threshold, such that the selected
upper bound on the Nagar bias is below the tolerance level.

The following proposition presents our statistic to test the null hypothesis.

Proposition 2. Define the test statistic

gmin = mineval{Φ̂−
1
2 (Y ′PZY )Φ̂−

1
2},

where Φ̂ = R′N,K(Ŵ2 ⊗ IK)RN,K. Then, under Assumptions 1 and 2,

gmin
d→ mineval{R′N,K(ζ ⊗ IK)RN,K/K},

where the NK ×NK random matrix ζ = S(l+ψ)(l+ψ)′S ′ has a noncentral
Wishart distribution, ζ ∼ W(1,Σ,Ω), with 1 degree of freedom, scale matrix
Σ = SS ′ ∈ PNK, and a matrix of noncentrality parameters Ω = Σ−1Sll′S ′.10

Proof. The proposition follows from Slutsky’s theorem, the continuous map-
ping theorem, and Y ′PZY

d→ R′N,K

(
S

1
2
2 (l + ψ)(l + ψ)′S

1
2′
2 ⊗ IK

)
RN,K , which

implies the stated distribution of ζ.

The test statistic gmin is a generalization of the Cragg and Donald (1993)
9The simulation results in Online Appendix G also show that the relative bias is bounded above by

unity under numerical integration, but not when evaluated using the Nagar approximation, except when
N = 1 as shown in Theorem 1.3 of Montiel Olea and Pflueger (2013).

10We adopt the notational convention of Muirhead (1982) for the noncentral Wishart distribution.
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statistic, rescaled appropriately to account for heteroskedasticity and auto-
correlation. The matrix Φ̂ contains the block-wise traces of the estimated
covariance of the first-stage coefficients, Ŵ2. The scaling by Φ̂−

1
2 is precisely

the one required so that there is a direct mapping between the non-centrality
matrix of ζ and Λ. In the special case of the CHSU model, Ŵ2 = Σ̂v ⊗ IK ,
such that Φ̂ = KΣ̂v, and gmin = K−1 mineval{(Σ̂v)

− 1
2Y ′PZY (Σ̂v)

− 1
2}, which

is the Cragg and Donald (1993) statistic. When N = 1, Φ̂ = Tr(Ŵ2), such
that gmin = Y ′PZY/Tr(Ŵ2), which is the effective F-statistic of Montiel Olea
and Pflueger (2013).

While ζ has a noncentral Wishart distribution, critical values for gmin

require the distribution of mineval{R′N,K(ζ⊗IK)RN,K}, which is the minimum
eigenvalue of the N×N matrix consisting of the traces of theK×K partitions
of ζ. To the best of our knowledge, the distribution of this function of ζ is
unknown. Moreover, the limiting distribution of gmin depends in general on
all parameters in Σ and Ω, not just on the threshold for λmin.

To address both of these challenges, we obtain critical values from a bound-
ing limiting distribution of gmin. Specifically, we first derive upper bounds for
the second and third cumulants that only depend on λmin and W2. Next, we
consider the class of approximating distributions proposed by Imhof (1961)
that match the first three cumulants of an unknown target distribution. We
select the Imhof distribution with the largest critical value at significance level
α subject to the constraints that the first cumulant matches that of the target
distribution and that the second and third cumulants respect the analytical
upper bounds on the cumulants of the limiting distribution of gmin. The re-
sulting critical value is guaranteed to be conservative relative to that of the
Imhof approximation based on the true unknown cumulants of the limiting
distribution of gmin.

The first step in our procedure is to derive upper bounds on the cumulants
that are free of nuisance parameters. We first discuss the N = 1 case, where
we can rely in part on existing results in the literature. WhenN = 1, R′N,K(ζ⊗
IK)RN,K = Tr(ζ) is a scalar. The trace of a noncentral Wishart ζ is a linear
combination of noncentral χ2 variables. While there is no tractable formula
for its probability distribution that we are aware of, Mathai (1980) provides
an analytical expression for the n-th order cumulant of Tr(ζ),

κn = 2n−1(n− 1)!
(

Tr(Σn) + nTr(ΣnΩ)
)
.(11)

The mean is κ1 = K(1 + λmin), since Tr(Σ) = K and Tr(ΣΩ) = K Tr(Λ) =
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KΛ = Kλmin when N = 1. For n > 1, the cumulants are bounded by

κn ≤ 2n−1(n− 1)!
(

Tr(Σn) + nKλmin maxeval{Σ}n−1
)
,(12)

which follows from the fact that for U, V ∈ P, |Tr(UV )| ≤ maxeval{U}Tr(V ),
see Fact 8.12.29 in Bernstein (2009), and the fact that Tr(ΣnΩ) ≥ 0. The
bounds in (12) only depend on λmin and on Σ, which only depends on W2

and can therefore be consistently estimated.
The general case with N ≥ 1 is more involved, as gmin is now asymptoti-

cally distributed as the minimum eigenvalue of a matrix containing the traces
of the K ×K partitions of ζ. Analogously to Stock and Yogo (2005), we con-
sider the distribution of γ′R′N,K(ζ⊗IK)RN,Kγ ≥ mineval{R′N,K(ζ⊗IK)RN,K}
as a bounding distribution, where γ is the eigenvector associated with the min-
imum eigenvalue of Λ = R′N,K(ΣΩ⊗ IK)RN,K/K and γ′γ = 1. The following
theorem extends the earlier results to γ′R′N,K(ζ ⊗ IK)RN,Kγ.

Theorem 2. For ζ ∼ W(1,Σ,Ω),

(i) The n-th cumulant of γ′R′N,K(ζ ⊗ IK)RN,Kγ is

κn = 2n−1(n− 1)!
(

Tr
(
((γγ′ ⊗ IK)Σ)n

)
+ nTr

(
((γγ′ ⊗ IK)Σ)nΩ

))
.

(ii) The n-th cumulant κn with n > 1 is bounded by

κn ≤2n−1(n− 1)!
(

maxeval{R′N,K(Σn ⊗ IK)RN,K}

+ nKλmin maxeval{Σ}n−1
)
.

Proof. See Appendix C.

Part (i) of the theorem generalizes Mathai (1980) to provide analytical
expressions for the random scalar γ′R′N,K(ζ ⊗ IK)RN,Kγ. Part (ii) provides
upper bounds on the cumulants that only depend on λmin and the consistently
estimable Σ, such that they can be used to construct a bounding pivotal
distribution. The bounds also nest those derived above for the N = 1 case.

For the mean, n = 1, the expression in part (i) of the theorem again
simplifies to κ1 = K(1 + λmin), which depends only on λmin. The mean can,
therefore, be targeted exactly, such that only the second and third cumulant
of the approximating bounding distribution potentially differ from those of
the true distribution. In the special case of the CHSU model, Σ = S = INK ,
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and the bounds in (ii) simplify to

2n−1(n− 1)!
(
K + nKλmin

)
.(13)

These are the cumulants of a noncentral chi-squared distribution with K

degrees of freedom and noncentrality parameter Kλmin, which is indeed the
exact bounding distribution used by the Stock and Yogo (2005) test.

Next, we define the Imhof (1961) approximating distribution matching the
first three cumulants κn, n = 1, 2, 3 of the target distribution.

Definition 5. The Imhof (1961) distribution is

FI(x;κ1, κ2, κ3) = Fχ2
ν
((x− κ1)4ω + ν), ν = 8κ2ω

2, ω = κ2/κ3,

where Fχ2
ν
(·) is the cdf of the chi-squared distribution with ν degrees of freedom.

Denote the upper bounds on the second and third cumulants in Theorem
2(ii) as κ̄2, κ̄3. The following proposition is of practical use for our test.

Proposition 3. There exists α∗ such that ∀ α ≤ α∗,

FI−1(1− α;κ1, κ̄2, κ̄3) ≥ FI−1(1− α;κ1, κ
′
2, κ
′
3) ∀κ′2 ≤ κ̄2, κ

′
3 ≤ κ̄3.

Proof. See Online Appendix E.1.

The proposition states that, for percentiles far enough in the right tail, the
critical values from the Imhof distribution based on κ1 and the upper bounds
κ̄2, κ̄3, which are given by FI−1(1− α;κ1, κ̄2, κ̄3), are weakly larger, and thus
conservative, compared to those from the Imhof distribution based on any
other values of the cumulants that satisfy the bounds. In other words, for low
enough values of α, the Imhof approximation based on the bounds of Theorem
2(ii) gives the most conservative critical values out of all Imhof distributions
satisfying the bounds. In simulations, we found that for a conventional choice
of α = 0.05, setting the cumulants to their upper bounds virtually always
yields the most conservative critical value. Our code, however, always checks
whether the Kuhn-Tucker conditions of the associated maximization problem
are satisfied at the upper bounds. If this is not the case, which may happen,
for example, for α = 0.10, the code solves numerically for the most conserva-
tive critical value respecting the bounds, which is a relatively straightforward
optimization problem.

As discussed in Section 1, the critical values generated by our test under
the relative bias criterion are essentially identical to those of Montiel Olea
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and Pflueger (2013) when N = 1 and K > 2. If one imposes the Kronecker
structure onW, the absolute and relative versions of the tests coincide exactly,
and the critical values are, in that case, very similar to those tabulated by
Stock and Yogo (2005). The numerical differences with the Stock and Yogo
(2005) values are essentially entirely due to the Nagar approximation since
the differences between the Imhof approximation with the exact cumulants in
(13) and the noncentral chi-squared bounding distribution are very small, see
also Solomon and Stephens (1977) or Bodenham and Adams (2015). Online
Appendix F illustrates the critical values that arise for a range of models and
under either bias criteria. The same Appendix also discusses in greater depth
how our critical values compare to those from existing tests.

2.5 Modifications for Models with K ≤ N + 1

Plausible instruments are often hard to come by, and models with only N or
N + 1 instruments are, therefore, empirically highly relevant. Stock and Yogo
(2005) do not report critical values for K ≤ N +1 since the bias criterion, Bi,
does not exist when K = N . Depending on assumptions, the bias also does
not exist when K = N + 1 or it may be difficult to approximate accurately.
In contrast, the bias criterion under the Nagar approximation, Bi,n, always
exists without further assumptions even when K ≤ N + 1, and it is trivial
to evaluate numerically. This motivates Montiel Olea and Pflueger (2013) to
expand the use of their test to models with N = 1 and K ≤ 2 without any
modifications. However, the performance of a weak instrument test should
arguably be assessed against the true bias rather than against an approxi-
mation. If the true bias does not exist, or the Nagar approximation is very
poor, it is reasonable to question the usefulness of a test based on the Nagar
bias. As we explain next, we modify our generalized test to deal with the
problematic K ≤ N + 1 models in a more satisfactory manner.

We first discuss models with a degree of overidentification equal to one,
K = N + 1. In these models, the bias does, in fact, exist provided that ut
and vt are Gaussian, as discussed in some detail in Kinal (1980) or Skeels and
Windmeijer (2018). The latter authors compute the bias analytically for the
CHSU model with N = 1, K = 2. The additional Gaussianity assumption
is a price many researchers are likely willing to pay for a bias-based weak
instruments test. Even so, the accuracy of the Nagar approximation can
be very poor for N = K + 1 models. The CHSU model is a particularly
dramatic example of how severe the approximation error can be. When W

has the Kronecker form, the worst-case Nagar bias in Theorem 1 simplifies to
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B∗i,n(W, λmin) = λ−1
min|K− (N + 1)|/K. For K = N + 1, this means the worst-

case Nagar bias is always exactly zero! As a result, for N = 1 the Montiel Olea
and Pflueger (2013) test with α = 0.05 and τ = 0.10 yields a critical value of
3.00, whereas the true value obtained analytically by Skeels and Windmeijer
(2018) is 7.85. Based on the results of simulations from millions of DGPs,
which are discussed below and in Online Appendix G, accuracy concerns can
also arise for general W in models with N = K + 1.

Given these problems, our solution is to always use the most conservative of
the two terms in the alternative upper bound in part (ii) of Theorem 1 instead
of the tighter (and often sharp) upper bound in part (i). While still motivated
by the analytical expression for the Nagar bias, the more conservative bound
results in larger critical values that, in our simulations across millions of DGPs,
prove very effective at controlling bias at the nominal level while also retaining
meaningful power, see Online Appendix G. We therefore recommend using the
more conservative bound for models with K = N+1, which is why our critical
values for the relative bias are larger than those of Montiel Olea and Pflueger
(2013) for N = 1 and K = 2.

In just-identified models, K = N , the 2SLS bias generally does not exist.
Rather than relying on the existence of the Nagar bias, we instead follow
Andrews and Armstrong (2017) and Angrist and Kolesár (2024) and focus
on the median 2SLS bias instead. The Nagar approximation can easily be
adapted to analytically approximate the median bias for just-identified models
with a single endogenous regressor. When K = N = 1, the one non-zero term
in the second-order approximation depends on the random scalar ψ2, where
ψ has a standard normal distribution such that E [ψ2] = 1 and median (ψ2) =

0.455. Therefore, simply multiplying the Nagar bias by median(χ2
1)/E[χ2

1] =

0.455 yields a Nagar approximation of the median bias. In practice, a test
based on the median bias of 2SLS can then be implemented with our testing
procedure simply by re-scaling the tolerance, τmed = τ/0.455, where τ is the
desired tolerance of the test. The accompanying code makes this adjustment
automatically for K = N = 1 models. The resulting critical value for the
relative bias test is always smaller than that of Montiel Olea and Pflueger
(2013) for N = K = 1, although it is important to keep in mind that our test
controls median bias rather than the mean bias in this case.

Unfortunately, for K = N > 1, we are unable to obtain a similarly
tractable Nagar approximation to the median bias. Our solution is the same
as for K = N + 1 models: the test uses the most conservative term in the
alternative upper bound in part (ii) of Theorem 1. As the simulations from
millions of DGPs in Online Appendix G show, this is a highly effective bound
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for the median bias in just-identified models with a range of dimensions, and
the test remains powerful.

We acknowledge that, except for K = N = 1, our justification for the
alternative bounds for K ≤ N +1 models relies on simulation evidence rather
than analytical results. At the same time, unless researchers are truly only
concerned with the Nagar bias, the simulation evidence is clear that mod-
ifications like these are necessary to effectively control the actual mean or
median bias in those models. Applications with K ≤ N + 1 are common, and
first-stage test statistics are routinely reported. For a bias-based weak instru-
ments test, the critical values under the above modifications have a stronger
justification than any others currently available for those models.

2.6 Summary of gweakivtest_critical_values.m

We conclude the discussion of our test with a description of the Matlab func-
tion gweakivtest_critical_values.m. To compute the critical values, the
required inputs are (a) an estimate of the robust covariance of the reduced-
form and first-stage coefficients, Ŵ, (b) the choice of scaling, either abs or
rel, (c) the significance level for the test α, and (d) bias tolerance level τ ,
and (e) an estimate of the robust covariance of reduced-form and first-stage
errors, Σ̂wv, in the case abs is selected.

1. If K > N + 1, the code obtains the threshold value λ∗min(τ) = Bi(Ŵ)/τ

where Bi(Ŵ) is calculated numerically using the optimization algorithm
of Wen and Yin (2013). The algorithm is not guaranteed to find the
global optimum. Unless the user specifies otherwise, our code takes the
maximum over the optima found for 1000 starting values generated by
N columns of K × K matrices drawn from the Haar distribution, i.e.
uniformly sampled from the space of all orthonormal matrices. If the
user selects the simplified testing option, the threshold value is set to
λ∗min(τ) = Bsi (Ŵ). If K ≤ N + 1, the conservative bounds described in
Section 2.5 are used; if K = N = 1, τ is replaced with τmed to provide a
more powerful test for the median bias.

2. Next, the code calculates the upper bounds on the second and third
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cumulants of the bounding limiting distribution of the test statistic gmin,

κ∗2 = 2
(

maxeval{(IN ⊗ vec(IK))′((Σ̂2 ⊗ IK)(IN ⊗ vec(IK))}(14)

+ 2λ∗min(τ)K maxeval{Σ̂}
)
,

κ∗3 = 8
(

maxeval{(IN ⊗ vec(IK))′((Σ̂3 ⊗ IK)(IN ⊗ vec(IK))}(15)

+ 3λ∗min(τ)K maxeval{Σ̂}2
)
,

where Σ̂ is defined as in Proposition 2 after replacing W with Ŵ.

3. The code checks whether the relevant Kuhn-Tucker conditions are satis-
fied at κ1 = K(1 + λ∗min(τ)), κ̄2 = κ∗2 and κ̄3 = κ∗3, see Online Appendix
E.1. If not, the code solves for the values κ′2 and κ′3 that do satisfy the
constrained optimality conditions using the bounds as starting values.

4. For significance level α, the code computes the critical value from the
limiting distribution using the Imhof (1961) distribution in Definition 5.
This critical value is divided by K to obtain the critical value that can
be compared to the test statistic gmin.

3 Extensions to Other Hypothesis Tests

This section presents two extensions of our weak instruments test to other
hypotheses of interest in models with multiple endogenous regressors. The
first extension is to cases where researchers are concerned with the bias in
only a single coefficient. The second extension is a test of near-rank deficiency
as another form of failure of instrument relevance.

3.1 Weak Instruments Test for Individual Elements of β̂2SLS

Our test for weak instruments based on the bias criterion for the full β̂2SLS

vector can easily be modified to conduct a test based on the bias of a single
element of β̂2SLS. To do that, in the bias criterion in Definition 2, we replace
E[β∗2SLS] with eN ′j E[β∗2SLS] and the weighting matrix Ξi with eN ′j Ξie

N
j , where

eNj is an N × 1 vector with the j-th element equal to one and zeros in all
other rows. The resulting bias criterion, Bj

i , effectively puts zero weight on
all coefficients except for the one in the j-th position. The weak instrument
set is as in Definition 3 after replacing Bi with Bj

i . Note that we maintain
Assumption 1 as before, i.e., the first-stage parameters remain local to zero
for all endogenous regressors.

Corollary 1. To test the hypothesis of weak instruments based on the bias in
β̂2SLS,j with tolerance τ , it suffices to test the hypothesis of weak instruments
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based on the bias in β̂2SLS with tolerance τ ji , where

τ jabs = τ/
(√

eN ′j ΣveNj ||Φ−
1
2 eNj ||2

)
, τ jrel = τ.

Proof. See Online Appendix E.2.

Corollary 1 states that the weak instruments test for an individual coefficient
can be conducted exactly as the test described in the previous section, with a
simple adjustment to τ under the absolute bias criterion. The proof in Online
Appendix E.2 shows that the bounds on the Nagar bias in Theorem 1 remain
the same under the relative bias criterion and differ only by a scalar under
the absolute bias criterion such that dividing the tolerance level by that scalar
is all that is required. Moreover, the test for an individual element of β̂2SLS

is always based on a sharp upper bound on the Nagar bias for that element,
even under the absolute bias criterion.

3.2 Tests Under Local to Rank Reduction of One (LRR1)

While most of the literature testing for weak instruments has focused on
the local-to-zero asymptotic embedding, where all instruments are uniformly
weak, similar problems arise when Y ′PZY is of non-zero – but close to reduced
– rank. Sanderson and Windmeijer (2016) consider a “local-to-rank-reduction-
of-one” (LRR1) asymptotic embedding and show how, for the CHSU model,
an F-statistic with Stock and Yogo (2005) critical values can be used to con-
duct bias-based tests for this alternative violation of instrument relevance. In
this section, we describe how our test statistic and critical values can be used
in a similar fashion in the presence of heteroskedasticity and autocorrelation.

We first formalize the new asymptotic embedding:

Assumption 3. The jth column of Π is Πj = Π−jδ + c/
√
T , where c ∈ RK,

δ ∈ RN−1, and the matrix Π−j ∈ RK×(N−1) containing the remaining N − 1

columns of Π is of full column rank.

In this framework, Π is asymptotically not rank zero but rank N − 1.
When δ = 0, this assumption covers cases where instruments are weak for
one endogenous regressor, but the instruments are strong for the remaining
regressors. It also nests settings where Y ′PZY is statistically close to singular
even when instruments are strong, due to collinearity in Π.

Analogous to Sanderson and Windmeijer (2016), the first-stage effective
F -statistic from a transformed model with a single regressor can be used to
test for weak instruments. Specifically, let Yj denote the j-th regressor and
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Y−j the remaining regressors in Y . Define the transformed variables

(16) y⊥ = MŶ−j
y, Y ⊥j = MŶ−j

Yj, Z
⊥ = MŶ−j

Z̃(Z̃ ′MŶ−j
Z̃/T )−

1
2 ,

where MŶ−j
= IT −PZY−j(Y ′−jPZY−j)−1Y ′−jPZ and Z̃ contains any K−N + 1

columns of Z. The transformed variables are the residuals from projecting y,
Yj, and Z̃ on the predicted values Ŷ−j = PZY−j, and they enter an auxiliary
IV regression of y⊥ on Y ⊥j using the K −N + 1 instruments in Z⊥.

We show in Online Appendix E.3 that the absolute bias of the 2SLS esti-
mate in the auxiliary regression with the transformed variables is equal to the
absolute bias in the original regression. As a result, the weak instruments test
of Section 2 for the auxiliary regression can be used to test the null hypoth-
esis of weak instruments in the original regression with multiple endogenous
regressors. Intuitively, after projecting out the part of Yj predicted by Ŷ−j,
the covariance between the resulting residual Y ⊥j and Z⊥ is once more local-
to-zero. The Online Appendix also shows that the bias in a single element of
β̂2SLS, defined as in Section 3.1, is equal to the bias in the auxiliary regression
up to a consistently estimable constant. The weak instruments test in the
auxiliary regression can, therefore, also be used to test for bias in a single
coefficient after an adjustment to the tolerance level. Corollary 2 states these
results formally.

Corollary 2. (i) To test the hypothesis of weak instruments for absolute
bias in β̂2SLS under Assumption 3 with tolerance τ , it suffices to test the
hypothesis of weak instruments (under Assumption 1) in the auxiliary
regression of y⊥ on Y ⊥j using instruments Z⊥ with tolerance τ .

(ii) To test the hypothesis of weak instruments for absolute bias in β̂2SLS,j

under Assumption 3 with tolerance τ , it suffices to test the hypothesis
of weak instruments (under Assumption 1) in the auxiliary regression of
y⊥ on Y ⊥j using instruments Z⊥ with tolerance τ ×

√
δ̃′Σv δ̃/

√
eN ′j ΣveNj ,

where δ̃ is such that δ̃j = 1 and δ̃−j = −δ.

Proof. See Online Appendix E.3.

Critical values for a test for absolute bias in β̂2SLS can be constructed using
the testing procedure in Section 2 applied to the auxiliary regression with a
single endogenous regressor. The test for absolute bias in β̂2SLS,j proceeds
similarly, but after multiplying the tolerance level by

√
δ̃′Σv δ̃/

√
eN ′j ΣveNj . To

obtain this multiplicative factor in practice, Σv is replaced with a consistent
estimate Σ̂v and δ̃ is constructed by replacing δ by δ̂ = (Y ′−jPZY−j)

−1Y ′−jPZYj.
In both cases, the test is based on the sharp upper bound on the Nagar bias,
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and gmin for the auxiliary IV regression is the relevant test statistic. The
latter is also the effective F -statistic since the auxiliary regression has a single
endogenous regressor.

Part (i) in the Corollary effectively extends the test in Sanderson and
Windmeijer (2016) to models with general W. Unlike Sanderson and Wind-
meijer (2016), part (ii) additionally provides a test for a single element in
β̂2SLS. While they are unable to relate the single-element bias analytically
to λmin, we are able to do so because of our analytical formula for the bias
under the Nagar approximation. Finally, we note that Corrolary 2 only covers
the absolute bias criterion since the ratio of Brel to the relative bias of the
auxiliary regression still depends on the unknown parameters in β.

4 Simulations

In this section, we evaluate our test in finite-sample simulations using exten-
sions of the design in Sanderson and Windmeijer (2016). We also summarize
results from extensive additional simulations based on both asymptotic and
empirically calibrated designs, see Online Appendices G and H.

4.1 Main Setting

Our main simulation designs follow Sanderson and Windmeijer (2016) and
accordingly have dimensions N = 2, K = 4, and T = 10, 000. The structural
and first-stage errors are [ut v′t]

′ ∼ N (0,Σuv), with

(17) Σuv =

 1 0.1 −0.7

0.1 1 −0.7

−0.7 −0.7 1

 .
Different from Sanderson and Windmeijer (2016), we generate conditional
heteroskedasticity by letting Zt = (Z̄ ′Z̄/T )−

1
2 Z̄t where Z̄t ∼ N (0, Qt) and

(18) Qt = IK + Γ

[
wt

vt

] [
wt v′t

]′
Γ′,

where Γ is a K × (N + 1) random matrix with elements drawn uniformly on
the interval from −1 to 1. Our baseline simulations are based on 10 different
realizations of Γ.

We generate data using β = [0.5,−0.3]′ under both the local-to-zero and
LRR1 asymptotic embeddings. For LRR1, we set Π = [Π2δ + (0, a1)′ /

√
T :

Π2] with Π2 = [−0.5, 0.5,−0.5, 0.5]′ and δ = 0.7 as in Sanderson andWindmei-
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Figure 1: Power of Tests in Local-to-Zero Framework

(a) Full vector
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Notes: Power envelopes for various tests with τ = 0.10 and α = 0.05 over 10 different local-
to-zero simulation designs based on Sanderson and Windmeijer (2016), as described in the
text. Areas are the envelopes of power curves for the absolute (blue), relative (red), and
Stock and Yogo (2005) (yellow) bias tests. Panel (a) presents tests for the full vector β̂2SLS

and (b) on a single coefficient β̂2SLS,2, as described in Sections 2 and 3.1, respectively.

jer (2016). We vary a1 to control the value of the concentration parameter and
construct power curves. For local-to-zero, we set Π = a2×[Π2δ+[0, 3.1925]′ :

Π2]/
√
T using the same values for Π2 and δ. We control identification strength

by varying a2 to match a given minimum eigenvalue of the concentration pa-
rameter. We generate 10,000 Monte Carlo samples for each design.

4.2 Local-to-Zero Results

Figure 1 plots the envelopes of power curves for τ = 0.10 and α = 0.05 as a
function of the worst-case Nagar bias across 10 different values of Γ. Panel (a)
presents results for three tests based on the bias in the full vector of estimates
β̂2SLS. The yellow area represents the Stock and Yogo (2005) test, which
incorrectly assumes homoskedasticity. As a result, the test shows large size
distortions. When the true worst-case Nagar bias is at τ = 0.10 (solid vertical
line), the rejection rates range from 0.436 to 0.541, far exceeding the nominal
size of α = 0.05 (horizontal line).

The blue and red areas in Figure 1 represent the robust tests based on the
absolute and relative bias criteria, respectively, as described in Section 2. In
contrast to the Stock and Yogo (2005) test, both versions of the robust test
control size for all DGPs. Under the absolute bias criterion, for example, the
empirical size ranges from 0.003 to 0.024. The use of a bounding distribution
means that the robust tests are conservative: the null of weak instruments is
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Figure 2: Power of Tests in LRR1 Framework

(a) Full vector
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(b) Single coefficient
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Notes: Power envelopes for various tests over 10 different LRR1 simulation designs based on
Sanderson and Windmeijer (2016), as described in the text. Panel (a) plots tests for bias
in the full vector β̂2SLS , based on the auxiliary regression for Y ⊥2 , and Panel (b) for bias
in β̂2SLS,2 alone, based on the same regression. Areas are the envelopes of power curves for
the absolute bias test (blue) as in Section 3.2, and for the Sanderson and Windmeijer (2016)
(yellow) test.

rejected less frequently than α = 0.05 when the true worst-case Nagar bias
is 0.10. Nevertheless, both robust tests have nontrivial power. The rejection
rates under the absolute criterion, for example, rise to between 0.258 and
0.317 when the true worst-case Nagar bias is 0.05 (dashed vertical line). The
relative bias power envelope is very similar to that for absolute bias.

Panel (b) in Figure 1 considers the robust tests for a single coefficient,
as described in Section 3.1. The power envelope for the relative bias test is
unchanged from Panel (a) since τ jrel = τ , whereas that of the absolute bias
test reflects the required adjustment to the tolerance level. Size is controlled
for both versions of the test and ranges, for example, from 0.003 to 0.026 for
the absolute bias test.

4.3 LRR1 Results

Panels (a) and (b) in Figure 2 plot the power envelopes for the LRR1 tests
for either the full vector β̂2SLS, or β̂2SLS,2, respectively, based on the auxiliary
regression for Y ⊥2 . The results using Y ⊥1 (and for β̂2SLS,1) are similar and
are omitted for brevity. The curves for the Sanderson and Windmeijer (2016)
tests (yellow) reveal large size distortions when the true worst-case Nagar bias
is 0.10 (full vertical line). Because of the incorrect assumption of homoskedas-
ticity, the empirical size is as high as 0.471 in the simulations. In contrast, the
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robust tests described in Section 3.2 (blue) control size well for both targets,
with empirical size ranging between 0.006 and 0.035 for β̂2SLS and 0.009 and
0.039 for β̂2SLS,2. The robust tests have non-trivial power, rising sharply as
the worst-case Nagar bias decreases below 0.10. At a bias level of 0.05 (dashed
vertical line), power ranges between 0.211 and 0.284 for β̂2SLS and 0.105 and
0.165 for β̂2SLS,2.

4.4 Additional Simulation Results

The finite-sample simulations based on the Sanderson and Windmeijer (2016)
design, extended to feature heteroskedasticity, illustrate the good performance
of our proposed tests in a few particular DGPs. However, given the small
range of heteroskedastic structures and eigenstructures of Λ employed in the
simulations, the results are far from general. To balance a desire for uniformity
with computational feasibility, we report results for an extensive number of
asymptotic simulations in Online Appendix G. In addition, Online Appendix
H presents further finite-sample simulation results based on a DGP that is
calibrated to the empirical application in Section 5.

For the asymptotic simulations, we study models with a range of different
dimensions, and for each, we consider 5,000,000 randomly drawn DGPs. In
half of these DGPs, the parameters are drawn essentially uniformly, and in the
other half, they are drawn in the neighborhood of the parameters yielding the
worst-case Nagar bias given a random draw of the matrix W. For each DGP,
we draw values for T−

1
2Z ′w and T−

1
2Z ′v from their asymptotic distributions,

taking W as known, and construct test statistics accordingly.
The main conclusion from the asymptotic simulations is that our testing

procedures perform exactly as intended across a large number of DGPs and
model dimensions. First, we confirm that, for models with K > N + 1, the
worst-case Nagar bias is a highly effective upper bound for (Monte Carlo
approximations of) the 2SLS bias at the true model parameters. For models
with K = N + 1, the most conservative bound in part (ii) of Theorem 1 is
also a highly effective upper bound for the 2SLS bias, whereas the worst-
case Nagar bias in part (i) of Theorem 1 in general is not. The simulations,
therefore, support our recommendation for using the conservative bound in
those models and for making the same modification when using the Montiel
Olea and Pflueger (2013) test when N = 1 and K = 2. As explained in
Section 2.5, in models with K = N , we modify the bias criterion to assess the
median bias rather than the mean bias. Our simulations demonstrate that
the more conservative bound is also a highly effective bound for Monte Carlo
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median bias in just-identified models.
Second, we find that both versions of the robust test (based on absolute or

relative bias) effectively control size against the upper bounds on the Nagar
bias. This is the case across all model dimensions we consider, including when
K ≤ N + 1 as long as the modifications discussed in Section 2.5 are adopted.

Third, the robust tests have considerable power in general, with rejection
rates that rise sharply not too far below the chosen tolerance level and that
go to unity as the bounds on the Nagar bias in the DGP become smaller.

Finally, we explore the performance of t-tests for elements of β conditional
on the value of the first-stage test. While developing a general size-based test
is beyond the scope of this paper, the simulations demonstrate a strong rela-
tionship between the test statistic gmin and the size distortions of a standard
two-side t-statistic for β̂2SLS. Provided the number of instruments K remains
relatively small, size distortions appear well controlled at values of gmin well
below those required to control bias at τ = 0.10.

In order to also evaluate the performance of the tests in a small-sample set-
ting that reflects an actual empirical application, Online Appendix H presents
the simulation results based on a DGP that is calibrated to the empirical ap-
plication in the next section. The results again confirm that the robust tests
effectively control size and attain meaningful power as the bias decreases be-
low the tolerance level.

5 Empirical Application

We illustrate our test in an application due to Ramey and Zubairy (2018), who
use local projections to estimate government spending multipliers using mili-
tary spending news and recursively identified government spending shocks as
instruments. The authors’ key innovation is to allow the spending multipliers
to depend on the state of the business cycle or, alternatively, on the monetary
policy regime. To this end, the authors interact government spending with
an indicator of whether the economy is in a period of slack or an indicator
of whether the policy rate is constrained at the zero lower bound (ZLB). Us-
ing their original notation, Ramey and Zubairy (2018) estimate cumulative
multipliers for h = 0, 1, . . . based on

h∑
j=0

yt+j =It−1

[
γA,h + φA,h(L)zt−1 +mA,h

h∑
j=0

gt+j

]
(19)

+ (1− It−1)

[
γB,h + φB,h(L)zt−1 +mB,h

h∑
j=0

gt+j

]
+ ωt+h,
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where h is the horizon in quarters, yt is detrended GDP, It−1 is the regime
indicator, zt−1 is a vector of controls, φA,h(L) and φB,h(L) are polynomials
in the lag operator, gt is government spending divided by trend GDP, and
mA,h,mB,h are the cumulative spending multipliers over h quarters in the
respective states. The use of interaction terms involving endogenous regressors
is quite common and is one example of how multiple endogenous regressors
often arise in practical applications.

To assess instrument relevance, Ramey and Zubairy (2018) apply the Mon-
tiel Olea and Pflueger (2013) test to the individual subsamples implied by the
regime indicators, as for each such subsample there is only a single endogenous
regressor. However, to assess whether the multiplier estimates are statistically
different across regimes, government spending ultimately has to be interacted
with the indicators in a single specification as in (19), in which there are not
one but two endogenous regressors (N=2). As autocorrelated errors are a
common feature of local projections such as (19), Ramey and Zubairy (2018)
unfortunately cannot rely on the Stock and Yogo (2005) test to assess instru-
ment strength for their regression of interest. Our robust tests, in contrast,
allow for a direct test of instrument relevance for the specifications in (19).
We therefore implement our test as described in Section 1 for each bias crite-
rion using τ = 0.10 and α = 0.05, and using the same Newey and West (1994)
estimator as Ramey and Zubairy (2018). The instruments are the military
news measure and the recursive spending shocks interacted with the regime
indicator as instruments, such that K = 4. For reference, we replicate Ramey
and Zubairy’s (2018) results for the regime subsamples and Montiel Olea and
Pflueger’s (2013) effective F -statistic in Online Appendix I.

Figure 3 reports the results for the main specifications and sample periods
discussed in Ramey and Zubairy (2018). Panel (a) covers specifications that
interact government spending with a measure of slack based on the unemploy-
ment rate. The starred blue line plots the difference between our test statistic
gmin and the relative bias critical value for τ = 0.10, α = 0.05, truncated
at 30 for readability as in Ramey and Zubairy (2018). The circled red line
does the same for the absolute bias critical values. Although not reported by
Ramey and Zubairy (2018), for illustrative purposes, the crossed yellow line
plots the difference between the Cragg and Donald (1993) test statistic and
the Stock and Yogo (2005) critical value. Panel (b) in Figure 3 shows the cor-
responding results for specifications where government spending is interacted
with an indicator for whether monetary policy is constrained by the ZLB. For
the interested reader, we report the test statistics and critical values for our
tests separately in Online Appendix I.
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Figure 3: Test Results for the Ramey and Zubairy (2018) Regression Across Horizons
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(b) Government Spending Interacted with ZLB Indicator
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Notes: Panel (a) reports results for specifications with government spending interacted with
an indicator for whether the economy was in a state of slack, using combined instruments
for different sample periods: 1890-2015, 1947-2015 (post-WWII), and 1890-2015 excluding
WWII. The starred blue line plots the difference between the robust test statistic and relative
bias critical values for τ = 0.10 and α = 0.05 across horizons. As in Ramey and Zubairy
(2018), we cap the results at 30 for visibility. The circled red line shows the difference between
the robust test statistic and absolute bias critical values. The crossed yellow line shows the
difference between the Cragg and Donald (1993) statistic and critical values from Stock and
Yogo (2005). Panel (b) reports analogous results for specifications with government spending
interacted with an indicator for whether monetary policy is constrained by the zero lower
bound for different sample periods, 1890-2015 and 1890-2015 excluding WWII.

Similar to the regime-specific results reported by Ramey and Zubairy
(2018), our robust test with relative bias critical values rejects that the in-
struments are weak at relatively short horizons across all samples. Bias due
to weak instruments becomes a concern in the specifications with the slack
indicator after horizons between 5 to 8 quarters unless the sample includes
WWII. In the specifications with the ZLB indicator, bias becomes a concern
for horizons beyond 9 quarters. For the absolute bias version of the test, the
conclusions are broadly similar. The key differences are sharp drops in instru-
ment relevance at short horizons (2-4 quarters) for the full sample with the
slack indicator and both samples with the ZLB indicator. However, at longer
horizons, the instruments appear somewhat more relevant, and the bias lower,
based on this criterion.
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Comparison with the results from the Stock and Yogo (2005) test demon-
strates the importance of allowing for heteroskedasticity and autocorrelation
in the first-stage testing procedures. For three of the five specifications con-
sidered in Figure 3, the Stock and Yogo (2005) test leads to a rejection of weak
instruments at all horizons considered. For the remaining two specifications,
the Stock and Yogo (2005) test rejects weak instruments for an additional 3
to 4 quarters compared to the robust test.

The comparison of our robust test results to the regime-specific results in
Ramey and Zubairy (2018), reported in Online Appendix I, is also informa-
tive. Since the point estimates (and thus the bias) in the interacted regression
are the same as those obtained from the regressions in the regime subsamples,
it is not surprising that when each regime-specific regression appears to be
separately strongly identified, the interacted regression generally is too. This
is particularly true for the relative bias since this test is a direct generalization
of the Montiel Olea and Pflueger (2013) test they adopt.11 The more interest-
ing cases occur when one state is strongly identified, but the other is weakly
identified. Ex ante, it is not obvious whether the interacted model would
fall above or below the relevant critical value. In this application, the more
weakly identified state appears to dictate the test result. While intuitive, this
need not be the case in general and depends on the covariance structure of
the regressors and instruments.

Finally, Online Appendix I reports results from the size-based approach of
Andrews (2018) for comparison. While not a weak instruments test per se,
the two-step procedure in Andrews (2018) determines the maximum value γ̂
for which a robust confidence set of size 1−α− γ̂ is contained by non-robust
(e.g., Wald) set of size 1− α. If γ̂ exceeds a pre-specified tolerance, say 0.10,
the conclusion is that instruments are weak. The Online Appendix shows that
the size distortions follow a similar qualitative pattern to the bias, growing
larger at longer horizons and after omitting WWII or the early part of the
sample. With a tolerance level for size distortions of 0.10, weak instruments
are rejected much more frequently than the bias-based test, which is also in
line with the results from the asymptotic simulations discussed earlier. We
emphasize, however, that both tests are informative about different properties
of the instruments: one focuses on their ability to recover point estimates, the
other on whether they lead to reliable inference using standard methods. A
researcher may care about either separately or both.

11In just a few cases where one state is only marginally strongly identified, the interacted specification
is weakly identified. We attribute this to the fact that the test is more conservative for N > 1, due to the
approximation used to construct a limiting distribution of a minimum eigenvalue. See Online Appendix
I for a detailed discussion.
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6 Concluding Remarks

First-stage tests like those proposed by Stock and Yogo (2005) or, more re-
cently, Montiel Olea and Pflueger (2013) and Sanderson and Windmeijer
(2016), are a widely-used diagnostic tool to assess the bias of 2SLS. When
researchers are not comfortable imposing the assumption of CHSU errors for
second-stage inference, they should also avoid imposing such assumptions in
first-stage testing procedures. In this paper, we provide generalized weak
instruments testing procedures that are valid under heteroskedasticity and
autocorrelation regardless of the number of endogenous regressors. Our test
is based either on the absolute bias criterion of Stock and Yogo (2005) or
on a generalization of the bias criterion of Montiel Olea and Pflueger (2013).
It accommodates settings where instruments are weak because the matrix
of first-stage parameters is statistically close to zero, as in Stock and Yogo
(2005), or because it is near a column rank reduction of one, as in Sanderson
and Windmeijer (2016). Finally, we develop extensions to test for the bias in
a single element of a vector of 2SLS estimates. The computer code accompa-
nying this paper provides empirical researchers with an easy-to-use bias-based
first-stage test under assumptions that match those imposed for second-stage
inference. Future work could consider the generalization of the size-based
test of Stock and Yogo (2005). The first-stage test statistic in this paper
could also be the foundation for extending the t-statistic inference approach
for K = 1, N = 1 models of Lee et al. (2022). Finally, our generalization of
the Nagar approximation to the 2SLS bias should also permit extensions to
the methods in Ganics et al. (2021) to construct confidence intervals for the
2SLS bias.
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A Proof of Lemma 1

From Assumption 2.a it follows that η1 = S12S
−1
2 (η2− c) + ε, where ε is mean

zero and independent of η2 and c = vec(C ′). Substituting into the expression
for β∗2SLS in Proposition 1 and taking expectations,

E [β∗2SLS] = E
[(
R′N,K(η2η

′
2 ⊗ IK)RN,K

)−1
R′N,K vec(S12S

−1
2 (η2 − c)η′2)

]
.

(A.1)

Defining l = S
− 1

2
2 c, ψ = S

− 1
2

2 (η2 − c) ∼ N (0, INK) and using vec(UV ) =

(V ′ ⊗ I) vec(U), the bias in (A.1) can be rewritten as

E [β∗2SLS] = E

[(
R′N,K(S

1
2
2 (l + ψ)(l + ψ)′(S

1
2
2 )′ ⊗ IK)RN,K

)−1

(A.2)

×R′N,K
(
S

1
2
2 (l + ψ)ψ′S

− 1
2

2 ⊗ IK
)]

vec (S12) .

Using the definitions Φ = R′N,K(S2 ⊗ IK)RN,K , S = ((Φ/K)−
1
2 ⊗ IK)S

1
2
2 ,

and ρi =
(
(R′N,K(S2⊗ IK)RN,K)−

1
2 ⊗ IK2

)
vec (S12) /

√
bi, the unweighted bias

becomes1

E [β∗2SLS] = KΦ−
1
2E
[ (
R′N,K(S(l + ψ)(l + ψ)′S ′ ⊗ IK)RN,K

)−1(A.3)

×R′N,K
(
S(l + ψ)ψ′S−1 ⊗ IK

) ]
ρi
√
bi.

1The matrix S is non-symmetric in general, and Tr(S) = Tr(SS ′) = NK.
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Using Definition 2,

B2
i =

E [β∗2SLS]′ ΞiE [β∗2SLS]

bi
= ρ′ih

′Ξ̃ihρi,(A.4)

where h = KE
[(
R′N,K(S(l + ψ)(l + ψ)′S ′ ⊗ IK)RN,K

)−1
R′N,K (S(l + ψ)ψ′S−1 ⊗ IK)

]
and Ξ̃i = Φ−

1
2 ΞiΦ

− 1
2 . Therefore, Bi = ||Ξ̃

1
2
i hρi||2.

B Proof of Theorem 1

Define the function h : RNK 7→ RN×NK2

h(ψ) =
(
R′N,K(S(l + ψ)(l + ψ)′S ′ ⊗ IK)RN,K

)−1(B.1)

×R′N,K
(
S(l + ψ)ψ′S−1 ⊗ IK

)
.

The Nagar approximation of h, denoted by hn, is the expectation of the
second-order Taylor expansion of Kh(ψ) evaluated at ψ = 0, and is given in
vectorized form by

vec(hn) =
K

2
(1′NK ⊗ I(NK)2)

(
KN∑
j=1

(
eNKj (eNKj )′ ⊗ I(NK)2

)
(O2h(0))j

)
,

(B.2)

where 1m is the m× 1 vector of ones, emj the m× 1 vector with j-th element
equal to one and zeros in all other rows, and O2h(ψ) is the (NK)3 × NK

second matrix derivative of h. Using the matrix differentiation results in, for
instance, Magnus and Neudecker (2019), O2h(ψ) is given by

O2h(ψ) =(INK ⊗ A3(ψ))OA1(ψ) + (A1(ψ)′ ⊗ I(NK)2)OA3(ψ)(B.3)

+ (INK ⊗ A4(ψ))OA2(ψ) + (A2(ψ)′ ⊗ I(NK)2)OA4(ψ),

39



where

A1(ψ) = −(C1(ψ)⊗ C1(ψ))B1 ((S ⊗ S(l + ψ)) + (S(l + ψ)⊗ S))

A2(ψ) = B2

((
(S−1)′ ⊗ S(l + ψ)

)
+
(
(S−1)′ψ ⊗ S

))
A3(ψ) =

(
S(l + ψ)ψ′S−1 ⊗ IK

)′
RN,K ⊗ IN

A4(ψ) = INK2 ⊗ C1(ψ)

OA1(ψ) =
(
((S ⊗ S(l + ψ)) + (S(l + ψ)⊗ S))

′
B′1 ⊗ IN2

)
C2(ψ)− (INK ⊗ (C1(ψ)⊗ C1(ψ)))B3

OA2(ψ) = (INK ⊗B2)
(
(vec((S−1)′)⊗ INK)S + (KNK,NK ⊗ INK)(INK ⊗ vec(S))(S−1)′

)
OA3(ψ) = (IN ⊗KN,NK2 ⊗ IN )(I(NK)2 ⊗ vec(IN ))KN,NK2A2(ψ)

OA4(ψ) = (INK2 ⊗KN,NK2 ⊗ IN )(vec(INK2)⊗ IN2)A1(ψ)

B1 = (R′N,K ⊗R′N,K)(INK ⊗KK,NK ⊗ IK)
(
I(NK)2 ⊗ vec(IK)

)
B2 = (INK2 ⊗R′N,K)(INK ⊗KK,NK ⊗ IK)

(
I(NK)2 ⊗ vec(IK)

)
B3 = (INK ⊗B1) (vec(S ⊗ INK)S + (KNK,NK ⊗ INK)(INK ⊗ vec(S))S)

C1(ψ) =
(
R′N,K(S(l + ψ)(l + ψ)′S ′ ⊗ IK)RN,K

)−1

C2(ψ) = (IN ⊗KN,N ⊗ IN ) [vec(A0(ψ))⊗ IN2 : IN2 ⊗ vec(A0(ψ))] [A1(ψ)′ : A1(ψ)′]′.

Writing (B.2) in matrix form and simplifying yields

hn = Λ−1
(
R′N,K − (vec(Λ−1)⊗ IN

)′
(IN ⊗KN,N)

(
(IN2 +KN,N)(IN ⊗ L)⊗ L

))
,

(B.4)

where L = K−
1
2R′N,K(Sl⊗ IK) and Λ is the concentration parameter in Defi-

nition 1. To proceed, we reparametrize the functional dependence of the bias
on l through

l = S−1
√
K vec(L′0D

1
2
ΛQ
′
Λ),(B.5)

where QΛ ∈ ON×N ,DΛ ∈ RN×N contain the eigenstructure of the concentra-
tion parameter Λ, and L0 ∈ ON×K is an orthogonal matrix. By definition,
Λ = QΛDΛQ

′
Λ, where DΛ is a diagonal matrix containing the eigenvalues

λi > 0, i = 1, ..., N , and QΛQ
′
Λ = IN . The reparametrization in (B.5) refor-

mulates the choice of the NK parameters of l as an equivalent choice of the
N free parameters in DΛ, the N2 − (N + 1)N/2 free parameters of QΛ, and
the NK − (N + 1)N/2 free parameters of L0.

Using the eigenvalue decomposition Λ = QΛDΛQ
′
Λ, and the fact that (B.5)

implies L0 = Q′ΛΛ−
1
2L, (B.4) can be rewritten as

hn = QΛD
− 1

2
Λ M1(D−

1
2

Λ QΛ ⊗ L0 ⊗ L0)M2,(B.6)

whereM1 = R′N,N (IN3 + (KN,N ⊗ IN)) andM2 = RN,KR
′
N,K/(N +1)−INK2 ,
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which provides the Nagar approximation for the expectation in the general
bias, hn, with

Bi,n(β,QΛ,DΛ, L0,W) = ||Ξ̃
1
2
i hnρi||2 ≤ ||Ξ̃

1
2
i ||2||hnρi||2.(B.7)

Let B∗i,n(W, λmin) = ||Ξ̃
1
2
i ||2 sup

β,QΛ,DΛ,L0

{||hnρi||2} denote the upper bound on

the Nagar bias over β ∈ RN , QΛ ∈ ON×N , L0 ∈ ON×K and DΛ in the set of
all diagonal matrices with no diagonal element smaller than λmin, the smallest
eigenvalue of the concentration parameter.

Using the definitions of S1, S2 and S12 in (8),

Tr(S1) = Tr((β̃′ ⊗ IK)W(β̃ ⊗ IK)) = β̃′R′N+1,K(W ⊗ IK)RN+1,K β̃,(B.8)

vec(S12)′ = vec((β̃′ ⊗ IK)[W12 : W2])′

= vec(β̃′R′N+1,K([W12 : W2]⊗ IK))′,

and σ2
u = β̃′Σwvβ̃, where β̃ = [1 : −β′]′. Substituting into the definition of ρi

in Lemma 1 yields

ρi = K−
1
2 Ψixi/

√
x′ixi,(B.9)

where Ψabs =
(
SW− 1

2
2 [W12 : W2]′ ⊗ IK)RN+1,KΣ

− 1
2

wv , xabs = Σ
1
2
wvβ̃, Ψrel =(

SW− 1
2

2 [W12 : W2]′ ⊗ IK)RN+1,K(R′N+1,K(W ⊗ IK)RN+1,K)−
1
2 , and xrel =

(R′N+1,K(W ⊗ IK)RN+1,K)
1
2 β̃. Since

sup
β∈RN
||hnρi||2 = K−

1
2 sup
xi∈RN+1

||hnΨixi||2
||xi||2

= K−
1
2 ||hnΨi||2,(B.10)

the optimization of the Nagar bias over β amounts to taking the largest sin-
gular value of the matrix hnΨi.

Next, note that hnh
′
n = QΛDhQ′Λ where Dh = (K − 2(1 + N))D−2

Λ +

D−
1
2

Λ M1(D−1
Λ ⊗IN2)M ′

1D
− 1

2
Λ is a diagonal matrix, such that QΛ are eigenvectors

of hnh′n and Dh contains the eigenvalues. The j-th diagonal element of Dh is

1

λ2
j

(
K −N + 1 +

N∑
k 6=j

λj
λk

)
> 0,(B.11)

where λj > 0 is the j-th eigenvalue of Λ. Each eigenvalue of hnh′n is decreasing
in all eigenvalues of Λ. Making the dependence on DΛ explicit by the nota-
tion hn(DΛ) and fixing QΛ, it is therefore the case that λ−2

minhn(IN)′hn(IN)−
hn(DΛ)′hn(DΛ) is positive semidefinite for all DΛ with λmin as the small-
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est diagonal element. This, in turn, implies that λ−2
minΨ′ihn(IN)′hn(IN)Ψi −

Ψ′ihn(DΛ)′hn(DΛ)Ψi is positive semidefinite, see Proposition 8.1.2 in Bern-
stein (2009). It follows from Weyl’s inequality that λ−1

min||hn(IN)Ψi||2 ≥
||hn(DΛ)Ψi||2, see for example Theorem 8.4.9 in Bernstein (2009). Therefore,

sup
DΛ:λj≥λmin

K−
1
2 ||hn(DΛ)Ψi||2 = K−

1
2λ−1

min||QΛM1(QΛ ⊗ L0 ⊗ L0)M2Ψi||2,
(B.12)

which states that the largest bias occurs when all eigenvalues of the concentra-
tion parameter are equal to the smallest eigenvalue, and therefore when DΛ =

λminIN . Finally, sup
L0∈ON×K

{||QΛM1(QΛ⊗L0⊗L0)M2Ψi||2} = sup
L0∈ON×K

{||M1(IN⊗

L0⊗L0)M2Ψi||2} for any QΛ, and therefore the upper bound for the bias does
not depend on QΛ. This means the upper bound is

B∗i,n(W, λmin) = λ−1
min||Ξ̃

1
2
i ||2K−

1
2 sup
L0∈ON×K

{||M1(IN ⊗ L0 ⊗ L0)M2Ψi||2},

(B.13)

which concludes the proof of part (i) of the theorem.
Turning to part (ii), the upper bound B∗i,n(W, λmin) ≤ λ−1

min||Ξ̃
1
2
i ||2(2(N +

1)/K)
1
2 ||M2Ψi||2 follows fromK−

1
2 ||hn(λminIN)Ψi||2 ≤ K−

1
2λ−1

min||M1||2||(IN⊗
L0 ⊗ L0)||2||M2Ψi||2 and the fact that ||M1||2 = (2(N + 1))

1
2 and ||(IN ⊗

L0 ⊗ L0)||2 = 1. The inequality follows from Proposition 9.6.1 in Bernstein
(2009). Finally, the upper bound, B∗i,n(W, λmin) ≤ λ−1

min||Ξ̃
1
2
i ||2||Ψi||2, follows

from K−
1
2 ||hn(λminIN)Ψi||2 ≤ K−

1
2 ||hn(λminIN)||2||Ψi||2 = λ−1

min||Ψi||2 since
||hn(λminIN)||2 = K

1
2λ−1

min, see (B.11).

C Proof of Theorem 2.

The Laplace transform of the trace of a noncentral Wishart distribution is
given in Letac and Massam (2018), equation (1), from which it follows that
the cumulant generating function is

(C.14) KTr(ζ)(t) = −1

2
Tr (Ω)− K

2
ln |INK − 2Σ|+ 1

2
Tr ((INK − 2Σ)−1Ω)

for a scalar, t. We follow e.g., Muirhead (1982) and Kollo and Rosen (1995)
in evaluating the cumulant generating function for a submatrix,
(C.15)

KTr(ζ)(TN) = −1

2
Tr (Ω)−K

2
ln |INK−2M(TN)Σ|+1

2
Tr ((INK − 2M(TN)Σ)−1Ω),
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where TN is a N ×N matrix and

(C.16) M(TN) =
∑

i,j=1,...,N

tijMij, Mij = eje
′
i,

where ei is the i-th block of K columns of the matrix INK , so that Mijζ is the
matrix containing the i-th block ofK rows of ζ in its j-th block ofK rows, and
zero otherwise. Indexing each selection matrix Mij to a scalar value tij yields
the cumulant generating function of the trace of Mijζ, analogously to Mathai
(1980), when the remainder of TN is set to zero. Note that Tr(Mijζ) = Tr(ζij),
since the j-th diagonal block of MijW is ζij, and all other diagonal blocks are
zero.

The ij entry of R′N,K(ζ ⊗ IK)RN,K corresponds to the trace of the ij

K × K block of ζ. Thus, the n-th cumulants of R′N,K(ζ ⊗ IK)RN,K are ob-
tained by taking the coefficients on TnN

n!
in the Taylor expansion of KTr(ζ)(TN),

evaluated at TN = 0. Let ι(i) denote the index of some K × K block of a
NK×NK matrix. Then κn(ζ)ι(1),ι(2),... denotes the n-th cumulant of Tr(ζι(1))

with Tr(ζι(2)) . . . (i.e. the covariance for n = 2, etc.). Taking such partial
derivatives yields the following expressions:

κ
ι(1)
1 (ζ) =

K

2
Tr(2Mι(1)Σ) +

1

2
Tr(2Mι(1)ΣΩ)(C.17)

κ
ι(1),ι(2)
2 (ζ) =

K

2
Tr(22Mι(2)ΣMι(1)Σ) +

1

2

∑
p∈P(ι(1),ι(2))

Tr(22Mp(1)ΣMp(2)ΣΩ)

(C.18)

κ
ι(1),ι(2),ι(3)
3 (ζ) =

K

2

∑
p∈P(ι(2),ι(3))

Tr(23Mp(1)ΣMp(2)ΣMι(1)Σ)

(C.19)

+
1

2

∑
p∈P(ι(1),ι(2),ι(3))

Tr(23Mp(1)ΣMp(2)ΣMp(3)ΣΩ)

κι(1),ι(2),...
n (ζ) =2n−1

K ∑
p∈P(ι(2),ι(3),...)

Tr(Mp(1)ΣMp(2)Σ . . .Mp(n−1)ΣMι(1)Σ)

(C.20)

+
∑

p∈P(ι(1),ι(2),ι(3),...)

Tr(Mp(1)ΣMp(2)ΣMp(3)Σ . . .Mp(n)ΣΩ)

 ,

where P(·) denotes the set of all permutations of the indices in the argument
and p(i) denotes the i-th index in a given permutation. Note that for N = 1,
the formulas collapse to those for the trace in Mathai (1980).

We next prove a lemma relating Tr(Mι(1)ΣMι(2)ΣMι(3)Σ . . .Mι(n)Σ) to
Tr(Σι(1)Σι(2)Σι(3) . . .Σι(n)). For this purpose, denote the row block index of
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ι(i) as ι(i)1 and the column block index as ι(i)2, so Mι(i) = Mι(i)1,ι(i)2 . Addi-
tionally, let Ui• denote the i-th block of K rows of the matrix U , and similarly
U•i for the block of columns.

Lemma 2. Tr(Mι(1)ΣMι(2)Σ . . .Mι(n)Σ) = Tr(Σι(1)1,ι(2)2Σι(2)1,ι(3)2 . . .Σι(n)1,ι(1)2).

Proof. For a general symmetric matrix U , the matrix Mι(1)U has the ι(1)1

block of K rows of U transferred to its ι(1)2 block of rows, with the remain-
der zeros. The product of a sequence of such matrices, Mι(1)U . . .Mι(n−1)U

contains zeros except for the ι(1)2 block of K rows. Suppose that this block
of rows can be written as Uι(1)1,ι(2)2Uι(2)1,ι(3)2 . . . Uι(n−1)1•. Then the product of
Mι(1)U . . .Mι(n−1)UMι(n)U is also a matrix of zeros except for the ι(1)2 block of
K rows, which are equal to Uι(1)1,ι(2)2Uι(2)1,ι(3)2 . . . Uι(n−1)1ι(n)2Uι(n)1•. Consider
as a base caseMι(1)UMι(2)U . The product is zeros except for the ι(1)2 block of
K rows, which is equal to Uι(1)1,ι(2)2Uι(2)1•. Thus, by induction, it follows that
the product of Mι(1)U . . . UMι(n)U is a matrix of zeros, except for the ι(1)2

block of K rows, which are equal to Uι(1)1,ι(2)2Uι(2)1,ι(3)2 . . . Uι(n)1•, for all n. It
follows immediately that Tr(Mι(1)U . . . UMι(n)U) = Tr(Uι(1)1,ι(2)2Uι(2)1,ι(3)2 . . . Uι(n)1,ι(1)2),
since the latter argument is the single non-zero diagonal block. Letting U = Σ

and applying the preceding result yields the stated lemma.

Applying Lemma 2 to the cumulants above yields

κ
ι(1)
1 (ζ) =

K

2
Tr(2Σι(1)) +

1

2
Tr(2Σι(1)Ω)

(C.21)

κ
ι(1),ι(2)
2 (ζ) =

K

2
Tr(22Σι(2)1,ι(1)2

Σι(1)1,ι(2)2
) +

1

2

∑
p∈P(ι(1),ι(2))

Tr(22Σp(1)1,p(2)2
Σp(2)1,p(1)2

Ω)

(C.22)

κ
ι(1),ι(2),ι(3)
3 (ζ) =

K

2

∑
ι∈P(ι(2),ι(3))

Tr(23Σp(1)1,p(2)2
Σp(2)1,ι(1)2

Σι(1)1,p(1)2
)

(C.23)

+
1

2

∑
ι∈P(ι(1),ι(2),ι(3))

Tr(23Σp(1)1,p(2)2
Σp(2)1p(3)2

Σp(3)1,p(1)2
Ω)

κι(1),ι(2),...
n (ζ) =2n−1

K ∑
p∈P(ι(2),ι(3),...)

Tr(Σp(1)1,p(2)2
Σp(2)1,p(3)2

. . .Σp(n−1)1,ι(1)2
Σι(1)1,p(1)2

)

(C.24)

+
∑

p∈P(ι(1),ι(2),...)

Tr(Σp(1)1,p(2)2
Σp(2)1,p(3)2

. . .Σp(n)1,p(1)2
Ω)

 .

We ultimately need the cumulants of γ′R′N,K(ζ ⊗ IK)RN,Kγ. Using the
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preceding expressions for cumulants of R′N,K(ζ ⊗ IK)RN,K , we can compute
the cumulants of such quadratic forms. By homogeneity, the n-th cumulant
of the quadratic form γ′Uγ for a random matrix U is given by
(C.25)

κn(γ′Uγ) =
N∑

ι(1)1=1

N∑
ι(1)2=1

. . .
N∑

ι(n)1=1

N∑
ι(n)2=1

(
n∏
j=1

γι(j)1γι(j)2

)
κι(1),...,ι(n)
n (U),

where ι(i) denote indices of individual elements of U . Given the previously
derived expressions for the cumulants of the entries of R′N,K(ζ ⊗ IK)RN,K , we
can now compute the cumulants of γ′R′N,K(ζ ⊗ IK)RN,Kγ, noting that the
cumulants for the ij entry are equal to those for the trace of the ij K × K
block of ζ, Tr(ζij).

Plugging in the first summation in κι(1),...ι(n)
n (ζ), equation (C.24),

N∑
ι(1)1=1

N∑
ι(1)2=1

. . .
N∑

ι(n)1=1

N∑
ι(n)2=1

 n∏
j=1

γι(j)1
γι(j)2

 ∑
p∈P(ι(2),ι(3),...)

Tr
(
Σp(1)1,p(2)2

Σp(2)1,p(3)2
. . .

(C.26)

Σp(n−1)1,ι(1)2
Σι(1)1,p(1)2

)
=

∑
p∈P(ι(2),ι(3),...)

N∑
ι′(1)1=1

N∑
ι′(1)2=1

. . .

N∑
ι′(n)1=1

N∑
ι′(n)2=1

 n∏
j=1

γι′(j)1
γι′(j)2

Tr(Σι′(1) . . .Σι′(n))

=(n− 1)!
N∑

ι′(1)1=1

N∑
ι′(1)2=1

. . .
N∑

ι′(n)1=1

N∑
ι′(n)2=1

 n∏
j=1

γι′(j)1
γι′(j)2

Tr(Σι′(1) . . .Σι(n)′),

where we used a change of indices to move from the first line to the second
(recognizing that each set of permuted indices on the blocks of Σ is just the
index for some other block of Σ indexed by ι′(i)) and in moving to the third
observed that the summand of the outer summation does not depend on the
indices of that summation. By the definition of matrix multiplication and
considerable algebra,

Tr(((γγ′⊗IK)U)n) =
N∑

ι(1)1=1

N∑
ι(1)2=1

. . .

N∑
ι(n)1=1

N∑
ι(n)2=1

(
n∏
j=1

γι(j)1γι(j)2)

)
Tr(Uι(1) . . . Uι(n)).

Thus, the expression further simplifies to

(C.27) (n− 1)! Tr(((γγ′ ⊗ IK)Σ)n).

Applying the same steps to the second summation in the cumulants,

(C.28) n! Tr(((γγ′ ⊗ IK)Σ)nΩ).
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Combining both terms yields the expression in part (i) of the theorem.
Turning to part (ii), using the fact that for a positive semi-definite matrix

V , |Tr(UV )| ≤ maxevalU Tr(V ), see Fact 8.12.29 in Bernstein (2009), and
the fact that Tr

(
((γγ′ ⊗ IK)Σ)nΩ

)
≥ 0, we have

Tr
(
((γγ′ ⊗ IK)Σ)nΩ

)
≤ maxeval{((γγ′ ⊗ IK)Σ)n−1}Tr

(
(γγ′ ⊗ IK)ΣΩ

)(C.29)

= Kλmin maxeval{((γγ′ ⊗ IK)Σ)n−1},

where the last step follows from Tr
(
(γγ′ ⊗ IK)ΣΩ

)
= γ′R′(ΣΩ ⊗ IK)Rγ =

Kλmin. Next note that

maxeval{((γγ′ ⊗ IK)Σ)n−1} = (maxeval{(γγ′ ⊗ IK)Σ})n−1

(C.30)

=
(

maxeval{Σ
1
2 (γγ′ ⊗ IK)Σ

1
2}
)n−1

≤ (maxeval{Σ}maxeval{(γγ′ ⊗ IK)})n−1

= maxeval{Σ}n−1,

where the inequality follows from Ostrowski’s theorem, for example, Theorem
4.5.9 in Horn and Johnson (2013), and the last step is due to the fact that
the matrix γγ′ has only one non-zero eigenvalue that is equal to one. We
therefore have the inequality

Tr
(
((γγ′ ⊗ IK)Σ)nΩ

)
≤ Kλmin maxeval{Σ}n−1.(C.31)

Using the Lieb-Thirring inequality for positive semi-definite matrices, see
Bernstein (2009) Fact 8.12.17,

Tr(((γγ′ ⊗ IK)Σ)n) ≤Tr((γγ′ ⊗ IK)nΣn) = Tr(((γγ′)n ⊗ IK)Σn) = Tr((γγ′ ⊗ IK)Σn),

(C.32)

where the last equality results from the fact that the matrix γγ′ has only one
non-zero eigenvalue that is equal to one.

Since Tr((γγ′ ⊗ IK)Σn) = γ′R′(Σn ⊗ IK)Rγ with γ′γ = 1, we have

Tr(((γγ′ ⊗ IK)Σ)n) ≤ maxeval{R′(Σn ⊗ IK)R}.(C.33)

Applying the two inequalities (C.31) and (C.33) leads to the bounds in part
(ii) of the theorem.
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