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1 Introduction

Human beings have limited capacity for attention (Kahneman (2003); Miller (1956)).

We actively attend to the most urgent or important decisions in our lives, while typi-

cally leaving the rest to heuristics or habits. This has implications for societal welfare.

When ignored decisions have external benefits or costs, understanding and remedy-

ing the source of inattention can improve social welfare (Allcott et al. (2023)). This

paper seeks evidence of inattention, and an opportunity to overcome it, in the context

of residential energy efficiency investments.

Energy efficiency continues to be a central element to climate change mitigation

plans worldwide (Cabeza et al. (2022)). However, the reality of energy efficiency has

consistently fallen far short of the aspiration, with a large and growing body of ev-

idence showing that most energy efficiency programs fail to yield energy reduction

benefits that meet (or even approach) expectations (Allcott and Greenstone (2017);

Fowlie et al. (2018); Burlig et al. (2020); Chuang et al. (2022)). Economists have sought

to understand why energy efficiency programs tend to underperform (Christensen et

al. (2023); Boomhower and Davis (2020); Gilbert et al. (2022); Zivin and Novan (2016))

so that we may be able to inform how to better target these programs in the future.

While the reasons for energy efficiency underperformance are many, this literature

often returns to a common theme: consumers appear to be inattentive to energy effi-

ciency investment opportunities, even when they may be privately net-beneficial.

In this paper, we test the hypothesis that residential electricity customers exposed

to exogenous and large bill shocks subsequently invest more in home energy effi-

ciency upgrades. The intuition is that customers are inattentive to bills as long as they

are within a normal range, and independently or as a result, they are also inattentive

to advantageous energy efficiency investments. However, an abnormally large bill

may “shock” a customer into shifting attention towards their electricity consumption

and energy efficiency investment opportunities.1

1A similar channel has been documented in the rooftop solar industry, in which short-run weather fluc-
tuations influence the homeowner decision to invest in solar panels (Liao (2020) and Lamp (2023)). Note,
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Our empirical setting is a utility district in Connecticut, United Illuminating (UI),

which serves about 300,000 residential electricity customers. We observe household-

level monthly electricity bills with information on the usage and total billed amount

for all customers for years 2008-2017. During this period, like many utilities, UI had

active energy efficiency programs that offered UI customers reduced prices on home

audits and energy efficiency investments. Data on investments, including audits, are

recorded at the household-day level and we match these records to the billing data.

We collect daily temperature data in the service territory to be used as part of our

empirical strategy. Our sample focuses on customers living in single-family homes

with prolonged (more than 3 years of) continuous service from UI. Our final sample

comprises of 120,000 customers with 11.5 million monthly observations. At some

point during our sample, 19% of households make some energy efficiency investment

through our observed investment channel.

We develop a novel identification strategy to estimate the causal effect of bill

shocks on energy efficiency investments. The endogeneity concern in our setting is

that electricity consumption and the choice of durable good attributes are jointly de-

termined by heterogeneous consumer preferences. To address this, we implement

an instrumental variables model based on a combination of temperature extremes

(heat waves and cold snaps) and idiosyncrasies of billing patterns across customers.

UI’s customers are split across 17 billing cycles that have associated recurring billing

months that start and end at different times for different groups, spread relatively

evenly throughout a given month. For example, the February bill for billing cycle 1

may go from January 2 to February 1 while billing cycle 2 may go from January 5

to February 4, and so on. Prolonged periods of abnormal heat or cold typically in-

crease electricity use, and while these periods will fall entirely within a single billing

month for some customers, the exact same weather event is split across two billing

months for other customers by chance. We define treatment households as those who

experienced a single bill encompassing the seasonal peak temperature event, whereas

however, that the bill shock channel that we study is related to, but distinct from, weather.
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households that experienced the same peak temperature event split nearly evenly

across two bills are control units. Treatment is our instrument for the endogenous bill

shock variable, which we define as percent deviation from the average bill over the

prior 12 months. The instrument is powerful, with F-statistics over 1,000 in all specifi-

cations, and we show supporting evidence that the required identifying assumptions

for an instrumental variables strategy are satisfied in our setting. Through our iden-

tification strategy, we are able to isolate the mechanism to the size of the bill itself, as

opposed to changes in total outlay for energy costs, as treatment and control house-

holds experience the same underlying demand shock.

Results are consistent with our hypothesis. Households exposed to an average

bill shock are 22 percent more likely to invest in energy efficiency upgrades in the

following six months than those that are not, despite both groups being exposed to

the same conditions. While the relative change is large, the absolute change is small

due to the low baseline levels of energy efficiency program participation among the

population in a given period. This result is robust to varying definitions of the peak

weather event used to assign treatment, alternative definitions of what qualifies as an

investment, and alternative post-event investment window lengths used to construct

the main outcome variable. However, two features of our results suggest that the sea-

sonality of energy investments in our setting were surprising. Event study estimates

reveal a decline in treated household energy investments roughly a year before the

bill shock. Moreover, in an extension of our main findings we estimate heterogeneous

effects by season and find the effect is concentrated in investment responses to bill

shocks as a result of a cold snap. We propose that this could be due to both the in-

creased salience of bill shocks that occur in the winter in the region of study as well as

home renovation seasonality (which is more active in the warmer spring and summer

months that follow cold snap season relative to fall and winter that follow heat wave

season). Future research is needed to help clarify these potential mechanisms.

This paper makes three main contributions to the literature. First, our results con-

tribute to the literature on customer inattention and price salience by showing that

3



large bills can draw the attention of consumers and lead to future investment expen-

ditures. Intermittent billing has become a feature of many products in recent years,

however bills which vary from period to period as a function of usage are less com-

mon. Prior literature that has studied the effect of “bill shocks” on customer behavior

in the cell phone industry (Grubb and Osborne (2015)) and health care (Hoagland

et al. (2023)). The related literature on residential electricity, however, is mixed with

respect to whether customers are inattentive to their usage and prices. Sallee (2014)

presents a model in which rational inattention arises from costly information acqui-

sition.2 In our setting, customers are attentive to energy usage and prices, even if

intermittently. This result can be unified with rational inattention to the extent bill

shocks overcome the costs of acquiring information about usage and expenditures.

Related to our work, Gilbert and Graff Zivin (2014) shows that the arrival of electric-

ity bills increases the salience of prices in the short-run, with homeowner’s reducing

usage in the weeks that follow. Sexton (2015) finds an increase in usage when accounts

move to automatic intermittent billing. Jessoe et al. (2014) find that unexpected (and

quasi-random) changes in electricity price tariffs appear to affect consumer behav-

ior in a manner that is consistent with intermittent attentiveness to electricity prices.

Our work also relates to the literature on price salience in demand for durable goods;

Myers (2019) and Houde and Myers (2021) show that customers are attentive to local

electricity prices when making high-value durable household investment decisions.

Second, our results suggest that an opportunity exists for electric utilities to target

information about energy efficiency programs to customers who have recently experi-

enced bill shocks. A large literature has documented the effect feedback and nudging

can have on subsequent energy consumption (Faruqui et al. (2010); Buckley (2020);

Allcott and Kessler (2019); Houde et al. (2013); Jessoe and Rapson (2014); Gilbert and

Graff Zivin (2014)). The information is readily available and the cost for firms to no-

tify customers is small. Demand reduction and demand response are key features of

2This is supported by a body of empirical work in the energy setting (Houde (2018); Allcott (2013); All-
cott and Rogers (2014); Davis and Metcalf (2016); Allcott and Taubinsky (2015); Allcott and Knittel (2019)).
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reaching the energy efficiency goals of decarbonization policy. Our work contributes

to the understanding of how existing business practices can play a role in reaching

these goals.

Lastly, we make a methodological contribution to the literature through our novel

identification strategy based on weather and billing cycles. Our research design could

relatively easily be applied elsewhere to estimate causal effects of bill shocks. We have

identified a source of exogenous variation that is common to settings where billing is

intermittent, but costs are a function of past demand and not fixed. These types of

billing structures are common to utility companies, residential natural gas, heating

oil, and water. Similar billing structures are present in cell phones, internet service,

and health setting and could benefit from our methodology using related first stage

variation from sources other than weather.

The paper proceeds as follows. Section 2 reviews the empirical setting and de-

scribes the data. Section 3 explains the empirical approach, the results of which are

presented in Section 4. Section 5 concludes.

2 Data

We combine data from several sources to construct a panel of customer-level monthly

electricity consumption, monthly electricity bill amount, and energy efficiency invest-

ments. The primary data source comes from United Illuminating Company (UI), an

electric utility company focused on retail transmission and distribution in southwest-

ern Connecticut. The billing data set contains electricity usage and bill amounts at the

customer billing-month level for 302,046 unique customers in the UI service territory

for the years 2008 to 2017. Due to our focus on durable investments, it is desirable to

observe households with a long occupancy duration. We restrict the data set to cus-

tomers who had continuous service at a particular address with UI for at least three

years between 2008 and 2017. We further restrict the sample to exclude observations

with implausibly low electricity usage (less than 10kWh total for the month).
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We observe the meter read date and billing cycle for each customer-billing month

(“billing month”) combination. UI has created 17 distinct billing cycles into which

customers are sorted upon enrolling for service. All customers in a given billing cycle

have the same billing period and are billed on the same day. The different billing

period end dates for the different cycles are spread relatively evenly through each

month. The billing cycle designation is a vestige of the analog era when meters were

read manually on-site by utility employees. Customers in a given billing cycle thus

reside in close geographic proximity. Figure 1 shows the distribution of households

across billing cycles, weighted by the number of seasons present in our sample.

Figure 1: Density of Households in Main Sample by Billing Cycle

Notes: Households included had continuous service with UI for at least 3 years
during the sample period of 2008-2017, were classified as a single-family resi-
dence, and are classified as either treatment or control for at least one season.

We match the billing data to a data set of energy efficiency (EE) investments that

was made available through the UI home energy audit and rebate program. These

data contain a unique customer identifier, the date of installation, and a category and

sub-category for the investment. We observe each line-item investment made by the

customer, with a single installation visit often encompassing multiple investments
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from different categories.3 The most frequent line-item investment category is “site

visit”, which contains audits, tests, and survey items. Most often, these administra-

tive items are associated with other tangible investments, but for a small number of

observations, the only investment made is a site visit. Our empirical investigations

focus primarily on investments that are most likely to have an impact on energy effi-

ciency, which leads us to drop investment activities that only contain a site visit from

our main specifications. We include results from the full sample as a robustness check,

with nearly identical results. We use the resulting data to identify which households

make investments in energy efficiency and when. We construct our main outcome

variable from the item-level data for each household: an indicator variable reflecting

whether an investment was made during the months following each season’s peak

weather event.

We collect 2016 Connecticut tax assessor data for the UI service territory to iden-

tify single-family homes. Households that rent or live in multi-unit structures may

lack the ability to make alterations to their dwellings, either due to feasibility or con-

tractual obligation. Even when these households are exposed to high electricity bills,

and may wish to invest in more efficient home energy services, they may not have the

incentives to do so, a relationship referred to as the principal-agent problem (Gilling-

ham et al. (2012), Davis (2012)). We merge to our billing and investment data an

identifier for single-family dwelling from the assessor data. The match rate is 43%,

and we drop all non-matching customers from our sample. We acknowledge that

we are likely discarding some owner-occupied units, but do not have the means for

more precise cuts.4 Regardless, given that our sample is restricted to customers living

in single-family homes that have had prolonged service with UI, we feel confident

that this sample is primarily owner-occupied residences, and thus we have identified

a sample in which energy investments are most likely. However, to the extent that

3Appendix Table A.1 reports the number of investments made during the sample period by investment
category as reported by UI. Appendix Table A.2 reports the sub-category for the site-visit category.

4While we do not have estimates of the owner-occupied rate for the whole UI service territory, the owner-
occupied rate for New Haven, CT is 62%, according to the Census Bureau’s 2015 American Community
Survey (ACS).
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our sample still contains some renters, our estimates of investment responses to bill

shocks may be slightly attenuated. Lastly, we include in our data a binary indicator

variable whether the assessor data indicates a housing unit uses electric heat.

Lastly, we collect daily temperature data from the National Oceanic and Atmo-

spheric Administration (NOAA) for our entire sample time frame. We use daily read-

ings from the 10 weather stations located within the UI service territory to calculate

average daily temperature as the mean of daily high and low observations, as well

as daily heating and cooling degree days during the sample period. Daily heating

degree days (HDD) and cooling degree days (CDD) are defined as (65 – average daily

temperature) in Fahrenheit, with positive values representing CDD and negative val-

ues HDD (though both measures are recorded as positive values). As described in the

methods section, we use these data as a treatment intensity measure to identify peri-

ods of anomalous heat or cold events which can lead to large electricity bill increases,

the incidence of which will depend on the customer’s monthly billing cycle.

Table 1 presents simple summary statistics and data sources that describe our sam-

ple. Our data consist of 120,030 unique customers and a total of 11,520,232 customer-

billing month observations. The average customer is present for 8 years during our

sample period, and the average monthly electricity consumption is 818 kWh, yielding

an average monthly bill of $182. Over our entire sample period, 19.4% of households

make at least one energy efficiency investment that we observe in our investment data

set. On average, there are .26 energy efficiency investments per household in the sam-

ple. Lastly, only 1% of customers have electric heat (the bulk of customers use natural

gas, propane or heating oil). In the following section, we detail our identification

strategy and how we use these data to build the panel for our analysis.

3 Methods

When people are generally inattentive about their energy use, as is widely believed

in the electricity demand setting, their attention can be drawn by an event such as
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Table 1: Summary Statistics

Statistic Source

Households 120,030 Utility Data

Monthly Observations 11,520,232 Utility Data

HHs that Ever Invest 23,330 Utility Data

Investments per HH 0.26 Utility Data
(0.62)

Electric Heating 0.01 Assessor Data

Years Present 8.03 Utility Data
(2.38)

Monthly KWh 818.02 Utility Data
(815.50)

Monthly Bill Amount 181.96 Utility Data
(117.74)

Notes: Utility data is sourced from customer-level data provided
by United Illuminating for the years 2008-2017. Assessor data is
collected from municipalities in the territory covered by United
Illuminating. Means are reported with standard errors below in
parentheses.
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an abnormal shock to their household’s monthly electricity bill. Our main hypothesis

is that investments in energy efficiency are likely to be made in the period following

such a shock. In our setting, a household experiences a bill shock when their monthly

electricity bill is high and outside of the range of what is normal for them. Our empir-

ical challenge is to causally assess how a household responds to such a shock in the

context of energy efficiency investments. We are interested in the following relation-

ship:

Investit = β1∆Billit + αi + δt + ϵit (1)

where ∆Billit is customer i’s percent change in electricity bill in month t relative

to their average bill over the previous twelve months, Investit is a binary variable

equal to 1 if customer i invests in energy efficiency during the six months following

month t, αi are customer fixed effects which control for unobservable, time-invariant,

customer-specific determinants of investment, and δt are time fixed effects which con-

trol for macro-level shocks to both bills and investments in a given time period, such

as weather or economic conditions. We hypothesize that β1 > 0 because anomalously

large bills will draw attention to electricity usage and lead households to invest in

otherwise profitable energy efficiency measures.

While equation (1) presents our intuition, estimating it via OLS would likely yield

biased estimates due the endogeneity of bill shocks. Electricity bills fluctuate for many

reasons: seasonality, adding household members, shifting to remote work, and home

renovations, among others. Some of these factors are likely correlated with underly-

ing investment decisions, leading to omitted variable bias.

To address this endogeneity, we implement an instrumental variable (IV) strategy

that is based on simple intuition. When a heat wave (or cold snap) occurs, this will

increase electricity use and thus the amount paid on electricity bills. Within a given

season, the exact timing of these weather events is random. Due to the staggered

nature of billing windows across customers, when these shocks occur relative to a
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household’s billing cycle will determine the extent to which the “shock” will impact

a household’s next bill. If a single bill cycle encompasses the entire heat wave, then

that customer’s bill will be anomalously large. However, a customer on a different bill

cycle that splits the heat wave evenly between two monthly bills will not receive the

same shock on a single bill, despite having been exposed to identical weather and the

identical increase in energy consumption. Since this relationship – when heat waves

or cold snaps occur relative to the household’s billing cycle – is as good as random, it

forms the basis of an identification strategy that can recover unbiased estimates of the

causal effect.

We operationalize this intuition by first defining “winter” and “summer” seasons

during which the cold snaps and heat waves can occur. “Winter” is December 1

through March 31 and “Summer” is June 1 through September 30. A “heat wave”

of window length “W” is defined as the W consecutive days during which time the

average daily temperature is higher than during any other group of W consecutive

days in that season. “Cold snaps” are calculated analogously for the coldest stretch

of W days during a winter season. Our main results use a window length of 20 days,

which allows for relative balance between the number of treatment and control house-

holds, defined below.

We define the outcome variable of interest, Investit, as any energy investment

made during the six-month window that begins the day after the final billing window

containing part of the given season’s heat wave or cold snap has closed. This allows

for some lag between the weather event that caused the bill shock and the investment

itself. This lag is likely to occur for two main reasons. First, several weeks may pass

between the time when the abnormal increase in electricity usage occurs and the mo-

ment when the bill is received and paid. Secondly, after a household decides to invest

in an energy efficiency upgrade, some weeks or months may pass before the upgrade

is installed in their home. Appendix Figure A.1 reports the dates for the 20-day peak

weather event and the start date for the investment window for each season.

As discussed in Section 2, utility customers are divided into 17 different billing
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cycles, each with different start and stop dates staggered over the course of a calendar

month. We define the instrument, treatit = 1, if customer i is on a bill cycle such that

the entirety of the heat wave or cold snap is contained within a single billing month.

For our main specification, we define control households as having at most 70 per-

cent of the weather shock occurring in a single billing month (i.e. the shock is split

relatively evenly across two bills). Further, if a heat wave or cold snap is split across

two bills, but the proportion on one bill ranges between 70 and 99%, then that house-

hold is excluded from both treatment and control for that season. Figure 2 shows the

proportion of seasons each billing cycle is considered treatment, control, or omitted

during the span of our sample. Importantly, every bill cycle is at some point part

of the treatment group and at some point part of the control group (and sometimes

omitted). Since identification is coming from all parts of the sample, our estimates are

internally valid and this increases the likelihood of being externally valid. Appendix

Figure A.2 shows specifically which bill cycles fall into which treatment group for

each season in our sample.
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Figure 2: Treatment Status Across Seasons by Billing Cycle

Notes: This figure presents the proportion of seasons designated as treatment,

control, or omitted for each of the 17 billing cycles. Data is provided by United

Illuminating for the years 2008-2017.

Figure 3 presents a visual representation of the IV setup for the Summer 2015 sea-

son using a window length of W = 20 days. The y-axis represents the 17 different

billing cycles, ranging from 1 to 17. The x-axis represents time (in days), with the

length of each horizontal line representing the days that are included in a given bill for

each billing cycle. For this season, the 20 consecutive hottest days occurred between

July 18 and August 6, with this time span indicated by the solid vertical lines. Billing

cycles depicted in dashed lines are the treated group as their respective billing dates

contain the entire heat wave on one bill. Billing cycles depicted in dash-dot lines are

the control group because the heat wave is split relatively evenly between two billing

months for these customers. Finally, billing cycles depicted in solid lines are omitted

from that season’s observations. Above, we stated that Investit includes investments

in a subsequent six-month window. In Figure 3, the start of the six-month investment

period would be August 27 and would end 180 days later for all bill cycles.
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Figure 3: Treatment Status by Billing Cycle During the 2015 Summer Heat Wave

Notes: This figure presents as an example the timing of the various billing cy-
cles during the Summer 2015 20-day peak temperature event, represented by the
vertical bars. Cycles 1 and 11-13 are omitted, cycles 2-10 are designated treated,
and cycles 14-17 are designated as control.
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We organize our data such that the unit of observation is a customer-season. For

each season, a customer can be treated, control, or omitted, but those classifications

will change from season to season. Empirically, we estimate how treatment impacts

bill changes, and then in turn, how do the exogenous changes in bills affect energy

efficiency investments in the six months following the shock.

Equations (2) and (3) represent the first and second stages of the IV model, respec-

tively.

∆Billit = γ1treatit + αi + δt + νit (2)

Investit = β1 ˆ∆Billit + αi + δt + ϵit (3)

We additionally include a binary variable, PastInvestit, which is not displayed in

equations (2) and (3) for simplicity, to account for whether the customer has invested

in energy efficiency in the preceding two years. This variable captures the effect that

households recently investing in energy upgrades are unlikely to invest again, regard-

less of subsequent exposure to a bill shock.

The key assumption for identification of causal estimates using the IV estimator is

the exclusion restriction, requiring the instrument to only affect energy investments

through its impact on electricity bill amounts. This concern is nullified by the fact

that treatment and control customers both experience the same weather event, only

differing on how their billing cycles align with the weather event, which is plausibly

random after including temporal fixed effects. One potential threat to identification

is that bill cycles are not randomly assigned, instead they are based on a property’s

location, with entire neighborhoods being on the same cycle. However, our estimates

use within household variation through the inclusion of customer fixed effects con-

trolling for unobserved customer differences, and hence unobserved neighborhood

differences. Further, as discussed above, every bill cycle is at some point treated and

at some point control (and sometimes omitted), so over time there is balance in which
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neighborhoods are treated. From Figure 2, there are differences in the proportion of

seasons spent in different categories across cycles, however all cycles experience all

three categories at least 15% of the time. This means that results are not driven by a

few bill cycles which may be different in unobservable ways.

Table 2: Summary Statistics

Treatment Control
Regression Adjusted

Difference

Observations 515,789 528,863

Delta Bill 0.17 0.14 0.06
(0.39) (0.35) (82.51)

Qualifying Investments 0.015 0.012 0.003
(0.120) (0.110) (11.940)

Prior Investments 0.026 0.027 -0.003
(0.158) (0.162) (-7.886)

Monthly KWh 1,017 960 58
(716) (639) (71.92)

Monthly Bill Amount 226.19 213.45 11.98
(150.48) (134.63) (68.28)

CDD 225.93 242.47 -18.61
(37.42) (36.45) (-155.76)

HDD 821.32 823.35 -3.88
(86.27) (98.77) (-13.42)

Notes: Columns 1 and 2 report the mean and standard deviation for treatment and control obser-
vations in our main IV sample. Differences shown in Column 3 are calculated from a regression of
the variable on a binary indicator for treatment and include household and season fixed effects as
in our main regression specifications except CDD and HDD which only include household fixed
effects. The t-statistic for the coefficient is shown below in parentheses.

Table 2 presents summary statistics on the customer-season sample closely related

to our identification strategy. Columns 1 and 2 present means and standard deviations

for the treated and control groups, respectively. In Column 3, we report the estimated

coefficient from a regression of the respective variable on the treatment indicator, con-

ditioning on household and season fixed effects. We observe a statistically significant

difference in the bill shock amount for the treatment group, ∆Bill, as well as a small

increase, yet significant increase, in qualifying investments in the post period. At
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the beginning of Section 4, we further study the reduced form relationship between

treatment and investments by estimating an event study model. As expected, the

treatment group has higher energy use and monthly bill amounts during the treated

seasons, compared to control households. For prior investments, we observe a small

negative coefficient on treatment households. While the difference is small, one po-

tential explanation is that control groups have previously made investments and that

treatment results in a “catching-up” effect. We take this difference into account in our

regressions by conditioning on PastInvestit in our IV regressions.

4 Results

4.1 Reduced Form

We begin the discussion of our results by estimating the reduced form relationship

of our instrument, the binary treatment indicator, with our dependent variable of in-

terest, energy efficiency investments. The hypothesis underlying our IV approach is

that treatment has a positive relationship with investments, and that treatment oper-

ates exclusively through its impact on bill amounts. In Table 2 we presented the fixed

effects regression estimate of the reduced form relationship between treatment status

and post-period investment rate. We can further test the relationship using a standard

event study design. The benefit of using an event study design is twofold. We are able

to test the first part of the hypothesis that treatment and post-period investments are

positively correlated, as well as characterize the dynamics of the relationship over the

duration of the post-period. Secondly, we are able to provide further evidence that

treatment is randomly assigned and orthogonal to pre-period investment decisions,

characterized by parallel trends in the event study for the months leading up to the

peak weather event.

We estimate the following equation:
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Investit =
12

∑
k=−12

βk · Dikt + αi + δt + ϵit (4)

where Investit is defined differently than before, and is instead an indicator vari-

able for whether the household made an energy efficiency investment in month t. Dikt

is a series of event time dummy variables for the time, in months, before and after the

month during which the weather shock occurred. As before, we include household

and time fixed effects to account for unobserved heterogeneity.

We construct a customer-month sample by selecting observations for the 12 months

before and after the peak weather event for the same treatment and control house-

holds as our main IV seasonal panel. As in the IV sample, we omit observations

associated with seasons where a household does not qualify as either treatment or

control. In light of the recent advancements in the difference-in-differences literature

concerning differential timing of treatment, we omit from the analysis observations

for a household if that household was treated in the previous 2 seasons. For exam-

ple, if a household was treated in Winter of 2014, we would not include observations

associated with Summer or Winter 2015 if that household was classified as treatment

or control in those seasons. This creates a control group of households who are either

never-treated, not-yet treated, or sufficiently distanced from their prior treatment.

A plot of the estimated coefficients for the event time dummies is shown in Figure

4, with event time t = −1 being the omitted category and representing the timing of

the peak weather event. Treatment is associated with a statistically significant increase

in investments for each of the four months that follow the weather event, before dis-

sipating. This supports our choice of a six-month post-period investment window in

the IV specification. For the nine months immediately prior to the event, we estimate

parallel pre-trends between the treatment and control households. However, there are

negative coefficients estimated 10 and 11 months before the weather event. Given the

quasi-randomness conferred by the identification strategy, a pre-bill shock treatment

effect was unexpected. Extending the causal interpretation, the pre-event effects may
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Figure 4: Effect of Treatment on Investments

Notes: Estimated coefficients and the 95% confidence intervals from an event
study specification for the reduced-form effect of treatment on household energy
efficiency investments are shown.

reveal an aspect of selection – those households which are most likely to have their

attention drawn by the event are those which underinvested in previous seasons.

Overall, the results from the event study model are consistent with the narrative

that the large bill shock events attract attention as both treatment and control house-

holds experienced the same weather event. In keeping with our IV approach, we

believe that the impact of treatment operates exclusively through the shock’s impact

on the electricity bill.

4.2 Instrumental Variables

In order to establish a baseline, we first estimate the naive OLS specification shown in

Equation (1). We report the coefficient estimates in Columns 1 and 2 of Table 3, con-

trolling for prior household energy efficiency investments and season-by-year fixed

effects in both Columns 1 and 2, and adding household fixed effects in Column 2. The

estimated coefficient on ∆Billit is -0.001 in both specifications and statistically signifi-
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cant at the 10% level at least. These coefficients suggest that bill shocks are associated

with a decrease in energy efficiency investments, albeit a very small decrease, which

is opposite of our hypothesis.

Table 3: Effect of Electricity Bill Shocks on Energy Efficiency Investments

OLS Estimates IV Estimates

(1) (2) (3) (4)

Estimated Effects

Delta Bill -0.001* -0.001*** 0.041*** 0.043***

(0.000) (0.000) (0.004) (0.004)
Past Investment 0.021*** -0.135*** 0.022*** -0.134***

(0.001) (0.001) (0.001) (0.001)

First Stage

Treatment 0.064*** 0.059***

(0.001) (0.001)
Past Investment -0.026*** -0.026***

(0.002) (0.002)

R2 0.003 0.156 0.229 0.334
F-stat 8,165 6,556
N 1,025,572 1,025,151 1,025,572 1,025,151

Season-Year FE Yes Yes Yes Yes
Household FE No Yes No Yes

Notes: Estimates for the effect of electricity bill shocks on subsequent household energy efficiency
investments are shown. Columns 1 and 2 present OLS estimates of the effect of bill shocks on
investments. In Columns 3 and 4, the percent deviation in the electricity bill amount the month of
the weather shock from the prior year’s average bill (delta bill) is instrumented for by treatment
status. An indicator variable capturing whether the household made past investments is included.
Columns 1 and 3 control for season-year fixed effects while Columns 2 and 4 include both season-
year fixed effects and a household fixed effect. The Cragg-Donald F-statistic from the first stage
result is reported in the bottom panel. *** = significant at 1 percent level, ** = significant at 5 percent
level, * = significant at 10 percent level.

Previously discussed concerns regarding the endogeneity of the main independent

variable, ∆Billit, lead us to believe there may be substantial bias in the results from the

OLS estimation. A priori, the direction of bias was ambiguous. Given these results, one
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likely explanation is that anticipated bill shocks, such as those from home renovations,

birth of a child, or switching to work from home, do not lead to energy efficiency

investments. To address the concerns of omitted variables bias, we turn next to the

results from our instrumental variables approach.

We present both first and second stage estimates from our main IV specification

in Columns 3 and 4 of Table 3. Column 3 includes season-by-year fixed effects to ac-

count for temporal shocks common to all households, such as exceptionally hot/cold

seasons, transitory shocks to fuel and energy costs, or changes in investment incen-

tives. Column 4 adds the additional household fixed effect, restricting estimation to

variation within a household, over time, to account for inherent differences between

households which are correlated with both electricity consumption and the decision

to invest. Both specifications control for whether the household has made a previous

energy efficiency investment the prior two years, which is plausibly correlated with

both contemporaneous energy consumption and future investment decisions.

For causal inference to be valid using an instrumental variables approach, the in-

strument must be sufficiently correlated with the endogenous regressor to satisfy the

relevance assumption. We report the Cragg-Donald F-statistics for our first stage es-

timates, which both exceed 6,500, indicating a very strong statistical relationship be-

tween treatment status and ∆Billit. Interpretation of the first stage coefficients implies

that treatment is associated with bill increases that are 5.9 to 6.4 percentage points

higher on average than the control group. Given that the average bill in our sample

is $182, this relative bill increase is equivalent to an increase of $10.71 to $11.65. Thus,

bill cycle timing alone has a causal impact on bill increases.

Turning towards our second stage estimates in the top panel of Table 3, the esti-

mated coefficients on ∆Billit are now positive, ranging from 0.042 to 0.045, and are

statistically significant at the 1% level. The coefficient changes very little with the

inclusion of household fixed effects, which we attribute to the random nature of the

shocks and the balance of shocks across bill cycles. We treat Column 4 as our pre-

ferred specification. We can interpret the coefficient on ∆Billit as the percentage point
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increase in the probability of making an energy investment resulting from a 100% in-

crease in the customer’s electricity bill. In particular, in our preferred specification,

a 100% increase in the electricity bill results in a 4.5 percentage point increase in the

probability of making a green energy investment. Putting these numbers into per-

spective, the first stage indicates treatment increases ∆Billit 5.9 percentage points on

average, which then would yield a 0.27 percentage point increase in investment. The

baseline investment rate from Table 2 is 1.2 percent, meaning that treatment increases

investment 22.1%. These findings clearly support the idea that heightened attention

through bill shocks leads to meaningful increases in energy efficiency investments.

While not the focus of our research, it is worth discussing how past investments

in energy efficiency influence future investments. We see the same patterns between

Columns 1 and 2 and Columns 3 and 4. When household fixed effects are not in-

cluded in the model, the coefficient on PastInvestit is positive, but switches to a neg-

ative sign when household fixed effects are included. We interpret this pattern as

follows. There is a selection process into which type of households invest in energy

efficiency, and thus compared to other households, those who have invested in the

past are more likely to do so again. However, when household fixed effects are in-

cluded, only within-household variation is used to estimate coefficients and that se-

lection process is accounted for. In this case, the coefficient is negative because past

investments reduce opportunity or benefit of additional investments.

Table 4 presents results that incorporate the two main variations on our main IV

specification: heterogeneity in treatment by CDD/HDD and heterogeneity in the ef-

fect of bill shocks by season. Columns 1 and 2 show results for heat waves and

Columns 3 and 4 show results for cold snaps. Columns 1 and 3 use the preferred

specification from Table 2, and Columns 2 and 4 add the additional interaction term

treatit*(C|H)DDt to theset of first stage instruments.5 The reported first stage coeffi-

cients continue to satisfy the relevance assumption necessary for identification of the

5CDD and HDD are demeaned so that the coefficient on the interaction term with treat is the average
effect of treatment at the average CDD or HDD level.
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IV estimator with the Cragg-Donald F-statistic indicating a very strong relationship

between our instruments and the endogenous variable in all specifications. We also

see the first-stage relationship between the instruments and ∆Billit is in the expected

direction, with both the binary treatment variable and the interaction term between

treatment and CDD/HDD being associated with higher bill shocks, on average. Fur-

ther, we find that heat waves are associated with higher bill shocks than those from

cold snaps for treatment households compared to that season’s control group.

Table 4: Effect of electricity Bill Shocks on Energy Efficiency Investments

Heat Wave Cold Snap
Estimated Effects

Delta Bill -0.010** -0.002 0.194*** 0.167***

(0.004) (0.003) (0.013) (0.011)
First Stage

Treatment 0.092*** 0.100*** 0.032*** 0.032***

(0.001) (0.001) (0.001) (0.001)
Treatment x CDD or HDD 0.138*** 0.027***

(0.002) (0.001)
R2 0.634 0.638 0.566 0.567
F-stat 10,913 7,286 2,000 1,275
N 509,741 509,741 500,236 500,236
Sargan Statistic 18.48 27.13

Notes: IV estimates for the effect of electricity bill shocks on future household energy efficiency
investments broken out by season are shown. The percent deviation in the electricity bill amount
the month of the weather shock from the prior year’s average bill (delta bill) is instrumented for
by treatment status in Columns 1 and 3, and by treatment status and its interaction with Cooling
Degree Days or Heating Degree Days in Columns 2 and 4. CDD and HDD are demeaned. An
indicator variable capturing whether the household made past investments is included as a control
variable. All models include season-year fixed effects and a household fixed effect. *** = significant
at 1 percent level, ** = significant at 5 percent level, * = significant at 10 percent level.

Examining the second stage coefficients, we see that the energy investment re-

sponse is entirely concentrated with those customers that received a bill shock from a

cold snap in the winter. The coefficients on ∆Billit for cold snaps are 0.194 and 0.167

and are highly statistically significant. In contrast, the coefficients for heat waves are

actually negative, but very small in magnitude. Focusing on Column 4, the coefficient

on ∆Billit implies that a 100% increase in a customer’s electricity bill from a cold snap
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is associated with a 16.7 percentage point increase in the probability of investing.

These contrasting results are somewhat puzzling for two reasons. First, we es-

timate larger bill shocks occurring with heat waves rather than cold snaps, so intu-

itively we might expect larger investment responses from heat waves. Second, the

assessor data imply that only 1% of our sample uses electric heat as their primary

heating source. We hypothesize several reasons why we could expect to see different

responses across seasons even given these puzzles. First, the heightened cold snap re-

sponse may be a function of our setting. Connecticut has a harsher winter climate that

may make these shocks more salient. Second and relatedly, bills may simply be more

likely to be read or scrutinized during those harsh winter months when daylight is

short and fewer vacations are taken. Third, we capture investments made during the

six-month window following the peak temperature event, which for cold snaps typi-

cally occurs in February as shown in Table A.1. This leads to an investment window

running from March through September. In contrast, for heat waves, the peak events

all occur in lat July and August, yielding investment windows spanning from August

to February. Households are traditionally more likely to make house renovations and

improvements during the summer months. Private residential construction spend-

ing is highly cyclical in nature with summer months having on average 30% higher

spending compared to winter months. With construction at its highest when the peak

weather event occurs in summer, when contractors are at their highest demand, it is

reasonable to think that consumers are unable to immediately react to the bill shock,

and to the extent that their attention to the bill shock declines over time, any inertia

created dissipates before an energy investment can be made. Lastly, in terms of heat

source, it is possible that households are using space heaters to selectively heat rooms

instead of relying on expensive delivery of heating oil or propane, or it is possible that

the assessor data is inaccurate or out-of-date.
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4.3 Robustness

In addition to testing the robustness of our results to the inclusion of various controls,

we next explore the robustness of our key findings to the major sample selection cri-

teria made: the peak weather event 20-day window length, the 6-month investment

period length, and the exclusion of administrative category only investments.

We first look at the robustness of the main results to the choice of window length.

Too short of a window length means our designation of treatment is unlikely to lead

to a meaningful shock to electricity bills in addition to limiting the number of good

control billing waves by construction. Too long of a window length can smooth over

peak weather events that cause reasonably large shocks to electricity bills, as well as

limits the number of billing waves that can be designated treatment (since by defini-

tion a treatment billing wave must encompass all the window on one bill). In Figure

5, we vary the window length from 10 to 25 days along the x-axis and report the co-

efficient on ∆Billit from the second stage estimation of our preferred IV specification

along with the coefficient’s 95% confidence interval. Excluding the extreme ends of

the window length distribution, our estimates are robust to changes in the window

length. Specifically, we see near identical results for windows of length 15-20 days. In

Appendix Figure A.4, we report estimates for the specifications that allow for hetero-

geneous responses for heat waves and cold snaps, and results suggest qualitatively

similar conclusions as those seen in Table 4 across the spectrum of window length.

Next, in Table 5, we test the robustness of our results to the other two main sam-

ple selection criteria, investment period and investment type. Our main results from

Column 4 of Table 3 are replicated in Column 1 of Table 5 for ease of reference. First,

we add back in investments which were classified as administrative only to our main

specification in Column 2. These results are nearly identical. As such, in the next two

columns we revert to excluding administrative only investments. Next, we examine

how results change when the investment period length, which is used in the construc-

tion of our outcome variable, is changed to 3 months or 9 months, which appear in
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Figure 5: Coefficient Plot by Window Length

Notes: This figure plots the estimated second stage coefficient from the IV re-
gression of investments on delta bill and the 95% confidence interval, varying
the peak weather event window definition used to designate treatment and con-
trol groups from 10 to 25 days.
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Columns 3 and 4, respectively.6 For an investment period of three months, the esti-

mated coefficient is 0.028, and for an investment period of nine months, the estimated

coefficient is 0.053. These results combined with the estimated coefficient of 0.045 for

an investment period of six months lead to three conclusions. First, we see that as the

window length increases, more investments are made in total, consistent with results

from our earlier event study results. Secondly, the main results cannot be explained

by the treatment group simply making investments sooner than the control group,

with control group catching up as treatment group demand is satisfied. Thirdly, we

see diminishing additional effects the longer we extend the window. The diminishing

incremental change in the effect makes sense because as time goes on the attention

focused on electricity dissipates.

Table 5: Effect of Electricity Bill Shocks on Energy Efficiency Investments

(1) (2) (3) (4)
Second Stage Estimates

Delta Bill 0.043*** 0.043*** 0.028*** 0.048***

(0.004) (0.004) (0.003) (0.005)
Past Investment -0.134*** -0.131*** -0.061*** -0.164***

(0.001) (0.001) (0.001) (0.001)
N 1,025,151 1,025,151 1,025,151 1,025,151

Investment Period 6 Mo. 6 Mo. 3 Mo. 9 Mo.
Administrative Investments No Yes No No

Notes: IV estimates for the effect of electricity bill shocks on future household energy efficiency in-
vestments are shown. The percent deviation in the electricity bill amount the month of the weather
shock from the prior year’s average bill (delta bill) is instrumented for by treatment status in all
specifications. Column 1 replicates our main results as shown in Column 2 of Table 3. Column
2 reports estimates including administrative only investments in the dependent variable, which
are excluded from our main results. Results in Columns 3 and 4 change the definition for the
post-shock investment period to 3 months and 9 months, respectively, from the baseline level of 6
months. The dependent variable in Columns 3 and 4 follow our main results and do not include
administrative-only investments. All models include season-year fixed effects and a household
fixed effect and control for past investments made by the household. *** = significant at 1 percent
level, ** = significant at 5 percent level, * = significant at 10 percent level.

6We cap the investment length at 9 months in order to not contaminate the outcome variable with effects
from the following year’s peak weather event of the same season.
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5 Conclusion

Behavioral obstacles appear to be a major factor inhibiting investment in residential

energy efficiency upgrades. The limits of human capacity for attention point to the po-

tential benefits of capitalizing on circumstances that draw peoples’ focus to the costs

of habits and inaction. This paper makes use of exogenous variation in the impacts

of extreme temperature events to document one such circumstance, bill shocks. This

work adds to the growing literature which empirically documents price salience and

customer attention in residential household energy settings.

In this paper, we make use of the random timing of extreme high and low temper-

ature events during the year with respect to the timing of electricity billing periods

across customers to identify households that received anomalously large electricity

bills. Given our design, we can isolate the effect to the increase in the amount on

the bill, as opposed to an effect of the increase in household energy use, as both

treatment and control households experienced the same energy-use shock from the

weather event, only differing in the amount of the high-use period contained in a sin-

gle billing month. This design, coupled with our rich data on household level energy

efficiency investments, allows us to present novel causal estimates of impact of billing

shocks on subsequent investment activity in the months that follow.

Customers in our setting exhibit a willingness to invest in home energy efficiency

upgrades in the months after being exposed to the weather-induced bill shock. House-

holds exposed to the average bill shock amount are 22 percent more likely to invest

than households that did not receive a bill shock. This effect is largely concentrated to

the peak cold temperature events that occur in the winter, likely a function of both the

study’s geographic location in Connecticut and the cyclicality of the home construc-

tion industry. During this window of time, an opportunity may exist for targeted

outreach that makes use of the increased attention to encourage these households to

consider energy efficiency investments and inform them of the potential benefits.

This paper offers a strong, novel identification strategy applied to an important
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research question. We acknowledge that a couple elements of our findings are not

intuitive, though plausible. Future work is needed applying these methods to other

utility data in different geographies to assess if bill shock responses are dependent on

location, climate, etc., and investigate mechanisms.
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A Online Appendix

A.1 Figures

Figure A.1: Event Timing by Season

Notes: This figure shows the dates for each season’s 20-day peak heat wave or
cold snap and the start date of the 6-month investment window.
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Figure A.2: Treatment Status by Billing Cycle and Season

Notes: This figure shows the treatment status for each of the 17 billing cycles
across the seasons of our sample period.
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Figure A.3: Billing Cycles During 2015 Summer Heat Wave by Treatment Status

(a) 10 Day (b) 15 Day

(c) 20 Day (d) 25 Day

Notes: This figure shows treatment status across the 17 different billing cycles
for the 2015 summer peak weather event. Each panel shows a different window
length used to designate the hottest consecutive days for the peak event.
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Figure A.4: Coefficient Plot by Window Length

(a) Heat Wave (b) Cold Snap

Notes: This figure reports the estimated second stage coefficient on delta bill
using various window lengths to designate the peak weather event. Results for
heat waves and cold snaps are estimated and reported separately.

Figure A.5: K-Density Plot for Delta Bill

(a) Heat Wave (b) Cold Snap

Notes: This figure reports the distribution of the delta bill variable for treatment
and control observations separately for heat waves and cold snaps using a k-
density plot.
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Figure A.6: Treatment Status by Season for Event Study

Notes: This figure shows the count of households in the event study sample by
treatment status for each season used in the event study analysis.
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A.2 Tables

Table A.1: Energy Efficiency Investments by Categories
Freq. Percent Cum.

Site visits: audits and inspections 288,144 41.99 41.99
HVAC 40,002 5.83 47.82
Custom Measures 20,511 2.99 50.81
Hot Water 121,293 17.68 68.49
Envelope 93,117 13.57 82.06
Incentive Bonus 1,172 0.17 82.23
Lights 120,847 17.61 99.84
Refrigeration 1,066 0.16 100.00
Total 686,152 100.00
Notes: The table reports the category for investments made by
customers through United Illuminating’s energy efficiency invest-
ment program

Table A.2: Site Visits: Detailed Subcategories
Freq. Percent Cum.

ADJUSTMENT, OIL, ARRA 128 0.04 0.04
ADMINISTRATIVE ADJUSTMENT 378 0.13 0.18
APPLIANCE EVALUATION 24,172 8.39 8.56
DATA ENTRY FEE, TEMPORARY 3,043 1.06 9.62
HEALTH AND SAFETY 1,816 0.63 10.25
HES SITE VISIT 30,413 10.55 20.81
HESCORE W/ CORE SERVICES 9,035 3.14 23.94
HOME AUDIT 142,467 49.44 73.38
HVAC TESTS 36,342 12.61 86.00
INSULATION VERIFICATION VISIT 260 0.09 86.09
KILL-A-WATT METER 7,143 2.48 88.57
SITE VISIT 32,947 11.43 100.00
Total 288,144 100.00

Notes: The table reports the subcategories for investments made
through United Illuminating’s energy efficiency investment pro-
gram in the Site visits: audits and inspections category.
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