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1 Introduction

The mix of fuels used to generate electricity in the U.S. has changed dramatically over the

last two decades. One of the most pronounced changes has been a switch from coal to gas-

based generation, and this has led to improved emissions outcomes (U.S. Energy Information

Administration, 2018). Researchers and market participants have expressed a concern that a

shift from coal to gas generation has led to higher real-time electricity price volatility (Brown

and Kodaka, 2014; Linn and Muehlenbachs, 2018; Deyette et al., 2015; Larson, 2017).1 The

implication is that coal-to-gas switching might have led to better environmental outcomes

at the expense of greater financial strain.

In theory, it is ex-ante uncertain how a switch from coal to gas generation affects price

volatility in the wholesale electricity market. Volatility is driven by generators’ bidding

behavior, which, in turn, is affected by marginal and fixed generation costs. Marginal gener-

ation costs are mainly represented by the cost of sourcing fuels (see for example Cicala, 2015).

Because natural gas prices are more volatile than coal prices, replacing coal generators with

gas generators can result in higher average bids to supply generation and therefore higher

wholesale price volatility. The existence of a volatility pass-through is essentially the argu-

ment put forth in the literature (Brown and Kodaka, 2014; Linn and Muehlenbachs, 2018;

Deyette et al., 2015; Larson, 2017). On the other hand, fixed costs are primarily startup

costs. In PJM, if a generator is not selected for dispatch in the day-ahead market, it can

submit a revised (lower) bid to participate in the real-time market. Generators with high

startup costs are limited in their ability to revise bids. Because coal generators have higher

startup costs than natural gas generators, replacing coal generators with gas generators can

result in lower real-time market bids and consequently lower wholesale price volatility.

Disentangling these two channels is not straightforward, as neither competing explanation

is directly testable. On one hand, measuring the volatility pass-through from the natural

1Technological breakthroughs that led to the U.S. shale revolution was an important factor in the shift toward
gas generation. Because our analysis is based on the post-fracking time period, we take the technological
impacts of fracking as given.
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gas market to the electricity market would require precise knowledge of the fuel procurement

strategy of each generator. Even if one could estimate the pass-through cost (see Chu et al.,

2017), one would face an empirical challenge: the estimated pass-through would introduce

an error-in-variable problem when used as an explanatory variable. A similar problem would

arise if one attempted to estimate generators’ startup costs (see Reguant, 2014). A further

complication is that the factors that affect supply (i.e., producers’ bidding behavior) likely

also affect demand (i.e., load). To circumvent the estimation challenges, we use plant-level

emergency outages of coal generators as a source of exogenous variation in the marginal fuel

source to isolate the effect that fuel switching has on wholesale power price volatility in the

PJM service territory for the years 2014-2016.

Emergency outages are unscheduled interruptions in generating capacity caused by unan-

ticipated operational problems. As an instrument for the amount of natural gas generation,

emergency coal outages appear to satisfy the set of conditions that grant a causal interpre-

tation to the instrumental variable estimate (as in Imbens and Angrist, 1994; Angrist et al.,

1996): they are largely independent of unobservable factors that might affect demand for

natural gas or market conditions that determine price volatility; they produce a relatively

monotonic effect on the marginal fuel source (i.e., eliminating a coal generator from the

production stack is unlikely to put another coal generator on the margin); they are unlikely

to affect price volatility directly, but do impact the ability of coal generators to participate

in the real time market.

We focus on the volatility of electricity prices that are set in the real-time balancing

market (rather than the day-ahead market), where load servicing entities have to bear most

of the financial risk due to sudden shifts in supply or demand. After isolating the effects

of exogenous variation in the marginal fuel source, we find that the percentage of time that

gas generators spend on the margin is related to lower, not higher wholesale real-time price

volatility. Specifically, an extra 30 seconds of natural gas on the margin reduces the hourly

range (i.e., the difference between the hourly maximum and minimum price) of real-time
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electricity prices by 72 cents (or approximately two percent of the average price).

This result holds up to several robustness checks: alternative definitions of electricity price

volatility and emergency coal outages, considering electricity in the day-ahead market, the

amount of wind generation, inclusion in the sample of hours when multiple fuel sources (i.e.,

not just gas and coal) are on the margin, and controlling for price volatility in fuel sources.

Our statistical results support the Reguant (2014) argument that fixed costs are essential in

determining the dynamic bidding behavior of electricity generators. Because of lower startup

costs, natural gas generators are able to respond to variation in demand and other market

conditions more efficiently, and therefore, relative to coal generators, they marginally reduce

electricity price volatility. Note however, that while we do not find evidence that support a

volatility pass-through from the source fuel market into electricity, does not imply that there

is no cost pass-through. As Chu et al. (2017) find, it takes some time for changes in the spot

price of natural gas to translate into changes in generators procurement costs. This is likely

due to the fact that procurement contracts are a type of swap contract, and are renegotiated

only at coarse intervals. When such contracts are renegotiated, there would be a substantial

amount of cost pass-through, but it would not translate in volatility pass-through as long as

the frequency of renegotiation is low enough.

Our findings have implications for the policy debate surrounding the continuing gas

integration in electricity markets. Holding the PJM generation stack fixed, we provide

evidence that coal-to-gas switching at the margin does not create negative spillovers for

immediate financial outcomes, at least in the form of increased volatility. Our results should

therefore generalize to regions that currently split power generation between coal and natural

gas: replacing some coal generation with natural gas generation at the margin should produce

similar results as those reported in this paper. Figure 1 shows how the share of coal and

gas generation has changed over time in U.S.’s regional power markets. California, New

York, and New England have had negligible coal shares for some time, and gas has been the

dominant fuel for several years in PJM, ERCOT, and the Southeast. In MISO, Southwest,
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Northwest, and SPP markets, however, gas is just starting to overtake coal. These markets

cover 25 U.S. states and our results can inform the policy of these regions.

Figure 1: Share of coal and natural gas in total generation
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Note: The figure displays the average share of generation coming from coal and natural gas plants
over time in each ISO/RTO. Data is from the EIA and covers the period from January 2001 through
December 2019.

From a financial stand point, volatility represents a substantial concern for market par-

ticipants, as it ultimately shapes their hedging demand. The more volatile the markets,

the larger the pressure to engage in costly hedging activities (see for example, Aid et al.,

2011; Boroumand and Zachmann, 2012; Dupuis et al., 2016; Boroumand et al., 2019) and

creates an indirect costs in the form of capital reallocation to meet collateral requirements

(see for example Rampini and Viswanathan, 2010; Rampini et al., 2014). Being regulated,

electric utilities aim to avoid exposure to large risks in their operations (Wolak and Kolstad,

1991; Neuhoff and De Vries, 2004; Fehrenbacher, 2010). With the exception of infrastructure

investments, regulated utilities are not allowed to make a profit, but are only allowed to re-
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cover their operating costs and, thus, cannot price unexpected shocks (large risks) into their

retail rates. They have therefore an interest in minimizing large risks, such as short-term

price volatility, which, according to Borenstein (2002), is a necessary consequence of the way

electricity markets are structured. To hedge, utilities use long-term contracts to smooth

out short-term price fluctuations. However, in absence of further hedging, they remain ex-

posed to market volatility in proportion to how much capacity they purchase in the real-time

market.

2 Related literature

We contribute to existing literature that studies the economic implications of natural gas

integration into the power generation infrastructure. Linn and Muehlenbachs (2018) find

that low natural gas prices in the U.S. have encouraged the switch from coal to natural gas

generation and led to lower wholesale electricity prices, but that the price-reducing benefits of

fuel switching were lower in regions with more switching. We examine one financial outcome

of fuel-switching in one such region and show that coal-to-gas switching has an economically

meaningful effect on the volatility of real-time electricity prices.

In another recent study, Chu et al. (2017) examine power plants’ procurement costs and

find that increases in natural gas spot prices pass through to power plants relatively quickly,

with 85 percent of changes in spot prices of natural gas being reflected in natural gas plants’

procurement costs within one month. This result gave some support to the idea that power

markets with a large natural gas generation capacity could experience more volatile wholesale

power prices (Brown and Kodaka, 2014; Deyette et al., 2015; ISO New England, 2018).

The evidence offered by these studies, however, ignores potential endogeneity concerns that

complicate the estimation of the relationship between plants’ bidding strategies and market

outcomes. We account for possible endogeneity and provide a more nuanced test of the

relationship between the composition of the generation stack and electricity price volatility.
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Our paper also complements the literature that examines the impact of deregulation in

electricity generation. Fabrizio et al. (2007) and Cicala (2015) find that deregulation had

a significant effect on the strategic operating choices of U.S. electricity generators, leading

to reductions in operating costs and gains in efficiency. These studies provide economic

benchmarks of potential efficiency gains that stem from a change in a regulatory structure

(i.e., deregulation), while we contribute insights about potential financial benefits that could

be gained by changing the mix of the physical generating infrastructure.

Finally, our results are directly related to the literature that studies measurement and

forecasts of electricity price volatility (see for example Haugom et al., 2011; Hickey et al.,

2012; Ullrich, 2012; Liu and Shi, 2013; Frommel et al., 2014; Ciarreta et al., 2017; Qu et al.,

2018, among many others); the economic research on the impacts of renewable intermit-

tency on electricity prices (Ketterer, 2014; Martinez-Anido et al., 2016; Kyritsis et al., 2017;

Rintamaki et al., 2017; Masoumzadeh et al., 2018); and the finance literature that studies

equilibrium electricity forward and spot prices, and hedging demands of market participants

(see for example Bessembinder and Lemmon, 2002; Longstaff and Wang, 2004; Banerjee and

Noe, 2006; Pirrong and Jermakyan, 2008; Bunn and Chen, 2013). Most of these studies

model supply and demand effects, taking the marginal unit of generated power as exoge-

nous. We take a step forward in understanding the relationship between prices and supply

sources by endogenizing the relationship between price volatility and the generation stack

and explicitly analyzing the impact of marginal fuel switching on the dynamics of real-time

prices. Moreover, we extend the literature that studies volatility estimators based on high

frequency data (for example, Ullrich, 2012; Haugom and Ullrich, 2012) by considering the

case of negative prices.
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3 Empirical framework

Uncovering the relationship between natural gas generation and price volatility is difficult, as

unobservable factors that affect supply (i.e., producers’ bidding behavior) likely also affect

demand (i.e., load). We use emergency outages of coal generators to instrument for the

amount of time that natural gas generators spend on the margin: taking one coal unit out

of service will push a gas generator into the supply stack. We detail our econometric model

and the assumptions needed for a causal interpretation in this section. Because bidding rules

are essential to explain the economic mechanism that links outages to marginal generation,

we review how the PJM market functions.

3.1 Wholesale bidding and market clearing in PJM

PJM’s wholesale energy market is cleared using a two-tier mechanism: a day-ahead forward

market where generators bid production for each hour of the day, and a real-time balancing

market.

The day-ahead market is essentially organized as a forward market. According to the

current PJM (Manual 11) rules, the morning ahead of each operating day (until 10:30AM),

generators enter bids into the system for each hour of the day. Each bid must contain a

quantity that is offered at a particular price along with a startup time. In addition, most

generators are required to submit unit availability and non-binding generation bids for the

following seven days. By 1:30PM, PJM determines a price that clears the load forecast for

each hour with the quantities offered, and posts a dispatch schedule.

After the day-ahead market is cleared, units that are not scheduled to supply can modify

their existing bids, until 2:15PM, for the hours in which they are not committed so that

they might participate in the resource adequacy run. Generators can also enter new bids

to participate in the real-time market, starting at 6:15PM and until 65 minutes before the

operating hour. All bids that are accepted for the day-ahead market and not subsequently
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updated are considered binding for the real-time market. The real-time market consists of

balancing settlements based on deviations of actual load from the quantities cleared in the

day-ahead market. The real-time price is determined at five-minute intervals based on the

residual bids from the day-ahead market and their subsequent revisions.

3.2 Econometric model

We model the fraction of time that natural gas is on the margin in hour h of day d as a

function of emergency coal outages and other control variables, including proxies for demand,

demand uncertainty, the amount of wind dispatched into the system, and various fixed effects,

log(1+NaturalGasMargind,h) = β0+β1 log(1+CoalOutagesd,h)+
J

∑

j=2

βjXj,d,h+ εd,h, (1)

where subscript j denotes the generic control (j = 2 . . . J). To facilitate the interpretation

of the coefficient of interest, β1, as an elasticity, we take the natural logarithm of both

dependent and independent variables.

We observe the fraction of a given hour that a specific generation technology is on the

margin. To identify the effect of fuel switching, we restrict our analysis to hours when only

coal or gas is on the margin (relaxing this restriction does not alter our results.) In the data,

NaturalGasMargind,h reflects the share of an hour, between zero and one, during which

the marginal generator is a natural gas plant. A value of 0.33 would mean that natural gas

plants were the marginal producers for 33 percent of an hour, or 20 minutes. CoalOutagesd,h

captures the amount of coal capacity that is offline during an hour. Outages are measured

in percent of total available coal generation capacity and reflect the capacity loss across all

coal generators that experience an emergency outage during that hour. Xd,h is a vector of

control variables. It includes demand (i.e., total load, in megawatt-hours during the hour)

and a measure of demand uncertainty, expressed as the difference between actual realized

load and PJM’s forecasted load (both in log-MWh) for a given hour that is contracted for
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in the day-ahead market. Xd,h also captures intraday and seasonal variation in demand

with hour and month fixed effects, and with indicator variables that isolate hours of extreme

temperatures (i.e., above 25 and below –5 degrees Celsius, for heat and cold indicators,

respectively). We include a weekend indicator in Xd,h to further differentiate between peak

and off-peak demand hours. Lastly, we include a measure of total wind generation supplied

into PJM during an hour to capture the fact that natural gas, as the main backup source

for intermittent renewables, is often dispatched concurrently with wind.

In the second stage, we model real-time electricity price volatility in an hour as a function

of the fitted estimate of natural gas margin in the same hour from equation (1), again

controlling for variables that proxy for the total demand and supply, demand uncertainty,

and the amount of wind dispatched into the system,

log(σd,h) = γ0 + γ1 ̂log(1 +NaturalGasMargind,h) +
J

∑

j=2

γjXj,d,h + ηd,h. (2)

σd,h is the hourly volatility of the wholesale price in the real-time (five-minute-ahead) elec-

tricity market, defined as the intra-hour range (i.e., the difference between the maximum

and minimum observed five-minute prices within the hour) scaled by the median price of

previous 24 hours.

We focus on real-time volatility for two main reasons: first it allows us to tightly link

the outcome variable to the exogenous variation in the fuel source (because we observe the

timestamp of emergency outages). Second, load serving entities’ exposure to market risk

is greater in the real-time market, which presents greater potential for large financial losses

and need for expensive hedging strategies. We provide evidence from the day-ahead market

in the robustness section.

3.3 Causal interpretation

Angrist et al. (1996) list statistical assumptions that an instrumental variable must satisfy
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to serve as a valid instrument and provide a causal interpretation of the results. The first

assumption is that the occurrence of an emergency outage is an “ignorable” event, which

allows one to interpret an IV estimand as equivalent to a randomized study. The definition

of an emergency outage (i.e., decision to stop a generating unit to prevent an outcome that

would endanger lives or structures) indicates that it is an event that cannot be influenced

by affected economic agents (i.e., other generators). For example, fires may be more likely

during days with extremely high temperatures, but weather conditions are also essentially

random, which guarantees that the mechanism that produces the outage is ignorable (see

Rubin, 1978; Imbens and Rubin, 1997).

The second assumption is that an outage only affects the dynamics of electricity prices

by affecting the marginal fuel source (i.e., how much natural gas generation contributes to

marginal production). This is often referred to as the “exclusion restriction.” We argue

that mechanisms that would lead to a violation of the assumption are either implausible or

economically irrelevant. For example, it would have to be the case that the event that is

causing an emergency coal outage is also causing a large shift in demand that could cause

large variations in electricity prices. Since most outages are related to fire and they are

relatively more likely on hot days, weather could be one such event. Our data contains more

outages in December and January than in July and August. In terms of displaced capacity,

the largest outages tend to happen in March and April. Thus, despite an economically small

relationship between outages and weather, weather is not driving variation in the incidence

of emergency outages.

The third assumption requires that outages have a monotonic effect on the percentage

of time that the marginal fuel is natural gas (i.e., the coefficient β1 in equation 1 is different

from zero). We describe the economic mechanism that leads an outage to affect generators’

behavior. Recall that bids can be submitted no later than 65 minutes before the start of

the operating hour. Within the first 30 minutes after an outage, PJM communicates the

system’s status to all market participants. For very short outages, or for the first hour
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of a long outage, generators will not be able to adjust their bids. Therefore, the regional

transmission operator will just dispatch the first unit that was left out (the next lowest bid).2

For outages longer than one hour, generators that are participating in the real-time market

can update their bids. However, how the generator stack changes as a consequence of a coal

outage depends on both submitted bids and a generator’s ability to respond. 99 percent

of the coal generators in our sample have a ramp-up time that exceeds one hour (with 40

percent of generators requiring more than 12 to ramp up). In contrast, about 90 percent of

natural gas generators have a ramp-up time less than one hour. Hence, gas generators are

the most likely to be chosen to respond to a shift in the power supply even if their bids are

not the lowest.

The fourth assumption is that a generator’s potential outcome (to shut down or not to

shut down) is based only on its own treatment status, and not on the treatment status of

other generators (i.e., the “Stable Unit Treatment Value Assumption.”) In context of forced

outages, a “treated” generator experiences adverse operating conditions that force it to shut

down, while an “untreated” generator does not experience the conditions that would force it

to stop producing electricity and shut down. Due to the unpredictable nature of emergency

outages, there should be no spillover effects across generators.

Finally, we discuss how the instrumental variable estimation is affected by our focus on the

marginal generator. We study the variation in the amount of natural gas at the margin of the

generation stack, rather than considering the entire production function. Since emergency

outages displace a relatively small amount of coal generating capacity (i.e., less than 1% of

total capacity), it would be hard to argue that they have an equal effect on all generators,

from the very inframarginal, such as wind and nuclear, to the very inefficient peaker units.

Instead, because we focus on the marginal unit, it is much more likely that units affected by

small variation in the supply of power from coal generators are either at or just outside the

2PJM’s immediate response to an outage might be to call upon synchronized reserves. It is unlikely that
this significantly affects our results: during our sample, synchronized reserves were called upon 76 times for
an average duration of 21 minutes. Moreover, on rare occasions when balance is not restored, PJM could
also import some interface resources. During our sample, interface imports were never on the margin.
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margin.

4 Data

The data for our analysis span 2014 through 2016 and come from three main sources: PJM,

the Energy Information Administration (EIA), and the National Centers for Environmental

Information (NCEI). We observe several quantities of interest from PJM, which are sampled

at different frequencies. We sample real time locational marginal prices (LMPs) for the

wholesale market at five-minute intervals.3 We use only the energy portion of LMP, which is

common across all pricing nodes within PJM, and disregard the cost of transmission losses

and congestion.

We observe hourly data on total generation supplied to the system, the hourly demand

forecast generated by PJM one day in advance, total hourly wind generation, and the fraction

of each hour during which each fuel type is on the margin.

For generator outages, we observe the start and end time of each outage, and the code

entered into the system to describe the reason for the interruption. As defined previously,

emergency outages are instances that are not scheduled and that are due to operational

problems that occur while the unit is running. We observe 1,778 unique generators in PJM’s

outage data. We obtain these generators’ characteristics from EIA’s form 860. Form 860 is

an annual survey of all electric generators in the U.S. with nameplate capacity of 1 MW or

more. The survey collects information on ownership, location, capacity, and environmental

characteristics of current, proposed, and retired generating assets.

For 2014-2016, the EIA reports information on 1,400 unique power plants and 4,048

unique generators in the PJM balancing authority. Unfortunately there is no unique gen-

erator identifier that is consistent between data sources, so in order to merge generator

characteristics into PJM data, we must rely on matching by hand. We use plant name, gen-

erator name, and generator technology as matching parameters. Since plant and generator

3In PJM, the real-time LMP calculation includes optimization of ancillary services.
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naming conventions also differ between EIA and PJM, we are not able to identify matches

for all of our generators. We end up with matches for 1,556 generators at 450 plants, which

represent over 87 percent of our PJM generator sample.

Finally, we obtain hourly air temperature information for all land-based weather sta-

tions in the PJM service area from the National Oceanic and Atmospheric Administration’s

(NOAA) National Centers for Environmental Information (NCEI). We identify the closest

weather station for each PJM generator for which we are able to obtain an EIA match,

matching latitude and longitude pairs in EIA data with those in NCEI data. The accuracy

of information reported by weather stations tends to vary both within and across stations,

and NCEI discloses the quality of each observation that appears in its datasets. In order

to ensure accurate temperature representation for our data sample, we keep only those air

temperature observations that have passed basic quality control tests (i.e., codes 0, 1, 4, 5, 6,

and 9). For hours during which several intra-hour temperature observations are available, we

average across these observations to obtain an hourly data series. Temperature is expressed

in degrees Celsius.

We report summary statistics for PJM system outcomes in Table 1. During our sample,

the average hourly load was around 90 gigawatts (GW), with peaks exceeding 150 GW. Coal

was on the margin for an average of 45 percent of an hour, natural gas was on the margin on

average for 39 percent of an hour, with renewables and petroleum-based generation together

accounting for another twelve percent of an hour. A fuel source is rarely on the margin for

100 percent of the hour: coal is the only marginal fuel during 361 hours, natural gas during

291 hours.

The average real-time price was $35.60 per MWh. In our sample, there are 158 hours

during which at least one five-minute real-time price was negative. As one would expect,

prices are extremely volatile: the average hourly price ranges between -$242.70 and $1,068.80

per MWh over the three-year period. Within the hour, the volatility is even higher with an

intra-hour range varying between $0 and $1,858.35. The average range observed within an

13



Table 1: Generation summary statistics

Mean StDev Min Median Max

Price – mean ($) 35.6 33.4 -242.7 27.7 1,068.8
Price – median ($) 33.9 32.1 -320.5 27.3 1,191.8

Price range ($) 21.6 56.2 0.0 5.3 1,858.4
Scaled price range 0.63 1.40 0.00 0.19 21.41
Price volatility ($) 7.5 20.3 0.0 1.7 762.8
Scaled price volatility 0.22 0.51 0.00 0.06 9.40

Coal on margin (% of one hour) 0.45 0.21 0.00 0.45 1.00
Gas on margin (% of one hour) 0.39 0.19 0.00 0.39 1.00
Nuclear on margin (% of one hour) 0.01 0.05 0.00 0.00 0.50
Petroleum on margin (% of one hour) 0.07 0.14 0.00 0.00 0.60
Renewables on margin (% of one hour) 0.05 0.09 0.00 0.00 1.00

Load (MW) 90,437 17,056 57,108 87,862 152,177
Day-ahead load forecast (MW) 91,561 17,021 57,436 88,982 152,117
Wind generation (MW) 1,871 1,297 0 1,627 6,249

Note: We report mean, standard deviation, minimum, median, and maximum values for variables used in
the rest of the paper. All items are measured hourly. Volatility measures are constructed at the hourly
interval from real-time prices sampled at five-minute frequency. The remaining 3% of marginal fuels is cat-
egorized as demand side, interface, miscellaneous, or missing. All data is from PJM and covers the period
from January 1, 2014 through December 31, 2016.

hour is $21.60 per MWh, or 63 percent of the average hourly price level.

Figure 2 plots time series for two different measures of price volatility. The top panel

depicts the hourly price range, defined as the difference between maximum and minimum

prices observed within a given hour, scaled by the 24-hour average price. We observe several

instances in which the within-hour range is larger than $500 per MWh, and in the winter

of 2014, the intra-hour price variation peaked above $1,800 per MWh. The bottom panel

of Figure 2 displays our second measure of price volatility: the standard deviation of five-

minute prices within the hour, also scaled. This measure largely reflects the dynamics of the

previous one. Indeed, the correlation between the two time-series is over 98 percent.

In Table 2, we summarize the relevant characteristics of generator outages observed in our

data sample. In general, outages are quite frequent—there are more than eighty thousand

in our overall sample, approximately 40 percent of which are recorded in coal generators,

followed by 35 percent in gas and combined-cycle plants. For brevity, we limit the summary
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Figure 2: Real-time electricity price volatility
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Note: We plot time series of two hourly measures of volatility, obtained from real-time wholesale 5-minute
prices. The top panel displays the scaled price range for each hour, defined as the difference between the max-
imum and the minimum price observed within the hour. The bottom plot shows the scaled standard deviation
of price levels within the hour. All data comes from PJM and covers the period from January 1, 2014 through
December 31, 2016.

statistics in Table 2 and our subsequent discussion only to outages experienced by coal and

natural gas generators. On average, coal and gas plant outages last 2.25 days and affect

between 30 and 40 percent of a generator’s capacity.

Emergency outages make up about 1.8 percent of all outages. They are disproportionally

concentrated in coal power plants (about 90 percent of the cases). On average, emergency

outages are about half a day longer than planned outages, and more frequently affect older

natural gas units, but not older coal units.

Emergency outages can be divided into two groups: those related to a fire (according

to PJM manuals, “operational outage caused by, or taken to alleviate concerns with, fire or
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Table 2: Outages summary statistics

Instances Plants MW Reduction % Generator Duration Age
Reduction Days Years

All outages

Coal 32169 177 125.4 0.28 2.25 44.5
Natural Gas 28915 423 59.7 0.38 2.24 15.1

Emergency outages

Coal 1030 91 86.3 0.22 2.66 41.2
Natural Gas 109 44 102.7 0.42 3.01 25.0

Emergency outages – Non-fire related

Coal 80 41 132.1 0.36 2.53 40.6
Natural Gas 64 32 82.2 0.47 2.41 20.4

Emergency outages – Fire related

Coal 950 88 82.4 0.21 2.67 41.2
Natural Gas 45 17 131.8 0.36 3.86 31.6

Note: The table reports summary statistics for all outages and for emergency outages. For each fuel source,
we tabulate the number of instances, the number of plants affected, the average reduction in generation ca-
pacity in MW, the average reduction as percent of nameplate generation capacity, the average duration of
an outage, in days, and average generator age, in years. All data is from PJM and covers the period from
January 1, 2014 through December 31, 2016.

smoke”), and those that are not (described in PJM manuals as “operational outages that

are taken for the purpose of avoiding risk to human life, damage to equipment, damage to

property, or similar threatening consequences”). Fire-related outages represent more than 90

percent of all emergency outages that affect coal generators.

We plot the time series of emergency outages that affect coal power plants and the relative

affected generation capacity in Figure 3. The total hourly MW capacity reduction due to

outages is calculated as the sum of MW reductions across all units that are off line during

a given hour. Consider two outages: one that begins at 3am on a Monday and lasts for

three days, and another that begins at 3pm that same Monday and lasts for one day. The

first outage affects a generator capacity for 30 MW, while the second produces a capacity

reduction of 20 MW. Starting at 3am on Monday, the total reduction is 30 MW. At 3pm,

when the second outage occurs, the total reduction increases to 50 MW. On Tuesday at 3pm,
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the second outage is restored, that generator returns to full capacity, and the total capacity

reduction goes back to 30 MW until the first generator is returned to full capacity at 3am

on Thursday.

Figure 3: Emergency outages of coal generators
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Note: The figure displays time series of the aggregate reduction in coal gen-
eration capacity due to emergency outages (top panel) and the aggregate re-
duction in coal generation capacity as percent of total available coal capacity,
with available capacity defined as total installed capacity net of all planned

outages (i.e., generators taken offline for scheduled maintenance and network
upgrades) (bottom panel). Only emergency outages of coal generators are con-
sidered. All data is from PJM and covers the period from January 1, 2014
through December 31, 2016.

In the top panel, for each hour of the day, we display the total MW-reduction in coal

generation capacity due to emergency outages. There is substantial variability in the data,

with peak capacity reductions over 1,000 MW. The bottom panel plots outage-based capacity

reductions as a percent of total available PJM coal capacity (i.e., total installed capacity

minus total capacity that is not available due to planned outages), which is what we use in

our empirical tests.
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5 Volatility Estimation

One interesting consequence of increasing utilization of renewable energy sources is negative

electricity prices. In our sample, about 5% of hours contain at least one negative price, but

that fraction is likely to be much higher in more recent data. Negative prices complicate the

estimation of volatility considerably: in particular, the classic definition of volatility as the

standard deviation of percentage price changes becomes economically problematic. Consider

the following example: over two consecutive five-minute intervals, electricity price goes from

3 to -2, and then to 1. The percentage return for the first five minutes is (−2−3)/3 = −167%.

This makes some intuitive sense, although it is not obvious what a loss greater than 100%

means. The cash position involves buying electricity for 3 and selling it at a loss for -2 (the

agent has to pay to inject electricity), so the total cashflow is -5 (a loss). Relative to the

initial investment of 3, the asset has lost more than one and a half times its value. For

the second five-minute interval, the initial price is -2, the final price is 1, and the return is

(1 − (−2))/ − 2 = −150%. The calculated percentage return is negative, but the economic

return is positive, since the cash flow is positive. Zero prices compound the challenge of

calculating returns by giving rise to infinite returns. Moving from percentage returns to a

natural logarithm of gross returns does not help. Thus, we rely on the price range as a

measure of volatility.

The use of range is quite popular in economics, finance, and statistics. See for example,

Feller (1951), Garman and Klass (1980), Rogers et al. (1991), Gallant et al. (1999), and

Alizadeh et al. (2002). In our empirical analysis we estimate volatility as the ratio of the

hourly range between maximum and minimum prices, divided by the average price over

the previous twenty four hours. The numerator is a range in levels similar to traditional

log range (see Garman and Klass, 1980). We scale the range by an average to provide

economic grounding: a range of $100/MWh has a different interpretation when the price

hovers around $30/MWh than when it hovers around $800/MWh. We conduct a simulation

exercise to show how our volatility estimator compares to other estimators, following the
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framework of Molnar (2012).

We begin with an asset price that follows a drift-less diffusion, dpt = σdBt, and modify

it to allow for price jumps. We start by simulating the log price, then exponentiate it to

obtain a time-series of prices in levels. Next, we add jumps: with 0.2% probability the price

might jump up by an average of $150/MWh, and with 0.2% probability the price might jump

down to an average price level of –$50/MWh (the average of the negative prices in our data

sample). Note that this is not exactly a jump diffusion process. See Fanone et al. (2013) for

a more sophisticated price model.

We start with an initial price level of $27/MWh (i.e., the median price in Table 1), and

a diffusive volatility parameter σ = 0.02/
√
12, so the hourly diffusive volatility is 2%. We

simulate the price process in discrete five-minute increments. We simulate 345,600 consecu-

tive prices, obtaining approximately 28,800 hours or 1,200 days of data (roughly the length

of our sample). We then construct “hourly” measures of volatility from twelve consecutive

five-minute intervals. For each simulated hour, j, we compute the volatility estimators from

Molnar (2012) as well as our proposed estimator:

• v2j = (Hj − Lj)/Aj is our scaled range estimator;

• v1j =
√

1

12

∑

12

t=1
(Pj,t/Pj,t−1 − 1)2 is the classic standard deviation of percentage return;

• v3j =
√

1

12

∑

12

t=1
(pj,t − pj,t−1)2 is the standard deviation of log returns;

• v4j = hj − lj is a log-range estimator;

• v5j = (hj − lj)/(2
√

ln(2)) is Parkinson (1980) range-based estimator;

• v6j =
√

0.5(hj − lj)2 − (2ln(2)− 1)(cj − oj)2 is Garman and Klass (1980) estimator

that combines v3j and v5j;

• v7j =
√

(hj − oj)(hj − cj)− (lj − oj)(lj − cj) is Rogers and Satchell (1991) estimator

that allows for arbitrary drift.
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Capital letters represent variables in levels, while lower-case letters represent logs. Pj,t is the

price of an asset (electricity) at the end of the five-minute interval t in hour j, Hj and Lj

are the maximum and minimum electricity prices during hour j, Aj is the average electricity

price of the 24 hours preceding hour j, and cj and oj are natural logarithms of the closing

and opening electricity price for hour j.

We simulate the time-series of prices 1,000 times for each of 1,200 days. For each sim-

ulation we compute the six volatility measures for all 28,800 hours, and then compute the

respective averages. We tabulate below the average and standard deviation across the 1,000

simulations (i.e., the average of an average, and the standard deviation of an average). We

present three scenarios: the base case with no jumps in the top panel (i.e., the drift-less

diffusion, in levels), the base case with only positive jumps in the middle panel, and the base

case with positive and negative jumps in the bottom panel. Within each panel we also report

the percentage of times when a simulation produces an hourly infinite or non-real volatility

estimate (i.e., because of prices smaller than or equal to zero).

Consider the top panel. The standard deviation of price changes, in percentage (v1) or

logs (v3), is pretty close to 2%. The two simple range estimators (v2 and v4) are close

and slightly over-estimating volatility at 2.59%, while the rest of the estimators are under-

estimating. The fact that the last three estimators are under-estimating volatility is in line

with the results reported in Table 1 of Garman and Klass (1980), and due to the fact that

in our simulations, as well as in the actual data, each volatility is estimated based on a

small number of observations (i.e., 12 five-minute intervals). In their Table 1, Garman and

Klass (1980) show that when prices are observed at “coarse” discrete intervals, their variance

estimators are biased.4

Now consider the middle panel, where we introduce positive price jumps. Because there

are no negative prices, all estimators are still feasible in every period. However, note that

4v4, v5, and v6 look better in Molnar (2012), but he uses 100,000 time intervals, not 12, to compute the
volatility of one time period. Note that even at a daily level, with 12 x 24 time periods, volatility would be
significantly under-estimated.
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Table 3: Simulation of volatility estimators

v1 v2 v3 v4 v5 v6 v7

No jumps

Average 1.96 2.59 1.96 2.59 1.55 1.43 1.32
Standard deviation 0.01 0.02 0.01 0.02 0.01 0.01 0.01
Percentage of missing 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Positive jumps only

Average 39.53 40.46 10.72 9.45 5.68 5.88 7.12
Standard deviation 31.17 28.80 2.21 1.72 1.03 1.10 1.44
Percentage of missing 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Positive and negative jumps

Average 52.15 49.69 10.72 9.45 5.68 5.88 7.12
Standard deviation 34.47 35.77 2.22 1.73 1.04 1.11 1.45
Percentage of missing 0.0 0.0 2.6 2.6 2.6 2.6 2.6

Note: The table shows comparisons of different volatility estimators in thee simulation scenarios. Each sce-
nario reflects a different dynamic for the price of electricity. In the first scenario the price follows a driftless
diffusion with an hourly diffusive parameter of 2%. In the second scenario with probability 0.2% the price
can jump to an average of $150. In the third scenario, with respective probability of 0.2%, the price to jump
up to an average of $150 or down to an average of –$50. Each scenario represents 1,000 simulations of 28,800
hours (approximately the length of our actual sample). In each simulation hour the price is observed 12 times
(i.e., the equivalent of 5-minute intervals). Using the 12 observations, for each generic hour j, we compute 7

measures of volatility: v2j = (Hj −Lj)/Aj is our scaled range estimator; v1j =
√

1

12

∑

12

t=1
(Pj,t/Pj,t−1 − 1)2

is the classic standard deviation of percentage return; v3j =
√

1

12

∑

12

t=1
(pj,t − pj,t−1)2 is the standard devi-

ation of log returns; v4j = hj − lj is a log-range estimator; v5j = (hj − lj)/(2
√

ln(2)) is Parkinson (1980)

range-based estimator; v6j =
√

0.5(hj − lj)2 − (2ln(2)− 1)(cj − oj)2 is Garman and Klass (1980) estimator

that combines v3j and v5j; v7j =
√

(hj − oj)(hj − cj)− (lj − oj)(lj − cj) is Rogers and Satchell (1991) esti-
mator that allows for arbitrary drift. Capital letters represent variables in levels, while lower-case letters rep-
resent logs. Pj,t is the price of an asset (electricity) at the end of the five-minute interval t in hour j, Hj and
Lj are the maximum and minimum electricity prices during hour j, Aj is the average electricity price of the
24 hours preceding hour j, and cj and oj are natural logarithms of the closing and opening electricity price
for hour j. For each of the 1,000 simulations, we then average the seven hourly volatilities across the 28,800
hours. The table reports the respective average and standard deviations across the 1,000 simulations, as well
the percentage of simulated hours for which an estimator cannot be computed because of negative prices.

while v2 and v4 still track volatility measures based on squared returns, v1 and v3, respec-

tively, the last three estimators produce a sizable bias.

In the bottom panel, adding negative prices complicates the interpretation and compar-

ison of the numbers because the only volatility measure that does not have any mechanical

problems is the one we suggest, v2. Even the simple standard deviation of returns has prob-

lems because it relies on returns that are not economically meaningful. Note that a 0.2%
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probability of a negative jump does not mean that only 0.2% of the hours will have problems.

In fact, because jumps are random, rarely is there more than one in an hour. However, just

one negative price is enough to create a problem in the construction of a volatility estimator

that uses log prices. The frequency of hours that have a problem in such cases will be much

higher than 0.2%, around 2.6%. Intuitively, introducing negative jumps should increase price

volatility, but we do not observe this for all log-price estimators because hours with negative

prices need to be discarded. The volatility measured by our proposed estimator, however,

does increase, and so does volatility based on the square of percentage returns.

Overall, this simulation shows that when prices are negative, most volatility estimators

run into some problem, whether mechanical or logical. Hence our choice to focus on v2 in

the rest of the empirical analysis.

6 Empirical analysis

6.1 Emergency outages

We begin our analysis by examining how emergency coal outages are related to the state

of the market. We tabulate regression results of an hourly measure of outage severity,

controlling for several proxies of electricity demand, demand uncertainty, and a measure of

wind generation. The dependent variable is defined as the natural logarithm of the total

reduction in coal generation capacity as percent of total available coal capacity (i.e., total

installed capacity minus the aggregate reduction due to scheduled outages), multiplied by

one hundred. All data are hourly. We also impose one important restriction on our sample:

because we are interested in measuring the trade-off between coal and natural gas, we only

look at hours during which the marginal generator is a gas and/or coal unit. We exclude

hours when other fuel sources are also on the margin. Results of these regressions are shown

in Table 4. All coefficient estimates are multiplied by 100 for ease of interpretation.

Emergency outages that affect coal generators are positively related to unforeseen demand
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Table 4: Emergency coal outages and power network conditions

All Non-fire Fire

(1) (2) (3) (4) (5) (6)

Load 0.095 0.085 -0.035 -0.038 0.125 0.117
(0.06) (0.06) (0.02) (0.02) (0.06) (0.06)

Unforecasted load 0.527 0.569 0.004 0.015 0.522 0.553
(0.22) (0.22) (0.06) (0.06) (0.20) (0.20)

Wind generation 0.003 0.003 -0.003 -0.003 0.006 0.006
(0.01) (0.01) (0.00) (0.00) (0.01) (0.01)

Cold -0.084 -0.074 -0.015 -0.012 -0.068 -0.061
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Hot 0.078 0.091 0.019 0.022 0.059 0.068
(0.02) (0.02) (0.01) (0.01) (0.02) (0.02)

Weekend 0.002 -0.001 0.007 0.006 -0.005 -0.008
(0.01) (0.01) (0.00) (0.00) (0.01) (0.01)

Generator Age 0.145 0.145 0.026 0.025 0.093 0.090
(0.11) (0.11) (0.01) (0.01) (0.05) (0.05)

Past electricity volatility -0.010 -0.003 -0.007
(0.00) (0.00) (0.00)

R-squared 0.156 0.157 0.146 0.146 0.186 0.186
Observations 11826 11826 11826 11826 11826 11826

Note: The table reports estimated coefficients, standard errors and R-squared coefficients for linear regres-
sions of outage-related reductions in coal generation capacity on measures of electricity demand, supply,
weather conditions, and time. All variables are measured at hourly intervals. The dependent variable is the
natural logarithm of the percentage reduction in PJM’s total available coal generation capacity. Indepen-
dent variables include the natural logarithm of hourly load, the difference between realized hourly load and
hourly load forecast generated by PJM one day in advance, and total wind power generation. Among the
independent variables, we also include an indicator variable equal to one when the average temperature in
the counties serviced by PJM is less than negative five degrees Celsius (Cold), an indicator variable equal
to one when the average temperature in the counties serviced by PJM is more than twenty five degrees Cel-
sius (Hot), and an indicator variable equal to one for observations that fall on a weekend. Generator Age
measures the years (as a fraction of a century) from the date of the outage to the ultimate construction of
the plan. We also include the one-hour lag of electricity price volatility, defined as the intra-hour range be-
tween minimum and maximum prices (scaled by the average price in the previous twenty four hours). All
estimated coefficients are multiplied by 100. Standard errors are corrected for heteroskedasticity and serial
correlation in residuals. A constant is estimated but not reported. Each specification includes month and
hour fixed effects. For this table we only consider hours in which either gas and/or coal are on the margin.
Data covers the period from January 1, 2014 through December 31, 2016.

for electricity and are more likely on hot days. This is not unexpected, as half of all emergency

outages (and over 90 percent of emergency coal outages) are related to fires, which are aided

by high temperatures and high operating capacities.
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Outages are less likely to occur on cold days (but only those caused by a fire) and

when electricity prices are more volatile. In all cases, the size of the effects is quite small.

Coefficients on unforecasted load for all outages (columns 1 and 2) imply that a one percent

increase in unforecasted load is associated with an increase in the coal capacity displaced by

an outage of one half of a percent. Coefficient estimates on the Hot indicator suggest that

on hot days the capacity reduction due to emergency coal outages is about one tenth of a

percent larger than on an average temperate day. Thus, although some of our coefficients

are statistically significant, in terms of economic significance, coal outages appear to be

reasonably exogenous events in the context of our analysis. The negative and very small

coefficient on lagged electricity price volatility also supports the idea that emergency coal

outages cannot be predicted in a meaningful way by price data.

Looking at fire and non-fire outages separately offers some interesting insights. Emer-

gency outages caused by operational factors other than a fire appear to be negatively related

to load and are not related to the unforecasted component of demand. Fire-related outages,

by contrast, are linked to both total demand and unanticipated demand spikes, both of which

may make unit overloads more likely. Capacity losses from non-fire outages are also lower

when wind generation is plentiful and on weekdays—the opposite, although not statistically

significant, relationship from that observed for fire-related outages. Also interesting, the age

of the generator is positively related to the amount of capacity being displaced, but the effect

is stronger for non-fire outages.

These results suggest that there may be systematical differences between fire and non-

fire emergency outages, but the impacts of these differences are small in an economic sense,

and thus, not likely strong enough to violate the ignorability condition. Thus, for most

subsequent analyses, we group fire and non-fire outages together and discuss differences

between these two outage categories in the robustness section.
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6.2 Outages, fuel switching, and real-time price volatility

Next, we investigate the relationship between price volatility and marginal fuel source, em-

ploying an instrumental variable approach described in Section 3. We report results of the

first stage regressions in Table 5 and results of ordinary least squares and second stage IV

regressions (2SLS) in Table 6. We calculate real-time electricity price volatility, henceforth

volatility, as the natural logarithm of the ratio of the range between the minimum and the

maximum prices (observed in the hour) and the average electricity price from the previous 24

hours. We use 24 to dampen the effect of negative prices, but results are robust to alternative

choices (i.e., 1, 6, or 12 hour averages).

First stage 2SLS results displayed in Table 5 show that a one percent reduction in total

available coal generation capacity increases the fraction of time during which natural gas is on

the margin by 1.9 percentage points. These coefficient estimates are statistically significant

and easily pass the weak instrument test with F -statistics above 36. The strength of the

instrument supports the assumption that an outage that takes out an infra-marginal coal

generator is unlikely to push another coal generator on the margin. Because the only way

in which we could make an independent validation of the monotonicity assumption is by

using generators’ actual bids, which we do not have, we rely on the statistical strength of

the instrument.

We can provide context to our main first-stage coefficient estimate by calculating the

marginal effect of a one standard deviation change in our main explanatory variable. For

emergency coal outages, one standard deviation in average capacity loss is 0.46 percent.

Such increase in lost coal capacity would put gas generators on the margin for an extra

0.46 × 1.9 = 0.9 percent of an hour. Thus, emergency coal outages lead to fuel switching,

which confirms the validity of our chosen instrumental variable.

Moving to Table 6, OLS regressions in columns (1) and (2) show a positive relationship

between gas on the margin and volatility of real-time electricity prices. Columns (3) and

(4) show that once we account for endogeneity of the marginal fuel source, the relationship
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Table 5: Marginal shares of natural gas generators

(1) (2)

Coal outage MW reduction over total capacity 1.901 1.911
(0.397) (0.398)
[36.69] [37.04]

Load -0.198 -0.196
(0.021) (0.021)

Unforecasted load -0.097 -0.102
(0.073) (0.073)

Wind generation 0.006 0.006
(0.002) (0.002)

Cold 0.023 0.022
(0.014) (0.014)

Hot 0.021 0.020
(0.006) (0.007)

Weekend -0.040 -0.040
(0.004) (0.004)

Past electricity volatility 0.001
(0.001)

R-squared 0.069 0.069
Observations 11826 11826

Note: The table shows estimated coefficients, standard errors and R-squared statistics for linear regressions
of the natural logarithm of one plus the time (percentage of an hour) during which natural gas generators are
on the margin. The main independent variable is the natural logarithm of the relative reduction in available
generating capacity due to a coal outage. Weak instrument F-tests are reported in brackets. Other inde-
pendent variables are as described in Table 4. Standard errors are corrected for heteroskedasticity and serial
correlation in residuals. A constant is estimated but not reported. Each specification includes month and
hour fixed effects. For this table we only consider hours in which either gas and/or coal are on the margin.
Data covers the period from January 1, 2014 through December 31, 2016.

between marginal fuel and price volatility becomes negative and statistically significant.

That is, electricity price volatility tends to be lower when more gas is on the margin.

In economic terms, switching the marginal generator from coal to natural gas for an

additional one percent of an hour (36 seconds) decreases the scaled price range by 3.6 percent

(from column 4). Evaluated at the mean, this fuel switching corresponds to a 5.7 percent

reduction in the average power price volatility (from 63 percent to 59.4 percent), or a 77-cent

reduction in the intra-hour range of electricity prices.

A negative relationship between electricity price volatility and gas on the margin is con-
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Table 6: Real time electricity price volatility

OLS 2SLS

(1) (2) (3) (4)

Gas on margin 0.396 0.365 -5.612 -3.596
(0.088) (0.067) (1.790) (1.264)

Load -0.723 -0.265 -1.900 -1.037
(0.164) (0.116) (0.388) (0.270)

Unforcasted load 4.480 2.574 3.959 2.215
(0.591) (0.409) (0.609) (0.425)

Wind generation -0.017 -0.010 0.020 0.015
(0.016) (0.011) (0.019) (0.014)

Cold 0.964 0.515 1.092 0.595
(0.108) (0.073) (0.113) (0.077)

Hot 1.213 0.667 1.350 0.753
(0.061) (0.046) (0.072) (0.054)

Weekend -0.283 -0.134 -0.524 -0.291
(0.033) (0.023) (0.078) (0.055)

Past electricity volatility 0.446 0.450
(0.010) (0.010)

R-squared 0.192 0.355 0.191 0.354
Observations 11826 11826 11826 11826

Note: The table shows estimated coefficients, standard errors and R-squared statistics for linear regressions
of hourly real-time electricity price volatility on the percentage of time natural gas generators are on the
margin in that hour. The dependent variable is the hourly range in real-time wholesale electricity price, de-
fined as the difference between the maximum and minimum prices observed within a given hour, divided by
the average price observed in the previous twenty four hours. Each specification is estimated by ordinary
least squares and by 2SLS, where the proportion of time natural gas is on the margin is instrumented by
the percentage reduction in total available generation capacity of coal due to an emergency outage. We only
include observations where coal and/or natural gas are the marginal generation sources. Other independent
variables are as described in Table 4. Standard errors are corrected for heteroskedasticity and serial corre-
lation in residuals. A constant is estimated but not reported. Each specification includes month and hour
fixed effects. Data covers the period from January 1, 2014 through December 31, 2016.

sistent with the model of Reguant (2014) in which fixed costs are key determinants of the

dynamic bidding behavior of electricity generators. Because of lower startup costs, natural

gas generators are able to respond to variation in demand and other market conditions more

efficiently, and therefore, relative to coal generators, they marginally reduce electricity price

volatility. Our results thus cast significant doubt on the argument that fuel price volatility

passed through in the generation process has a pervasive effect on electricity price volatility.

At the minimum, the adverse impact of fuel price volatility appears to be secondary to the
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benefits of dispatching more flexible generating assets.

Our results however do not contradict those of Chu et al. (2017), for example, who

find a substantial cost pass-through from natural gas prices, due to procurement contracts

periodically readjusting to natural gas prices. It is likely that fuel procurement contracts

are relatively long dated forwards. When such contracts are renegotiated, there would be a

substantial amount of cost pass-through, but it would not translate in volatility pass-through

as long as the frequency of renegotiation is low enough.

Although our analysis is based on PJM data, our results should hold for other electricity

markets in which generators are able to revise bids dynamically to participate in the real

time market.

In the next section we investigate how our results hold up to alternative definitions of

our main dependent and independent variables, as well as alternative mechanisms behind

fuel switching.

6.3 Robustness checks

6.3.1 Variable definitions and samples

Table 7 reports the results of several robustness checks. Changing the definition of volatility

from scaled range to standard deviation of price, does not change the basic result: a one per-

cent increase in natural gas on the margin leads to a 3.3 percent decrease in price volatility

(compared to a 3.5 percent decrease in Table 6). Using unscaled emergency outages genera-

tion reduction in the first stage leads to similar second stage outcomes as in our main results.

By splitting the sample according to the intensity of wind generation, we learn that gas on

margin impacts volatility primarily during times of low wind generation: when little wind

energy is being fed into the grid, a reduction in coal generation due to an outage produces

a larger switch to natural gas. By contrast, when wind generation is plentiful, not only

is gas more likely to be on the margin already, but because inframarginal wind generation

pushes some coal units out of dispatch, more coal capacity is left available, reducing the need
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to dispatch additional flexible natural gas units. Our baseline result is also unaffected by

considering all hourly observations, as opposed to only those in which marginal generation

comes exclusively from natural gas or coal.
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Table 7: Robustness checks

Scaled Price Vol MW Reduction Low Wind High Wind Full Sample

OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Gas on margin 0.353 -3.338 0.365 -3.508 0.463 -7.962 0.309 -0.833 0.203 -5.176 0.426 -4.343
(0.068) (1.281) (0.067) (0.973) (0.097) (2.566) (0.092) (1.576) (0.051) (1.394) (0.055) (1.116)

Load -0.262 -0.981 -0.265 -0.669 -0.504 -1.631 0.101 -0.240 0.008 -1.009 -0.010 -0.714
(0.119) (0.274) (0.116) (0.146) (0.163) (0.374) (0.174) (0.502) (0.080) (0.276) (0.080) (0.184)

Unforcasted load 2.647 2.312 2.574 1.978 3.494 3.776 1.639 1.422 3.158 2.384 3.052 2.815
(0.422) (0.438) (0.409) (0.442) (0.632) (0.648) (0.546) (0.621) (0.305) (0.364) (0.303) (0.310)

Wind generation -0.011 0.012 -0.010 -0.005 -0.010 -0.027 -0.023 0.005
(0.011) (0.014) (0.011) (0.011) (0.008) (0.009) (0.008) (0.011)

Cold 0.522 0.597 0.515 0.524 0.743 1.051 0.385 0.421 0.553 0.583 0.529 0.632
(0.075) (0.079) (0.073) (0.073) (0.131) (0.159) (0.084) (0.097) (0.043) (0.044) (0.043) (0.049)

Hot 0.680 0.760 0.667 0.681 0.671 0.854 0.550 0.569 0.672 0.769 0.664 0.764
(0.048) (0.055) (0.046) (0.047) (0.062) (0.083) (0.077) (0.082) (0.034) (0.043) (0.034) (0.042)

Weekend -0.129 -0.275 -0.134 -0.149 -0.136 -0.367 -0.120 -0.185 -0.129 -0.289 -0.114 -0.282
(0.024) (0.056) (0.023) (0.023) (0.033) (0.077) (0.033) (0.095) (0.017) (0.045) (0.017) (0.043)

Past electricity volatility 0.451 0.455 0.446 0.445 0.444 0.465 0.440 0.441 0.454 0.450 0.451 0.459
(0.010) (0.010) (0.010) (0.010) (0.013) (0.015) (0.013) (0.013) (0.007) (0.007) (0.007) (0.007)

Others on margin 0.543 -1.230
(0.053) (0.417)

R-squared 0.350 0.349 0.355 0.354 0.372 0.371 0.348 0.346 0.370 0.369 0.372 0.371

Observations 11826 11826 11826 11826 5913 5913 5913 5913 23285 23285 23285 23285

Note: The table presents robustness checks to the results presented in Table 6. In the first two columns we consider the natural volatility of price volatility
(as opposed to price range) as the dependent variable. In columns three and four, we consider the natural logarithm of power generation reduction due to
a coal emergency outage (as opposed to the relative power reduction) as the instrumental variable for the percentage of an hour that natural gas is on the
margin. In columns five and six (seven and eight), we limit the sample to hours when wind generation is below (above) the median. In columns nine to
twelve, we consider all hourly observation irrespective of which fuel source is on the margin (as opposed to only consider hours for which coal and/or natural
gas are on the margin). Each specification is estimated by ordinary least squares and by 2SLS. Standard errors are corrected for heteroskedasticity and
serial correlation in residuals. A constant is estimated but not reported. Each specification includes month and hour fixed effects. Data covers the period
from January 1, 2014 through December 31, 2016.
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6.3.2 Non-fire emergency outages

Because emergency outages of coal generators are related to demand and temperature con-

ditions, even if marginally, it is reasonable to wonder whether the units that are eventually

forced to shut down because of a fire are driven to that critical level by market conditions,

thus violating the orthogonality condition.

Hence, we repeat the analysis for fire- and non-fire-related outages separately. One caveat

is that fire-related outages are overwhelmingly more frequent and thus displace a much larger

portion of the existing coal generation capacity, even though a single fire-related emergency

outage leads to a lower average capacity reduction than a single non-fire-related outage (see

Table 2). Results are reported in Table 8.

Because of their relatively small number, non-fire-related emergency outages prove to be

a weaker instrument than fire-related outages. Splitting emergency outages by cause has

only a small effect on the first and second-stage results: a one standard deviation increase in

lost coal capacity is associated with a 0.48 percent (non-fire) and 0.75 percent (fire) increase

in natural gas on the margin; price volatility decreases by 2.1 and 2.6 percent as a result of

non-fire and fire-related emergency outages, respectively.

6.3.3 Fuel price volatility

As Chu et al. (2017) point out, there is a certain amount of cost pass-through in the electricity

generation industry. It is therefore reasonable to assume that volatility in fuel markets might

transfer to the wholesale electricity market. We next check for evidence that price volatilities

in the fuel and electricity markets are connected, and if so, whether that connection affects

our main results.

Because we do not have access to high-frequency data on natural gas and coal prices, we

construct measures of fuel price volatility by filtering daily percentage price changes (i.e.,

returns) through a GARCH(1,1) model.5 We then match these daily volatilities to the rest of

5This is the model of best fit, though other GARCH specifications produce similar results.
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Table 8: Fire versus non-fire related outages

Non-fire outages Fire outages
1st stage 2nd stage 1st stage 2nd stage

(1) (2) (3) (4)

Coal outage MW reduction over total capacity 4.347 1.880
(1.49) (0.43)
[13.29] [30.67]

Gas on margin -4.266 -3.477
(2.16) (1.39)

Load -0.193 -1.167 -0.197 -1.013
(0.02) (0.44) (0.02) (0.29)

Unforcasted load -0.091 2.154 -0.101 2.225
(0.07) (0.46) (0.07) (0.43)

Wind generation 0.006 0.019 0.006 0.014
(0.00) (0.02) (0.00) (0.01)

Cold 0.021 0.609 0.021 0.593
(0.01) (0.08) (0.01) (0.08)

Hot 0.021 0.768 0.020 0.750
(0.01) (0.07) (0.01) (0.05)

Weekend -0.040 -0.318 -0.040 -0.286
(0.00) (0.09) (0.00) (0.06)

Past electricity volatility 0.001 0.450 0.001 0.450
(0.00) (0.01) (0.00) (0.01)

R-squared 0.067 0.354 0.068 0.354
Observations 11826 11826 11826 11826

Note: The table presents robustness checks to the results presented in Tables 5 and 6. Columns 1 and 2,
display the results obtained using only non-fire related emergency outages as the instrumental variable. Col-
umn 1 contains the estimated coefficients from the first stage of the 2SLS procedure, where the dependent
variable is the proportion of an hour that natural gas is on margin. Column 2, tabulates the results of the
second stage, where real-time electricity price volatility is the dependent variable, and natural gas on margin
is the fitted estimate from the first stage. In columns 3 and 4, we tabulate corresponding results obtained
by only considering fire-related emergency outages. Standard errors are corrected for heteroskedasticity and
serial correlation in residuals. A constant is estimated but not reported. Each specification includes month
and hour fixed effects. For this table we only consider hours in which either gas and/or coal are on the
margin. Data covers the period from January 1, 2014 through December 31, 2016.

our hourly variables. Some caution in interpretation is merited. Because fuel price volatility

measures are not hourly, they absorb some of the day-to-day variation in electricity prices,

which in turn affects their coefficients and their impact on other coefficients. Table 9 displays

the results of this analysis.

We find some evidence that price volatilities in the fuel and electricity markets are con-
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nected, but this relationship is negative. Given our empirical context and framework, despite

the limitations presented by our measures of fuel price volatility, we do not find support for

the hypothesis that high volatility in fuel markets is associated with high volatility in the

real-time electricity market. (See the next subsection for evidence from daily day-ahead

volatility). Coefficients on both fuel prices are negative, and those estimated for natural gas

price volatility are statistically significant. Comparing these results to the baseline results

reported in column (4) of Table 6, we find that the relationship between fuel and electricity

price volatility does not affect our main result.

6.4 Daily electricity price volatility

One relevant question is whether our results only apply to hourly volatility or whether they

are detectable at longer horizons. We adopt the hourly time-scale in the main analysis

because it gives us the best identification. While hourly seems the more appropriate time

dimension to think about the real-time market, it is true that the bulk of generation is trans-

acted in the day-ahead market. Thus, keeping in mind that we lose the tight identification,

we repeat our analysis at the daily frequency, computing volatility from day-ahead market

data (i.e., 24 hour prices are used to compute one daily volatility). Because there are no

negative prices in the day-ahead market, we can measure volatility as the standard deviation

of percentage price changes. This offers a validation exercise for the range-based volatility

measure that we adopt in our main analysis.

Results are reported in Table 10, and confirm the conclusions of our main analysis: more

gas on margin is associated with lower volatility of electricity prices; there is no evidence

of volatility pass-through from the fuel spot markets; without the complications of negative

prices, scaled range and standard deviation of price changes produce very similar results.

We note that our evidence against volatility pass-through, does not invalidate the results

of Chu et al. (2017), for example, who find a substantial cost pass-through from natural

gas prices, due to procurement contracts periodically readjusting to natural gas prices. The
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Table 9: Impact of fuel price volatility

2SLS volatility regression – 2nd stage

(1) (2) (3) (4)

Gas on margin -3.596 -4.368 -3.071 -3.909
(1.264) (1.457) (1.621) (1.884)

Load -1.037 -1.120 -0.907 -1.012
(0.270) (0.288) (0.356) (0.386)

Unforcasted load 2.215 1.989 2.202 1.990
(0.425) (0.445) (0.424) (0.446)

Wind generation 0.015 0.019 0.013 0.018
(0.014) (0.014) (0.014) (0.015)

Cold 0.595 0.661 0.587 0.652
(0.077) (0.086) (0.078) (0.091)

Hot 0.753 0.757 0.742 0.748
(0.054) (0.054) (0.058) (0.059)

Weekend -0.291 -0.317 -0.266 -0.296
(0.055) (0.061) (0.071) (0.080)

Past electricity volatility 0.450 0.450 0.449 0.449
(0.010) (0.010) (0.010) (0.010)

Gas volatility -0.064 -0.061
(0.025) (0.027)

Coal volatility -0.042 -0.034
(0.041) (0.043)

R-squared 0.354 0.354 0.355 0.355
Observations 11826 11826 11826 11826

Note: The table presents robustness checks to the results presented in Tables 5 and 6 by including a mea-
sure of volatility in natural gas and coal spot prices. We construct fuel price volatility measures by filtering
daily percentage changes in spot prices (i.e., returns) through a GARCH model. We then expand those so
that they pair with each hour of the corresponding day. Standard errors are corrected for heteroskedastic-
ity and serial correlation in residuals. A constant is estimated but not reported. Each specification includes
month and hour fixed effects. For this table we only consider hours in which either gas and/or coal are on
the margin. Data covers the period from January 1, 2014 through December 31, 2016.

coarser the timing of the readjustment, the less likely it is that a cost pass-through would

produce a volatility pass-through.
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Table 10: Day-ahead market volatility

Scaled Range Volatility
OLS 2SLS

(1) (2) (3) (4) (5) (6)

Gas on margin -0.467 -0.424 -0.447 -3.147 -1.792 -1.311
(0.082) (0.083) (0.084) (1.255) (0.517) (0.595)

Load 0.515 0.524 0.456 0.782 0.647 0.599
(0.091) (0.117) (0.113) (0.153) (0.093) (0.097)

Unforcasted load -0.436 -0.630 -0.373 -2.122 -1.270 -0.967
(0.679) (0.699) (0.705) (1.045) (0.688) (0.699)

Wind generation 0.001 0.001 0.001 -0.046 -0.022 -0.014
(0.009) (0.009) (0.009) (0.023) (0.012) (0.012)

Cold 0.118 0.148 0.118 0.002 0.061 0.081
(0.041) (0.043) (0.042) (0.071) (0.054) (0.056)

Hot 0.194 0.187 0.193 0.121 0.158 0.171
(0.020) (0.019) (0.019) (0.039) (0.022) (0.024)

Weekend -0.073 -0.068 -0.072 0.035 -0.020 -0.039
(0.014) (0.014) (0.014) (0.053) (0.024) (0.027)

Past electricity volatility 0.041 0.053 -0.035 -0.052
(0.042) (0.042) (0.039) (0.041)

Gas volatility -0.033 -0.104
(0.011) (0.039)

Coal volatility -0.010 -0.091
(0.017) (0.041)

R-squared 0.408 0.415 0.409 0.391 0.398 0.392

Observations 1016 1016 1016 1016 1016 1016

7 Conclusion and policy implications

After accounting for endogeneity, more natural gas generation per se does not seem to be

driving higher price volatility in PJM’s real-time (or day-ahead) wholesale market for the

years 2014 through 2016. All else equal, more natural gas generation on the margin is likely

to lead to lower, not higher wholesale price risk for electricity market participants. This is

important for electricity market planning in general and natural gas integration in particular

because retail power prices in most regions of the U.S. are fixed and utilities are unable to pass

through changes in risk exposure in wholesale markets to retail consumers. As the system
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Table 10 continued Standard Deviation of Percentage Price Changes
OLS 2SLS

(1) (2) (3) (4) (5) (6)

Gas on margin -0.364 -0.266 -0.280 -2.898 -3.524 -3.728
(0.061) (0.056) (0.058) (1.002) (0.318) (0.426)

Load 0.122 0.031 -0.007 0.375 0.437 0.458
(0.074) (0.079) (0.073) (0.128) (0.070) (0.071)

Unforcasted load -0.395 -0.303 -0.149 -1.989 -2.384 -2.512
(0.498) (0.469) (0.465) (0.836) (0.540) (0.584)

Wind generation -0.000 -0.005 -0.005 -0.045 -0.056 -0.059
(0.007) (0.006) (0.006) (0.019) (0.008) (0.009)

Cold 0.115 0.118 0.100 0.005 -0.022 -0.031
(0.023) (0.023) (0.022) (0.050) (0.027) (0.028)

Hot 0.049 0.045 0.049 -0.020 -0.037 -0.043
(0.020) (0.018) (0.017) (0.034) (0.019) (0.020)

Weekend -0.024 -0.017 -0.019 0.078 0.103 0.111
(0.012) (0.011) (0.012) (0.042) (0.018) (0.021)

Past electricity volatility 0.302 0.315 0.075 0.082
(0.042) (0.040) (0.023) (0.026)

Gas volatility -0.019 -0.127
(0.008) (0.021)

Coal volatility -0.005 -0.133
(0.012) (0.021)

R-squared 0.168 0.252 0.246 0.142 0.232 0.225
Observations 1016 1016 1016 1016 1016 1016

Note: The table presents robustness checks to the results presented in Tables 5 and 6. The dependent vari-
able is the daily volatility constructed from the 24 day ahead prices. Volatility is constructed using the same
definition as in the paper (Maximum Price - Minimum Price)/Average Price (Scaled Range) or as the stan-
dard deviation of hourly returns (Standard Deviation). Gas on Margin is aggregated to daily from hourly
data. It is computed as the average of the 24 measurements provided by PJM for each of the hours in
the day, weighted by the load forecast for each hour. Load and Wind are summed across each hour of the
day, while unforcasted load is the average of the hourly forecast errors. Daily capacity forced out by a coal
outage is the daily average of the hourly variable used in the main analysis (i.e., the ratio of the capacity
that is forced out and the difference between the total capacity and the capacity that was scheduled to be
out). We construct fuel price volatility measures by filtering daily percentage changes in spot prices (i.e., re-
turns) through a GARCH model. Standard errors are corrected for heteroskedasticity and serial correlation
in residuals. A constant is estimated but not reported. Each specification includes month and hour fixed
effects. Data covers the period from January 1, 2014 through December 31.

operator dispatches more flexible power generating units, the system’s ability to respond

to unanticipated changes in market conditions improves, which in turn leads to lower price

volatility. By reducing response times and ramping constraints, more flexible natural gas
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generation appears to reduce bid markups created by generators’ startup constraints.

Our results should hold for other markets with supply bidding rules and generation

stacks similar to PJM. Our analysis does not, however, allow us to comment on the welfare

implications of gas integration beyond fuel switching at the margin—that is, we cannot say

how additional gas integration affects price volatility once gas is on the margin 100 percent

of the time. The potential benefits of fuel-switching, however, should be taken into account

by policy makers in power-sector market planning.
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