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Several recent studies have expressed concern that the Haar prior typically employed in 

estimating sign-identified VAR models is driving the prior about the structural impulse 

responses and hence their posterior. In this paper, we provide evidence that the 

quantitative importance of the Haar prior for posterior inference has been overstated. How 

sensitive posterior inference is to the Haar prior depends on the width of the identified set 

of a given impulse response. We demonstrate that this width depends not only on how 

much the identified set is narrowed by the identifying restrictions imposed on the model, 

but also depends on the data through the reduced-form model parameters. Hence, the 

role of the Haar prior can only be assessed on a case-by-case basis. We show by example 

that, when the identification is sufficiently tight, posterior inference based on a Gaussian-

inverse Wishart-Haar prior provides a reasonably accurate approximation.   
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1 Introduction

The conventional Bayesian approach to estimating VAR models subject to sign restrictions on

the impulse responses involves specifying a conjugate Gaussian-inverse Wishart-Haar prior for the

reduced-form slope parameters, , the reduced-form error covariance matrix, Σ, and the orthogonal

rotation matrix .1 The prior for the scalar impulse response parameter  = (Σ ), is defined

implicitly by the nonlinear function (·).2 In the asymptotic limit, the posterior distribution of 

over the identified set depends only on the prior for , since the likelihood is flat over the identified

set. A number of recent studies have questioned the extent to which the impulse response posterior

in these models is driven by the choice of a Haar prior for  (e.g., Baumeister and Hamilton 2015,

Giacomini and Kitagawa 2021, Giacomini, Kitagawa and Read 2023; Kilian 2013; Plagborg-Møller

2019; Watson 2020). Baumeister and Hamilton (2015) argue against the use of the conventional

approach to posterior inference about sign-identified impulse responses on the grounds that it

amounts to “pretending that [this] prior information ... has no effect on the reported conclusions

(p. 1993).” In this paper, we provide evidence that the quantitative importance of the Haar prior

for posterior inference has been overstated.

Our analysis clarifies the conditions under which the conventional approach to estimating sign-

identified VAR models remains a viable option in applied work. We demonstrate that there is no

presumption that the substantive conclusions of sign-identified models estimated using the con-

ventional approach are necessarily spurious. The key question we address is how much the choice

of the prior over the set-identified impulse response parameters matters, given the reduced-form

posterior and the identifying sign restrictions. Our analysis recognizes that the identifying sign

1Prominent early applications of sign-identified VAR models include Faust (1998), Uhlig (1998), and Canova and

de Nicolo (2002). The use of the Gaussian-inverse Wishart prior was proposed by Uhlig (2005). The Haar prior was

introduced by Rubio-Ramírez, Waggoner and Zha (2010). For a review of the literature see Kilian and Lütkepohl

(2017) and Uhlig (2017).
2More formal explanations of this notation can be found in the online appendix.
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restrictions are part of the impulse response prior. The more informative these restrictions are,

given the data, the smaller the identified set. We show that the smaller the identified set, the less

misleading are the impulse response estimates and credible sets obtained using the conventional

approach. In practice, the width of the identified set for a given impulse response depends not only

on the identifying restrictions imposed on this response, but also on the identifying restrictions im-

posed on the other structural responses in the VAR model. In addition, the width of the identified

set depends on the data through Σ and , given the identifying restrictions. Hence, the role of the

Haar prior can only be assessed on a case-by-case basis.

Our point is not that the prior for  does not influence the prior for . Nor do we dispute

that the posterior of  is affected by the Haar prior. Rather our point is that this influence tends

to be negligible in structural VAR models that are tightly identified by sign restrictions (possibly

in conjunction with other restrictions such as elasticity bounds and narrative, shape or exclusion

restrictions). As long as the identified set is narrow enough, the posterior distribution over the

identified set, as implied by the Haar prior, makes no material difference for the impulse response

estimates from an economic point of view.

We provide diagnostic tools for sign-identified VAR models that help applied users assess how

much of a concern the use of the Haar prior is in a given application. Our approach builds on the

estimate of the identified set of the impulse response proposed in Giacomini and Kitagawa (2021)

and Giacomini, Kitagawa and Read (2023) and the corresponding robust credible interval. When

the identification is sufficiently informative, given the data, the estimate of the identified set will

be narrow enough for conventional inference to be insensitive to the Haar prior. In this case, the

Bayes estimate of the impulse response based on the Haar prior will be close to the bounds of the

identified set, as measured by the Hausdorff distance. Moreover, by the same metric, the endpoints

of conventional credible intervals based on the Haar prior for  will come close to the endpoints of 
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prior-robust credible intervals. Provided the Hausdorff distance between these sets is economically

negligible, the influence of the Haar prior may be ignored. A similar approach may also be applied

to the identified set of posterior probabilities. Compared to alternative metrics, one advantage of

the Hausdorff distance is that it is measured in the same units as the impulse response, facilitating

the interpretation of the results. The other advantage is that it accounts for both the width and

location of the identified set in relation to posterior estimates based on the Haar prior.

These diagnostics allow us to quantify the influence of the Haar prior on posterior inference

in several empirical examples drawn from the literature, starting with sign-identified VAR models

of monetary policy shocks. We show that the conventional approach is indeed problematic in

agnostic models such as Uhlig (2005) because the identified set is very wide, but these concerns

greatly diminish when imposing additional narrative restrictions as in Antolin-Diaz and Rubio-

Ramírez (2018). We also revisit the stylized model of monetary policy examined in Baumeister

and Hamilton (2018). We find that adding sign and narrative restrictions reverses their substantive

conclusions about the conventional approach being misleading. Finally, we use a recent study of

the impact of gasoline price shocks on inflation and inflation expectations to demonstrate that even

in the absence of narrative restrictions the identified set may be narrow enough for the conventional

approach to be insensitive to the Haar prior. These examples illustrate the importance of assessing

the influence of the Haar prior on a case-by-case basis.

The remainder of the paper is organized as follows. In Section 2, we study a stylized statistical

model with one set-identified parameter proposed by Watson (2020) under a range of priors. We

show that how sensitive posterior inference in this model is to the prior depends on how tightly

identified the parameter of interest is, which explains why sometimes the prior unduly influences

the posterior, as suggested by Baumeister and Hamilton (2015), and sometimes it does not. How

tight the identification is may be judged by the width of the identified set of the responses or,
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alternatively, by the bounds on the posterior probability that the parameter of interest is positive

or negative, respectively. While the posterior probability bounds in the Watson (2020) model

approach [0 1] as  → ∞, we find that for finite  these bounds are informative, provided the

width of identified set is sufficiently narrow. Building on Uhlig (2017), Section 3 shows that how

tightly identified the impulse responses in sign-identified VAR models are, depends not only on

the identifying restrictions, but also on the data. In Section 4, we outline how applied users can

assess the sensitivity of conventional estimates of sign-identified VAR models to the Haar prior,

building on Giacomini and Kitagawa (2021) and Giacomini et al. (2023). Section 5 contains

several empirical illustrations that illustrate that the conventional approach to posterior inference

about impulse responses based on the Haar prior need not be driven by the Haar prior as well as

other empirical examples that show that conventional inference can be misleading. The concluding

remarks are in Section 6.

2 A stylized example of the role of the prior for set-identified

parameters

To better understand the concern about the Haar prior, consider a stylized model with a generic

set-identified scalar parameter, , building on Watson (2020). The observed data are independent

normal random variables  ∼  ( 2)  where  = (1 2)
0 and  = (1 2)

0. There are

three model parameters, (1 2 ), where {(1 2) ∈ R2 : 1  2} The parameter of interest, ,

satisfies the sign restrictions 1 ≤  ≤ 2. We assume that the prior for 1 and 2 is a constant

over its support. As shown in the online appendix, because the likelihood does not depend on ,

the posterior for  is:

(| ) =
Z
12

(|1 2 1 2)(1 2|1 2)(1 2) =
Z
12

(|1 2)(1 2|1 2)(1 2)
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The question of interest is the effect of the prior (|) on the posterior (| ). For expository

purposes, consider four alternative priors for  conditional on 1 and 2:

Prior 1:  ∼ (1 2)

Prior 2:  ∼ (0 1) truncated at 1 and 2 and rescaled to integrate to 1

Prior 3:  = 1 with probability 099 and  = 2 with probability 001.

Prior 4:  = 1 with probability 001 and  = 2 with probability 099.

Whereas prior 2 assigns most of the probability mass to the center of the identified set, priors

3 and 4 put most of the probability mass on the endpoints 1 and 2, respectively.
3

If the posterior (| ) assigns most of its probability mass to values of (1 2) within a narrow

identified set, the data suggest that  lies in this narrow range of values. In the words of Watson

(2020, p. 186), if the data indicate that 1 is close to 2, then the restriction 1 ≤  ≤ 2 says a

lot about the value of . From an economic point of view, the relative probability of values of  in

this narrow range, which is governed by the prior, might be unimportant because different values

are substantively identical. In practice, the more important conclusion might be that  falls into

the specified range. In contrast, if (| ) assigns substantial probability mass to values of (1 2)

within a wide identified set, the prior (|) is likely to have an important effect on the posterior

(| ). In that case, (| ) may be concentrated in a narrow range simply because of the choice

of prior (|) and caution is called for in interpreting the posterior.

This point is illustrated in Figure 1, which shows the posterior distribution of  for each of the

four priors above, for  = 100 and  =∞.4 By construction, the posterior variance of   = 1 2

declines with rising . Thus, as  → ∞, the posterior distribution of 1 and 2 collapses on 1

and 2. For illustrative purposes, we evaluate the density at two data points: 2 = −1 = 25 in
3We thank one of the referees for suggesting priors 3 and 4.
4The number of posterior draws of 1 and 2 is 10 million before imposing the restriction 1  2.
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panel (a) and 2 = −1 = 005 in panel (b). Figure 1 provides two key insights. First, the extent

to which the prior for  matters for posterior inference depends on the width of the identified set.

When 1 and 2 are far apart, the posterior over the identified set will asymptotically resemble the

prior over the identified set (see  = ∞ in panel (a)). This is the situation that Baumeister and

Hamilton (2015) had in mind. When 1 and 2 are sufficiently close, in contrast, the fact that

the posterior over the identified set asymptotically resembles the prior becomes irrelevant to the

extent that the posterior draws contained in the identified set are sufficiently similar (see  =∞ in

panel (b)).5 In the latter case, reporting the median or mean of the posterior as a measure of its

central tendency and the corresponding credible intervals will yield similar estimates, regardless of

the prior for . Even when  = 100 in panel (b) the prior has much less influence on the posterior

than in panel (a). How narrow the identified set of  has to be for the estimates to be sufficiently

similar depends on the economic application. In some cases, numerically small differences may be

economically significant, whereas the same difference in other cases may be immaterial. We will

return to this point later.6

For illustrative purposes, Table 1 focuses on the posterior mean of . When (1 2) = (−25 25),

the estimated identified set is wide, and the posterior means are sensitive to the prior. Table 1(a)

shows that even asymptotically in this case the posterior mean of  differs from the bounds 1

and 2 of the identified set by as much as 50. We call this the maximum error committed when

reporting the posterior mean. This maximum error is the Hausdorff distance between the posterior

estimate of the identified set and the posterior mean.7 When (1 2) = (−005 005), in contrast,
5This argument does not depend on the posterior densities being locally similar within the identified set for  =∞.

Indeed, in our illustrative example the posterior under priors 3 and 4 is dramatically different from the posterior under

prior 1 or 2 in the relevant range. All that matters is that the width of the identified set is narrow.
6Additional results for the posterior distribution are available in Table A.1 in the online appendix which reports

the posterior estimate of the identified set and the mean width of this set, 2 − 1, for  ∈ {100∞} as well as the
posterior mean and the 90% credible interval for  for each of the four priors. The evidence in Table A.1 confirms

that, notwithstanding the readily apparent differences across credible intervals and posterior means constructed under

different priors, these differences tend to be numerically much smaller when the identified set is tight, as in the lower

panel of Figure 1, than when it is wide as in the upper panel.
7The Hausdorff distance measures how far two subsets of a metric space are from each other. Denote the endpoints
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the situation changes. The maximum error is substantially reduced. While each prior puts dif-

ferent weights on the values in the identified set, the range of these values is so narrow that a

user arguably may not be concerned about the difference between them. In the limit, for  = ∞,

the identified set,  ∈ [−005 005] is known. In that case, under prior 1, the posterior mean in

Table 1(b) differs from the bounds of identified set at most by 005 and, similarly, under prior 2.

Under priors 3 and 4, that discrepancy rises to 01. This maximum error is smaller than in the

upper panel of Figure 1 by a factor of 50. In practice, the user must decide whether the Hausdorff

distance is negligible from an economic point of view in a given application. If it is, the posterior

mean provides an adequate summary of what we learn from the data. Otherwise, it does not. The

empirical examples in Section 5 illustrate that the answer to this question more often than not is

readily apparent.

In Section 4, we discuss how this approach can be implemented in sign-identified VAR models,

building on the work of Giacomini amd Kitagawa (2021) and Giacomini et al. (2023). A similar

approach may also be applied to credible intervals for the parameter of interest. In the context of

structural VAR analysis, one computes the maximum error of the endpoints of the conventional

credible interval based on the Haar prior relative to the endpoints of a robust credible interval that

does not take a stand on the  prior.

It should be noted that the width of the identified set of  is not the only way to assess the

sensitivity of the posterior to the choice of the prior. Another approach is to focus on posterior

probabilities such as the posterior probability that  is positive or negative, respectively (see, e.g.,

Giacomini and Kitagawa 2021). Suppose that one is interested in  ( ≥ 0| ). There are three

situations of interest. If both 1 and 2 are on the same side of zero, then asymptotically this

probability is 0 or 1, regardless of the prior for . If 1 ≤ 0 ≤ 2, as in the Watson (2020) example,

of these sets by ( ) and ( ), respectively. Then the Hausdorff distance is max([|− | | − |]).
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much depends on . As →∞, the support of the probability may be as large as [0 1], depending

on the prior (|). However, for a given value of , that probability has a smaller range defined

by the endpoints:

∙Z ∞

0

√




¡√

(1 − 1)
¢
Φ
¡−√(1 − 2)

¢
1

Z ∞

0

√




¡√

(2 − 2)
¢
Φ
¡√

(2 − 1)
¢
2

¸


as shown in the online appendix, where  denotes the standard normal pdf, Φ the standard normal

cdf, and  is a normalizing constant defined in the online appendix. If 2−1 is small relative to 1,

 ( ≥ 0| ) will be insensitive to the prior, making the model informative about  ( ≥ 0| ). If it is

large, the support of  ( ≥ 0| ) widens, and we do not learn much from the data. These points are

illustrated in Table 2 for the choices of 1 and 2 considered in Figure 1. Let  ∈ {10 100∞}. The

table shows that, when the identified set is narrow as in Figure 1(b), for  = 10,  ( ≥ 0| ) can be

bounded by [023 077]. For  = 100, the bounds widen to [019 081] and for  =∞ the bounds

reach [0 1]. When the identified set is wide, in contrast, as in Figure 1(a), there is essentially no

information about  ( ≥ 0| ) for any . Obviously, these numerical results are only suggestive.

How narrow the identified set is, for given , depends on the application. This analysis suggests

that exploring the width of the support of  ( ≥ 0| ) provides another metric for assessing how

robust the posterior probabilities are to relaxing the assumption of the Haar prior in sign-identified

VAR models. We will return to this point in Section 4.

3 What determines the width of the identified set?

The stylized example in Section 2 suggests that the empirical relevance of the critique of the

Gaussian-inverse Wishart-Haar prior for sign-identified VAR models depends on the strength of

the identifying restrictions. What determines how tightly identified the impulse responses are in
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practice? Even when there is no inequality restriction directly imposed on the structural impulse

response of interest, sign restrictions imposed on other structural impulse responses will tend to

reduce the width of the identified set and will affect the shape of the posterior over the identified

set. In models with many economically motivated static and/or dynamic sign restrictions, one

would expect the identified set to be smaller than in deliberately agnostic models involving only a

handful of sign restrictions. This is not merely a question of the number of these restrictions, of

course, but of how binding these inequality constraints jointly are.

How tight the identification is depends not only on the sign restrictions imposed on the impulse

responses, however, but may also be affected by the use of other identifying restrictions. For exam-

ple, some studies further restrict the values of selected impulse responses. Notably, Arias, Rubio-

Ramírez and Waggoner (2018) consider models that combine traditional short-run and long-run

exclusion restrictions with sign restrictions. Kilian and Murphy (2012, 2014) discuss the imposition

of bounds on price elasticities of demand and supply, expressed as nonlinear inequality restrictions

on impulse responses, based on extraneous evidence. Amir-Ahmadi and Drautzburg (2021) restrict

the shape of selected response functions by means of slope restrictions. Another class of restrictions

sometimes used involves imposing inequality restrictions on functions of the model parameters and

the data. For example, Antolin-Diaz and Rubio-Ramírez (2018) discuss the imposition of narrative

restrictions on the signs and relative magnitudes of structural shocks in selected periods or on the

cumulative effect of structural shocks over selected subperiods, while Doh and Smith (2022) shrink

the VAR model-based expectations toward extraneous measures of expectations, resulting in more

informative posterior inference. Because such restrictions are imposed on functions of the data,

they restrict the likelihood.

In addition, how much a given set of sign restrictions constrains the identified set also depends

on the covariance structure of the reduced-form errors (see Uhlig 2017). To illustrate this point,
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consider the bivariate VAR(0) model of demand and supply shocks analyzed in Uhlig (2017). Price

() and quantity () are functions of mutually uncorrelated supply and demand shocks, 

 and


 with mean zero. ⎡⎢⎢⎣ 



⎤⎥⎥⎦ = −10

⎡⎢⎢⎣ 





⎤⎥⎥⎦ 
where the structural impact multiplier matrix is

−10 =

⎡⎢⎢⎣ cos() sin()

sin(+ ) − cos(+ )

⎤⎥⎥⎦ 

 ∈ ¡−
2
 
2

¢
controls the correlation between  and , and  ∈ [0 2]. Supply and demand

shocks are identified by restrictions on the structural impact multiplier matrix: 110 ≤ 0 210 ≥

0 120 ≥ 0 220 ≥ 0 where 0 is the ( )th element of −10 .

The first column of Table 3 reports the identified set for the quantity response to a demand

shock as a function of the correlation of the reduced-form VAR shocks, given by  = sin(). For

expository purposes, we restrict attention to negative correlations and set the variances of  and 

to 1 such that the diagonal elements of the reduced-form error covariance matrix Σ are 1. Whereas

for  = 0, the width of the identified set is 1, lowering  to −05 reduces that width to 087 and

further lowering  to −0999 reduces the width to 0045. Likewise, raising  from zero toward 1

reduces the width of the identified set. Thus, changes in the reduced-form error correlation may

have dramatic effects on the width of the identified set, for a given set of sign restrictions. Because

Σ depends on the data, this evidence implies that the width and location of the identified set are

data-dependent. These results are not specific to this example. Qualitatively similar results can

be obtained with other models. Moreover, it can be shown that substantial reductions in width

do not require correlations approaching 1 or −1 when considering larger-dimensional VAR models,
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and that not all pairwise correlations need to differ from zero.

The remaining columns of Table 3 illustrate how the reduced-form error correlation affects the

posterior median and 90% credible interval for  given the same sign restrictions.8 We consider

three priors for :  ∼ (0 2),  ∼ 2 (25 5), and  ∼ 2 (5 25) and compute the

asymptotic posterior. For example, under the last prior, the posterior median of the quantity

response to the demand shock ranges from 0022 to 0752, depending on . The corresponding 90%

credible interval ranges from [0002 0043] to [0523 0991], indicating substantial sensitivity to .

Qualitatively similar patterns hold for the other two priors.

As shown in the online appendix, this example can be generalized to show that the width of the

identified set more generally depends not only on the reduced-form error covariance matrix Σ, but

also on the reduced-form slope parameters in . An immediate implication of this point and of the

dependence of the identified set on the identifying restrictions is that the relevance of the critique

of the Gaussian-inverse Wishart-Haar prior must be assessed on a case-by-case basis. This raises

the question of how to assess the sensitivity of posterior inference to the Haar prior in practice.

4 How to assess the sensitivity of the posterior to the Haar prior

The stylized examples in Sections 2 and 3 suggest that a useful diagnostic in sign-identified Bayesian

VAR models is the width of the identified set. If the identified set is narrow, the prior over the

set-identified impulse response is unlikely to have a substantive impact on the posterior. If the

identified set is wide, the prior will matter. While the identified set is not observable, it can be

consistently estimated under assumptions covering a wide range of sign-identified models without

taking a stand on the prior for  (see Giacomini and Kitagawa 2021, Giacomini, Kitagawa and

Read 2023). This set is also referred to as the set of posterior means. We follow the algorithm

8The number of draws is set to 10 million.

11



described in these studies with the specifics adapted to each VAR model.9

The question in practice is how narrow the width of this identified set has to be for the conven-

tional Bayes estimate based on the Gaussian-inverse Wishart-Haar prior to produce a reasonably

good approximation. One way of establishing the adequacy of the impulse response estimate is

to show that the maximum error a user of this estimate commits relative to the bounds of the

estimated identified set is small from an economic point of view. The maximum error corresponds

to the Hausdorff distance introduced in Section 2. Whether the conventional approach is justi-

fied in a given application is not a question of how numerically small this distance is, but of how

economically meaningful this distance is. In practice, it usually is reasonably clear whether the

differences are large enough to matter from an economic point of view, as illustrated in Section 5.

Compared to alternative metrics, one advantage of the Hausdorff distance is that it is measured

in the same units as the impulse response, facilitating the interpretation of the results. The other

advantage is that it accounts for both the width and location of the identified set in relation to the

Bayes estimate.

Likewise, for the bounds of the conventional credible interval to be insensitive to the Haar prior,

their limits should be economically indistinguishable from the bounds of the  prior-robust credible

interval proposed by Giacomini and Kitagawa (2021) and Giacomini, Kitagawa and Read (2023).

In this case the Hausdorff distance may be computed as the larger of (a) the distance between the

upper endpoint of the conventional credible interval and the upper endpoint of the robust credible

interval, and (b) the corresponding difference between the respective lower interval endpoints.

An alternative approach to evaluating the information content of the Haar prior is to evaluate the

bounds of the probability of a response being negative (or, alternatively, positive). The construction

9The basic idea is to generate many sets of impulse response posterior estimates that satisfy the identifying

restrictions, with each draw based on the Haar prior, to compute the maximum and minimum impulse response in

each set, and to average the maxima and minima across the sets. Since the support of any possible  prior is the

same as the support of the Haar prior, this approach allows the estimation of the identified set without taking a stand

on what the appropriate  prior is.
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of these probability bounds requires a different approach than the construction of the identified sets

for impulse responses. In the empirical section, we follow the approach in Theorem 1 of Giacomini

and Kitagawa (2021) for constructing these bounds. By analogy to the earlier discussion, one could

evaluate the Hausdorff distance between the posterior probability obtained under the Haar prior

and the identified set for this probability. We do not pursue this question because it is less clear

how to judge the economic importance of these distances than in the case of the identified set for

the impulse response.

5 Empirical illustrations

In this section, we discuss three models of sign-identified VAR models drawn from the recent

literature, in which posterior inference about the impulse responses depends primarily on the data

and not on the prior. We contrast these examples with two alternative models in which the choice of

the Haar prior substantially influences the posterior, and we show that in each case the differences

are driven by the identifying assumptions.

5.1 Example 1

One of the leading examples in the literature in support of the view that the impulse response

posterior is largely driven by the Haar prior is an example provided in Baumeister and Hamilton

(2018, Figure 1, panels B and D). This study considered a stylized quarterly VAR model of U.S.

monetary policy including the output gap, inflation and the federal funds rate. The analysis focused

on the impact response of the output gap to an unexpected 25 bp tightening of monetary policy.

No sign restrictions are imposed. Rather than comparing the posterior distribution of this response

to its distribution conditional on the MLE of the reduced-form parameters, as in the original study,

here we focus on the estimate of the identified set, following Giacomini, Kitagawa and Read (2023),
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and the conventional summary statistics of the posterior distribution. The first row of Table 4

shows that the identified set for this response is quite wide with 0.964 percent. The posterior mean

of -0.005 percent is far from the bounds of the identified set, with a maximum error of 0.487 percent.

This situation mirrors the example in Figure 1(a) shown earlier and argues against applying the

conventional approach. This is also, for all practical purposes, the conclusion reached by different

means in the original study.

This does not establish that the conventional approach to estimating sign-identified models must

be abandoned more generally, however. While there is no question that conventional posterior

inference would be questionable under this model specification, it is fair to say that no applied

user would have estimated such a model without incorporating sign restrictions into the impulse

response prior. In fact, it is not possible to identify the effects of monetary policy based on a model

without identifying restrictions. Next, we therefore analyze the same model, but impose impact

sign restrictions on the impact responses, as used in Peersman (2005) or Ouliaris and Pagan (2016)

for a variation of this model:

⎛⎜⎜⎜⎜⎜⎜⎝








⎞⎟⎟⎟⎟⎟⎟⎠ =

⎡⎢⎢⎢⎢⎢⎢⎣
+ + −

− + −

− + +

⎤⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎝
cost

demand


monetary policy


⎞⎟⎟⎟⎟⎟⎟⎠  (1)

We also impose narrative restrictions on the sign of the monetary policy shock in 1988.IV, 1994.I,

1990.IV, 1998.IV, 2001.II, and 2002.IV, motivated by the analysis in Antolin-Diaz and Rubio-

Ramírez (2018). A natural question is how credible these identifying restrictions are (see Uhlig

2005). While our restrictions are likely to be less controversial than commonly used exclusion

restrictions on the effects of monetary policy, we do not take a stand on whether these specific

restrictions are necessarily correct. Rather our objective is to illustrate what difference the use of
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such a rich set of inequality restrictions makes for the support of the identified set of the structural

response of interest and for posterior inference.10

The second row of Table 4 shows that merely adding the impact sign restrictions reduces the

width of the identified set by more than half and reduces the maximum error of the posterior mean

from 0487 to 0283 percent. While this is a substantial improvement, it takes the additional nar-

rative sign restrictions to make conventional inference trustworthy. Obviously, the model remains

set identified even with all additional restrictions imposed. The third row of Table 4 shows that

when all restrictions are imposed, the width of the identified set shrinks to 0089 (about 9% of the

original width) and the maximum error of the posterior mean drops to 0059 percent. Such an error

is too small to make a difference for policy analysis and hence, for all practical purposes, can be

ignored. The output gap in this model fluctuates between +35 and −35 percent. Thus, whether

the output gap drops by 003 percent or 009 percent on impact is largely immaterial from a policy

point of view. This situation mirrors the example in Figure 1(b) shown earlier. It illustrates that

the critique of the conventional approach becomes largely irrelevant when the identified set is suffi-

ciently narrow. Finally, as shown in Table 5, the corresponding maximum error of the 68% credible

interval for the impact response of the output gap drops from 0202 without any restrictions to

0076 with all restrictions imposed. The latter Hausdorff distance is as economically negligible as

the maximum error in the posterior mean.

10 It may seem at first sight that imposing sign restrictions would not make a material difference in this model

because imposing a sign restriction on the response of the output gap to a monetary policy tightening would simply

truncate the posterior distribution at zero without affecting the shape of the left tail of the distribution. However,

in practice, sign restrictions on the other impact responses further constrain the identified set of the response of the

output gap, as do narrative restrictions, rendering the identified set much tighter than the sign restriction on 130
alone would.
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5.2 Example 2

We now turn to larger-dimensional and more realistic models of monetary policy shocks. One of

the classical examples of sign-identified VAR models is the model of U.S. monetary policy shocks

proposed in Uhlig (2005), which postulates that a contractionary monetary policy shock increases

the federal funds rate and reduces the GDP deflator, the commodity price index and non-borrowed

reserves for the first six months. The estimation period is January 1965 through November 2007

to facilitate comparisons with the model in Antolin-Diaz and Rubio-Ramírez (2018) below. It is

well known that the output responses in this model can be estimated only very imprecisely because

the identifying restrictions are only weak. As a result, one would expect posterior inference based

on the Gaussian-inverse Wishart-Haar prior to be questionable in this model. Table 6 formalizes

this point. We focus on the response of real GDP to a 25 bp monetary policy tightening at

horizons of 12, 24, 36, 48 and 60 months. The width of the identified sets ranges from 0597 to

0660 percent, indicating substantial identification uncertainty, similar to the situation in Figure

1(a). The maximum error committed by relying on the posterior mean is between 0338 and 0363

percent, depending on the horizon. Just how weakly identified this model is, is also illustrated

by the left panel in Table 7 which shows that this model puts essentially no restrictions on the

posterior probability of a recessionary response. It allows this probability to range from 0 to 100

percent at the one-year and two-year horizon. The probability range is not much narrower at longer

horizons. Thus, this model is an example validating concerns in the literature over the use of the

Haar prior raised in the literature.

More recently, Antolin-Diaz and Rubio-Ramírez (2018) proposed augmenting the Uhlig (2005)

model with narrative restrictions. In our analysis, we employ their Narrative Sign Restriction 6 and

7 that restrict the sign of the policy shock and its relative contribution to unexpected movements

in the federal fund rate in selected months. This tightens the identification considerably, resulting
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in a situation similar to Figure 1(b). Table 8 shows that the width of the identified set drops to

between 0210 and 0263 percent. The maximum error implied by the posterior mean drops to

between 0106 and 0156, making conventional posterior inference fairly accurate relative to the

identified set, albeit not as accurate as in Example 1. A maximum error of about 01 percent in the

impulse response at horizons up to three years, while not negligible, is on the small side relative to

the historical variation in U.S. real GDP growth. This evidence suggests that the conclusions in

Antolin-Diaz and Rubio-Ramírez (2018) are not an artifact of the use of the Haar prior and that

conventional inference paints a fairly accurate picture of the responses to a monetary policy shock.

Table A.2 in the online appendix shows similarly small maximum errors for the corresponding 68%

credible sets. The fact that the narrative restrictions render the model much more tightly identified

is also reflected in much stronger evidence of a recessionary effect in the right panel of Table 7.

For example, at a horizon of two years, the probability of a recessionary response can be bounded

between 69 and 100 percent compared to between 0 and 100 percent in the Uhlig (2005) model.

This means that, independently of the  prior, the probability of a recessionary effect is higher

than 50 percent in the Antolin-Diaz and Rubio-Ramírez (2018) model.11

5.3 Example 3

Examples 1 and 2 relied on a combination of sign and narrative restrictions. The next example

illustrates that identified sets may be tight even in the absence of narrative restrictions. We examine

the structural VAR model of the impact of nominal gasoline price shocks on monthly consumer price

inflation and one-year household inflation expectations in Kilian and Zhou (2022). The estimation

period is July 1987 through April 2020. The model is identified by seven sign and two exclusion

restrictions on the structural impact multiplier matrix. We focus on horizons of 0 to 5 months.

11A 50 percent probabilty of a recession is the threshold typically used for declaring a recession in regime-switching

models (e.g., Chauvet and Hamilton 2006).
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Table 9 illustrates that the responses to a nominal gasoline price shock are very tightly identified.

For example, the range of the identified set for the impact response of the real price of gasoline is

[3874 4396] percent, making the 0522 width of the identified set small compared to the magnitude

of the response estimate. Likewise the maximum error from relying on the posterior mean is only

0357 which is negligible compared to the posterior mean response of 4231 percent. Given a gasoline

price of $3 per gallon, this translates to the difference between predicting an increase in the price

of gasoline to $313 or to $312 per gallon in response to the shock, which is clearly economically

immaterial. Similar results hold at the other horizons.

Similarly, the responses of headline inflation and inflation expectations are tightly identified.

For example, the identified set of the impact response of headline inflation is [0174 0213] percent.

Reporting the posterior mean of 0197 implies a maximum error of only 0023 percent in the inflation

rate response. For the impact response of inflation expectations the identified set is [0160 0182]

percent, implying a maximum error of 0014 when reporting the posterior mean of 0174. Again,

similar results hold at longer horizons. These Hausdorff distances are negligible from a policy point

of view. Table 9 demonstrates that the central conclusion in Kilian and Zhou (2022) that a positive

gasoline price shock raises the real price of gasoline, headline inflation and inflation expectations is

not an artifact of the prior and that the posterior mean implied by the conventional approach based

on the Haar prior mainly reflects the information in the data. This conclusion is also consistent

with the economically insignificant maximum errors for the credible intervals reported in Table A3

in the online appendix.

6 Concluding remarks

Several recent studies have voiced concerns that the Haar prior for the rotation matrix typically

used in estimating sign-identified VAR models may contaminate posterior inference about impulse
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responses in ways applied researchers are not aware of. Our analysis in this paper calls into question

the view that much of the posterior uncertainty about the impulse response in applied work must

necessarily be attributed to the Haar prior. We showed that the importance of the Haar prior for

impulse response inference depends on the data through the reduced-form VAR parameters and

depends on how informative the identifying restrictions are, making it impossible to derive general

results about the role of the Haar prior. As a result, applied users need to examine on a case-by-case

basis whether their substantive conclusions are an artifact of the prior. We developed diagnostic

tools that may be used for this purpose.

Using these tools, we demonstrated that in models with sufficiently informative sign (and possi-

bly other identifying) restrictions the identified set of the impulse responses may be narrow enough

for posterior inference based on a Gaussian-inverse Wishart-Haar prior to be insensitive to the

Haar prior. We showed by example that this situation is not just a theoretical curiosity. Not only

are there economic applications that lend themselves to richer sets of economically plausible sign

restrictions than typical of early applications of sign restrictions such as Uhlig (2005), but there

has been much effort in recent years to bring additional identifying information (such as narrative

restrictions, shape restrictions, elasticity bounds, or selective exclusion restrictions) to bear that

complements conventional sign restrictions and narrows the identified set. We presented several

empirical examples drawn from the recent literature that suggest that the posterior distribution of

the impulse responses sometimes depends primarily on the data rather than the Haar prior. We

presented other empirical examples that support the concerns about the use of the Haar prior.
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Table 1: Posterior Median of   in Watson (2020) Model 

 

NOTES: The Watson (2020) model is a stylized model with a generic set-identified parameter. The structure of the 
model and priors is discussed in the main text. The maximum error is the Hausdorff distance between the posterior 
mean and the posterior estimate of the identified set shown in Table A1.  
 
 
Table 2: Identified Set of ( 0 | )P Y  in Watson (2020) Model 
 

 Identified Set of ( 0 | )P Y   

1 2,Y Y  10n   100n   n    
2.5  0.00 1.00 0.00 1.00 0.00 1.00 
0.05  0.23 0.77 0.19 0.81 0.00 1.00 

 

NOTES: Computed based on the expression for the interval endpoints derived in the online appendix. 
 
 
Table 3: Posterior Response of Quantity to Demand Shock in Uhlig (2017) Model for n    
 

    (0, 2 )U   2 (2.5,5)Beta  2 (5, 2.5)Beta  
   Identified set Median   90% credible 

               interval   
Median   90% credible 
               interval 

Median   90% credible 
               interval 

-0.999   0.000 0.045 0.022 0.002 0.042 0.022 0.002 0.042 0.022 0.002 0.043 
-0.990   0.000 0.141 0.071 0.007 0.134 0.069 0.007 0.134 0.073 0.007 0.134 
-0.900   0.000 0.436 0.224 0.023 0.416 0.207 0.020 0.412 0.246 0.028 0.419 
-0.500   0.000 0.866 0.500 0.052 0.839 0.440 0.043 0.828 0.617 0.099 0.849 
0.000   0.000 1.000 0.866 0.545 0.999 0.896 0.559 0.999 0.752 0.523 0.991 

 

NOTES: Bivariate model of prices and quantities with sign restrictions on the response to demand and supply 
shocks. Because ,n   the posterior over the identified set equals the prior. 
 
 
Table 4:  Posterior Mean of Impact Response of Output Gap to Monetary Policy Tightening 
 

 Estimate of identified set Conventional Bayes estimate 
Model Lower 

bound 
Upper 
bound 

Width Posterior 
Mean 

Maximum 
error 

No sign restrictions 
 
 

-0.482 0.482 0.964 -0.005 0.487 

Impact sign 
restrictions 
 

-0.394 0.000 0.394 -0.111 0.283 

Impact + shock 
sign restrictions 

-0.089 0.000 0.089 -0.030 0.059 

 

NOTES: Reduced-form VAR model as in Baumeister and Hamilton (2018). Identified set computed following 
Giacomini, Kitagawa and Read (2023). The shock is a 25 bp increase in the policy rate. 
 
 

 (a) 1 2.5Y   and 2 2.5Y   (b) 1 0.05Y   and 2 0.05Y   

 100n   n    100n   n    
 Posterior 

mean 
Maximum 
error 

Posterior 
mean 

Maximum 
error 

Posterior 
Mean 

Maximum 
error 

Posterior 
mean 

Maximum 
error 

Prior 1 -0.00 2.50  0.00 2.50  0.00 0.08  0.00 0.05 
Prior 2  0.00 2.50  0.00 2.50 -0.00 0.08 -0.00 0.05 
Prior 3 -2.45 4.95 -2.45 4.95 -0.08 0.16 -0.05 0.10 
Prior 4  2.45 4.95  2.45 4.95  0.08 0.16  0.05 0.10 



Table 5: 68% Credible Interval for Impact Response of Output Gap to Monetary Policy Tightening  
 

 Robust Credible Interval Conventional Credible Interval 
Model Lower Upper Width Lower Upper Width Maximum 
 bound bound  bound bound  Error 
No sign 
restrictions 

-0.500 0.500 1.000 -0.298 0.346 0.643 0.202 

Impact sign 
restrictions 

-0.409 0.000 0.409 -0.394 0.000 0.394 0.015 

Impact+shock 
sign restrictions 

-0.109 0.000 0.109 -0.033 0.000 0.033 0.076 

 

NOTES: See Table 4. 
 
Table 6: Posterior Mean of GDP Response to Monetary Policy Tightening in Uhlig (2005) Model  
l 

 Estimate of identified set Conventional Bayes estimate 
Horizon (months) Lower 

bound 
Upper 
bound 

Width Posterior 
Mean 

Maximum 
error 

12 -0.232 0.365 0.597 0.116 0.347 
24 -0.304 0.315 0.619 0.039 0.343 
36 -0.323 0.337 0.660 0.041 0.363 
48 -0.315 0.343 0.657 0.043 0.357 
60 -0.304 0.328 0.631 0.035 0.338 

 

NOTES: The static and dynamic sign restrictions are described in Uhlig (2005). The shock is a 25 bp increase in the 
policy rate. The responses are in percent. 
 
Table 7: Range of Posterior Probabilities of a Recessionary Effect (Percent) 
 

 Uhlig (2005) 
Model 

Antolin-Diaz and Rubio-Ramirez (2018) 
Model 

Horizon (months) Min Max Min Max 
12 0.0 100.0   1.0   97.9 
24 0.0 100.0 68.7 100.0 
36 0.7 100.0 61.8   99.9 
48 2.7 99.8 58.5   99.7 
60 6.0 99.4 56.7   98.9 

 

NOTES: The static and dynamic sign restrictions are described in Uhlig (2005). The Antolin-Diaz and Rubio-
Ramírez (2018) model includes additional narrative restrictions on the shock sign and on the relative importance of 
policy shocks for explaining the federal funds rate in selected periods as in Table 8. 
 
 

Table 8: Posterior Mean GDP Response to Monetary Policy Tightening in Uhlig (2005) Model with 
Added Narrative Restrictions 6 and 7 as in Antolin-Diaz and Rubio-Ramírez (2018)  
l 

 Estimate of identified set Conventional Bayes estimate 
Horizon (months) Lower 

bound 
Upper 
bound 

Width Posterior 
Mean 

Maximum 
error 

12 -0.128 -0.083 0.210 -0.021 0.106 
24 -0.309 -0.071 0.239 -0.203 0.133 
36 -0.332 -0.060 0.272 -0.214 0.154 
48 -0.317 -0.042 0.275 -0.197 0.156 
60 -0.298 -0.035 0.263 -0.184 0.149 

 

NOTES: The two sets of additional narrative restrictions include shock sign restrictions and restrictions on the 
relative importance of policy shocks for explaining the federal funds rate in selected period, as described in Antolin-
Diaz and Rubio-Ramírez (2018). The responses are in percent. 
 



Table 9: Responses to Nominal Gasoline Price Shock in Kilian and Zhou (2022) Model 
l 

  Estimate of identified set Conventional Bayes 
estimate 

 Horizon 
(months) 

Lower 
bound 

Upper 
bound 

Width Posterior 
Mean 

Maximum 
error 

Real gasoline price 0 3.874 4.396 0.522 4.231 0.357 
 1 5.796 6.477 0.681 6.276 0.479 
 2 5.866 6.493 0.627 6.312 0.446 
 3 5.453 5.885 0.432 5.770 0.317 
 4 5.218 5.552 0.334 5.466 0.248 
 5 4.732 5.160 0.428 5.038 0.306 
Headline inflation 0 0.174 0.213 0.038 0.197 0.023 
 1 0.092 0.105 0.013 0.100 0.008 
 2 0.006 0.014 0.009 0.010 0.004 
 3 -0.012 -0.004 0.008 -0.008 0.004 
 4 0.004 0.008 0.005 0.006 0.002 
 5 -0.006 0.011 0.017 0.003 0.009 
Expected inflation  0 0.160 0.182 0.022 0.174 0.014 
 1 0.226 0.246 0.020 0.240 0.014 
 2 0.217 0.239 0.022 0.232 0.014 
 3 0.163 0.197 0.035 0.183 0.021 
 4 0.152 0.195 0.043 0.177 0.025 
 5 0.115 0.138 0.023 0.129 0.013 

 

NOTES: The model is identified based on sign and exclusion restrictions on the structural impact multiplier matrix, 
as described in Kilian and Zhou (2022). The responses are in percent. 
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Figure 1: Posterior Distribution of   in the Watson (2020) Model under Alternative Priors  
Given Wide and Narrow Identified Sets 

 
(a) 1 2.5Y   and 2 2.5Y   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 1 0.05Y   and 2 0.05Y   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NOTES:  For 100,n   we estimate the posterior densities using a kernel density smoother. The densities 

for n   are derived analytically. The posterior under priors 3 and 4 assigns 0.99 probability mass to one 
end point of the identified set and 0.01 to the other. For simplicity, we represent this result as a vertical 
line at the endpoint with 0.99 probability mass. 



When Is the Use of Gaussian-inverse Wishart-Haar Priors

Appropriate? Online Appendix

Atsushi Inoue∗ Lutz Kilian†

Vanderbilt University Federal Reserve Bank of Dallas

CEPR

July 7, 2024

∗Vanderbilt University, Department of Economics, Nashville, TN 37235-1819. E-mail: at-

sushi.inoue@vanderbilt.edu.
†Federal Reserve Bank of Dallas, Research Department, 2200 N. Pearl St., Dallas, TX 75201, USA. E-mail:

lkilian2019@gmail.com (corresponding author).



1 Notation

• Let  be a  × 1 vector of variables generated by the structural VAR() model 0 =

 +  with reduced-form representation  =  + , for  = 1   where  =

(0−1  
0
−), 0 is invertible, the vector of structural shocks is 

∼ (0 ) the vector of

reduced-form shocks is  = −10  such that 
∼ (0Σ), Σ = −10 −100   = (1  )

 = (1  ) and deterministic regressors have been suppressed.

• Let  be a  × matrix such that 0 = 0 =  and let  denote the lower triangular

Cholesky decomposition of Σ with the diagonal elements normalized to be positive. Then

 0 = ()0 = Σ.

• We assume that the VAR() model can be inverted to obtain the VMA(∞) representation,

 =
P∞

=0− =
P∞

=0−  = 1   where  is the th term in ( −P
=1

)−1 and  is the lag operator. The( )th element of the structural impulse response

matrix  is the horizon  response of variable  to shock . We denote a generic example

of this response for some combination of (  ) by  = (Σ ), emphasizing that this

response has been obtained by a nonlinear transformation (·) of the model parameters 

Σ and .

2 Derivation of the Bounds on P( ≥ 0| ) in the Watson (2020)
Model

Let 1 and 2 be independent normal random variables with means 1 and 2, respectively, and

variances 2 = 1

, where 1  2. Given a flat prior for 1 and 2, their posterior density is given

by

(1 2|1 2) =
1

2


µ
1 − 1



¶


µ
2 − 2



¶
(1  2) (1)
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where

 = 1− 1


Z ∞

−∞


µ
1 − 1



¶
Φ

µ
1 − 2



¶
1 =

1



Z ∞

−∞


µ
2 − 2



¶
Φ

µ
2 − 1



¶
2 (2)

By Theorem 1 of Giacomini and Kitagawa (2021), the lower bound on the probability is given

by

 (1 ≥ 0|1 2) =

Z ∞

0

Z ∞

1

(1 2|1 2)21

=

Z ∞

0

1




µ
1 − 1



¶
Φ

µ
−1 − 2



¶
1 (3)

when  is finite. Similarly, the upper bound is

 (2 ≥ 0|1 2) =

Z ∞

0

Z 2

−∞
(1 2|1 2)12

=

Z ∞

0

1




µ
2 − 2



¶
Φ

µ
2 − 1



¶
2 (4)

when  is finite. In Table 2, we report Monte Carlo simulation estimates of  (1 ≥ 0|1 2) and

 (2 ≥ 0|1 2) when  is finite. When  =∞, the probability bounds are given by

 (  0|1 2) ∈

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
{0} if 2  0£
0 1
¤
if 1 ≤ 0 ≤ 2

{1} if 1  0



3 Generalization of the Uhlig (2017) Example

The Uhlig (2017) example may be generalized to show that the width of the identified set depends

not only on Σ, but also on . Consider a dynamic version of Uhlig’s supply and demand model.
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The identifying restrictions are unchanged, but we allow for one autoregressive lag:

⎡⎢⎢⎣ 



⎤⎥⎥⎦ =

⎡⎢⎢⎣ 111 121

211 221

⎤⎥⎥⎦
⎡⎢⎢⎣ −1

−1

⎤⎥⎥⎦+
⎡⎢⎢⎣ cos() sin()

sin(+ ) − cos(+ )

⎤⎥⎥⎦
⎡⎢⎢⎣ 






⎤⎥⎥⎦  (5)

The one-step-ahead response matrix is

⎡⎢⎢⎣ 111 cos() + 121 sin(+ ) 111 sin()− 121 cos(+ )

211 cos() + 221 sin(+ ) 211 sin()− 221 cos(+ )

⎤⎥⎥⎦  (6)

The width of the identified set of the quantity response to a one-standard-deviation demand shock,

(211 sin()− 221 cos(+ )), for example, then becomes:

max

2
−≤≤

(211 sin()− 221 cos(+ ))− min

2
−≤≤

(211 sin()− 221 cos(+ )) if   0

max

2
≤≤−

(211 sin()− 221 cos(+ ))− min

2
≤≤−

(211 sin()− 221 cos(+ )) if   0

It is readily apparent that this width depends not only on the reduced-form error correlations

through , as in the static model, but also on the slope parameters in . For example, let 111 =

221 = 09, 121 = 05, and  = arcsin(05), as we vary the value of 211. Table A.4 shows that

the width of the identified set for the one-step-ahead quantity response to a supply shock changes

from 095 to 0246 as the value of 211 changes, all else equal, from −10 to 10. The location of

the identified set also changes with the value of 211.

4 Additional empirical results

Tables A.1, A.2, A.3 and A.4 contain additional empirical results that were omitted to conserve

space, but are discussed in the text.
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Disclaimer

The views expressed in this appendix are those of the authors and do not necessarily represent the

views of the Federal Reserve Bank of Dallas or the Federal Reserve System.
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Table A1: Posterior Distribution of   in Watson (2020) Model 
 

(a) 1 2.5Y   and 2 2.5Y   

 100n   n    
Posterior identified set Mean 

width 
Range Mean 

width 
Range 

 5.00 -2.50 2.50 5.00 -2.50 2.50 
  

Mean 
90%  

Credible Interval 
 

Mean 
90%  

Credible Interval 
Posterior under prior 1 -0.00 -2.25  2.25  0.00 -2.25  2.25 
Posterior under prior 2  0.00 -1.59  1.59  0.00 -1.59  1.59 
Posterior under prior 3 -2.45 -2.66 -2.33 -2.45 -2.50 -2.50 
Posterior under prior 4  2.45  2.33  2.66  2.45  2.50  2.50 
       

(b) 1 0.05Y   and 2 0.05Y   

 100n   n    
Posterior identified set Mean 

width 
Range Mean 

width 
Range 

 0.16 -0.08 0.08 0.10 -0.05 0.05 
  

Mean 
90%  

Credible Interval 
 

Mean 
90%  

Credible Interval 
Posterior under prior 1   0.00 -0.15 0.15  0.00 -0.04  0.04 
Posterior under prior 2     -0.00 -0.15 0.15 -0.00 -0.05  0.04 
Posterior under prior 3 -0.08 -0.23 0.07 -0.05 -0.05 -0.05 
Posterior under prior 4   0.08 -0.07 0.23  0.05  0.05  0.05 
 

NOTES: The Watson (2020) model is a stylized model with a generic set-identified parameter. The 
structure of the model and priors is discussed in the main text. 
 
  



Table A.2: 68% Credible Intervals for GDP Response to Monetary Policy Tightening in Uhlig 
(2005) Model and in Antolin-Diaz and Rubio-Ramírez (2018) Model 
 

 Uhlig (2005) Model 
 Robust Credible Interval Conventional Credible Interval 
Horizon Lower Upper Width Lower Upper Width Maximum 
(months) bound bound  bound bound  Error 

12 -0.300 0.404 0.703 -0.007 0.259 0.267 0.292 
24 -0.363 0.374 0.737 -0.092 0.191 0.283 0.271 
36 -0.418 0.417 0.835 -0.077 0.235 0.312 0.341 
48 -0.444 0.429 0.873 -0.137 0.201 0.338 0.307 
60 -0.425 0.451 0.876 -0.105 0.247 0.352 0.320 
 Antolin-Diaz and Rubio-Ramírez (2018) 
 Robust Credible Interval Conventional Credible Interval 

Horizon Lower Upper Width Lower Upper Width Maximum 
(years) bound bound  bound bound  Error 

12 -0.195 0.171 0.366 -0.098 0.063 0.161 0.108 
24 -0.377 0.010 0.388 -0.288 -0.114 0.174 0.124 
36 -0.435 0.034 0.469 -0.310 -0.089 0.221 0.124 
48 -0.423 0.089 0.512 -0.307 -0.054 0.253 0.142 
60 -0.418 0.112 0.530 -0.312 -0.036 0.276 0.148 

 

NOTES: See Tables 6 and 8. All responses are in percent. 
 
  



Table A.3: 68% Credible Intervals for Responses to Nominal Gasoline Price Shock in Kilian and 
Zhou (2022) Model 
 

  Robust Credible Interval Conventional Credible Interval 
 Horizon Lower Upper Width Lower Upper Width Maximum 
 (months) bound bound  bound Bound  Error 
Real 0 3.659 4.576 0.917 4.060 4.490 0.430 0.401 
gasoline 1 5.477 6.859 1.382 5.971 6.715 0.745 0.494 
price 2 5.345 6.909 1.564 5.893 6.858 0.965 0.548 

 3 4.826 6.340 1.514 5.201 6.284 1.083 0.376 
 4 4.578 6.125 1.547 4.743 5.965 1.222 0.164 
 5 3.966 5.733 1.767 4.382 5.731 1.350 0.416 

Headline 0  0.166 0.221 0.055  0.186 0.215 0.030 0.020 
Inflation 1  0.080 0.115 0.034  0.090 0.113 0.023 0.009 
 2 -0.006 0.025 0.031 -0.002 0.022 0.023 0.004 
 3 -0.024 0.008 0.032 -0.019 0.006 0.025 0.006 
 4 -0.009 0.019 0.028 -0.008 0.017 0.024 0.003 
 5 -0.017 0.023 0.041 -0.009 0.017 0.026 0.008 
Expected 0 0.012 0.017 0.005 0.013 0.016 0.003 0.001 
inflation 1 0.017 0.023 0.006 0.018 0.022 0.004 0.001 
 2 0.016 0.022 0.006 0.017 0.022 0.005 0.001 
 3 0.011 0.018 0.008 0.013 0.018 0.006 0.002 
 4 0.010 0.019 0.009 0.012 0.018 0.006 0.002 
 5 0.007 0.014 0.007 0.008 0.013 0.005 0.001 

 

NOTES: See Table 9. All responses are in percent. 
 
 
 
Table A.4: Posterior of one-step ahead response of quantity to demand shock for n    
 

 
21,1a  

Identified set -1.000 -0.750 -0.500 -0.250 0.000 0.250 0.500 0.750 1.000 
Lower bound -0.550 -0.300 -0.050  0.200 0.450 0.700 0.950 1.200 1.400 
Upper bound  0.400  0.525  0.650  0.775 0.900 1.048 1.229 1.431 1.646 
Width  0.950  0.825  0.700  0.575 0.450 0.348 0.279 0.231 0.246 

 

NOTES: Based on the bivariate VAR(1) extension of the Uhlig (2017) model with the coefficient settings 
described in the online appendix. 




