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2 The Pooled Bewley Estimator

1 Introduction

The estimation of long-run relationships is important for many applications in eco-
nomics, including panel data settings with heterogeneous (or group-specific) short-run
dynamics, and possibly non-stationary variables (outlined in Section 2 below). There
are three widely-used estimators of cointegrating panels in the literature: the group-
mean Fully Modified OLS (FMOLS) by Pedroni (2001a, 2001b), the Panel Dynamic
OLS (PDOLS) by Mark and Sul (2003) and the Pooled Mean Group (PMG) estimator
by Pesaran, Shin, and Smith (1999). Recently, Chudik, Pesaran, and Smith (2023a,
hereafter CKP) proposed an alternative, Pooled Bewley (PB) estimator of long-run
relationships.

This paper introduces the xtpb Stata command for PB estimation of long-run re-
lationships. Similarly to other existing estimators in the literature (namely FMOLS,
PDOLS, and PMG), the PB estimator is designed for panels with a sufficiently large
time dimension (T), whereas the cross-section dimension of the panel can be small com-
pared with T, or of the same order in magnitude. In practice this translates to T of at
least 20 periods (for all of these estimators), according to the extensive simulations in
CKP. Our xtpb command also features the bias-correction and bootstrapping options
considered by CKP for more accurate and robust inference in the presence of arbitrary
cross-sectional correlation of errors.

The remainder of this paper is organized as follows. Section 2 introduces the dynamic
panel data model of interest and discusses the generality and the main limitations of
the PB estimator. Section 3 describes the xtpb command and its options. Section 4
illustrates the use of the xtpb command by replicating the empirical example of CKP.
Section 5 offers concluding remarks.

2 Dynamic panel-data model

Let yit be the dependent variable for group i (i = 1, 2, ..., N) in period t (t = 1, 2, ..., T ),
and xit be a k × 1 vector of observations on k regressors for group i in period t. Let
wit = (yit,xit)

′
be a (k + 1)× 1 vector of observations on all variables for group i.

To understand generality and limitations of the Pooled Bewley and PMG estimators,
it is useful to suppose wit is given by the following group-specific VAR(p) model,

Φi(L) (wit − ai) = uit (1)

for i = 1, 2, ..., n, and t = 1, 2, ..., T , where

Φi(L) = Im −Φi1L−Φi2L
2 − ....−ΦipL

p

The group-specific VAR models in (1) can be equivalently re-written using the familiar
error-correction representation,

∆wit = ci −Πiwi,t−1 +

p−1∑
j=1

Ψij∆wi,t−j + uit (2)
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where ci = Φi(1)ai,

Πi = − Φi(1) = − (Im −Φ1 − ....−Φp)

Ψij = −
p∑

ℓ=j+1

Φℓ, for j = 1, 2, ..., p− 1

We assume variables given by (2) are integrated of order one, or I (1) for short, with
a single homogeneous cointegrating vector, in which case Πi can be written as

Πi = αiβ
′

where αi for i = 1, 2, ..., n are (k + 1) × 1 group-specific vectors of error-correcting
coefficients, and β is a (k + 1) × 1 common cointegrating vector (identified up to a
constant of proportionality). Using the exact identifying restriction β1 = 1, we write

the normalized cointegrating vector as β =
(
1,−b′)′, where b is a k×1 vector of long-run

coefficients of interest.

We next derive the conditional representation for yit in (2). Conformably with
wit = (yit,xit)

′
, partition uit = (uyit,u

′
xit)

′
, αi = (αyi, α

′
xi)

′
, ci = (cyi, c

′
xi)

′
,

Ψij =

(
ψyy,ij ψ′

yx,ij

ψxy,ij Ψxx,ij

)
, for j = 1, 2, ..., p− 1

and let
uyit = E (uyit |uxit ) + vit = δ′i0uxit + vit (3)

Note that vit is by construction uncorrelated with uxt. Using these notations, individual
equations for yit and xit in (2) are

∆yit = cyi − αyiξi,t−1 +

p−1∑
j=1

ψyy,ij∆yi,t−j +

p−1∑
j=1

ψ′
yx,ij∆xi,t−j + uyit (4)

and

∆xit = cxi − αxiξi,t−1 +

p−1∑
j=1

ψxy,ij∆yi,t−j +

p−1∑
j=1

Ψxx,ij∆xi,t−j + uxit (5)

where
ξit = yit − b′xit

is the error correcting term. Substituting (3) in (4), we have

∆yit = cyi − αyiξi,t−1 +

p−1∑
j=1

ψyy,ij∆yi,t−j +

p−1∑
j=1

ψ′
yx,ij∆xi,t−j + δ′i0uxit + vit

and substituting (5) for uxit in the above expression, we obtain the following familiar
conditional representation for ∆yit,

∆yit = di − αiξi,t−1 +

p−1∑
j=1

φij∆yi,t−j + δ′i0∆xit +

p−1∑
j=1

δ′ij∆xi,t−j + vit (6)
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where di = cyi− δ′i0cxi, αi = αyi− δ′i0αxi, φij = ψyy,ij − δ′i0ψxy,ij , for j = 1, 2, ..., p, and
δ′ij = ψ′

yx,ij − δ′i0Ψxx,ij for j = 1, 2, ..., p. It is useful to emphasize that the specification
(6) is obtained from VAR representation (1), and, by construction, vit is uncorrelated
with ∆xit. In addition, assuming lag order p is suitably chosen, the VAR innovations
uit as well as the error term vit are serially uncorrelated.

In addition to the assumption of a single cointegrating relationship, both PB and
PMG estimators assume long-run causality runs from xit to yit, namely αi ̸= 0 and
αxi = 0 for all i. This is a limitation of these estimators. In the presence of two-way
long-run causality, namely αi ̸= 0, and αxi ̸= 0, both PB and PMG estimators will be
subject to a small bias. When αxi = 0, the representation for xit simplifies to

∆xit = cxi +

p−1∑
j=1

ψxy,ij∆yi,t−j +

p−1∑
j=1

Ψxx,ij∆xi,t−j + uxit (7)

Our model, given by (6)-(7), allows for short-run feedbacks from y to x and vice versa,
allows for heterogeneous contemporaneous correlation of uyit and uxit, and allows for
heterogeneity of all short-run parameters (including the coefficients αi that determine
the speed of convergence toward the long-run). In their exposition, CKP assume, purely
for notational simplicity, that p = k = 1 and cxi = 0, but their estimator is valid for
any value of p and for cxi ̸= 0.

2.1 PB estimator

In contrast to PMG, which is obtained by maximizing a complex likelihood function
(with no guarantee of finding the global maximum), the PB estimator is given by ana-
lytical formula.

The pooled Bewley estimator takes advantage of the Bewley (1979) transformation
of the autoregressive distributed lag representation (6). Subtracting (1− αi) yit from
both sides of (6) and re-arranging, we have

αiyit = di − (1− αi)∆yit + αib
′xit +

p−1∑
j=1

φij∆yi,t−j + δ′i0∆xit +

p−1∑
j=1

δ′ij∆xi,t−j + vit

Multiplying the equation above by α−1
i , we obtain

yit = α−1
i di + b′xit + ψ′

i∆zit + α−1
i vit (8)

where ∆zit =
(
∆yit,∆yi,t−1, ...,∆yi,t−p+1,∆x′

it,∆x′
i,t−1, ...,∆x′

i,t−p+1

)′
. Assuming ob-

servations are available for t = 1, 2, ..., T , we stack (8) for t = p+ 1, p+ 2, ..., T ,

yi = α−1
i diτT−p +Xib+∆Ziψi + α−1

i vi (9)

where yi = (yi,p+1, yi,p+2, ..., yiT )
′
,Xi =

(
x′
i,p+1,x

′
i,p+2, ...,xiT

)′
, ∆Zi =

(
∆z′i,p+1,∆z′i,p+2, ...,∆z′i,T

)′
,

vi = (vi,p+1, vi,p+2, ..., vi,T )
′
, and τT−p is a (T − p)×1 vector of ones. Define projection
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matrix Mτ = IT−p − τT−pτ
′
T−p/(T − p), and let ỹi = (ỹi,p+1, ỹi,p+2, ..., ỹiT )

′
= Mτyi,

X̃i = MτXi, ∆Z̃i = Mτ∆Zi, and ṽi = Mτvi. Multiplying (9) by Mτ , we have

ỹi = X̃ib+∆Z̃iψi + α−1
i ṽi

The PB estimator of b is given by

b̂ =

(
n∑

i=1

X̃′
iMiX̃i

)−1( n∑
i=1

X̃′
iMiỹi

)
(10)

where

Mi = Pi −Pi∆Z̃i

(
∆Z̃′

iPi∆Z̃i

)−1

∆Z̃′
iPi

Pi = H̃i

(
H̃i

′H̃i

)−1

H̃′
i

H̃i = MτHi, and Hi = (yi,−1,yi,−2, ...,yi,−p,Xi,Xi,−1, ...,Xi,−p), in which yi,−ℓ =

(yi,p+1−ℓ, yi,p+2−ℓ, ..., yi,T−ℓ)
′
andXi,−ℓ =

(
x′
i,p+1−ℓ,x

′
i,p+2−ℓ, ...,xi,T−ℓ

)′
for ℓ = 1, 2, ..., p.

2.2 Bias mitigation and robust inference

All of the existing dynamic panel data estimators of cointegrating relationships in the
literature suffer from small sample bias that diminishes in T . The xtpb command imple-
ments two bias-mitigation procedures outlined in CKP, namely the half-panel jackknife
and bootstrap methods, briefly outlined below. The xtpb command also implements
the same options considered by CKP and Chudik et al. (2023b) for conducting infer-
ence: based on asymptotic critical values, and based on different bootstrapping options
outlined in the next section. The reader is referred for full technical implementation
details to Section S-2 of the online supplement of CKP.

Jackknife bias reduction

The jackknife bias correction method is given by

b̃jk = b̃jk (κ) = b̂− κ

(
b̂a + b̂b

2
− b̂

)
, (11)

where b̂ is the PB estimator using the full sample, given by (10), and b̂a and b̂b are
the PB estimators computed using the first and the second half sub-samples. Following
CKP κ is set to 1/3. This choice of κ is derived asymptotically to mitigate the O

(
T−2

)
bias of PB estimator when variables are integrated of order one.

Bootstrap bias reduction

The bootstrap bias-corrected PB estimator, using R bootstrap replications, is given by

b̃R = b̂− ˆbiasR, (12)
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where b̂ is the original (uncorrected) PB estimator, given by (10), and, following CKP,
ˆbiasR is its bias estimate computed by the sieve wild bootstrap procedure outlined

below.

1. Given b̂, estimate the remaining unknown coefficients in (6)-(7) by least squares,
and compute residuals denoted by v̂it, ûx,it.

2. For each r = 1, 2, ..., R, generate new draws for v̂
(r)
it = e

(r)
it v̂it, and û

(r)
x,it = e

(r)
it ûx,it,

where e
(r)
it is randomly drawn from Rademacher distribution,

e
(r)
it =

{
−1, with probability 1/2
1, with probability 1/2

.

Given the estimated parameters of (6)-(7) from Step 1 and the initial values,

generate the simulated series y
(r)
it ,x

(r)
it , and compute the corresponding bootstrap

estimates b̂(r) for r = 1, 2, ..., R.

3. The estimate of the bias is computed as ˆbiasR =
[
R−1

∑R
r=1 b̂

(r) − b̂
]
.

In addition to generating bootstrap samples based on (6) and (7), we also consider

the option of setting ψxy,ij = 0 in (7), and the option of setting x
(r)
it = xit. The choice

of different lag orders in (6) and (7) are also allowed. In addition, we also allow for the

option to set e
(r)
it = e

(r)
t , which results in bootstrapping the columns of cross-sectionally

stacked residuals. This is an important option, since it allows for arbitrary cross-section
correlation of residuals. All of these options are described in the next section.

3 The Xtpb Stata Command

The xtpb command uses mata functions from the moremata package by Jann (2005).
Installation of the moremata package is required.

3.1 Syntax

xtpb depvar
[
indepvars

] [
if
] [

in
]

[
, lagorder(#) biascorrect(string) fulldisplay errorcorrect(string)

residuals(string) bootstrap(#reps [, bootstrap options])
]

The xtpb command supports balanced and unbalanced panel data, and requires the
dataset to be xtset. Variable inputs are also compatible with time series operators.
The post-estimation command predict cannot be used to obtain residuals of the error-
correcting equations in (7). These residuals as well as de-meaned error-correction terms
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can be obtained using the options below. The post-estimation command predict for
fitted values returns b̂′xit.

3.2 Options

lagorder(#) Number of lags, p, for the dependent variable and regressors in the level
representation. The default is lagorder(1), which sets p = 1. Recall, p is the lag
order in the levels, which corresponds to p − 1 lags for the first-differences in the
error-correction representation (6).

biascorrect(string) Choice of small-T bias-correction. biascorrect(none) imple-
ments no bias correction. biascorrect(jackknife) implements half-panel jackknife
bias correction. biascorrect(bootstrap) implements bias correction based on stochas-
tic simulation (bootstrapping). The default is biascorrect(none).

fulldisplay Choice to display all regression outputs used to calculate the error cor-
rection coefficients.

errorcorrect(string) Choice to generate a variable of specified name that contains the
error correction terms.

residuals(string) Choice to generate a variable of specified name that contains resid-
uals derived from the error correction regressions.

bootstrap(#reps [, bootstrap options]) Choice to compute bootstrapped confidence
intervals (CIs) in addition to the asymptotic CIs. The number of bootstrap replica-
tions must be specified, a large value is recommended (at least 2000). Bootstrapped
confidence intervals are automatically computed when biascorrect(bootstrap) is
specified.

Bootstrap Options

csrobust Choice of re-sampling of residuals in the bootstrapping algorithm for compu-
tation of bootstrapped confidence intervals. If not specified, it is assumed there is no
cross-sectional dependence of errors. csrobust allows for arbitrary cross-sectional
dependence of errors by resampling column vectors of cross-sectionally stacked resid-
uals. The default is to not specify csrobust.

btx(string) Choice of bootstrapping algorithm for re-sampling regressors in xit. btx(fixed)
or no btx specification conducts bootstrapping conditional on xit, namely regres-
sors are fixed across the bootstrap replications. btx(varx) resamples regressors in
bootstrap replications according to the VAR model in first differences of regressors.
btx(varxy) re-samples regressors in bootstrap replications according to the VAR
model in first differences of regressors augmented with lags of the first differences of
the dependent variable. The default is btx(fixed).

btx lagorder(#) choice of lag order for the marginal model for regressors used for
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resampling in bootstrapping. Lag order is specified in the level representation, simi-
larly to lagorder. When btx lagorder is not specified, it is set equal to lagorder.

bcialpha(#) Choice of nominal level for bootstrapped CIs. The default is bcialpha(0.95),
which computes 95 percent CIs. Any value between 0 and 1 can be chosen.

seed(#) Choice of a random seed for reproducibility. If not specified, the default is
seed(123456).

3.3 Stored Results

xtpb stores the following results to e().

Scalars
e(N) Number of groups e(Tavg) Average obs. per group
e(Tmin) Minimum obs. per group e(Tmax) Maximum obs. per group
e(bcialpha) Bootstrap CI nominal level

Macros
e(timevar) Time period identifier e(panelvar) Cross section identifier
e(cmd) Name of estimation command e(depvar) Name of dependent variable

Functions
e(sample) Marks estimation sample

Matrices
e(b) Coefficient vector e(table) Matrix containing coefficients

with their asymptotic standard
errors, test statistics, p-values,
and confidence intervals

e(BCI) Bootstrap confidence intervals e(V) Asymptotic variance-covariance
matrix of the coefficient vector

e(ec) Error correction coefficients e(ec rsq) Group-specific error correction
regression r-squared and ad-
justed r-squared

e(ec #) Group-specific error correction
regression coefficients with their
standard errors, test statistics,
p-values, and confidence inter-
vals

4 Replicating Chudik, Pesaran, and Smith (2023a)

Using the xtpb command, we replicate the PB estimation results for the consumption
function empirical example by CKP featuring OECD countries. This application was
originally considered by Pesaran, Shin, and Smith (1999). The consumption function
specification is given by

∆cit = di − αi

(
ci,t−1 − b1y

d
i,t−1 − b2πi,t−1

)
+ δi1∆y

d
it + δi2∆πit + vit

for country i = 1, 2, ..., n, where cit is the logarithm of real consumption per capita, ydit
is the logarithm of real per capita disposable income, and πit is the rate of inflation. The
data is taken from Pesaran, Shin, and Smith (1999). It consists of n = 24 countries and a
slightly unbalanced time period covering 1960-1993, with Tmin = 32 and Tmax = 33. We
replicate the PB estimation results reported in Table 3 of CKP. We start by computing



P. Asnani, A. Chudik & B. Strackman 9

original PB estimates of long run coefficients, b1 and b2, without any bias correction
and using standard asymptotic critical values for inference:

. use pBewley_data_file.dta, clear

. xtset country time

Panel variable: country (strongly balanced)
Time variable: time, 1960 to 1993

Delta: 1 unit

. xtpb con infl inc, lagorder(1)

Pooled Bewley Estimation of Long-Run Relationship in Dynamic Heterogenous Pane
> l
------------------------------------------------------------------------------
> -
Group variable: country Total number of observations = 791

Number of groups = 24
Obs per group: min = 32

max = 33
avg = 32.958333

Original Pooled Bewley (PB) estimator without bias correction.
Inference below conducted based on asymptotic standard errors.

con Coefficient Std. err. z P>|z| [95% conf. interval]

infl -.1341816 .0642033 -2.09 0.037 -.2600178 -.0083453
inc .9122914 .0343783 26.54 0.000 .8449112 .9796717

Bootstrap confidence intervals (CIs) were not computed.
To compute bootstrap CIs, use option ´bootstrap()´ and associated suboptions.
-----------------------------------------------------------------------------

Next, we compute jackknife bias-corrected PB estimates of long-run coefficients by
using the option biascorrect(jackknife). In addition, we also compute bootstrapped
confidence intervals by using the option bootstrap. Regarding the bootstrapping al-
gorithm, we follow the same choices as in CKP. Specifically, the suboptions btx(varx)
and btx lagorder(2) specify that bootstrap replications for regressors are generated
based on country-specific VAR models (7) with ψxy,ij = 0 and lag order p = 2. The
suboption csrobust ensures that bootstrap confidence intervals are robust to arbitrary
cross section dependence of errors. The number of bootstrap replications is set to 10,000
within the bootstrap option.

. xtpb con inc infl, lagorder(1) biascorrect(jackknife) bootstrap(10000, csrob
> ust btx(varx) btx_lagorder(2) seed(123456))

Pooled Bewley Estimation of Long-Run Relationship in Dynamic Heterogenous Pane
> l
------------------------------------------------------------------------------
> -
Group variable: country Total number of observations= 791

Number of groups = 24
Obs per group: min = 32

max = 33
avg = 32.958333

jackknife bias-corrected Pooled Bewley (PB) estimator.
Inference below conducted based on asymptotic standard errors.
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con Coefficient Std. err. z P>|z| [95% conf. interval]

inc .9257776 .0405451 22.83 0.000 .8463106 1.005245
infl -.1199915 .0861496 -1.39 0.164 -.2888415 .0488586

Computing bootstrap CIs based on 10000 bootstrap replications...
Bootstrapping progress:
----------10%
----------20%
----------30%
----------40%
----------50%
----------60%
----------70%
----------80%
----------90%
----------Complete!

95 percent bootstrapped confidence intervals:

inc .8348745 1.016681
infl -.3447268 .1047439

Bootstrapping allowed for arbitrary cross sectional dependence of errors.
To change confidence interval coverage, use suboption ´bcialpha()´ of option ´
> bootstrap()´
-----------------------------------------------------------------------------

To replicate the PB estimates in the bottom part of Table 3 in CKP, we compute
simulation-based bias-corrected PB estimates with 95 percent bootstrapped confidence
intervals by specifying the option biascorrect(bootstrap).

. xtpb con inc infl, lagorder(1) biascorrect(bootstrap) bootstrap(10000, csrob
> ust btx(varx) btx_lagorder(2) seed(123456))
Bootstrapping progress:
----------10%
----------20%
----------30%
----------40%
----------50%
----------60%
----------70%
----------80%
----------90%
----------Complete!

Pooled Bewley Estimation of Long-Run Relationship in Dynamic Heterogenous Pane
> l
------------------------------------------------------------------------------
> -
Group variable: country Total number of observations= 791

Number of groups = 24
Obs per group: min = 32

max = 33
avg = 32.958333

Bias-corrected Pooled Bewley (PB) estimator using stochastic simulations
based on 10000 replications.
Inference below conducted based on asymptotic standard errors.
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con Coefficient Std. err. z P>|z| [95% conf. interval]

inc .9209627 .0349202 26.37 0.000 .8525203 .9894051
infl -.1245002 .0616862 -2.02 0.044 -.2454029 -.0035974

95 percent bootstrapped confidence intervals:

inc .8296397 1.012286
infl -.3137327 .0647324

Bootstrap CIs are based on 10000 bootstrap replications.
Simulations/bootstrapping allowed for arbitrary cross sectional dep. of errors
> .
To change confidence interval coverage, use suboption ´bcialpha()´ of option ´
> bootstrap()´
-----------------------------------------------------------------------------

These results replicate the PB estimates in CKP. Comparing both of the bias-
corrected PB estimates with the original (uncorrected) PB estimates, we see that the
latter are smaller, which suggests a presence of a small downward bias for both inflation
and income long-run coefficients.

In this illustrative example, we estimated the long-run relationships between con-
sumption, disposable income and inflation. Regardless of the bias-correction option
chosen, the coefficients estimated are quite similar. These coefficients range from 0.912
to 0.926 for disposable income, indicating an increase in disposable income is associated
with almost one-to-one increase in consumption in the long-run. The null hypothe-
sis of unit long-run coefficient on income can be rejected at 5 percent nominal level
according to the uncorrected PB estimates using asymptotic standard errors, but the
same null hypothesis can no longer be rejected at 5 percent nominal level when using
bias-corrected estimates and bootstrapped confidence intervals robust to cross section
dependence of residuals. For inflation, the estimated long run coefficients range from
-0.134 to -0.120, and, with the exception of the uncorrected PB estimates, are insignif-
icant at the 5 percent nominal level, which is consistent with neutral monetary policy
in the long-run.

To change the nominal level for the bootstrap confidence intervals, the suboption
bcialpha(#) can be used. Additionally, the option errorcorrect generates a variable
with the error corrections terms, residuals generates a variable with fitted value resid-
uals, and fulldisplay displays all the regression outputs used to calculate the error
corrections coefficients. For illustration purposes, the following example computes bias-
corrected PB estimates using stochastic simulations and computes 80 percent bootstrap
confidence intervals. Bootstrapping is conditional on regressors (regressors are fixed
across bootstrap replications), and re-sampling of errors does not allow for cross-section
dependence. The estimation output shown below is curtailed at group i = 1 for brevity.

. xtpb con inc infl, lagorder(1) biascorrect(bootstrap) bootstrap(2000, bcialp
> ha(0.8) seed(123456)) errorcorrect(error_correct) residuals(residuals) fulld
> isplay
Bootstrapping progress:
----------10%
----------20%
----------30%
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----------40%
----------50%
----------60%
----------70%
----------80%
----------90%
----------Complete!

Pooled Bewley Estimation of Long-Run Relationship in Dynamic Heterogenous Pane
> l
------------------------------------------------------------------------------
> -
Group variable: country Total number of observations= 791

Number of groups = 24
Obs per group: min = 32

max = 33
avg = 32.958333

Bias-corrected Pooled Bewley (PB) estimator using stochastic simulations
based on 2000 replications.
Inference below conducted based on asymptotic standard errors.

con Coefficient Std. err. z P>|z| [95% conf. interval]

inc .9164835 .0346838 26.42 0.000 .8485045 .9844625
infl -.1599615 .0696367 -2.30 0.022 -.296447 -.023476

80 percent bootstrapped confidence intervals:

inc .887293 .945674
infl -.2727019 -.0472212

Bootstrap CIs are based on 2000 bootstrap replications.
Simulations/bootstrapping assumed no cross sectional dependence of errors.
To allow for arbitrary cross-sectional dependence, use suboption ´csrobust´ of
> option ´bootstrap()´
To change confidence interval coverage, use suboption ´bcialpha()´ of option ´
> bootstrap()´
-----------------------------------------------------------------------------
Error correction estimation for panel variable group: 1

D.con Coefficient Std. err. t P>|t| [95% conf. interval]

error_corr~t
L1. -.0945969 .03584 -2.64 0.013 -.1680118 -.021182

inc
D1. .3109306 .0434062 7.16 0.000 .2220171 .3998441

infl
D1. .0295758 .0775029 0.38 0.706 -.1291817 .1883333

_cons .0147791 .0015504 9.53 0.000 .0116031 .017955

5 Conclusion

As argued by Chudik, Pesaran, and Smith (2023a), the main advantage of the PB
estimator is that it can exhibit a better small sample performance in the relevant sample
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sizes of interest compared with the existing alternatives in the literature. This property,
together with availability of bootstrapped confidence intervals robust to cross-sectional
dependence of errors, makes xtpb a useful addition to the literature. However, none of
the existing approaches in the literature for the estimation of long-run relationships in
dynamic heterogeneous panels are, to the best of our knowledge, applicable to the case
where T/N → 0, which is an empirically a very important setting to consider in future
work.
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