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ABSTRACT

This paper develops a new way to quantify the effect of uagest and other higher-order
moments. First, we estimate a nonlinear model using Bayesithods with data on uncer-
tainty, in addition to common macro time series. This key @tbows us to decompose the
exogenous and endogenous sources of uncertainty, cal¢chiaeffect of volatility following
the cost of business cycles literature, and generate datndolicy functions for any higher-
order moment. Second, we use the Euler equation to andlytiscompose consumption into
several terms—expected consumption, éReantereal interest rate, and thex-antevariance
and skewness of future consumption, technology growth,jrdtation—and then use the pol-
icy functions to filter the data and create a time series feeffect of each term. We apply our
method to a familiar New Keynesian model with a zero lowerrzbconstraint on the nominal
interest rate and two stochastic volatility shocks, but adaptable to a broad class of models.
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1 INTRODUCTION

There is widespread agreement that uncertainty decreasasraic activity. The debate rests on
whether the effect is quantitatively significant, whichiidult to determine for two reasons. One,
uncertainty is unobserved, so there is disagreement onsuaingtitutes a good measure. Until re-
cently, the literature has relied on proxies for uncertgistich as realized or implied volatility, in-
dexes based on keywords in print or online media, and surasgd forecast dispersion, which are
often weakly correlated with each other and loosely coretkatith the definition of uncertainty.
Two, uncertainty is endogenous. Not only can uncertainfigchieconomic activity, as intuition
suggests, what is happening in the economy can also affeettamty. A few of the mechanisms
emphasized in the literature include financial frictiond aonstraints that create an adverse feed-
back loop between net worth and asset prices [BrunnermeieBannikov (2014)], incomplete in-
formation that endogenously gives rise to pessimism dueggssions [Fajgelbaum et al. (2017);
Saijo (2017); Van Nieuwerburgh and Veldkamp (2006)], anéra tower bound (ZLB) constraint
on the short-term nominal interest rate that restricts &rabimank’s ability to stabilize the economy
[Plante et al. (2018)]. As a consequence, it is difficult taufify the causal effect of uncertainty.
There are two common ways to study the effects of uncertaiipirically, the literature often
adds a measure of uncertainty to the variables in a vectoregression (VAR) and then computes
impulse responses using a recursive identification sch&iele that approach is easy to imple-
ment, the responses depend on where uncertainty is ordetteellist of variables. If uncertainty is
ordered first, then subsequent variables in the VAR, whitteaeinformation about the state of the
economy, have no contemporaneous effect on the resporsesitwertainty shock. Ifitis ordered
last, then none of the preceding variables in the VAR conteanpeously depend on uncertainty,
S0 an uncertainty shock has no effect on impact. Therefoeemiodeler must specify whether the
uncertainty series is exogenous or endogenous. The cbafieare even greater when accounting
for multiple sources of uncertainty. In a theoretical mottet most common way to determine the
effects of uncertainty is with impulse responses to staahaslatility shocks. While that is also a
fine approach, it ignores the fact that all dynamic modelsessintrinsic sources of uncertainty.
This paper develops a new way to quantify the effect of uagagt and other higher-order mo-
ments. First, we estimate a nonlinear model with Bayesiathoas using the uncertainty series
from Jurado et al. (2015) and Ludvigson et al. (2017), in tholdito common macro time series.
We chose those series over other popular measures of untettacause they are constructed
with a rich set of macro and financial variables and are basdti@ex-antevariance of a given
variable—the same statistic we use to measure uncertaintyeh focuses on predictability in-
stead ofex-postvariability. This key step allows us to decompose the exogsrand endogenous
sources of uncertainty, calculate the effect of volatilitfowing the cost of business cycles litera-
ture, and generate data-driven policy functions for anyéigorder moment. Second, we use the
consumption Euler equation to analytically decomposeeniirconsumption into several terms—
expected future consumption, the-antereal interest rate, and tlex-antevariance and skewness
of future consumption, technology growth, and inflation-g-#imen use the policy functions to filter
the data at each posterior draw and create a time seriesfefféct of each term on consumption.
Our approach improves on previous methods in four impomeays. One, it directly links the
measures of uncertainty in our model—second moments—tvagot measures in the data with
likelihood based methods, whereas previous work reliedretirfioments such as real activity and

IWe discuss the uncertainty literature in detais@ction 2 See Bloom (2014) for a survey of the recent literature.
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interest rates. Two, it captures the effect of exogenousceswof uncertainty as well as the uncer-
tainty that naturally arises in dynamic macro models, whvelrefer to as endogenous uncertainty.
Three, it quantifies not only the effects of uncertainty bsbather higher-order moments, such as
the skewness of consumption and the covariance betweenroption and inflation, which have
received less attention in the literature. Four, it accetmt theex-anteeffects of uncertainty over
horizons beyond one quarter by recursively decomposingagd consumption into expected fu-
ture real interest rates and higher-order moments. To suinenaur decomposition quantifies the
overall effect of uncertainty and other higher-order motaémeach period by accounting for the
combination of first and second moment shocks that bestiexpdéh macro and uncertainty déta.
We apply our new methodology to a textbook New Keynesian meitle an occasionally bind-
ing ZLB constraint on the nominal interest rate and two séstie volatility shocks—one to the risk
premium on al-period nominal bond and the other to the growth rate of tetdgy. The Fed cut
its policy rate to its ZLB in December 2008 and uncertaintgwtlreal GDP increased at the same
time. Plante et al. (2018) find that uncertainty about futeed GDP growth increased because the
ZLB restricted the Fed'’s ability to stabilize the economaus, the ZLB endogenously generates
uncertainty that depends on how severely the Fed is consttailhe stochastic volatility shocks
generate time-varying exogenous uncertainty. The riskopna volatility shock introduces finan-
cial or demand uncertainty, while the technology growthatitity shock adds supply uncertainty.
Although we use a familiar model as a starting point for ustierding the effects of higher-
order moments, our method is adaptable to a broad class aleidebr example, it can be applied
to models with limited information, irreversible investnigborrowing constraints, search frictions,
heterogeneous agents, or other important sources of tamngag endogenous uncertainty. While
those features may make the model too costly to estimatepxippate solutions are attainable
either locally with perturbation methods or globally withopection methods. With a solution in
hand, it is possible to calculate thg-antevariance or skewness surrounding any endogenous vari-
able and then link it to an empirical measure while filtering tlata. Given a particular calibration,
the filter can then generate time series for the terms in atgrEequation. Therefore, our method
provides a way to compare the effect of uncertainty or otligdrJdorder moments across models.
Over al-quarter horizon, we find consumption uncertainty reduaagamption by less than
0.01% in every quarter, similar to the volatility shocks in our nehdecause expected consumption
hides the influence of higher-order moments in future peti@er horizons long enough to elim-
inate expected consumption, consumption uncertainty erege reduced consumption ®y6%
and the peak effect was15% during the Great Recession, of which roughly one-third waes o
the ZLB constraint. Inflation uncertainty and both consuompand inflation skewness had much
smaller impacts on consumption. When we extend our baseloael without capital so house-
holds can invest, the average effect of consumption unogrtacreases te-0.08% and the peak
effect rises to—0.22%, but the differences from the baseline model are statigtigssignificant.
Using the capital Euler equation, we find rental rate unagstdad a small effect on consumption,
but uncertainty about Tobinghad roughly half as large of an effect as consumption unicéyta

2Decompositions of equilibrium conditions have been usestudy other topics. Basu and Bundick (2015) derive
a similar decomposition to ours in an endowment economy itodeovide intuition for how the Fed can offset the
effects of uncertainty at and away from the ZLB, but they doqu@antify the terms. Parker and Preston (2005) use the
Euler equation to decompose consumption growth into a &stezrror, the real interest rate, a measure of preferences,
and a precautionary saving channel. Chung and Leeper (2B@#)and Sargent (2011), Berndt et al. (2012), and
Mason and Jayadev (2014) all use the government budgetraonso determine the key drivers of government debt.



We conduct two exercises to uncover the drivers of our resBlvth are easily applied to other
models. One, we decompose uncertainty into its endogemalieX@genous sources using coun-
terfactual simulations. The uncertainty that naturaliges in the economy due to first moment
shocks accounted for aboit% of total consumption uncertainty. However, nearly all of thari-
ation in uncertainty was driven by the volatility shocks.eJ@xception is when the Fed was con-
strained. In 2009Q1, abo&t5% of the increase in uncertainty was due to endogenous uirdgrta
while 38% was due to the endogenous amplification of second momerkshdeo, we determine
the relative importance of each parameter in our model ®rékults of our Euler equation decom-
position using posterior predictive analysis. While pacjustment costs play an important role as
others have emphasized, we find the coefficient of relatskeaversion and the monetary response
to inflation had the largest impact on the transmission oetiainty among the deep parameters.

We conclude our analysis by calculating the welfare effe€t#latility following the cost of
business cycles literature. We also compare impulse regigaio a financial uncertainty shock
in our nonlinear model to the same shock in a linear VAR usingcarsive identification scheme,
since that is the most common way to identify the effects afutainty in the literature. Using data
simulated from the nonlinear model, we find the VAR generatgsantitatively similar response
of consumption growth to a financial uncertainty shock in gls with and without ZLB events.
While these results paint VAR methods in a positive light,peent out several reasons for caution.

The paper proceeds as followSection 2places our work within the vast literature on uncer-
tainty. Section 3describes our model as well as the exogenous and endogemouss of uncer-
tainty. Section 4outlines our solution and estimation procedut®sction Sorovides our estimation
results, including the parameter estimates and the effdéctscertainty and skewness on consump-
tion. Section 6shows how our results change when we introduce caj@tdtion 7draws compar-
isons between the impulse responses in our nonlinear modal Enear VAR Section &oncludes.

2 RELATED LITERATURE

The literature finds mixed results on the effects of uncetyadepending on the methodology. The
VAR literature often uses a Cholesky decomposition to idieie effects of a proxy for uncer-
tainty. For example, Alexopoulos and Cohen (2009) develppmay based on the number Rew
York Timesarticles on uncertainty; Bachmann et al. (2013) use fotecassagreement from the
Business Outlook Survey; Basu and Bundick (2017), Bekaett ¢€2013), and Bloom (2009) use
implied stock market volatility; Jurado et al. (2015) deyehn index for thex-antevariance sur-
rounding a broad set of macro variables; Leduc and Liu (206eé5te a measure based on the frac-
tion of respondents from Michigan Survey of Consumers wiporteuncertainty as a reason why
it is a bad time to purchase vehicles. Depending on the sheekan increase in those proxies is
associated with a peak decline in production or employmamging from close t6% to over1%.

A couple papers develop different identification schemesivigson et al. (2017) use event and
correlation constraints to restrict the set of impulse oeses and determine if uncertainty causes
or is caused by changes in real activity. They find financi@eutainty causes sharp declines in
real activity, but not macro uncertainty. Negative shock®tl activity increase macro uncertainty
but have little effect on financial uncertainty. Caldarale{2016) use a two-step penalty function
approach to distinguish between financial and uncertainoclss. They show the response of
industrial production depends on the proxy for uncertaamg whether it is ordered before or after
the financial indicator, with a very similar range as theétare finds with recursive identification.



There are three main approaches to modeling uncertaintytkabretical models: shocks to the
cross-sectional standard deviation of firm-level produsti shocks to the volatility of aggregate
exogenous variables, and endogenously-driven sourcesn\itestment is partially irreversible,
Bloom (2009) and Bloom et al. (2016) find simultaneous shdokthe volatility of aggregate
and firm-level productivity cause roughly28 decline in output, though shocks of that nature
are infrequent. In contrast, Bachmann and Bayer (2013) finatlgvel uncertainty shocks are a
small source of business cycle fluctuations, contribu®ifigh% of the variance of output. Chugh
(2016) calibrates a financial accelerator model withowaveersible investment using firm-level
data and obtains a similar result as Bachmann and Bayer (2CGh8stiano et al. (2014) estimate
a financial accelerator model with aggregate data and findrtainty shocks account f60% of
the fluctuations in output. Gilchrist et al. (2014) combimeversible investment and a financial
accelerator mechanism to show that both features are iamddr the transmission of uncertainty.
Although we do not examine firm-level shocks, our method apaéable to these types of models.

Research that studies the effects of aggregate volathitglss has considered many different
exogenous sources of uncertainty. In a small open-econeatypusiness cycle model, Fernandez-
Villaverde et al. (2011) examine volatility shocks to a coyrspecific interest rate spread. They
find a one standard deviation shock reduces outgats-0.2% in Argentina and Ecuador but only
0.01%-0.02% in Brazil and Venezuela. Other papers use closed-economyégnesian models.
For example, Mumtaz and Zanetti (2013) focus on monetargyeoblatility shocks in a model
without capital. They find doubling the volatility reducestput growth by only0.03%, about five
times less than their VAR result. Born and Pfeifer (2014jadtice variable capital utilization and
investment adjustment costs. They show a simultaneousttmdard deviation increase in uncer-
tainty about government spending, monetary policy, andtasgnd labor taxes reduces output by
only 0.065%. In contrast, Fernandez-Villaverde et al. (2015) find atitity shock to only capital
taxes reduces output Iyl % and the effects are larger when the ZLB binds. Leduc and L0G§2
include search frictions and habit formation and find a oaaddrd deviation increase in technol-
ogy volatility increases unemployment by aba@ui%, consistent with their VAR evidence. In a
textbook model with recursive preferences, Basu and Bur(@i@17) find a one standard deviation
preference volatility shock—a proxy for demand uncertainteduces output bg.2%. However,
de Groot et al. (2018) show the way the shock enters theiepe€es creates an asymptote in the
parameter space that amplifies the response of output. Withe asymptote, preference volatility
shocks have very little real effects. The exogenous valashocks in our model also have a small
impact, but the effect of consumption uncertainty from ould equation decomposition is an or-
der of magnitude larger than the responses to either vibjaghock. Those results emphasize the
importance of accounting for thex-anteeffects of uncertainty over horizons beyond one quarter.

As an alternative to exogenous uncertainty shocks, sepapars propose models that endoge-
nously generate uncertainty. One segment emphasizedéha eofinancial sector under complete
information, where the severity and duration of financiédes are stochastic. Most papers focus
on crises that result from financial frictions and collakemnstraints [Brunnermeier and Sannikov
(2014); He and Krishnamurthy (2014); Mendoza (2010)], ehilfew papers incorporate the role
of firm default [Arellano et al. (2016); Gourio (2014); Nax@(2014)]. Another segment examines
the implications of incomplete information. Some of the @apfeature learning with aggregate
shocks [Fajgelbaum et al. (2017); Saijo (2017); Van Nielowegh and Veldkamp (2006)], while
others focus on firm-specific shocks [llut and Saijo (201@&ad and Ulbricht (2015)]. In these
models, an adverse shock under asymmetric learning lowersenic activity and makes it harder
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for households to learn about the economy, which amplifieseffects of first moment shocks.
Our paper bridges the gap between the stochastic volaiidyendogenous uncertainty literatures
by providing a flexible methodology that is easily appliedrtodels with both types of uncertainty.
Our paper is also related to the cost of business cycleatites. Lucas (1987) examines the
welfare cost of “instability” by calculating the fractiorf consumption goods a household would
give up each period to eliminate volatility. With constaalative risk aversion preferences, he
finds the welfare cost of the consumption volatility in p@gbrid War 1l data ranges from.008%
(log utility) to 0.17% (risk aversion;y = 20). The conclusion is that the cost of instability is
insignificant. Several papers have examined these essnratfferent settings. For example,
Tallarini (2000) finds much higher welfare costs with nompested utility in a model that matches
asset prices and volatilities of macro aggregates. Otro81P however, finds the welfare costs are
similar to Lucas’s estimate in a model disciplined to matahpersistence in the data. Lester et al.
(2014) calculate welfare for several types of preferencespmrameter specifications. They find
Lucas’s estimates overstate the cost of business cyclemauine parts of the parameter space
volatility increases welfare. We build on this literatungdalculating welfare at each point in our
sample using an estimated model that matches both macronaedainty data. We find the wel-
fare costs of first moment shocks are well within the rangealsueported. Second moments shocks
have an even smaller welfare effect, consistent with theesleported in Xu (2017). We view
this important exercise as complementary to our Euler égudecomposition. However, one ma-
jor advantage of our decomposition is that it tells us whidmments (e.g., uncertainty, skewness,
covariance) are most important, while still being able toatepose the effects of specific shocks.

3 NEW KEYNESIAN MODEL AND UNCERTAINTY MEASURES

We use a New Keynesian model similar to An and Schorfheid®@qR@xcept it includes a ZLB
constraint and stochastic volatility on technology groatial the risk premium on a nominal bond.

3.1 HRMS The production sector consists of a continuum of monopcéiBy competitive inter-
mediate goods firms and a final goods firm. Intermediate firen [0, 1] produces a differentiated
good,y;(f), according tay(f) = zn(f), wheren(f) is the labor hired by firmf andz;, = g;2,_4

is technology, which is common across firms. Deviations ftbenbalanced growth rate, follow

gt = (1 - pg)g + PgGt—1 + O¢tCt; 0< Pg < 17 €~ N(Ov 1)7 (l)
Oep = 0:(0:4-1/0) 7 exp(oeéy), 0 < p,. < 1, £ ~N(0,1), (2)

where the standard deviation of the technology sheckfollows an independent log-normal pro-

cess ¢. ande are uncorrelated) to add a source of time-varying supplgdamty to the model.
The final goods firm purchases(f) units from each intermediate firm to produce the final

good,y: = [, y:(f)@~D/%df)#/@-1), according to a Dixit and Stiglitz (1977) aggregator, where

0 > 1 controls the elasticity of substitution between any twodgdt then maximizes dividends

to determine its demand function for intermediate ggod;(f) = (p:(f)/p:)~%y:, wherep, =

[fol pe(f)10df]/(=9 is the price level. Following Rotemberg (1982), each intediate firm pays

a cost to adjust its price leveldj,(f) = o [p:(f)/(7pi-1(f)) — 1]*y:/2, wherep, > 0 scales the

size of the cost and is the gross inflation rate along the balanced growth patleréfbore, firmf

chooses,(f) andp,(f) to maximize the expected discounted present value of fudiwidends,

E > aexdi(f), subject to its production function and the demand for itedprct, wherey, ;, =
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1, ¢te41 = B(E/E41)7 is the pricing kernel between periodgndt + 1, ¢ = Hf;tﬂ Qi1

di(f) = pe(Hye(f)/pe — weny(f) — adje(f), and a tilde denotes a variable relative to the level of
technology £ = =/z). In symmetric equilibrium, all firms make identical deoiss (i.e.,p,(f) =
e, e (f) = ny, andy,(f) = ), so the production function and the optimality conditioeguce to

gt - nt7 (3)
me; = Wy, (4)
(™ = 1)} =1 =0+ 0mec, + BorE[(C/ ) (7] — D)l (Geea /Te)], (5)

wherer{*” = 7, /7 is the inflation gap. In the special case where prices aregttyfflexible (i.e.,
vy =0),w, = (6 —1)/6, which equals the inverse of the gross markup of price ovegimal cost.

3.2 HouseHoLDs The representative household chooggsn,, b; }:°, to maximize expected
lifetime utility, Eo "%, 84[((ce/2:) " —1)/(1—7) —xn, 7"/ (1+n)], wherey is the coefficient of
relative risk aversiony > 0 is a preference parameter that determines the steadyadtatesupply,
1/n is the Frisch elasticity of labor supply,is consumptions is labor hoursp is the real value
of a privately-issued-period nominal bond that is in zero net supply, dgdis the mathematical
expectation operator conditional on information in pefioéollowing An and Schorfheide (2007),
households receive utility from consumption relative @#wvel of technology, which is a proxy for
the habit stock. That assumption allows us to use additsggharable preferences and parameterize
the degree of risk aversion while maintaining a balanced/trpath. The household’s choices are
constrained by, + b;/(izs;) = wyny + b1 /7 + di, Wherer is the gross inflation ratey is the
real wage ratej is the gross nominal interest rate set by the central bartkd ama real dividend
received from owning the intermediate goods firms. FollgMdmets and Wouters (2007) and
Gust et al. (2017)s is a shock to the risk premium on the nominal bond and it ewhseording to

St = (1 - ps) + PsSt—1 + Ou,t Uty 0 S Ps < 17 v~ N(Ov 1)7 (6)
Out = 0u(0u4-1/00) 7 exp(o¢(), 0 < ps, < 1, ¢ ~N(0,1), (7)

where the standard deviation of the risk premium shegk follows an independent log-normal
process ¢, andv are uncorrelated) to introduce time-varying demand uad#it into the model.
The first order conditions to the household’s constraindgdropation problem imply

ﬁ}t = X?’L?é/g, (8)
1 = BE[(E/Crr1) (seie/ (T ger1))- )
Equation @) is the consumption Euler equation that we will use to exaie economic effects of
the real interest rate and higher-order moments, includimgumption uncertainty and skewness.
3.3 MONETARY PoLicYy The central bank sets the gross nominal interest rate aogoial
i = max{1,1i}'}, (20)
20 -n i (= a - ~qgd, —~gd —pi
iy = (i) @) (.50 [ (997)) ) 7 exploin), 0 < pi <1, v ~N(0,1),  (11)

wherey9% is real GDP (i.e., the level of output minus the resourcesdas to price adjustment
costs),;" is the gross notional interest rategnd7 are the inflation and interest rate targets, which
equal their values along the balanced growth path,s@nand¢, are the responses to deviations
of inflation from the target rate and deviations of real GD&wgh from the balanced growth rate.
When the ZLB binds, a more negative net notional rate meansghtral bank is more constrained.
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3.4 COMPETITIVE EQUILIBRIUM The aggregate resource constraint is given by

& = 0%, (12)
P =1 — pp(mi? — 1)%/2]G;. (13)

In order to make the model stationary, we redefined all of #r@ables that grow along the balanced
growth path in terms of technology (i.&, = x;/z). A competitive equilibrium consists of infinite
sequences of quantitie§;,, i, 777, n.}22,, prices,{w;, me,, iy, i, 77712, and exogenous vari-
ables{s:, g1, 0.+, 0,1}, that satisfy the detrended equilibrium system);((L3), given the initial
conditions{c_1, 4", so, ag, Y, - 0, 0w }, @and the five sequences of shocks, vy, 14, &, (122

3.5 MEASURES OFUNCERTAINTY The stochastic volatility processeg&) @nd (7), create ex-
ogenous sources of time-varying supply and demand unogrtaincertainty is measured by the
ex-antestandard deviation of future technology growth and thertutisk premium, which equal

Ugt = \/Et[(gt—i-l — FEigi1)? = \/ Et[ag,t—i-l]?
Ust = VEi[(st41 — Ersiy1)?] = \/ Etlo? ]

We classify these types of uncertainty as exogenous bedhagefluctuate due to temporary
changes in the standard deviation of each shock. For exanfilee volatility of technology
growth temporarily increases, then supply uncertainty alsreases and lowers economic activity.
Uncertainty also arises endogenously in any nonlinear méadlowing Plante et al. (2018),
the endogenous uncertainty surrounding trended consamgtowth,c/ = ¢,¢,/¢;_1, is given by

Usni =\ El(chr = Eilet)?) (14)

which is the same way we measure exogenous uncertaintyptakeecalculated with an endoge-
nous variable. Both measures of uncertainty remove theqtedde component of the forecasted
variable instead of only a constant trend, so they distisigbetween uncertainty and conditional
volatility. However, the endogenous uncertainty measwuteomly fluctuates due to exogenous
volatility shocks, but also due to events that happen in tomemy. For example, when the no-
tional interest rate is negative, the economy is more seasd first moment shocks that adversely
affect the economy, which increases the endogenous uimtgrédoout consumption growth. The
ZLB constraint also creates uncertainty by amplifying tfiea of the exogenous volatility shocks.
When the ZLB does not bind, first moment shocks still affégtbut the magnitudes are smalfer.

4 NUMERICAL METHODS AND DECOMPOSITION

4.1 SOLUTION METHOD We solve the nonlinear model with the policy function itevatalgo-
rithm described in Richter et al. (2014), which is based anttteoretical work on monotone op-
erators in Coleman (1991). The presence of stochasticiNtylabomplicates the solution method
because the realizations ¢inds depend on the realizations of the stochastic volatilitycpeses.
We discretize the state space and then approximate theastarkiolatility processes?2) and
(7), and first moment shocks, v, andv, using the/N-state Markov chain described in Rouwen-
horst (1995). The Rouwenhorst method is attractive bedaogséy requires us to interpolate along

3Wwith a nonlinear solution, it is easy to calculate the endogis uncertainty surrounding any variable in a model.
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the dimensions of the endogenous state variables, whiclesriale solution more accurate and
faster than quadrature methods. For each combination dirth@nd second moment shocks, we
calculate the future realizations of technology and thie piemium according tol) and ). To
obtain initial conjectures for the nonlinear policy furmts, we solve the log-linear analogue of
our nonlinear model with Sims’s (2002) gensys algorithmefkwve minimize the Euler equation
errors on every node in the discretized state space and ¢erifumaximum distance between the
updated policy functions and the initial conjectures. Fynave replace the initial conjectures with
the updated policy functions and iterate until the maximustethce is below the tolerance level.
The algorithm produces nonlinear policy functions for agngtion and inflation. To estimate
the model, we also create a policy function for consumptianw uncertainty, 14), by interpo-
lating the policy function for consumption given the updeséate and then numerically integrating
using the Rouwenhorst weights. Segpendix Efor a detailed description of the solution method.
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Figure 1: Measures of uncertainty in the data.

4.2 ESTIMATION PROCEDURE We estimate the nonlinear model with quarterly data on per
capita real GDPRGDP/CN P, the GDP implicit price deflatorD EF’, the federal funds rate,
FFR, the macro uncertainty series in Jurado et al. (20L5)¢roU, and the financial uncertainty
series in Ludvigson et al. (2017)nU, from 1986Q1 to 2016Q2. The observables are given by

log(RGDP,/CNPF,) —log(RGDP,_1/CNP,_)
log(DEF,/DEF,; )
sdata = log(1+ FFR;/100)/4 ,
(MCLCTOUIS - MJ\/[acroU)/O-MacroU
(FinU; — prinu) /0 pinu

wherep ando denote time mean and standard deviatidppendix Adescribes our data sources.
Figure 1plots the standardized 1-quarter ah@ddcroU and FinU series, which inform the
parameters in our model and ensure it produces the samedfliactsiin uncertainty as the data. The
uncertainty series are based on a factor augmented vedtoegression (FAVAR) that accounts
for 132 macroeconomic ant47 financial variables. Repeated simulations of the FAVAR a@du
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to obtain estimates of uncertainty for each macro (finaheeliable and then averaged to obtain
the MacroU (FinU) time series. The benefit of these particular series is Heyt &re calculated
in the same way asld), so they distinguish between uncertainty and conditimo#dtility, and
they reflect the uncertainty surrounding a large set of m@anancial) variables. Examples of
the variables in thé/ZacroU series include output, employment, housing starts, isteegtes, and
prices, while theinU series includes dividends, returns, spreads, and the Faemah factors.
For comparison, we also plot two other popular measures cértainty: the Chicago Board
Options Exchange S&P 100 Volatility IndekX (X O) and the dispersion in forecasts of real GDP
growth 1-quarter ahead from the Survey of Professional Forecaiét$’). The different uncer-
tainty measures generally move together, but they also sigwificant independent variation. For
example, sharp increases in ti& O, SPF', andFinU series occur with some regularity, but they
are far less frequent in th® acroU series. After the start of the Great Recession, the colvakt
between the uncertainty measures all exce@dgdut they are nedr.4 prior to that date. The one
exception is the correlation betweéiinU and thel” X O, which was abové.8 in both subperiods.

Balanced Growth Discount Factois 0.9987 Real GDP Growth Rate ME SD 0y 40 0.00268
Frisch Elasticity of Labor Supplyl/#n 3 Inflation Rate ME SD Ome,r 0.00109
Elasticity of Substitution 0 6 Federal Funds Rate ME SD Ome,i 0.00094
Balanced Growth Labor Supply 7= 0.33 Macro Uncertainty ME SD Ome,macrou 0.44721
Number of Particles N, 40,000 Financial Uncertainty ME SD Ome, finu 0.44721

Table 1: Calibrated parameters for the nonlinear model anticte filter.

We calibrate four parameters that are not well-informedudnydata (able J). The discount fac-
tor along the balanced growth path is calibrated t@.9987 to match(1/7) 3>/, (1+G /400) (1+
I,)/(1+ FFR,/100)'/4, whereT is the sample siz&7, is the annual utilization-adjusted growth
rate of technology from Fernald (2012) ahig = log(DEF),/DEF)_1). The preference param-
eter,, is set so the labor supply along the balanced growth pathlet)(8 of the available time.
The elasticity of substitution between intermediate goéds set to6, which matches the estimate
in Christiano et al. (2005) and corresponds 0% average markup of price over marginal cost.
The Frisch labor supply elasticity/n, is set to3, to match the macro estimate in Peterman (2016).

We use Bayesian methods to estimate the remaining parameteur model. For each draw
from the parameter distribution, we solve the nonlinear eh@hd approximate the likelihood
using a particle filter. We determine whether to accept a dwéetlv a random walk Metropolis-
Hastings algorithm. The filter useé®,000 particles and systematic resampling with replacement
following Kitagawa (1996). To help the model better matchliets during the Great Recession,
we adapt the particle filter described in Fernandez-\@tde and Rubio-Ramirez (2007) to include
the information contained in the current observation adiogr to Algorithm 12 in Herbst and
Schorfheide (2016). Sefppendix Ffor a more complete description of our estimation procedure

A major difference from other filters is that the particlediltequires measurement error (ME)
to avoid degeneracy—a situation when all but a few partigd@Wts are near zero, so the equation
linking the observables to equivalent variables in the rhizdgiven byxdte = xmedel 4 ¢ "where

}A(?wdd = [log(gtlg{?dp/gfiq{)v 1Og(7rt)7 log(it)v (ch,t - Mch)/Uchv (Us,t - MUs)/UUs]v
¢ ~ N(0,%) is a vector of MEs, and = diag([07,. o, T x> Oome.is Tmme.macrouws Tae finul)- LIS

not practical to estimate the ME variances because theynaegsely related to the model like-
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lihood. The Metropolis-Hastings algorithm would prefewkr ME variances, which would de-
crease the effective sample size in the particle filter anddae its accuracy. Following Herbst
and Schorfheide (2016), we set the ME variance of real GDRttdhe inflation rate, and both
uncertainty series t80% of their variance in the data. However, the ME variance ferpblicy
rate is set t@% of its variance in the data because the federal funds ra¢ésssioisy and it affects
the level of uncertainty predicted by the model near the Z\AR. decided to link consumption
growth uncertainty to the macro uncertainty index and rigdopum uncertainty to the financial
uncertainty index because Ludvigson et al. (2017) find firdnmcertainty is an exogenous im-
pulse that causes recessions, whereas macro uncertadugesously responds to other shocks
that affect the business cycle. In our baseline model, copson uncertainty is equal to real GDP
uncertainty and it is determined endogenously, wherek$ramium uncertainty is exogenous.
The entire algorithm is programmed in Fortran using Open Btfel executed on a cluster with
512 cores. We parallelize the nonlinear solution by distribgtihe nodes in the state space across
the available cores. To increase the accuracy of the filegaiculate the model likelihood on each
core and then evaluate whether to accept a candidate dras bashe median likelihood. This
key step reduces the variance of the model likelihood aamdsiple runs of the particle filter.
Our estimation procedure has three stages. First, we coadmode search to create an initial
variance-covariance matrix for the parameters. The camaé matrix is based on the parameters
corresponding to the0th percentile of the likelihoods fro,000 draws. Second, we perform an
initial run of the Metropolis Hastings algorithm witt,000 draws from the posterior distribution.
We burn off the first5,000 draws and use the remaining draws to update the varian@tance
matrix from the mode search. Third, we conduct a final run efNtetropolis Hastings algorithm.
We obtain100,000 draws from the posterior distribution and then thinllog to limit the effects of
serial correction in the parameter draws, so our final armigdased on a sample bf)00 draws.

4.3 BEULER EQUATION DECOMPOSITION Our goal is to determine how changes in uncertainty
affect consumption, taking into account all first and andsdanoment shocks as well as endoge-
nous dynamics. One way to quantify the effect of uncertamty decomposing the consumption
with the Euler equation9). A third-order approximation around the balanced grovathpmplies

¢t~ By — %'ft — CoVi(Trs1, Cre1) — COVi(Ger1, Copr) — %Covt(ﬁ-ﬂ‘l?gt"'l) (15)

1 . . 2 N 1 . . 3 N
— %<Val't Q1 1+ vary Ty + y” var Ct+1) + a(SkeWt Ji+1 1+ Skewt Tl 7Y Skewt ct+1)7

wherevar,, skew,;, andcov, denote the variance, third moment, and covariance of ablarcmndi-
tional on information attime, 7, = i, + 5, — Eym,1 — Eygy41 1S theex-antereal interest rate, and a
hat denotes log deviation from the balanced growth pagpendix Bprovides a detailed deviation.
We omitted higher-order covariance terms, sucbbag(frt%rl, ¢i+1), as well as fourth-order and
higher terms because they had almost no effect on consumiptour sample. The variance, skew-
ness, and covariance terms quantify the effect of the usiogyt upside and downside risk, and the
pairwise linear relationships between consumption, iioitatand technology growth next period.
Higher risk aversion means households are less willingtert@mporally substitute consumption
goods, which makes them less sensitive to the real inteassand more sensitive to the variance
and skewness of consumption next period. Much of our arglyilifocus on the variance of con-
sumption. That term will have the same effect on current gonion regardless of which Euler
equation is used for the decomposition because the pri@nigkalways enters in the same way.
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The decomposition shows how the different types of unaagtaind skewness affect economic
activity over al-quarter horizon. If we recursively substitute for expdatensumption, we obtain

A~ ~ 1 q A
Cy =~ Etct—i-q - ;Et ijl Ttyi—1

= 201 (covi(Turjy Coag) + €OV Gy js Corg) + 3 COVi(Titj, Gorj)

1\ . A 2 .
~ %y jzl(vart Gt+j -+ vary Tt+j + y© var; CH—j)

(16)

1\ . N 3 A
+ & jzl(skewt G14j + skew, Ty + 77 skewy ¢y ),

whereqg > 1 is the forecast horizon. The sum of each variance term @@erarters captures the
effect of a given type of uncertainty, conditional on exgectonsumption in quarter Wheng
becomes sufficiently large, the conditional expectatiapdrout of the decomposition, so we are
able to determine the unconditional effects of each higinder moment. Over &quarter horizon,
expected consumption closely tracks current consumpibich hides the effect of higher-order
moments in future quarters. By decomposing expected fatameumption, we can show how the
uncertainty, skewness, and covariance terms affect cousamover horizons beyond one quarier.
Given a draw from the posterior distribution, we quantifg gffect of each term on consump-
tion in three steps. First, we create policy functions ferltty+1 variables in the decomposition by
integrating across0,000 ¢g-quarter simulations initialized at each node in the stpées. Although
the variables are represented in deviations from the bathgowth path, the policy functions in-
herit the nonlinearities from the solution. Second, we teréiane series for the variables in the de-
composition at each horizon by interpolating the policydiimns at the median filtered states and
shocks in each time period. Third, we weight each variabliésoyoefficient in the decomposition.

5 ESTIMATED EFFECTS OFUNCERTAINTY

We first show the posterior parameter distributions, impusponses, and sources of consumption
uncertainty. Then we show the results of our Euler equatemmochposition and analyze which pa-
rameters are most important. The section concludes withutzdions of the cost of business cycles.

5.1 FRIOR AND POSTERIORDISTRIBUTIONS The first four columns ofable 2display the es-
timated parameters and information about the priors. Thoe for the coefficient of relative risk
aversion is taken from An and Schorfheide (2007). The pffarshe steady state growth rate and
the target inflation rate are set to the average per capita @&#h rate and the average inflation
rate over our sample period. The priors for the monetarycp@arameters, which follow Guerrén-
Quintana and Nason (2013), are chosen so the distributmres the values in Taylor (1993) as
well as stronger responses that could explain data dure@ LB period. The priors for the per-
sistence parameters are diffuse, but all of the means, efargpe growth rate, are set €06 since
a modest degree of persistence is needed to explain theldeggriors for the standard deviations
are also diffuse but less diffuse than in An and Schorfhe2@®7) and Smets and Wouters (2007),
since our nonlinear model generates more volatility thaagous unconstrained linear models.
The last four columns display the posterior means, standirgitions, and0% credible sets
for the estimated parameters. Low frequency movementseimmiéicro and financial uncertainty
time series coupled with sharp increases in both serieagltlie Great Recession generate highly

4After iterating, we obtairt; [COVH_J‘ (l‘t+.j+1 , yt+j+1)] = COV¢ (xt+,ja yt+j) — COVy¢ (Et+j [$t+j+1]7 Et+,j [yt+j+1])
by the law of total covariance. In our derivation, we igndre second term because its effects are quantitatively small
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Prior Posterior

Parameter Dist. Mean SD Mean SD 5% 95%

Risk Aversion ) Gamm 2.0000  0.5000 3.00551  0.44806 2.35252 3.81243
Price Adjustment Cost) Norm  100.0000 20.0000 141.00914 19.95554 110.36190 175.77686
Inflation Responsey;) Norm 2.0000  0.2500 2.54332  0.19854 2.21212 2.85598
Output Responsep() Norm 0.5000  0.2000 1.04678  0.15152 0.79593 1.29649
Average Growth ) Norm 1.0040  0.0010 1.00439  0.00058 1.00337 1.00534
Average Inflation {) Norm 1.0055  0.0010 1.00649  0.00041 1.00579 1.00718
Int. Rate Persistencey) Beta 0.6000  0.2000 0.84086  0.01902 0.80740 0.87024
Growth Persistencepf) Beta 0.4000  0.2000 0.51433  0.12352 0.29503 0.70706
Risk Persistencep) Beta 0.6000  0.2000 0.91050  0.01084 0.89163 0.92723
Growth SV Persistencef_) Beta 0.6000  0.2000 0.95721  0.01890 0.92614 0.98109
Risk SV Persistenceyf,) Beta 0.6000  0.2000 0.93308  0.01617 0.90404 0.95725
Int. Rate Shock SDA,) IGam 0.0025  0.0025 0.00127  0.00017 0.00102 0.00157
Growth Shock SD{.) IGam 0.0075  0.0075 0.00371  0.00054 0.00288 0.00463
Risk Shock SD&,,) IGam 0.0025  0.0025 0.00139  0.00022 0.00107 0.00177
Growth SV Shock SDd) IGam 0.1000  0.0250 0.11216  0.02350 0.07647 0.15372
Risk SV Shock SD&) IGam 0.1000  0.0250 0.11855  0.02218 0.08428 0.15666

Table 2: Prior and posterior distributions of the estimagtathmeters. The last two columns showitieand95th per-
centiles of each marginal posterior distribution. The ndglestimated with quarterly data from 1986Q1 to 2016Q2.

persistent stochastic volatility processes with largecklstandard deviations. For example, a two
standard deviation supply uncertainty shock caug¥si&: increase in the volatility of technology
growth with a half-life of about 5.9 quarters. The monetary policy parameters imply a high gegre
of interest rate smoothing and strong responses to real G@#lyand inflation, which are neces-
sary for the model to explain the long ZLB period. The meameses of the annualized technol-
ogy growth and inflation rates ate77% and2.62%, which are slightly higher than the values in
the data since they are unconditional and under-represertffiects of the ZLB period. The mean
coefficient of relative risk aversion is consistent with ArdeSchorfheide (2007). The Rotemberg
price adjustment cost parameter implies a slope of theiphdlrve of aboud.035, which isin line
with other estimates in the literature. Overall, the priansl posterior means are consistent with
Gust et al. (2017), who estimate a similar model with an docadly binding ZLB constraint but
without stochastic volatilityAppendix Gprovides additional estimation diagnostics, including th
kernel densities of the parameters, median filtered statésl@ocks, and unconditional moments.

5.2 IMPULSE RESPONSES We begin our analysis by showing impulse responses to fit an
second moment shocks to illustrate the underlying dynamidhe model. Figure 2plots the
responses to a standard deviation positive risk premium, risk premiumatdity, growth, and
growth volatility shock. The parameters are set to theitgroae means and the simulations are
initialized at two different states. Our benchmark simiolais initialized at the stochastic steady
state and reflective of any state of the economy where thgngusally no expectation of hitting the
ZLB. We compare those responses to the responses when ihiealoate is negative by initializing
the simulation at the filtered state vector corresponding0@9Q2. The effect of mean reversion
is removed from the responses by plotting the percentaga plidference (percent change for
uncertainty) from a counterfactual simulation without aahin the first quarter. Uncertainty is
measured by the expected volatility of thejuarter-ahead forecast error for consumption growth.
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Figure 2: Impulse responses t®2atandard deviation positive shock at and away from the ZLi S$teady-state
simulation (solid line) is initialized at the stochastieatly state. The other simulation (dashed line) is inigaliat

the filtered state corresponding to 2009Q2 so the ZLB bintis.vErtical axes are in percentage point deviations from
the baseline simulation, except uncertainty is a percearig. The horizontal axes denote the time period in quarters

The risk premium and growth volatilities are initializedtheir stochastic steady states in both
simulations, so the level shocks are not amplified by exogerbanges in volatility over time and
the impact effects of the volatility shocks are not distdig the log-normal volatility processes.
A higher risk premium (first column) in either initial statauses households to postpone con-
sumption, which lowers consumption growth and inflation mpact. When the Fed is not con-
strained by the ZLB, it responds to the shock by reducingatEp rate. The impact on uncertainty
is small since the Fed is able to stabilize the economy. I9Q®) the higher risk premium leads to
an expected ZLB duration @fquarters on impact. The Fed cannot respond by lowering lisypo
rate, which causes a larger decline in consumption. Thetnssal larger increase in uncertainty
since households expect a wider range of future realizafioansumption growth. In other words,
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the model endogenously generates uncertainty when the #d3 blue to a risk premium shock.
Similar to the level shock, a positive shock to the volatidif the risk premium (second column)
lowers consumption growth and inflation. In steady stateRéd adjusts its policy rate to stabilize
the economy, so the effect of the volatility shock is sma#rethough uncertainty rises far more
than it does in response to the level shock. When the ZLB bimolsever, the increase in uncer-
tainty nearly doubles, which magnifies the effect on consiongrowth and inflation. Hence, the
model also endogenously creates uncertainty by amplifyiageffects of second moment shocks.
Level and volatility shocks to technology growth have gadively and quantitatively different
effects than risk premium shocks. A positive shock to te@toogrowth (third column) increases
consumption growth and decreases inflation like a typigapushock, so the Fed faces a tradeoff
between stabilizing inflation and real GDP growth unlikehagt risk premium shock. In steady
state, the policy rate immediately increases since theoresspto the real GDP gap dominates the
response to the inflation gap. In 2009Q2 the ZLB initiallydsnbut the increase in the notional
rate causes a quick exit from the ZLB afteqquarter. The delayed increase in the policy rate causes
a slightly larger boost in consumption growth and a smaleslide in inflation. In contrast with
the risk premium shock, a positive growth shock causes taiogy to decline because it reduces
the probability that the ZLB binds next period. However, tegponses are smaller in magnitude.
Growth volatility shocks cause bigger changes in uncetgtdiran level shocks. Similar to a risk
premium volatility shock, a positive growth volatility stio(fourth column) reduces consumption
growth and inflation, which leads to a lower nominal rate. Idwer, the responses differ in a
few ways. One, growth volatility directly affects consumapt volatility. Therefore, uncertainty
increases more than it does in response to a risk premiuntilitglahock. Two, the response of
uncertainty is similar in both initial states. Three, thergase in uncertainty away from the ZLB
is much larger than the increase from a risk premium votgtsihock. Therefore, growth volatility
shocks play a larger role in explaining the fluctuations inartainty when the ZLB does not bind.

5.3 SOURCES OFUNCERTAINTY The impulse responses show uncertainty can arise in our non-
linear model due to exogenous volatility shocks or first monséocks that interact with the econ-
omy. Figure 3adecomposes consumption growth uncertainty into its exogeand endogenous
sources using counterfactual simulations conditionahennhean parameterization of our model.
To isolate the contribution of technology growth unceriave turn off the risk premium volatil-
ity shocks. Similarly, we zero out the technology growthatiity shocks to identify the amount
of risk premium uncertainty. We then turn off both volajilghocks to determine the amount of
endogenous uncertainty. We also show the endogenous amafpdifi of the exogenous volatility
shocks when the Fed was most constrained using the solatiba tinconstrained nonlinear model.

On average abowb% of consumption growth uncertainty is due to the uncertdingg occurs
without second moment shocks, which we refer to as endogamacertainty. However, most of
thechangesn uncertainty are driven by the exogenous volatility steodBrowth volatility shocks
are the key driver in most periods, but risk premium volgtsihocks play an important role in cer-
tain parts of our sample. Typically, endogenous uncestasfiirly constant, but it increases when
the policy rate is near or at its ZLB, which occurs in the mi@@€and from 2009 to the end of the
sample. The sharp increase in uncertainty in 2009, howpsierarily occurred due to the endoge-
nous amplification of the exogenous volatility shocks, eattihan through first moment shocks.
The markers in 2009Q1 show the counterfactual increasedartainty that would have occurred
if the Fed was not constrained. Those results indicate tatt&.5% ((0.48 —0.43) /(1.03—0.43))
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(a) Decomposition of the sources of consumption growth dacgy.
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(b) Relative contribution of the exogenous sources of congion growth uncertainty.

Figure 3: Sources of uncertainty in our baseline model.

of the increase in uncertainty in 2009Q1 was due to endogenagertainty and abow’%
((1.03 —0.82)/(1.03 — 0.48)) was due to the endogenous amplification of second momeoksho
Despite some nonlinear interactions between the exogevabaislity shocks and the ZLB, we
are able to approximate the relative contribution of eadatitily shock over time, similar to a vari-
ance decomposition in a linear model. The dark bafgire 3brepresent the technology growth
counterfactual relative to the endogenous uncertaintytastactual (circles minus diamonds) and
the light bars represent the risk premium counterfactuative to the endogenous uncertainty
counterfactual (triangles minus diamonds), which is apipnately equal to consumption growth
uncertainty relative to the endogenous uncertainty cofatiial (solid minus diamonds). The re-
sults reiterate that technology growth uncertainty is¢gfly the biggest contributor to consump-
tion growth uncertainty, but the two sources of exogenouerainty typically move together.
There are two notable exceptions. One, the model prediatsigk premium uncertainty precedes
the 2001 recession. Two, technology growth uncertaintyeiaes before the rise in risk premium
uncertainty during the Great Recession, but the effectislopremium uncertainty linger while the
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impact of technology growth uncertainty is negligible fofeav years after the Great Recession.
During the Great Recession, technology growth and risk prenvolatility shocks have nearly
equal roles. By the end of the sample, consumption growtbri@iaty declined to its lowest point.

5.4 BULER EQUATION DECOMPOSITION The rest of this section focuses on the effects of un-
certainty and other higher-order momenEsgure 4shows the filtered time series of the terms in
the Euler equation decomposition ibgj over different forecast horizons. The values on the ver-
tical axes are the effects on current consumption in peagenpoint deviations from the balanced
growth path. The top panel shows the decomposition over aaiter horizon. We separate the
first-order terms (left panel) from the higher-order termght panel) so the effects of expected
consumption and the real interest rate do not drown out tleetsfof the higher-order terms. We
also plot current consumption in the top left panel so it E&ao see the contribution of each term.

Over al-quarter horizon, the changes in consumption are almostebntiriven by expecta-
tions about consumption next quarter. The real interesthratl a smaller role, typically reducing
consumption by about.1%. The peak effect was-0.37% during the Great Recession, but that
effect quickly declined as the economy rebounded. The nighaer terms show uncertainty about
consumption in the next quarter had time-varying adverf@e&sfon current consumption. Uncer-
tainty had by far its largest effect during the Great Reassince the ZLB constraint made the
economy more sensitive to adverse shocks and increasexjibeted volatility of future consump-
tion. However, that effect was short-lived because theonalirate was negative only until 2011.

The gquantitative effects of uncertainty were small thraughour sample. Even during the
Great Recession, the peak increase in uncertainty redwcegimption by less than01%. Con-
sumption skewness and both inflation uncertainty and inflagkewness also had very little effect
on current consumption. Interestingly, the effects of utaety over a one-quarter horizon have a
similar magnitude as the impact effects of the two exogenolatility shocks shown irigure 2
However, both sets of results significantly understatertiygaicts of uncertainty because they hide
the effects that future real interest rates and higherroraenents have on expected consumption.

The middle left panel shows how expected consumption a&tecturrent consumption over
horizons up t@4 quarters. Once again, we plot the filtered time series falecticonsumption as
a percent deviation from the balanced growth path. In masvgeg, the differences between cur-
rent and expected consumption were much larger over harizeyondl -quarter, which indicates
that other factors, such as the real interest rate and @anagttexplained a larger fraction of the
changes in consumption. We focus o2dagquarter horizon because it is long enough that expected
consumption barely matters for current consumption. Famgde, in 2009Q2—the last quarter of
the Great Recession—expected consumption in 2009Q3 arplad.3% of the decline in current
consumption, whereas expected consumption in 2015Q3iarplanly1.6% of the decline. Over
those same horizons, the contribution of consumption diaicgy increased fror2.9% to 11.9%.

The middle right panel shows the effect of consumption uagay over the horizons shown in
the left panel, but the values on the vertical axis are cutivelaffects (i.e., the sum of the impact in
each quarter over a given horizon). Although the effect astonption uncertainty is small when it
is conditional on expected consumption ovérguarter horizon, it is more significant over longer
horizons that decompose the influence of expected futureuroption. Over &4-quarter horizon,
consumption uncertainty on average decreases currenirogii®n by aboub.06% and the largest
effect was aboud.15% in 2009Q1, which accounted fa6.6% of the total decline in that quarter.

The other higher order moments are shown in the bottom lefelpaDuring the Great Re-
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Figure 4: Filtered decomposition of the effects on curremstimption. The shaded regions denote NBER recessions.
The vertical axes are the contribution to the percentag# pleviation of detrended consumption from its steady state
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cession, the peak effects of technology growth uncertaimfiation uncertainty, and consumption
skewness over a4-quarter horizon were-0.023%, —0.005%, and —0.001%, respectively, and
the average effects were much smaller. We do not show thet effenflation skewness because
it is near zero throughout the sample. It is not surprisira thflation uncertainty and skewness
had such small effects on consumption because the Fed aygtgsargeted inflation throughout
our sample. However, we expected a larger effect of condompkewness, especially during the
Great Recession. The ZLB constraint creates downsideirisk & prevents the Fed from respond-
ing to adverse shocks through conventional channels. Bthdéhose effects on consumption are
small when controlling for other terms. The covariance lesminflation and consumption reduced
consumption by aboux02% on average, the second largest effect behind consumpta@rtamty.
The bottom right panel shows the effect of consumption uag®y over a24-quarter horizon
along with two of the counterfactuals shownfigure 3a First, we plot the effect of consumption
uncertainty after removing the influence of the ZLB usinggbkition to the unconstrained nonlin-
ear model. The differences from the baseline path show hoghrthe ZLB increased the adverse
effects of uncertainty. In most quarters, the differengessanall because there is a low probabil-
ity of going to and staying at the ZLB. Larger differencesven the two paths occurred from
2008Q4 to 2009Q4, when the notional rate was well below zeddlaere was a strong expectation
of staying at the ZLB. For example, in 2009Q1 consumptioreutainty reduced consumption by
about0.06 percentage points more than it would have if the Fed was nwtcained. Second, we
restore the ZLB constraint but zero out both of the exogerolaility shocks. Since first moment
shocks are the main source of most of the uncertainty in tbaauy, they are also the primary
source of the adverse effects of consumption uncertairttigsApeak, endogenous uncertainty only
increased the adverse effects of consumption uncertayrdpbout0.01 percentage points, whereas
exogenous volatility shocks played a much larger role dypittire last two recessions. For example,
the volatility shocks without the ZLB contributed abau64 percentage points to the decline in
consumption growth in 2009Q1 and their amplification cdnited anothe®.06 percentage points.
The bottom right panel also plots the total effect of ungetya—the sum of consumption, tech-
nology growth, and inflation uncertainty—on consumptioera?4-quarter horizon. On average,
total uncertainty reduced current consumption by abaiit’% with a maximum decline d.17%.
The results irfigure 4are based on the mean parameterization of our model. Althoumeri-
cally intensive, itis also possible to generate time sédethe terms in the decomposition for each
of the 1,000 draws from our posterior distributiofrigure 5shows thel standard deviationl (%-
84%) credible sets for the effects of the three types uncestainer a 24-quarter horizon. The left
panel shows the effects of consumption uncertainty whieridiht panel shows the effects of tech-
nology growth and inflation uncertainty. In a typical quartbe effect of consumption uncertainty
ranges from-0.01% to +0.015% of the median effect. The effects, however, are more asynonet
during recessions. For example, during the peak of the GReagssion there was6a% chance
consumption uncertainty decreased current consumptiat lBast0.12% and it could have de-
creased it by as much a225%. The effects of technology growth and inflation uncertaity al-
ways much smaller than consumption uncertainty, even iteihef the parameter distribution. In
all three cases, the credible sets are considerably tititeeithe range of estimates in the literature.

5.5 KEY PARAMETERS In addition to quantifying the contribution of each sour€armcertainty,
we also determine the relative importance of each pararfeteur Euler equation decomposition
by conducting posterior predictive analysis with the dréam the joint posterior density; } 129°.
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Figure 5:68% credible sets of the filtered effects on current consumpfidre vertical bars denote NBER recessions.
The vertical axes are the contribution to the percentag# pleviation of detrended consumption from its steady state

We focus on the effect of consumption uncertainty ovet-guarter horizon, which is given by

h(0,t) = —(7/2) 234:1 vary (€410, Ur, Z),

whered is a vector of estimated parameters apdndz; are the median filtered states and shocks
conditional on the posterior mean parameterization. gitime states and shocks allows us to
isolate the role of each parameter. We already calcuigtet) for all i to generate the credible
sets infigure 5 which represent the actual effects of consumption uniceytgiven each posterior
draw. Defined;, as theith posterior draw conditional on the posterior mean of patant. As

a counterfactual, we first calculahége_i,g, t) using the procedure described at the endeaition 4

We then calculate the root mean-squared deviation (RMSim that counterfactual, given by

RMSD(0,t) = \/ 15 SS10P (h(;, 1) — h(Big, t))>.

For our analysis, we calculate the RMSD for each of theestimated parameters across the
entire sample. A higher RMSD implies a given parameter haggeb impact on the effect of
consumption uncertainty on current consumptidtigure 6plots time series of the RMSD for
the nine most consequential parameters. The risk premiusispence 4,) and shock standard
deviation ¢,) have the largest average RMSDs. Of the deep parametexeaffecient of relative
risk aversion {) and the monetary response to inflatign Y are the most consequential. There is
also considerable variation in the importance of the patara@cross time. For example, during
recessions the RMSD of each parameter increases, but tbesgrparameters (right panel) become
relatively more important than the deep parameters. Caitgidessions, the deep parameters (left
panel) are relatively more important, though the average&SRMf each parameter is much lower.

The major benefit of the RMSD statistic is that it summarizes relative importance of a
given parameter in every quarter of our sample, but it doégwacate whether a given parameter
increases or decreases the effect of uncertainty. Howey@onditioning on a particular quarter,
we can determine the signFigure 7shows scatter plots of the deviation, ,;, = h(éi,t) —

h(6;,t),in 2008Q4 for all posterior draws, conditional on paramétén other words, it shows the
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Figure 7: Scatter plots of the effect of consumption unéetyaon consumption over 24-quarter horizon in 2008Q4

at each posterior draw, conditional on fixing the indicatathmeter at its posterior mean. The values on the vertical
axes are shown in deviations from the effect at the postenean parameterization. The horizontal axes denote
the parameter values corresponding to the number of stdudgaiations away from the posterior mean. The dashed
vertical lines are the posterior means and the dashed didljoes are the linear trends based on ordinary least sguare
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changes in the effect of consumption uncertainty that oadwen a particular parameter deviates
from its posterior mean. Therefore, a positive (negatiadye ofA; , ; indicates that consumption
uncertainty has a smaller (larger) adverse effect on cucarsumption for a given posterior draw.
The results depend on how each parameter affects expetted fwlatility. The dashed diag-
onal line is the linear trend. When the parameters goveti@gisk premiumg, p,.,, 0., ando;)
are above their posterior means (shown by the dashed Jditieaconsumption uncertainty has
a much larger adverse effect because the variance of theeeaog process and hence expected
volatility increase (i.e., the trend line slopes downwarer example, the posterior mean persis-
tence of the risk premiunm,, iIs0.911. When that value is two standard deviations higloe¥32),
consumption uncertainty reduces consumptiordldy percentage points more than at its poste-
rior mean. Similarly, a higher price adjustment cost pat@ameauses uncertainty to have a larger
effect because stickier prices make households more sensitchanges in the nominal interest
rate. Larger values of the other parameters reduce thet @femcertainty. An increase in the
coefficient of relative risk aversion makes householdsuwelisg to substitute across time, which
makes consumption less volatile. Thus, consumption uaicgythas a smaller adverse effect, even
though households react more strongly to expected vdyallihigher monetary response to infla-
tion has a similar effect because it also reduces expectatefuolatility. Interest rate smoothing
is a form of commitment by the Fed to reduce future inflatiofatility, so the higher persistence
reduces expected volatility. Finally, a higher averagemnarate raises the steady-state nominal
interest rate, which decreases the likelihood of ZLB evantstherefore expected future volatility.
These results are particularly useful given the degree mafrpater uncertainty in the literature.
By extrapolating from the trend line, it is easy to obtainagl estimate for the effects of consump-
tion uncertainty and the likelihood of that outcome given parameterization of the model. It is
also possible to conduct a similar exercise for the othdr-oigler moments in the decomposition.

5.6 WELFARE The cost of business cycles literature provides an altemafay to quantify the
effects of uncertainty than our Euler equation decompmsifi hat literature uses welfare analysis
to determine the consequences of different levels of \ijaf he main difference between the two
methods is that our Euler equation decomposition quantifieeffects of different higher order
moments—including uncertainty—withinparticular model, whereas the welfare analysis quanti-
fies the effects of volatility by comparindjfferentmodels. Specifically, the cost of business cycles
literature measures the compensating variation of switcfrom a low to a high volatility model.
Given the household’s constant relative risk aversioftyfiinction in our baseline model, the
compensating variation between modeldower volatility) andH (higher volatility) is given by

[EW() + /(1 =) (1 = B) = EWa(n") + E,W,(nh) 1/(1-)

BEW(ch) + 1/(1=7)(1 = 5)) - @0

EW.(&") = BIY32, #/71((&) 7 = 1)/(1 = ]IS,
EW,(n”) = BI52, 57 De(nd) 7/ (1 + m)]|],

are the expected present-value of the household’s utibity fconsumption and disutility from la-
bor conditional on its information set at time2,, which contains the median filtered state and the
posterior mean parameters. Algd,andn’ are the optimal choices of detrended consumption and
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labor conditional on modet € {H, L}. We denote the higher (lower) volatility economy with
an H (L), where the expected path of consumption is lower (highe€)td precautionary saving.
Therefore,\; is the fraction of consumption goods in the low volatilityoeomy that would com-
pensate the household for the lower consumption path iniglehvolatility economy. When, >
0 the household is better off in the lower volatility economAppendix Cshows how to derive,.
We computelV,. and W, for four different models: (1) the baseline model, (2) thedalo
without the ZLB imposed, (3) the model without volatilitystks, and (4) the model without any
shocks (equivalent to its deterministic steady state).abhecase, we approximaig. andV,, by
integrating acros$,000 Monte Carlo simulations 0f0,000 quarters. Each simulation is condi-
tional on the state of the economy in a particular period &edyosterior mean parameterization.
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Figure 8: Percent of consumption goods under lower vaiatiéeded to compensate the household for higher volatil-
ity. In each period, the welfare cost is conditional on theliae filtered state from the posterior mean parameterizatio

Figure 8shows four estimated compensating variations: the effeatl shocks (models (1)
and (4), x markers); the effect of only the stochastic vbtgtshocks (models (1) and (3), circles
markers); the effect of only the first-moment shocks (mod@&)sand (4), triangle markers); and
the effect of only the ZLB constraint (models (1) and (2),ndcand markers). The compensating
variation is shown as the percent of consumption goods itother volatility or no ZLB models.

In the baseline model, the household requires compensatainout).03% in every period to
be indifferent to a world in which there is no volatility (i,¢he constant path of consumption and
labor in the deterministic steady state), similar to theigah Lucas (1987) with = 2. There is
a small increase in the welfare cost during recessions. s&ditte sample, abo@t% of the com-
pensation stems from the volatility induced by the first-neotrshocks to productivity growth, the
risk premium, and the interest rate. The remainder is dubasécond-moment shocks and the
endogenous amplification of both first- and second-momedkshby the ZLB. Compensation for
the uncertainty coming from second-moment shocks to ptodiyogrowth and the risk premium
is higher than the compensation required for the endogeunnasrtainty induced by the ZLB.
Also, the higher welfare cost at the end of the Great Recessimes mostly from the interaction
of second-moment shocks with the ZLB rather than first-mdralkacks interacting with the ZLB.
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6 THE EFFECT OFCAPITAL ACCUMULATION

In our baseline model without capital, real GDP is equal tastonption and the only way house-
holds can save is by investing in geriod nominal bond, which is in zero net supply. This secti
extends the model so households can also invest in capitteldata, investment is more volatile
than real GDP, especially during recessions, so it is ingpoto add capital to the model since it
allows output, consumption, and investment to have diffefgotentially time-varying, volatilities.
The final goods firm’s problem is unchanged. Intermediate firm [0, 1] produces a differ-
entiated goody;(f), according toy;(f) = k:_1(f)*(zn:(f))' 2. It then chooses its capital and
labor inputsy,(f) andk,_1(f), and its pricep,(f), to maximize the same profit function as in the
baseline model. In symmetric equilibrium, the productiondtion and optimality conditions are

Y = (iﬁt—l/gt)ani_a, (18)
atigny = (1 — a)rf (ke /g1, (29)
mee = 0, (r)*/((1 — @) ™a”), (20)

and the Phillips curve 5, which is identical except for the change in the marginak cfinition.
The household choos¢s;, ns, by, x4, k: } 32, to maximize the same utility function subject to

¢t + @+ by /(1s) = wng + Tfkt—l + by /T + dy,
ke =(1—0)ki1 + x(1 — pu(af — 1)2/2),

wherez is investment in physical capitatl; = x,/(gx;_1) is the growth rate of investment relative
to the balanced growth rate, > 0 scales the size of the cost to adjusting investmentjasdhe
capital stock, which earns a real retufrand depreciates at rafeln addition to the first-order con-
ditions in the model without capital@) and @), there are two new optimality conditions given by

q = 5Et[(5t/5t+1)7(7"f+1 + q1(1 = 6))/gesl, (21)
1= q[l — o (2] = 1)* — o2 (] — 1)] + Beeg Brlqer1(¢o /) (21 (E] 1 — 1)/ gea]. (22)

The detrended law of motion for capital and the aggregataures constraint are given by

ke = (1= 0)(ker/g0) + 3(1 — u (3] — 1)°/2), (23)
G+ = G (24)

Once again, we redefined variables that grow along the badaguowth path in terms of technol-
ogy. A competitive equilibrium includes infinite sequenoégquantities{¢;, v, G ny, iy, l%t}ggo,
prices, {1y, is, i, 7P, mey, g, ¥ 122, and exogenous variable§s;, g, 0.1, 0,4 152, that satisfy
the detrended equilibrium systert),((2), (5)-(11), (13), and (8)-(24), given the initial conditions,
{c_1,3", 221, k_1, S0, G0, V0, 0 0, 0v 0 }» @nd the five sequences of shocks, vy, v4, &, G152,

The model is numerically too costly to estimate, so we catdthe three new parameters. The
capital depreciation rate, is calibrated t0.025. The cost share of capital, and the invest-
ment adjustment cost parametey, are set td).19 and4.06, respectively, which equal the mean
posterior estimates in Gust et al. (2017). Although theeesame differences between our model
and the one in Gust et al. (2017) (e.g., their model inclutiekyswages and variable capital uti-
lization, whereas our model has stochastic volatility) beéeve these parameter values provide a
good approximation of what we would obtain if we estimatesiiodel with Bayesian methods.
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Fortunately, introducing capital does not change the ampsion Euler equation we used to
construct the decomposition in the model without capitaé §&nerate policy functions for each
term in the decomposition in the same way as the model wittapital, except we filter the data
with per capita real fixed investment growth in addition te tive observables we previously used.
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Figure 9: Filtered decomposition of the effects on curremstimption. The shaded regions denote NBER recessions.
The vertical axes are the contribution to the percentag# pleviation of detrended consumption from its steady state

Figure 9shows the influence of the different types of uncertainty.e Téft panel plots the
effects of consumption uncertainty over a 24-quarter loorin the models with and without cap-
ital. In the capital model, consumption uncertainty on agerdecreases current consumption by
0.08%, which is only0.02 percentage points more than in our baseline model withqitataThe
difference is more pronounced when the ZLB first binds. In&@8 consumption uncertainty low-
ered consumption b§.22% compared with only).14% in the baseline model, but that discrepancy
quickly dissipated. Furthermore, the median effect in thgital model is typically in the left tail
of the credible set implied by the baseline model. The rigimngd shows the impact of technology
growth and inflation uncertainty in the model with capitakretwo other types of uncertainty in
the bond Euler equation. Both terms have nearly identi¢atef to those in the baseline model.

A major benefit of the capital model is that it provides a nedeEaquation, 21), that we can
use to quantify the effects of the uncertainty about the mexatial rate of capital and Tobinison
current consumption. Using the methodserction 4.3a third-order Taylor approximation implies

Vét ~ ’YEtét+1 - ((ﬁ/g)katffH + (ﬁ/g)(l - 5)Et6ft+1 - th - Et§t+1)
- %(72 vary Coi1 + vary gepr + (8/9)7 var, f’fﬂ +(B/9)(1 — 0) var; Giy1)
—ycovy(Cri1, Ger1) + 7(5/§)77k covy(Cry1, ffﬂ) +v(B/9)(1 —6) cove(Ceq1, Gir1) (25)
+(8/9)7" covi(Gisr, 7in) + B((L = 6)/9) covi(Gsr, Gisn)
+ %(73 skew; éry1 + skew; giy1 — (8/9)7" skew; 7 — B((1 — 0)/g) skew; Giy1),

which we can once again iterate forward to eliminate the eénfbe of expected future consumption.
Several terms enter the same way as our previous decongpogitir example, thex-antevariance

SConsumption and inflation skewness as well as the covarianmes also have very similar effects in both models.
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of consumption and technology growth appearli) @nd 5), so they have the exact same effect
on consumption. The rental rate and Tobipigriance terms replace the inflation variance term.
The right panel also plots the new uncertainty terms overqutter horizon. Rental rate un-
certainty has a similarly small effect as inflation uncertyai Unlike the other higher-order terms,
uncertainty about Tobin’g has almost half as large of an effect on consumption as coptsum
uncertainty, which shows the importance of capital adjestincosts for the transmission of uncer-
tainty. Overall, uncertainty about the return on capitah(al rate and Tobin’g) has a larger influ-
ence on consumption than uncertainty about the real retuanrisk-free nominal bond (inflation).

7 COMPARISON WITH THETRADITIONAL VAR APPROACH

Due to the nonlinearities introduced by stochastic vatatdnd the ZLB constraint, we are inter-
ested in whether inear VAR, commonly employed in the literature on uncertaintyn cacover
the dynamic relationship between uncertainty and realicpredicted by our baselingonlinear
model. We focus on the impulse response of consumption rawé change in financial uncer-

tainty, U » = (/E[o?,,,]. Since financial uncertainty is exogenous in our structoradiel, it is

easy for us to compare its effects to those in a VAR model asdsgsaccuracy. The shocks in
the VAR are identified recursively and the variables—finahancertainty, consumption growth,
inflation, wage growth, the risk premium, and the interetg+aare ordered from first to last in the
same way as Christiano et al. (2065)\ppendix Dprovides further information about our VAR.
Figure 10shows the responses to a 2 standard deviation financialtamtgrshock. The first
subplot shows the predictions of our baseline model givéierént initializations of the state.
When the response is initialized at the stochastic steady &olid line), where the notional rate,
1*,151.2%, the effect of financial uncertainty on consumption growthegligible across the whole
horizon. However, when the response is initialized at theiarefiltered state corresponding to
2009Q2 (dashed line), whefe = —0.4% initially, consumption growth declines by07%. We
alternatively initialize the response at an average s&ttov across simulated quarters at the ZLB
such that* = —1.5% initially (dashed-dotted line). In that case, the financiatertainty shock
leads to a).1% decrease in consumption growth on impact. In summary, osellvee model
predicts the impact effect of financial uncertainty on cangtion growth depends on the state of
the economy, particularly the notional rate which detesaihow severely the Fed is constrained.
The simulated VARSs in the next three subplots are estimatt#ddata from short-sample sim-
ulations of the baseline model conditional on the postenean parameterization. The solid lines
represent the median response and the shaded regionsergptesl 6%-84% credible sets. The
first simulated VAR is estimated using artificial data withany ZLB events (i.e5* > 0 always).
The response of consumption growth to a financial uncewptaihock is close to zero across the
whole horizon, which is very similar to the prediction of duaseline model initialized at steady
state. The next two simulated VARs are estimated with adlfetata where the notional rate falls
below —0.4% or —1.5% for at least one quarter, so the responses represent asexa@ss quar-
ters when the ZLB does and does not bind. Given these inthés, the median impact effects
of financial uncertainty on consumption growth ar@.06% and—0.10%, respectively. Although
the responses are not significantly different from zerontleelian impact of financial uncertainty
shocks identified by the VAR decreases as the quantity aretiseof ZLB events increase in the

5We obtain very similar results using bivariate VARs with artainty ordered first and consumption growth second.
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Figure 10: Impulse responses of consumption growth to artlatal deviation increase in financial uncertainty. The
solid lines are the median responses and the shaded reginatedhel standard deviationl ¢%-84%) credible sets.

simulated data and it is quantitatively similar to our stanal model. Therefore, thinear VAR
does a good job capturing the endogenous amplification afena@us financial uncertainty shocks.

Finally, we estimate the same VAR with actual U.S. data. Bo®sd to last subplot excludes
the Great Recession and subsequent ZLB period (1986Q1RD0While the last subplot is based
on the sample used to estimate our baseline model (1986QAC). Qualitatively, the results are
similar to the predictions of our structural model—the effef uncertainty is more pronounced
when the ZLB period is included in the sample, both on impact aver time. However, there
are two notable differences from our structural model. Onedhe full sample the response of
consumption growth is significantly negative over the enkiorizon, instead of only on impact.
Two, the impact effect is significantly negative in the tratez sample that omits the ZLB period.

The differences between the responses in the simulatedcudl &ARs have two potential
explanations. One, there are features of the economy sefideZL B constraint that amplify the
impact effect of financial uncertainty shocks. Potentiaraples include borrowing constraints,
irreversible investment, and limited information. Any bese features would increase the impact
effect of financial uncertainty in the pre-ZLB period. Twadncial uncertainty is not purely ex-
ogenous and also fluctuates due to events that are happening economy (i.e., first moment
shocks that increase tlex-antevariance of the risk premium). In this case, with uncertamt
dered first, the VAR would over-predict the effect of finathciacertainty because it would assume
all changes in uncertainty are exogenous. In reality, bogite@ations likely play important roles.
Furthermore, the challenges associated with classifyimgiainty as endogenous or exogenous
become even more severe when accounting for multiple tyjpescertainty in the VAR model.

A major advantage of our Euler equation decomposition isitltlbes not require us to take a
stand on whether a given type of uncertainty is endogenoasagenous. It can also account for
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multiple forms of uncertainty and how they nonlinearly naiet with the economy. In other words,
our decomposition is able to quantify the overall effectlbfyges of uncertainty in each period by
accounting for the first and second moment shocks that bpkiexnacro and uncertainty data. It
also has the added advantage of being able to quantify teetefbf other higher-order moments.

8 CONCLUSION

The literature has primarily examined the effects of uraety through stochastic volatility shocks
in theoretical models and impulse responses to proxiegicemainty in VAR models. We develop
a new way to quantify the effects of uncertainty that accetmt both exogenous and endogenous
sources of uncertainty. First, we estimate a nonlinear Neyniésian model, linking measures
of uncertainty in the data to equivalent measures in the inddes step allows us to decompose
the sources of uncertainty, calculate the welfare effetfgsi and second moment shocks, and
generate policy functions for any higher-order moment inadeh that not only matches macro
aggregates but also measures of uncertainty in the datan&ewse use the Euler equation to ana-
lytically decompose consumption into first, second, anditmoments and then filter the data at the
posterior mean to create a time series for the effects of leigtier-order moment on consumption.
A major benefit of our method is its flexibility. It can be useagkamine the economic effects of
any type of uncertainty in a broad class of models. While sorodels are too costly to estimate,
it is usually possible to calculate tlex-antevariance or skewness surrounding any endogenous
variable in the model and then link it to an empirical measunge filtering the data in a calibrated
model. For example, one could compute the uncertainty soding the exchange rate in an open
economy model, any financial variable in a model with a baglsactor, or a commodity in a
multi-sector model. Similarly, one could generate timeesefor the terms in any Euler equation
to determine the effects of various higher-order momentomsumption. Importantly, our method
provides a way to compare the effect of uncertainty or angrdtigh-order moment across models.
Using a familiar New Keynesian model, our decompositioreats that uncertainty had a rela-
tively small impact. Despite the nonlinearity induced bg #1.B constraint and stochastic volatil-
ity shocks, consumption uncertainty never reduced conompy more thart).22%, even during
the Great Recession, and the welfare cost of volatility nexeeeded.04% of consumption. With
these important benchmarks in hand, future research coutttiuce additional sources of endoge-
nous uncertainty, such as borrowing constraints, seaiatiofis, firm default, limited information,
irreversible investment, or heterogeneity to examine ived larger effect of uncertainty emerges.
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A DATA SOURCES
We drew from the following data sources to estimate our VAR Hew Keynesian models:

1. Financial Uncertainty index: Monthly. Source: Ludvigson et al. (2017),= 3 (1-quarter
forecast horizon). Data available framt p: / / ww. sydneyl udvi gson. coni .

2. Macro Uncertainty Index: Monthly. Source: Jurado et al. (2015)= 3 (1-quarter forecast
horizon). Data available fromt t p: / / ww. sydneyl udvi gson. cont .
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10.

11.

. Real GDP. Quarterly, chained 2009 dollars, seasonally adjustedircgo Bureau of Eco-

nomic Analysis, National Income and Product Accounts, @dbl.6 (FRED ID: GDPC1).

. Personal Consumption Expenditures, Nondurable GoodsMonthly, billions of dollars,

seasonally adjusted. Source: Bureau of Economic Analigtipnal Income and Product
Accounts, Table 2.8.5 (FRED ID: PCEND).

. Personal Consumption Expenditures, ServicesMonthly, billions of dollars, seasonally

adjusted. Source: Bureau of Economic Analysis, Nationabhme and Product Accounts,
Table 2.8.5 (FRED ID: PCES).

. GDP Deflator: Quarterly, seasonally adjusted, index 2009=100. SouBceeau of Eco-

nomic Analysis, National Income and Product Accounts, &db1.9 (FRED ID: GDPDEF).

. Average Hourly Earnings: Monthly, production and nonsupervisory employees, dskber

hour, seasonally adjusted. Source: Bureau of Labor S&sti$tRED I1D: AHETPI).

. Interest Rate Spread (Risk Premium) Monthly, Moody’s seasoned Baa corporate bond

yield relative to the yield on 10-Year treasury bond. SourBeard of Governors of the
Federal Reserve System, Selected Interest Rates, H.1TD(HRBAA10YM)

. Effective Federal Funds Rate:Daily. Source: Board of Governors of the Federal Reserve

System, Selected Interest Rates, H.15 (FRED ID: FEDFUNDS).

Civilian Noninstitutional Population : Monthly. Source: U.S. Bureau of Labour Statistics,
Current Population Survey (FRED ID: CNP160QV).

Fixed Investment Quarterly, billions of dollars, seasonally adjusted. i®eu Bureau of
Economic Analysis, National Income and Product Accourab|d 1.1.5 (FRED ID: FPI).

We applied the following transformations to the above serie

12.
13.

14.

15.
16.
17.

18.

Per Capita Real GDP. 1,000,000 x Real GDP Population.

Real PCE, Nondurable Goods Average PCE Nondurables in 200@PCE Nondurables
Quantity Index100). Quantity Index FRED ID: DNDGRA3MO086SBEA.

Real PCE, ServicesAverage PCE Nondurables in 200@PCE Services Quantity Indgx00).
Quantity Index FRED ID: DSERRA3MO086SBEA.

Per Capita Real PCE 1,000,000 x (Real PCE NondurablesReal PCE ServicegPopulation.
Real Wage 100xAverage Hourly Earningd’rice Index.

Real Investment Average FPI in 2009 (FPI Quantity Index100). Quantity Index FRED
ID: AOO7RA3QO086SBEA.

Per Capita Real Investment 1,000,000 x Real InvestmeniPopulation.

We converted the monthly or daily time series to a quartedgdency by applying time averages
over each quarter. In order, the variables used to estinnatéAR model are series 1, 15, 6, 16, 8,
and 9. The observables used to estimate our nonlinear maithelu capital include series 12, 6,
9, 1, and 2. When we filter the data using the model with capitaladd series 18 as an observable.
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B EULER EQUATION DECOMPOSITION

The bond Euler equation is given by

1= BE[(C/Cr1) (stit/(gr1mir1))] = Eilexp(is + 8¢ — fep1 — Ger + (8 — Ceqn))],
where a hat denotes log deviation from the balanced grovith pdter reorganizing, we obtain
— (1 + 5 +7¢) = log( Eylexp(—Tir1 — Gir1 — YCi41)))

=log( Ei[1 — (Fep1 + Gesr + Veq1) + 3 (Fes1 + Ger + 7Cep1)*—
& (Reg1 + Geg1 + V1) +--])

= log (1 — (Ei[Te41] + Ei]ges1] + vEi[Ca])+
%(Et [77,1] + Eelg7 ] + Y Edlég ]+
25,71 i) + 29 B Gi1 G ] + 29 E, [ﬁt+1ét+1]> —

é(Et [Te) + Eelgia] + 7 EdlEl ] + 67 BT eraCen ]+
3L, [ﬁ?+1§t+1] + 3vE; [ﬁf+1ét+1] + 3E; [§t2+1ﬁt+1]+

3YE 07 11Co1] + 3V EE ] + 3V E; [é§+1§t+1]) + - ')>

where the second equality follows from the Maclaurin sefioeg” = 1 + x + 22/2 + 23 /6 + - - -.
Subsequently applying a third-order Maclaurin serigegdl — r) ~ —x — z%/2 — 2*/3 implies

i+ 8¢ + ¢ = By + Eilge] + vEi[C]
s(Bati] = (Ei[fia])?) + (Bilgiia] — (Bilge])?) + 7 (Beta] — (Ei[eia])?))
— Y E[Fer16e1] — EefFea] Eilér]) — V(Er]Ger1Cei1] — Bl G| Er[Cria])
— (Bi[Te410e41] — Ei[Tea] Bt [Gera])
+ §(Bulmin] = 3E [T Bilat] + 2(Eiffia])?)
+ 5 (Et[gt—i-l] 3Et[§t+1]Et[gt2+1] + 2(E4[§e11])°)
VHEE ] = BB e B[] + 2(Eie])®),

after dropping the higher-order terms. Therefore, curcensumption is approximated by

Ve & B — Ty — %(Vaft i1 + vary o1 +7° vary ¢
- (7 COVt(ﬁt-i-la é1t+1) +7 COVt(ﬁt-i-la f]t+1) + COVt(7ATt+1, ét—i—l))

1 - - 3 A
+ g(skew; i1 + skew; Gi1 + 7 skew; Giq1),

wherer, = iy + §; — Eyftyy1 — Eigeyr 1S theex-antereal ratevary (v,41) = Ei274] — (Ei[#i41])?

is the variance of, skew, &y = Ey[2} 1] — 3E[Z441) By [27, 1] + 2(E4[Z441])? is the third moment

of x, andcovy (a1 1, Yrr1) = Ei[ri1yie1] — Ei[ri1) Ei]yisa] is the covariance betweenandy.
The derivation of 25) follows very similar steps, although it contains signifidg more terms.
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C WELFARE COSTDERIVATION
The representative household’s preferences are given by

F‘” -1 nitn

EW(én)=E Y B

—x )
= 1—7 1+n

When~ # 1, the timet welfare cost)\;, satisfies

E W 0"y = EoW (1 - N)elk,nt)
@@= aetr -1 (nk)tt
:EtZﬁj ' T - X 1]+n
( L l—v ﬁ > B (nL)H'”
_ 1 t ty 37
= (1-\)E, ZBJ Z ;B] T
Gy o gj— s i+
(1—At (EtZﬂJ —t J v 1+Z ﬂ] t) f:;_XEtZﬂj—t(Tijlnﬁ
J=t J=t
o — c(=L 1 1 n(pL
= (=2 (EeE + (1—7)(1—ﬁ)) e R

Solving for )\, yields (L7) in the main text.

D VECTORAUTOREGRESSIONMODEL

The structural VAR model is given by
Avp =ao+ A+ -+ Ayp+e, t=1,...,T,
wheres, ~ N (0, I). The reduced-form VAR model is obtained by invertidgand is given by
yy=bo+DBiyi—1+ -+ Byyp+vy, t=1,....T,

whereb, = Aj'ag is aK x 1 vector of interceptsi3; = A ' A; areK x K coefficient matrices for
j=1,....p, v, = Ay'e, is aK x 1 vector of shocks that has a multivariate normal distributio
with zero mean and variance-covariance mairiandy is a K x 1 vector of endogenous variables.
The VAR is either estimated with data generated by the basetiodel or analogous variables
in U.S. data and the variables are ordered as in Christianb €2005). The data consists of the
financial uncertainty series in Ludvigson et al. (2017)npU, the per capita real consumption
growth rate (nondurables services), the GDP implicit price deflator inflation rates teal wage
growth rate (production and nonsupervisory employees)rigk premium (BAA corporate bond
yield — 10 year treasury yield), and the federal funds rate. A desonpof our data sources
is provided inAppendix A We estimate the Actual VAR with up to four lags and calculhte
Bayesian information criterion (BIC). We rewrite the modsl = X +U and calculate the least
squares estimates,and>.. For example, whep = 4 the parameters are = [by, By, By, B3, By|
and the regressors are = [1,Y]_,, Y, o, Y] 5. Y/ .| whereYr_;, = [y1_i,...,yr—;] andU =
[u1, ..., vr]. The structural shocks are identified by a Cholesky decoitiposs. = (A;') A
According to the BIC, the data prefers a VAR model with one agwe focus on that specification.

33



E SOLUTION METHOD

E.1 BASELINE MODEL We begin by writing the equilibrium system of equations cawtty as
Elf(Vig1, ve)[S%] = 0,

wheref is a vector-valued functiow, = (s, g, 0., 0y, ¢, §, §9%, n, w, i, 1", w9°), andQ = {S, P, z}

is the information set, which contains the structural mp#feits parameters?, and the state vec-

tor, z; = (v, log(0.4),10g(0v4), ge, 5t mpe—1). Sinces? , andj?™ only appear in the policy rule,

we eliminate a state variable by defining),_; = (i, )" (7% )*(i~1) and rewriting the rule as
it = mp A ()" (9™ 1)) explom).

There are many ways to discretize the normally-distribaredlautoregressive exogenous state
variables;, log(o. ), andlog(o,:). We follow Rouwenhorst (1995), which Kopecky and Suen
(2010) show outperforms other methods for approximatirigragressive processes. The bounds
on g;, s;, andmp,_; are set to:3%, +£2%, and+2% of steady state, which are wide enough to
contain the filtered state variables given the posteriowdraVe discretize the state variables into
(4,9,7,7,7,7) points respectively, such that they are evenly spaced im @atension. Therefore,
there areD = 86,436 nodes in the state space, and the realizatian) oh noded is denotedz, (d).

The Rouwenhorst method is also used to obidimtegration nodes with weight$g (m) }_
that correspond to the shockSy;1(m), log(o. 141)(m),10g(0w 141) (M), ery1(m), ves (m) Frl; -
We use the same number of poinis,9, 7, 7, 7), as the respective state variablesjgc= 12,348.
The processes fay;.; ands,; do not have a standard autoregressive form because theasiand
deviations of the shocks are time-varying. Therefore, wesemot use the Rouwenhorst method
to discretize the processes fpands. Instead, the first moment shocks and log volatility proesss
are discretized separately with the Rouwenhorst method, s0n) and=/} (m) are interpolated
at realizations of;,(m) ands,;;(m) that can occur in between the nodes in the state space.

The following steps outline our policy function iteratiolgarithm:

1. Obtain initial conjectures fof, and 7" from the log-linear model without the ZLB im-
posed using Sims’s (2008ensys algorithm and map it to the discretized state space.

2. For iterationj, implement the following steps with the ZLB imposed tbe {1,..., D}:

(a) Solve for{g,, §7% i, i, w;, mp,} givené, = ¢j1(d), 7" = wI™ (d), andz,(d).
(b) Linearly interpolate the policy functiong, ; and 7/, at the updated state vector,
z,+1(m), to obtainc,,; (m) andx}} (m) on every integration nodey € {1,..., M}.

(c) Given{c,1(m), n/% (m)}A_,, solve for the other elements of . ; (m) and compute

m=1"

E [f (Vir1, V()| Q(d)] = Yy () f (Ve (m), vi(d)),
(d) Use Chris Simstsol ve to find ¢, and#/* that satisfyE[f(-)|Q:(d)] = 0.

3. Using the argument afsol ve on iteration; as an initial conjecture for iteration+ 1,
repeat step 2 untihaxdist; < 107°, wheremaxdist; = max{[¢; — &;_i|, [7]" — 7J™|}.

When that occurs, the algorithm has converged to an appaiginonlinear solution.
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Euler Equation Phillips Curve

12 15
10} Mean: —-3.96 | | Mean: —2.63
~ Max: —2.32 ~ Max: —1.37
X g} = 10t
B B
O O
: o :
= =
g 4r 2 97
£ £
2 -
0 : 0
- . 2 0 6 4 2 0
Errors (logyg) Errors (logy)

Figure 11: Distribution of Euler equation and Phillips ceierrors in base 10 logarithms

Figure 11shows the distribution of the absolute value of the errorsasel0 logarithms for
the consumption Euler equation and the Phillips curve. Kample, an error of-3 means there
is a mistake of 1 consumption good for ever00 goods. The mean Euler equation error is
—3.96 and the mean Phillips curve error4s2.32. By construction, the errors on nodes used in
the solution algorithm are less than the convergence iitet0-°. The larger average errors
are due to linear interpolation of the policy functions wieispect to thég,, s,, mp;_;) states. To
measure the errors between the nodes, we created a new grid watal of D = 850,500 nodes
by increasing the number of points in tlie, s;, mp,_1) dimensions to(15, 15,15). We used
the same number of points in tie;, log(c.;),log(c,)) dimensions since they are discretized
with the Rouwenhorst method, which means the correspondiagration weights and nodes are
state dependent. Therefore, the reported errors are temtsgith the accuracy of the integral
calculated when solving the model. Calculating the erretsiben the nodes corresponding to the
exogenous state variables would require changing the ncahartegration method (e.g., Gauss-
Hermite quadrature). We decided not to show those erromusedhen the accuracy of the integral
used to compute the errors would be inconsistent with théoastused to compute the solution.

E.2 CaPITAL MODEL We solve the model with capital in the same way as the baselouel
without capital. The state vector is the same as the basalge!, except itincludes two additional
endogenous state variables, ; andk;_,. The bounds on, s;, mp;_1, ;1 andk;_, are set

to £3%, £1.5%, £2%, £10%, and+£7% of steady state. We discretize the state variables into
(4,7,7,7,7,7,7,11) points respectively, so there ate= 5,176,556 nodes in the state space. We
use the most points on the capital dimension because it bagitlest grid. Once again, we set the
number of points on each shock equal to the number of pointiseoorresponding state variable.

F ESTIMATION ALGORITHM

We use a random walk Metropolis-Hastings algorithm to estémour model with quarterly data
from 1986Q1 to 2016Q2. To measure how well the model fits the, dee use the adapted particle
filter described in Algorithm 12 in Herbst and Schorfheid@X@), which modifies the filter in

Stewart and McCarty (1992) and Gordon et al. (1993) to batteount for the outliers in the data.
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F.1 METROPOLISHASTINGS ALGORITHM The following steps outline the algorithm:

1. Specify the prior distributions, means, variances, anthds of each element of the vector
of N, estimated paramete= {~, ¢, ¢r, ¢y, G, T, Pi, Pgs Ps» Po.s Poys Tuvs Ocy Ous O, O¢

2. The vector ofN, observables consists of per capita real GREDP/CN P, the GDP
deflator, DEF', the federal funds ratey’F' R, the macro uncertainty series in Jurado et al.
(2015), MacroU, and the financial uncertainty series in Ludvigson et al1@30FinU,
from 1986Q1 to 2016Q2. Therefor®, = 5 and the row vector of observables is given by

log(RGDP,/CNP,) — log(RGDP,_;/CNP,_)]"

log(DEF,/DEF,_;)
xfata = log(1 + FFR,/100)/4 :
(MCLCTOUIS - ,ul\/lacroU)/UJ\/[acroU
(FinUy — pipinv) /O piny

wherep ando denote mean and standard deviation across time andl1,...,7}. When
we filter the data using the model with capital, we add perteapal investment/ /C N P,
to the vector of observables, &' also includesog(R1;/CNF;) —log(RI;_1/CNP;_;).

3. Find the posterior mode to initialize the preliminary kbgtolis-Hastings step.

(@) Foralli € {1,...,N,,}, whereN,, = 5,000, apply the following steps:
i. Draw 6; from the joint prior distribution and calculate its densiglue:

log (77" = 3%, log p(0h |5, 7).

wherep is the prior density function of parametgwith meany; and variancerj?.

i. Given 6;, solve the model according #ppendix E If the algorithm converges,
then compute the stochastic steady state, otherwise regeped(a)i and redrady.

iii. If the stochastic steady state exists, then use thegbaftlter in section F.2o ob-
tain the log-likelihood value for the modédg (72!, otherwise repeat step 3(a)i.

iv. The posterior log-likelihood igg (7°* = log (7" + log (%!
(b) Calculatemax(log /4, ..., log (%*") and find the corresponding parameter vedar,

4. Approximate the covariance matrix for the joint postedistribution of the parametery,,
which is used to draw candidates during the preliminary bfsatis-Hastings step.

(a) Locate the draws with a likelihood in the top decile. 8tdw®e N,, .., = (1 — p)N,,
draws in aN,,, .., X N, matrix,©, and defing® = © — S §, . /N,., ..
(b) Calculate: = 6’6 /Nm.sup @nd verify it is positive definite, otherwise repeat step 3.

5. Perform an initial run of the random walk Metropolis-Hags algorithm.

(@) Foralli € {0,..., Ny}, whereN, = 25,000, perform the following steps:
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i. Draw a candidate vector of parametgis”?, where

é‘cand N(éo, CQE) fori = 0,
' N(f;_1,cx)  fori > 0.

We setcy = 0 and tune to target an overall acceptance rate of roughlyt.
ii. Calculate the prior density valuig """, of the candidate drawe™ as in 3(a)i.
iii. Given éf‘md, solve the model according fgppendix E If the algorithm converges,
compute the stochastic steady state, otherwise repeagfithjiraw a newgse.

iv. If the stochastic steady state exists, then use thecpaffilter in section F.2to
obtain the log-likelihood value for the modébg £°°4*!, otherwise repeat 5(a)i.

v. Accept or reject the candidate draw according to

(fsnd Tog 5oy if i = 0,
(0;,log (;) = (eand Jog (eond) if log £eand —log f;_y > i,

~

(0;—1,log ;1) otherwise

where is a draw from a uniform distribution{J[0, 1], and the posterior log-
likelihood associated with the candidate drawig/¢*™d = log £ + log £10%!,
(b) Burn the firstlV, = 5000 draws and use the remaining sample to calculate the mean

draw, grreMH — Zf\fN“:il 0;, and the covariance matrixrr<M* . We follow step 4 to
calculatexr™*MH put use allV; — N, draws instead of just the uppgth percentile.

6. Following the procedure in step 5, perform a final run ofMegropolis-Hastings algorithm,
wheref, = grreMi andy = YrreMH \We setN; = 100,000 and keep every00th draw.
The remainingl,000 draws form a representative sample from the joint postelenisity.

F.2 ADAPTED PARTICLE FILTER The following steps outline the filter:

1. Initialize the filter by drawing:, = {vip. €, Vtp, Etp Cep oo fOr all p € {0,..., N, }
and simulating the model, wher€, is the number of particles. We initialize the filter with
the final state vectoy, ,, which is a draw from the ergodic distribution. We 8&t= 40,000.

2. Forallp € {1,..., N,} apply the following steps:

(a) Draw a vector of shocks from an adapted distributi@n, ~ N(e;, I), wheree; is
chosen to maximize(p|z:)p(z:|z,—1) andz,_; = E;V:”l z:—1,/N, is the state vector.
i. Givenz;_; and a guess fa#;, obtainz,, and the endogenous variables,

ii. Transform the predictions for real GDR(?), inflation (r), the policy rate), con-
sumption growth uncertainty, and risk premium uncertaaagyording tax o =

log(g.57 " /524), log(me), log it), (Uens — 1v.4) /00,0, Us — ws)/ UUS} . When

we add capital to the baseline model*®! also includesog(g;7;/;_1).
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Calculate the difference between the model predictiand the datay, = x4 —
xdata which is assumed to be multivariate normally dlstrlbutetih\densny.

pludlze) = (2m) 2 H| 2 exp(—p H p /2),

whereH = diag(o2,, 4,02, ,02%, ., 0> o2 .. )isthe measurement er-

me c9r Yme,mr “me,i’ Y memacrouw’ ¥ me, finu

ror covariance matrixi also includes2,. . in the model with capital.

me,xr

iv. The probability of observing the current statg,givenz;_,, is given by
plzlzi 1) = (2m) 7 exp(—€e,/2).
v. Maximize p(us|z:)p(z:|z:—1) oc exp(—u,H u/2) exp(—eie;/2) by solving for
the optimale;. We converted MATLAB’sf m nsear ch routine to Fortran.
(b) Obtainz,,, and the vector of endogenous variables,, givenz,_, , ande, .
(c) Calculatey,, = %} — xj«'*. The unnormalized weight on partiglds given by

p(#t|Zt,p)p(Zt,p|Zt 1 p) x eXp(_:u:t,pH_lrutyp/Q) eXp<_e:€,pet7P/2)
9(Ztp|Ze—1,p, Xglam) exp(—(e.p — ;) (er, — €)/2)

If there was no adaptation, then = 0 andw;, = p(u|z.,), as it is in a basic filter.
The contribution to the models likelihood in periods (7% = 3 w, ,/N,.

Wtp =

(d) Normalize the weightdy; , = w;,/ Z;V:”l wep. Then use systematic resampling with
replacement from the swarm of particles as described ingitea (1996) to get a set
of particles that represents the filter distribution andhuodite {zt,p};vﬁl accordingly.

3. Apply step 2 foralk € {1,...,T}. The log-likelihood is thettog ¢4 = ST log (o,

G BASELINE MODEL ESTIMATION DIAGNOSTICS

Real GDP Growthg/") Inflation Rate f;) Interest Ratei)
Mean SD Mean SD Mean SD

Data 1.41 2.40 2.18 0.99 3.68 2.77
Model 1.78 2.27 2.56 0.93 4.83 1.43

(1.10,2.49)  (1.56,3.25)  (1.99,3.11)  (0.63,1.37)  (3.59,6.05)  (0.89,2.16)

Autocorrelations Cross-Correlations

@GP 9% (mmea) (i) (G, ) (@7 i) (71, it)
Data 0.31 0.63 0.99 0.03 0.18 0.50
Model 0.27 0.76 0.91 —0.11 0.16 0.32

(0.02,0.51)  (0.63,0.86)  (0.83,0.96) (—0.46,0.19) (—0.09,0.44) (—0.16,0.68)

Table 3: Unconditional moments. For each draw from the pimstdistribution, we runl0,000 simulations with the
same length as the data. To compute the moments, we firstataltume averages and then the means and quantiles
across the simulations. The values in parenthese$&£95%) credible sets. All values are annualized net rates.
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Risk Aversion (7)
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Figure 12: Trace plots. We obtain&@0,000 draws from each posterior distribution and kept evigi§th draw.
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Figure 13: Prior (solid lines) and posterior kernel (daslivesk) densities of the estimated parameters.
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Figure 14: Time paths of the data (dashed line) and the médittiened series from the baseline model (solid line).
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Figure 15: Median paths of the estimated shocks normaligetdir respective posterior mean standard deviation.
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