

Eterna Therapeutics: Redefining Possibilities with Transformative Cellular and Gene Therapy

April 2024

Safe Harbor Statement

This presentation (this "Presentation") and any oral statements made in connection with this Presentation are for informational purposes only and do not constitute an offer to sell, a solicitation of an offer to buy, or a recommendation to purchase any equity, debt or other securities of Eterna Therapeutics Inc., a Delaware corporation (including its consolidated subsidiaries and affiliates, the "Company"). The information contained herein does not purport to be all inclusive. The data contained herein is derived from various internal and external sources believed to be reliable, but there can be no assurance as to the accuracy or completeness of such information. Any data on past performance contained herein is not an indication as to future performance. Except as required by applicable law, the Company assumes no obligation to update the information in this Presentation. Nothing herein shall be deemed to constitute investment, legal, tax, financial, accounting or other advice. The communication of this Presentation is restricted by law, and it is not intended for distribution to, or use by any person in, any jurisdiction where such distribution or use would be contrary to local law or regulation.

Forward-Looking Statements

This Presentation includes certain "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995. These forward-looking statements may address, among other things, the Company's expected plans and prospects, including without limitation, the Company's views with respect to the potential for mRNA Cell Engineering, its expectations with respect to timing of regulatory filings and the reporting of initial data from any clinical trial(s), the potential therapeutic opportunities for mRNA Cell Engineering, its expectations regarding its product strategies, and its plans regarding commercialization of mRNA Cell Engineering. These forward-looking statements are distinguished by use of words such as "anticipate," "aim," "believe," "continue," "can," "could," "designed to," "estimate," "expect," "intends," "may," "might," "plan," "possible," "potential," "predict," "project," "should," "will," "would" and the negative of these terms, and similar references to future periods. These expectations due to, among other things, the Company's ability to discover and develop novel drug candidates and delivery approaches, the Company's ability to successfully demonstrate the efficacy and safety of its drug candidates, which may affect the initiation, timing and progress of clinical trials, obtaining, maintaining and protecting intellectual property, the Company's ability to others using technology similar to the Company's and others developing products for similar uses, the Company's ability to manage operating expenses, the Company's ability to obtain additional funding to support its business activities and establish and maintain strategic business alliances and new business initiatives, the Company's ability to obtain additional funding to support its business activities and establish and maintain strategic business alliances and new business initiatives.

Detailed information about these factors and additional important factors can be found in the documents that the Company files with the Securities and Exchange Commission, such as Form 10-K, Form 10-Q and Form 8-K. Forward-looking statements speak only as of the date the statements were made. The Company does not undertake an obligation to update forward-looking information, except to the extent required by applicable law.

Table Of Content

Introduction & Company Overview

The Future of Biopharma: Gene and Cellular Therapy

- Infectious diseases
- Metabolic diseases etc.

Copyright © 2024. Eterna Therapeutics Inc. 5

with 30 to 60 GCT products by

2030

¹<u>Gene & Cell Therapy FAQs | ASGCT;</u>²2024's Market Outlook For Cell & Gene Therapies; ³<u>Marrone et al., 2022;</u> ⁴<u>Cell and Gene Therapy Market Size, Growth, Trends, Forecast Report 2022-2030</u>

and beyond²

Eterna Therapeutics: Preclinical-Stage Publicly Traded Biopharmaceutical Company

We aspire to become a gene and cell therapeutics company through multiple approved products that meaningfully improve the lives of patients with difficult-to-treat diseases

Leveraging the company's robust intellectual property portfolio to co-develop or out-license our technology platforms and provide transformational new medicines to patients

Portfolio of over **100 patents** covering key mRNA cell engineering technologies, including technologies for **mRNA cell reprogramming**, **mRNA gene editing**, and **mRNA delivery system**, which we collectively refer to as our **"mRNA technology platform"**

Eterna Therapeutics: Pipeline of Gene & Cellular Therapy Candidate

eutic Area	Indication	Therapeutic Candidate	Preclinical*	Phase 1	Phase 2	F
are Disease	Sickle Cell Disease	UltraSlice™ Based mRNA Candidates				
Autoimmune Disease	Multiple Sclerosis	iPSC-Derived iMSCs				
Orecless	Platinum-Resistant, TP53-Mutant Ovarian Cancer	IL7/IL15-Secreting iMSCs				
Uncology	Triple-Negative Breast Cancer	IL7/IL15-Secreting iMSCs				

*The objective of the studies is to evaluate the efficacy (e.g. antitumor effect in case of cancer etc.) and in the case of sickle cell disease, compare the efficacy with Casgevy TM iPSC: Induced Pluripotent Stem Cell iMSCs: Induced Mesenchymal Stem Cells

Our Target Indications have a Considerable Market Size and Medical Unmet Needs

Sickle Cell Disease	 Sickle Cell Disease affects approximately 100,000 people is the US¹ 		
(SCD)	 GCT is considered a curative therapy for SCD, but safety issues related to unintended genetic modifications (off-target 		
	effect) are still concerning for this indication ²		
	 Nearly one million people are living with MS in the US³ 		
Multiple Sclerosis	Evidence shows continued deterioration in function despite treatment with disease-modifying therapies (DMT). There		
(IVIS)	is an ongoing need for new effective and safe treatments for patients with progressive MS—particularly those with		
	nonactive disease ⁴		
Platinum-	 Estimated incidence of platinum-resistant, TP53-mutant ovarian cancer in the US is 14,626 		
Resistant	 Effective therapies in heavily pretreated platinum-resistant ovarian cancer (PROC) are an ongoing challenge⁵. The 		
(PROC)	response rate to anti-PD1/PD-L1 monotherapy is low, not exceeding 8% ^{6,} and checkpoint inhibitors have had limited		
()	success in improving outcomes for patients with PROC ⁷		
Triple-Negative	 Estimated incidence of TNBC in the US is 44,669 		
Breast Cancer	 Despite several quite impressive advances, the treatment of metastatic TNBC is still heavily dependent on 		
	chemotherapy, or chemotherapy-based approaches and a good targeted therapy is still lacking ⁸		

¹CDC. Data & Statistics on Sickle Cell Disease | CDC; ²Tang et al., 2024; ³MS Prevalence. National Multiple Sclerosis Society; ⁴Watson et al., 2023; ⁵Eskander et al., 2023; ⁶Saux et al., 2021; ⁷Richardson et al., 2023; ⁸Breast Cancer Breakthroughs Episode 4: Unmet Needs in TNBC

Copyright © 2024. Eterna Therapeutics Inc. 8

Eterna's Science

Eterna's Science: mRNA Technology Platform

mRNA <u>Cell Reprogramming</u> Technology

- Eterna uses mRNA to express reprogramming proteins
- These proteins re-write a cell's gene expression program, enabling a somatic cell, such as a skin cell, to transform into another type of cell, such as a neuron or a stem cell [e.g., induced pluripotent stem cells (iPSCs) or Induced mesenchymal stem cells (iMSCs) - cell types that can differentiate into many desired cell types]

mRNA <u>Gene Editing</u> Technology

Eterna's proprietary mRNA gene editing technology consists of:

- mRNA encoding gene-editing proteins
- Novel mRNA structures and designs
- A novel gene editing endonuclease
 (UltraSliceTM) optimized for mRNA expression

mRNA <u>Gene Delivery</u> Technology

- Eterna formulates mRNA using lipid nanoparticle (LNP) technology
- Eterna has a proprietary library of ionizable lipids
- Eterna's proprietary LNP based delivery system (ToRNAdoTM) surrounds and protects the mRNA cargo, enabling efficient delivery into human cells

These three technologies can be used in tandem

Eterna's mRNA Technology Platform: Key Differentiator

Limitations of Conventional Technologies

Conventional cell-reprogramming technologies (e.g., using Sendai virus or episomal vectors):

- Can result in low-efficiency reprogramming
- Can produce cells with abnormal growth characteristics
- Can leave traces of the vector in reprogrammed cells

Conventional gene editing technologies (e.g. **plasmids or viruses mediated**) result in nucleic acid fragment insertion at random locations in the genome and cause:

- Low-efficiency editing
- Unwanted mutagenesis

Note: CRISPR-based gene editing may cause off-target modifications and require PAM near the target site and guide RNAs

Gene Editing

Reprogramming

U B C B

> Conventional delivery systems (e.g. LNP) often suffer from endosomal entrapment and toxicity

Adeno-associated virus (AAV) mediated gene delivery may cause immunogenic protein impurities and AAV is unable to deliver larger genes

Eterna's Technology: Key Differentiator

Our proprietary cell reprogramming technology is designed for:

- Rapid
- High-efficiency
- Footprint-Free cell reprogramming

Our proprietary gene editing technology is designed for:

- mRNA-mediated optimized transgene expression
- Sustained transgene expression over multiple passages and even after long term cryopreservation
- Generation of immuno-nonreactive or "stealth" cells with inactivated or altered expression of one or more components of the human leukocyte antigen ("HLA") complex

Our proprietary mRNA delivery technology is potentially capable of:

- Delivering nucleic acids to cells both ex vivo and in vivo
- Inserting exogenous sequences into genomic safe-harbor loci
- Delivering nucleic acids to the brain, eye, skin, and lung in vivo

Eterna Therapeutics IP Portfolio: Key Granted Patents

Eterna's Science: mRNA Cell Reprogramming

Day 0 Day 3 Day 4 Day 5 Day 6 Day 10 Day 12 Day 13 Day 14 Day 9 Day 15 Day 16 Day 19 (passage) Day 20 Day 17 Day 18 Da

Figure: mRNA Cell Reprogramming from biopsy to pluripotent stem cell line.

Overview:

- A technology for reprogramming cells that uses mRNA to express reprogramming factors¹
- Protected by nine U.S. patents, as well as patents in Australia, China, Europe, Japan, Mexico, and Russia
- Certain granted patents include claims that are not limited by disease indication, cell type, reprogramming factor(s), mRNA sequence or chemistry, or method of transfection

Example Applications:

	Ultra-high efficiency reprogramming	Reprogram cells quickly, and using a simple	Combine with Eterna's Chromatin Context Sensitive Gene-Editing
y -6	(e.g., reprogram single cells)	protocol (e.g., 4-6 transfections, pick	Endonuclease and/or Eterna's Combined mRNA Gene Editing & Cell
	`Develop allogeneic	colonies in 8-12 days)	Reprogramming technology to generate models of genetic disease, gene-
y 7	or autologous cell therapies	Reprogram without feeders, conditioning,	corrected patient-specific cell therapies, and allogeneic (i.e., immunononreactive or "stealth") cell
(picking)	Reprogram without using viruses or other potentially mutagenic vectors	immunosuppressants, demethylating agents or other toxic small molecules, pre-mixing or aliguoting of RNA	therapies, including allogeneic pluripotent stem cell-derived CAR ² -T and CAR-NK ³ cell therapies for the treatment of cancer, and engineered mesenchymal stem cell (MSC)
line.	Reprogram using a completely animal component-free process	solutions	therapies for regenerative medicine, wound-healing, inflammatory and auto-immune diseases, and tumor. targeting applications

1. Harris, J., et al. Mol Ther, Vol 28 No 4S1, 2020; ²CAR: Chimeric Antigen Receptors; ³NK Cells: Natural Killer Cells

Eterna's Science: Cell Reprogramming Medium

Figure: High-efficiency mRNA cell reprogramming of primary human fibroblasts (colonies stained for SSEA4).

Overview:

- Conventional cell-culture media, including serum-free and animal componentfree media, can result in very low-efficiency cell reprogramming.
- Our scientists developed a novel cell-culture medium that can exhibit dramatically higher efficiency cell reprogramming than conventional media, including when mRNA is used to express reprogramming factors¹.

Example Applications:

Ultra-high efficiency reprogramming (e.g., reprogram single cells)	Reprogram cells quickly, and using a simple protocol (e.g., 4-6 transfections, pick	Combine with Eterna's Chromatin Context-Sensitive Gene-Editing Endonuclease and/or Factor's Combined mRNA Gene Editing & Cell
`Develop allogeneic or autologous cell therapies	Reprogram without feeders, conditioning, passaging,	models of genetic disease, gene- corrected patient-specific cell therapies, and allogeneic (i.e., immuno- nonreactive or "stealth") cell therapies,
Reprogram without using viruses or other potentially mutagenic vectors	immunosuppressants, demethylating agents or other toxic small molecules, pre-mixing or aliguoting of RNA	including allogeneic pluripotent stem cell-derived CAR-T and CAR-NK cell therapies for the treatment of cancer, and engineered MSC therapies for regenerative medicine, wound-healing
Reprogram using a completely animal component-free process	solutions	inflammatory and auto-immune diseases, and tumor-targeting applications

¹Harris, J., et al. Mol Ther, Vol 29, No 4S1, 2021.

Eterna's Science: mRNA Vectorization of Gene-Editing Proteins ete

	Hur	nan Epid	lermal K	eratinocy	tes	
		TR	AC	P	01	
	Ladder	+RNA	-RNA	+RNA	-RNA	
1000bp 766bp	-	1	way			766bp
FOOL	-	1		inter.	-	500bp
500bp	I			19949	sites	350bp 300bp
300bp	-			111	•	250bp 200bp
		1000				150bp
150bp	-					75bp
	1.000	122262				50bp
		1.1		1000	1.100-1	25bp
50bp	100				10- Fland	

	Human iPS Cells					
		TRAC		PD1		
	Ladder	+RNA	-RNA	+RNA	-RNA	
766bp	-	-	-			
500bp	-	-		=	12	
350bp 300bp 250bp 200bp		-				
150bp	-					
75bp	-				1	
50bp	-				and the second	
25bp	•			No. to		

Overview:

- Gene-editing proteins can be used to inactivate, repair or insert sequences in living cells. Conventional approaches using plasmids or viruses to express geneediting proteins can result in low-efficiency editing and unwanted mutagenesis when an exogenous nucleic acid fragment is inserted at random locations in the genome.
- Our scientists developed a technology that uses mRNA to express gene-editing proteins. This technology can exhibit dramatically higher efficiency gene editing, including in primary cells, than other approaches, without using viruses or DNA-based vectors that may cause unwanted mutagenesis.

Example Applications:

Ultra-high efficiency editing of T cells, fibroblasts, keratinocytes, and pluripotent stem cells	Gene repair using a DNA- repair template	Gene-editing therapies (ex vivo and in vivo)
	Donor sequence insertion into a target genomic locus (e.g., TRAC, AAVS1	Autologous and allogeneic engineered cell therapies (e.g., CAR-T, CAR-NK, stem cell-derived therapies, etc.)
Virus-free and DNA- free gene editing	safe harbor, etc.)	

Figure: High-efficiency gene editing of TRAC and PD1 in human epidermal keratinocytes and human iPS cells¹

Eterna's Science: Temperature-Tunable Gene-Editing Endonuclease (UltraSlice™)

Overview:

- A novel high-specificity gene-editing endonuclease that exhibits highefficiency on-target cutting at sub-physiological temperatures¹
- This technology can be used to target cutting activity to specific organs and tissues, allowing higher doses, minimizing systemic effects, and enabling enhanced safety for therapeutic applications
- The Temperature-Tunable Gene-Editing Endonuclease is protected by a pending U.S. patent (with additional patents pending in other countries)

Example Applications:

Gene-editing therapies (ex vivo and in vivo)

1 Osayame, Y., et al. Mol Ther, Vol 29 No 4\$1, 2021. Autologous and allogeneic engineered cell therapies (e.g., CAR-T, CAR-NK, stem cell-derived therapies, etc.)

Combine with Eterna's mRNA Cell Reprogramming technology to generate models of genetic disease, gene-corrected patient-specific cell therapies, and allogeneic (i.e., immuno-nonreactive or "stealth") cell therapies, including allogeneic pluripotent stem cell-derived CAR-T and CAR-NK cell therapies for the treatment of cancer, and engineered MSC therapies for regenerative medicine, woundhealing, inflammatory and auto-immune diseases, and tumor-targeting applications.

Eterna's Science: Combined mRNA Gene-Editing & Cell Reprogramming

Overview:

- Combining gene editing with cell reprogramming results in the generation of gene-corrected personalized cell therapies, models of genetic disease, engineered cell therapies, including allogeneic (i.e., immuno-nonreactive or "stealth") cell therapies, including CAR-T, CAR-NK, and engineered MSC therapies for regenerative medicine, wound-healing, inflammatory and auto-immune diseases, and tumor-targeting applications.
- Our scientists developed a technology that uses mRNA to express both gene editing proteins and reprogramming factors.
- Combined mRNA Gene Editing & Cell Reprogramming is protected by U.S. Patent Number 10,472,611 (with additional patents pending in the U.S. and in other countries). Of note, the granted patent includes claims that are not limited by disease indication, cell type, reprogramming factor(s), mRNA sequence or chemistry, transfection method, target sequence, or type of gene-editing protein.

Example Applications:

Generate gene-corrected personalized cell therapies

Simplify manufacturing of engineered cell therapies by eliminating serial gene-editing and cell-reprogramming steps Take advantage of the clonality of mRNA Cell-Reprogramming to generate defined clonal populations of geneedited cells Generate allogeneic pluripotent stem cell-derived CAR-T and CAR-NK cell therapies for the treatment of cancer, and engineered mesenchymal MSC therapies for regenerative medicine, woundhealing, inflammatory and autoimmune diseases, and tumortargeting application

Eterna's Science: Nucleic-Acid Delivery System* (ToRNAdo™)

Neg

-RFP mRNA

Overview:

- Delivery systems can be used to enhance the uptake of nucleic acids by cells
- Conventional delivery systems often suffer from endosomal entrapment and toxicity, which can limit their therapeutic use
- Our scientists developed a novel chemical substance that we believe is effective at delivering nucleic acids, including mRNA, to cells both *ex vivo* and *in vivo*

Example Applications:

Use fusogenic lipid/nucleic- acid particles made with ToRNAdo™ to avoid endocytosis pathways that	Achieve ultra-high- efficiency transfection in up to 100% serum	Deliver nucleic acids, including mRNA, i <i>n vivo</i> – proven delivery to brain, eye, skin, and lung ¹	
require "endosomal escape"		Combine with Eterna's mRNA Cell	
	Protect cargo from	Reprogramming technology to generate footprint-free	
Generate non-toxic	Huclease attack	pluripotent stem cells	
formulated nucleic-acid			
products (ToRNAdo™ is	Delivery of mRNA,	Combine with Eterna's Chromatin	
made using omega-6 unsaturated tails derived from sunflower seed oil)	siRNA, and plasmid efficiently to a variety of cell types	Context-Sensitive Gene-Editing Endonuclease for high-specificity <i>in vivo</i> gene editing	

¹Kostas, F., et al. Mol Ther, Vol 28 No 4S1, 2020

LF3000	Neg
Figure: ToRNAdo [™] delivery of	of
GFP mRNA to human epidern	nal
keratinocytes in vitro.	

5µg/µg ToRNAdo

10µg/µg ToRNAdo

 Neg.
 Figure: ToRNAdo™ delivery of RFP

 mal
 mRNA to human skin *in vivo*.

Selected Preclinical Data

In Vitro Efficacy of Eterna's Proprietary iPSCs Derived NK Cells and Macrophages Against Ovarian Adenocarcinoma and Osteosarcoma Cells

iPSC derived NK Cells and macrophages were seeded with
 Osteosarcoma (U2OS) and ovarian adenocarcinoma cell line
 (SKOV3) cells at a 5:1 E:T ratio

After 24 hours, there was increased cell
 clustering when the two cell types were
 combined

- NK cells were thawed and seeded
 directly into the assay. Cells were
 harvested fresh from the T75 (D83) and
 bioreactor (D68)
- When the two cell populations were combined, there was increased cell clustering in both U2OS and SKOV3 cells*

*Presented at 26th Annual Meeting of the American Society of Gene & Cell Therapy (<u>Blatchford et al., 2023</u>)

In Vitro Efficacy of Eterna's Proprietary B2M Knockout Lymphocytes Against Chronic Myeloid Leukemia Cells

- Cytotoxic Lymphocytes, including NK and T cells can be used as allogeneic cell therapies for the treatment of cancer. However, these cells face challenges of limited expansion potential and in vivo persistence due to host immune rejection
- Major Histocompatibility Complex (MHC) class I molecules play a crucial role in immune rejection and beta-2 microglobulin (B2M) in association with MHC class I molecules is crucial for their stability and proper function
- Eterna developed iPSC-derived B2M knockdown (KO) lymphocytes with its proprietary technology
- B2M KO cytotoxic lymphocytes showed cytotoxicity against Chronic Myeloid Leukemia cell lines (K562) in the presence of cytokines (IL-2 and IL-15) while wild-type (WT) cytotoxic lymphocytes showed un-controlled cytotoxicity*

*Presented at 25th Annual Meeting of the American Society of Gene & Cell Therapy (Parmenter et al., 2022)

In Vitro Efficacy of Eterna's Proprietary iPSC-Derived Macrophages Against Osteosarcoma Cells

 iPSCs-derived monocytes were differentiated into macrophages by Eterna's proprietary technology

iPSC-derived macrophages exhibited
 cytotoxic activity against osteosarcoma cells
 (U2OS) with 45% cell killing in vitro after 24
 hours of incubation (when cocultured at 5:1
 E:T ratio)

In Vivo Efficacy of Eterna's Proprietary Induced-Mesenchymal Stem Cells (iMSCs) in Sepsis-Induced ARDS: Study Rationale & Design*

- Mesenchymal stem cells (MSCs)- target a large number of dysregulated inflammatory cytokines and provide tissue repair and pathogen-clearing capabilities via multimodal mechanisms of action
- So, a growing body of evidence supports mesenchymal stem cells (MSCs)-based therapy as a potential treatment for sepsis-induced acute respiratory distress syndrome (ARDS)
- A sheep model for pneumonia/sepsis was developed by the instillation of *Pseudomonas aeruginosa* into the lungs

- iPSCs generated from adult human fibroblasts were differentiated into Induced-Mesenchymal Stem Cells (i-MSCs) by Eterna's proprietary cell reprogramming technology
- Two groups of sheep (n=3 in each) were randomized either to intravenous allogenic iMSCs treatment at 1 and 24hrs after the injury or intravenous vehicle treatment

*Presented at International Society for Cell & Gene Therapy Annual Meeting 2021 (Hashimoto et al., 2021)

In Vivo Efficacy of Eterna's Proprietary Induced-Mesenchymal Stem Cells (iMSCs) in Sepsis-Induced ARDS: Study Result* (1/2)

- Native iMSCs reduced pulmonary shunt and improved oxygenation, thus preventing onset of ARDS
 Native iMSCs markedly reduced pulmonary edema assessed by
 - measuring lung lymph flow and lung wet-to-dry weight ratio. These data indicate that the native iMSCs reduced pulmonary microvascular hyperpermeability to water

*Presented at International Society for Cell & Gene Therapy Annual Meeting 2021 (Hashimoto et al., 2021)

In Vivo Efficacy of Eterna's Proprietary Induced-Mesenchymal Stem Cells (iMSCs) in Sepsis-Induced ARDS: Study Result (2/2)

- Native iMSCs markedly reduced
 excess fluid requirement, supporting that iMSCs are safe to use in this model
- Native iMSCs reduced vasopressor
 (norepinephrine) requirement
- Native iMSCs significantly reduced
 the bacterial burden in the ovine
 lungs, bronchoalveolar lavage fluid,
 and spleen

*Presented at International Society for Cell & Gene Therapy Annual Meeting 2021 (Hashimoto et al., 2021)

Eterna's Strategy

Our Strategy

We believe that our proprietary technology platform can be used to develop novel pharmaceutical products to treat a broad range of diseases and address unmet medical needs

Short Term (next 8-10 months)	Mid-Term (2025+)	Long-Term (2026+)
 Leverage IP Portfolio and Strategic Partnerships : Focus on licensing our core intellectual property to third parties through out-licensing or co- development arrangements to generate immediate revenue streams Enhance Developmental Activities: Invest in preclinical studies targeting selected indications to bolster our developmental pipeline and pave the way for future clinical advancements 	 Transition to Clinical-stage Company: Execute IND-enabling studies and secure IND approval to transition from a preclinical stage company to a clinical-stage company, laying the groundwork for human trials Initiate First-in-Human Study: Launch our first-in-human study to validate the safety and efficacy of our product candidates Diversify Pipeline: Expand our pipeline of product candidates and strengthen the mPNA technology platform to 	1. Aspire to be a Therapeutics Company: Aim to secure regulatory approvals for multiple gene and cellular therapy products targeting oncology, autoimmune diseases, and rare diseases, thereby establishing ourselves as a leading gene/cellular
	ensure a robust portfolio potentially capable of addressing diverse	therapeutics company

therapeutic indications

Key Takeaway

Key Takeaway: In-licensing Opportunity of Eterna's Technology with Strong IP & Scientific Rationale

Our Science

- Novel non-viral vectors-based approach to mRNA cell reprogramming and gene therapy designed for rapid, highefficiency, footprint-free cell reprogramming and gene therapy
- Exhibited sustained expression of transgene over multiple passages and even after long-term cryopreservation
- Immuno-nonreactive or "stealth" cells with the potential to be used as <u>allogeneic "off the shelf" therapy</u>
- Potentially capable of delivering nucleic acids to cells both ex vivo and in vivo
- Potentially capable of inserting exogenous sequences into genomic safe-harbor loci
- Can deliver mRNA to the **brain, eye, skin, and lung in vivo**
- Strong preclinical evidence supporting therapies for multiple indications

Portfolio of over **100 patents** covering key mRNA cell engineering technologies and protected until **2032 and beyond** across the U.S., Canada, Brazil, Mexico, EU, Russia, Australia, and major markets of Asia

ternc

Strong IF

Management

Management with extensive experience in the discovery and development of gene /cellular therapy products

For Further Details, please contact: Sanjeev Luther, President and CEO at:

Sanjeev.Luther@eternatx.com