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Abstract 
 

We study how friction in learning others’ technology, termed “imperfect technology spillovers,” 
incentivizes firms to use different types of innovation and impacts the implications of 
competition through changes in innovation composition. We build an endogenous growth model 
in which multi-product firms enhance their products via internal innovation and enter new 
product markets through external innovation. When learning others’ technology takes time due 
to this friction, increased competitive pressure leads firms with technological advantages to 
intensify internal innovation to protect their markets, thereby reducing others’ external 
innovation. Using the U.S. administrative firm-level data, we provide regression results 
supporting the model predictions. Our findings highlight the importance of strategic firm 
innovation choices and changes in their composition in shaping the aggregate implications of 
competition. 
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1 Introduction

Innovations manifest in diverse forms, impacting firm performance and economic
growth differently, and firms have different incentives for using them (Akcigit and
Kerr, 2018; Garcia-Macia et al., 2019; Peters, 2020; Argente et al., 2024). Although
studies on the effect of competition on innovation have a long-standing history,
the results remain inconclusive and provide limited guidance on assessing the im-
plications of competition through heterogeneous innovations (Aghion et al., 2005;
Gilbert, 2006; Aghion and Griffith, 2008; Bloom et al., 2016; Autor et al., 2020).
How do firms use different types of innovation when faced with increasing compe-
tition? How does this bring new insights into the aggregate implications of compe-
tition?
Our paper investigates these questions when learning others’ technology takes

time both theoretically and empirically. Theoretically, we develop an endogenous
growth model with two types of innovation and imperfect technology spillovers. This
model provides a micro-foundation for the effect of competition on firm innovation,
decomposed into changes in the level and composition of two innovation types. Next,
we link the administrative firm-level data to the patent database in the U.S. and
document new facts about the composition changes of firm innovation in response
to Chinese competition. Lastly, we calibrate the model and derive the aggregate
implications of competition across different economies.
In the model, multi-product firms grow through two types of innovation—internal

and external—subject to imperfect technology spillovers. Internal innovation im-
proves existing product quality, while external innovation enables firms to enter new
markets by displacing incumbents.1 External innovation contributes more to product

1An illustrative real-world example of external innovation is Apple’s entry into the cell phone
industry with the introduction of the iPhone back in 2007 when its major business was computer
manufacturing. An example of internal innovation is Apple’s improvement and production of iPhone
15 from iPhone 14.
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quality improvement, thus to firm and aggregate growth than internal innovation.2

Imperfect technology spillovers are a new element introduced in this model, which
represent barriers to learning others’ technology in the process of external innova-
tion. When a firm attempts to enter markets through external innovation, the initial
step involves acquiring and improving the technological knowledge of incumbents.
Realistically, this learning takes time as external innovation entails prior processes
that can demand substantial time and resources.3 Our model uses lagged learn-
ing as a form of imperfect technology spillovers, requiring potential rivals to spend
one period learning the frontier technology of incumbents. In other words, external
innovation builds on one-period lagged technology.
This model creates key novel features. First, the spillover friction creates a technol-

ogy gap between incumbents’ frontier technology and the one-period lagged tech-
nology that potential rivals can only learn. Second, incumbents can exploit this
technology gap and strategically use internal innovation to protect their markets,
labeled as the “market-protection effect.”4 Third, the strategic internal innovation of
incumbents endogenously prevents rivals from entering their markets and stifles the
rivals’ external innovation, labeled as the “technological barrier effect.” This is the key
distinction from other models of firm innovation and specialization. Thus, compe-
tition induces a shift in the composition of firm innovation, driven by the strategic
choices of firms and their endogenous interactions. Lastly, as a result, the aggregate
effect of competition on overall innovation depends on the relative shifts in the two
types of innovation.

2As documented in Bernard et al. (2010) and Akcigit and Kerr (2018), external innovation plays a
more important role in contributing to both firm-level and aggregate growth than internal innovation.
External innovation is tightly connected to creative destruction and radical innovation.

3For example, external innovation may require the processes of recruiting new employees to han-
dle new technology, reallocating resources to new projects, training workers, and preparing produc-
tion facilities for new products. In the real world, Apple took three years to enter the cell phone
industry, even after leveraging their previously accumulated knowledge from the iPod development
and production. Moreover, Apple has been trying to enter the car industry for over seven years.

4In particular, firms with a technology gap increase internal innovation to defend themselves from
competitors, while those without such gap reduce it when competition gets heightened exogenously.
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The strength of this framework is that it allows multi-product firms to strategi-
cally use internal innovation and generates endogenous feedback effects on external
innovation and entry decisions by others. Adding imperfect technology spillovers
to a multi-product firm set-up achieves this, which is our main theoretical contri-
bution.5 In existing models of multi-product firms growing through product scope
expansion, firms cannot protect their markets because others can immediately learn
and copy the frontier technology without any friction (Klette and Kortum, 2004; Ak-
cigit and Kerr, 2018; Peters, 2020). Other step-by-step innovation models generate
an escape-competition motive, but they assume single-product firms (Aghion et al.,
2001, 2005; Akcigit et al., 2018). This lacks the feedback effects of incumbents’
innovation choices on the innovation of rivals entering into a product market and
cannot account for firm-level innovation composition observed in data.
Furthermore, our model underscores the importance of comprehending changes

in innovation composition to accurately evaluate the aggregate implications of com-
petition. Unlike earlier models, internal innovation in our framework not only en-
hances the product quality of the owners but also impedes external innovation of
others and firm entry that contribute to firm and economic growth substantially.
Given these dynamics, the shifts in innovation composition are crucial for overall
outcomes, and ignoring such heterogeneity in innovation may obscure the true im-
pact of competition.
Next, to validate our model predictions, we construct a unique dataset by combin-

ing the U.S. administrative firm-level data with the USPTO patent data from 1976 to
2016.6 This dataset provides comprehensive information for the entire population
of the U.S. patenting firms. We specifically use China’s WTO accession in 2001 as an
exogenous competition shock and the self-citation ratio of patents as a measure of

5In this sense, our framework brings together quality-ladder and step-by-step innovation models.
6We construct our own crosswalk between the two datasets with name, address matching, and the

internet search-aided algorithm as in Autor et al. (2020). This improves the match rates and provides
the longest and longitudinally consistent crosswalk between patent assignees and LBD firms. See Ding
et al. (2022) for details.
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the likelihood of patents being used for internal innovation.
We find regression results consistent with the model predictions. First, heightened

competition increases internal innovation among firms with existing technological
advantages but decreases external innovation across all firms. Second, the positive
correlation between firm patenting and employment growth diminishes by 17.1%
for innovation-intensive firms following the surge in competition, as more patents
are used for internal innovation.7 Third, firm entry rate is lower in industries with
higher technological barriers based on the TFPR gap measure as in Aghion et al.
(2005).
Lastly, to understand the aggregate implications, we calibrate ourmodel to the U.S.

manufacturing sector and conduct two main counterfactual exercises by increasing
competitive pressure exogenously by outside firms: i) in the U.S. economy, and ii)
in economies where external innovation costs exceed those in the U.S.8

Both exercises yield qualitatively similar results at the firm level: firms increase
(decrease) internal innovation for products with a (no) technology gap, while exter-
nal innovation drops across all firms. However, the results differ for aggregate im-
plications. Overall innovation—the aggregate-level R&D to sales ratio—experiences
a decline in the U.S., where firms actively engage in external innovation with lower
associated costs. In contrast, this result is reversed in the other economy with higher
external innovation costs. This is because the initial level of external innovation is
minimal even in the absence of competitive pressure, and thus, the scope for a fur-
ther decline in external innovation with increased competitive pressure is limited.
Also, the aggregate growth rates attributed to domestic firms fall in both economies,
even though the latter has seen an increase in overall innovation. This is because
heightened competition endogenously elevates technological barriers and impedes
external innovation by domestic incumbents and firm entry. This result is distinctive

7The positive correlation between firm patenting and TFPR growth (or product addition) is also
muted for internal innovation.

8Additional counterfactual analysis of an increasing domestic firm entry is presented in Online
Appendix F.
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within our framework having heterogeneous innovation types and its impact.
Our paper provides a unified framework that facilitates the comparison of the ef-

fects of competition across different countries. Notably, this framework allows for
mapping non-U.S. economies, such as the European economy, into the hypothetical
economy with high external innovation costs and helps reconcile the disparate find-
ings in literature.9 The change in innovation composition resulting from the strategic
choices by firms is an important margin to understand the heterogeneous impact of
competition and its aggregate implications across diverse economic landscapes.

Related Literature Our paper brings new insights and findings to the large litera-
ture linking competition, firm innovation, and technology spillovers.
First, our paper is related to an extensive body of research on competition and

innovation. The empirical literature finds mixed results (Aghion et al., 2005; Bloom
et al., 2016; Hombert and Matray, 2018; Shu and Steinwender, 2019; Autor et al.,
2020).10 Some explore this dynamics through the lens of a Schumpeterian growth
model with step-by-step innovation, where the “Schumpeterian effect” by the lag-
gards and the “escape-competition effect” by neck-and-neck firms arise (Aghion et al.,
2001, 2004, 2005, 2009; Akcigit et al., 2018). However, this model is rooted in sev-
eral assumptions lacking data support and abstracts from discussing the composition
of different innovations.11 Others introduce a trapped-factor model in which rising
competition reduces the opportunity cost of innovation (Bloom et al., 2013, 2021;
Medina, 2022), but this channel may not be applicable to general cases (e.g., U.S.).
Alternatively, Hombert and Matray (2018) elucidate the channel of product differ-
entiation by innovative firms, while Dhingra (2013) underscores the phenomenon
of firms upgrading their product production process to avoid cannibalization in re-
sponse to competition. Helpman (2023) illustrates ambiguous impacts on the in-

9For instance, heightened frictions associated with R&D or labor mobility for external innovation.
10See Shu and Steinwender (2019) for further details.
11The model assumes single-product firms, a single innovation type, or the immediate imitation by

the laggards.
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novation efforts of large multi-product firms, which depend on the level of their
productivity and market shares. We contribute to this literature by providing a rich
theoretical framework wherein multi-product firms leverage their technological bar-
riers, strategically use internal innovation, and endogenously affect others’ external
innovation, along with new data evidence. In this setting, competition changes the
composition of heterogeneous innovations and creates different aggregate implica-
tions depending on the relative shifts. Our results help reconcile the prior diverging
findings and enrich our understanding of the complex effects of competition on in-
novation.
Second, our paper adds to another growing strand of literature that explores the

diverse types of innovation undertaken by firms. Aghion et al. (2004) and Akcigit
et al. (2018) add an entry margin, and similarly, Atkeson and Burstein (2010) in-
troduce the notion of product and process innovations. However, all these models
assume single-product firms, in which each firm (either incumbents or entrants) can
only do one type of innovation. On the other hand, Klette and Kortum (2004) build a
quality-ladder model of multi-product firms, albeit under the assumption of a single
type of innovation. Another set of research has expanded the study of multi-product
firms: Bernard et al. (2010) highlight the role of product switching in resource allo-
cation; Akcigit and Kerr (2018) model multi-product firms conducting internal and
external innovations and illuminate the distinct importance of external innovation
in economic growth; Peters (2020) highlights the importance of creative destruction
(external innovation) for alleviating the misallocation that arises from the accumu-
lation of market power by incumbent firms (via internal innovation); and Dhingra
(2013) and Argente et al. (2024) document the role of cannibalization in firm inno-
vation decisions. In addition, Garcia-Macia et al. (2019) and Atkeson and Burstein
(2019) explore the impacts of varied innovation types on growth and policy impli-
cations. Our contribution arises from adding the learning friction that creates the
strategic motive of firms using internal innovation and generating an endogenous
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feedback effect on the external innovation and entry of firms (both incumbents and
entrants). Our research also broadens the empirical scope by offering insights into
the strategic use of different innovations by multi-product firms and matching the
observed changes in firm-level innovation composition in data.
Lastly, our paper contributes to studies on technology gap and spillovers. Previous

studies have established that the technology gap between firms plays a crucial role
in shaping firm innovation incentives and policy implications (Aghion et al., 2001,
2005; Dinopoulos and Syropoulos, 2007; Aghion and Griffith, 2008; Acemoglu and
Akcigit, 2012; Akcigit et al., 2018); explored the trend of diminishing knowledge dif-
fusion from market leaders to laggards (Andrews et al., 2016; Bessen et al., 2020;
Akcigit and Ates, 2021; Arora et al., 2021; Akcigit and Ates, 2023); and presented
various phenomena that broadly align with this trend (Shapiro, 2000; De Ridder,
2024; Olmstead-Rumsey, 2019; Argente et al., 2020; Bessen et al., 2020; Bloom
et al., 2020; Aghion et al., 2023; Akcigit and Ates, 2023; Akcigit and Goldschlag,
2023). Nevertheless, these studies have not yet offered a definitive answer and
mechanism for the observed shift in the diffusion process. Our contribution is uncov-
ering an underlying endogenous force behind the decreasing technology diffusion
as a consequence of firms strategically responding to increased competition due to
exogenous forces such as globalization.
The rest of the paper proceeds as follows. Section 2 develops a baseline endoge-

nous growth model. Section 3 presents empirical results about the effect of Chinese
competition on the composition of firm innovation. Section 4 displays results from
quantitative analysis of the baseline model. Section 5 concludes.

2 Baseline Model

We build a discrete time infinite horizon endogenous growth model with multi-
product firms, two types of innovation, imperfect technological spillovers, and an
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exogenous source of competitive pressure.12 The model is distinct in the follow-
ing three dimensions: we i) introduce a novel friction named “imperfect technology
spillovers” by assuming that firms can only learn the incumbent’s technology lagged
by one period in the process of external innovation; ii) generate incumbent firms’
internal innovation decision as an endogenous function of the technology gap—the
ratio of the current-period technology qj,t to the previous-period technology qj,t−1,
∆j,t =

qj,t
qj,t−1

, due to the friction; and iii) allow for exogenous shifts of the aggregate
creative destruction arrival rate to analyze the effect of increasing competitive pres-
sure on firm innovation and growth. Hereafter, the time subscript is suppressed.13

The terms product quality and technology are used interchangeably.

2.1 Representative Household

A representative household has a logarithmic utility and is populated by a measure
one continuum of individuals. Each individual supplies one unit of labor inelastically
and consumes a portionCt of the economy’s final goods each period. The household’s
lifetime utility is

U =
∞∑
t=0

βt log(Ct).

Workers are employed in the final goods sector (L), and the labor market clears as
follows:

L = 1. (2.1)
12The exogenous competitive pressure emanates from firms outside the economy, which could

be foreign firms or domestic incumbent firms in other sectors or states, depending on whether we
consider the model economy as an aggregate economy or a specific sector or state.
13Superscript ′ denotes the forward-period variables at (t + 1), and subscript −1 is used for the

previous-period variables at (t− 1).
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2.2 Final Goods Producer

The final goods producer produces a final good with labor (L) and a continuum of
differentiated intermediate goods indexed by j ∈ [0, 1] (produced by either domestic
firms j ∈ D or outsiders j /∈ D). The production function has the constant returns-
to-scale technology:

Y =
Lθ

1− θ

[∫ 1

0

qθjy
1−θ
j I{j∈D}dj +

∫ 1

0

qθjy
1−θ
j I{j /∈D}dj

]
,

where yj and qj are the quantity and quality of good j, and I{·} are indicator func-
tions. The market is competitive with the price normalized to one and input prices
taken as given.

2.3 Intermediate Producers

Domestic and outside firms have the mass of Fd and Fo, respectively, with F =

Fd + Fo ∈ (0, 1). They produce and sell differentiated intermediate goods in mo-
nopolistically competitive domestic markets. Each firm operates with at least one
product line, and each product line is owned by a single firm. Thus, firm f can be
characterized by the collection of its product lines J f = {j : j is owned by firm f}.
The intermediate good is produced at a unit marginal cost in terms of final goods.

2.4 Innovation by Intermediate Producers

Intermediate producers engage in two types of R&D, internal and external, by spend-
ing expenditures in units of final goods. Firms improve the quality of their own
products through internal innovation, while taking over other markets through ex-
ternal innovation.14 The R&D output manifests as improving product quality and is
realized in next period.
14Note that the quality in this model is a marginal cost of production-adjusted measure, and can

be improved through either technological advancement or cost reduction. In this sense, our concept
of innovation encompasses both product and process innovations.
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On top of this, we introduce a novel friction named “imperfect technology spillovers,”
under which learning others’ technology takes time in the process of external inno-
vation. We conceptualize it in the form of lagged learning by assuming external
innovation builds on the past-period technology. Thus, only the owner of a product
line can observe the frontier level of technology qj,t in the market, while outsider
firms can only see the lagged level qj,t−1.15 Following this, a product line can be
sufficiently characterized by its quality qj and technology gap between current and
previous periods∆j,t =

qj,t
qj,t−1

.16 This friction induces incumbent firms to strategically
use internal innovation to build technological barriers and protect their markets from
competitors. We name it the “market-protection effect.”
When two firms are neck and neck in a particular product line, a coin-toss tiebreaker

rule applies as in Acemoglu et al. (2016) to make sure each product is produced by
only one firm.17 External innovation is undirected and the targeted product is ran-
domly assigned among the entire set of products with equal probability. Also, for
now, we assume that firms can only attempt one external innovation each period,
which helps us derive analytic expressions for firm decision rules and distributions
with minimal assumptions. In quantitative analysis, we allow multiple external in-
novations as in Klette and Kortum (2004).

Internal Innovation Successful internal innovation improves the current quality
qj,t of the product by λ > 1. The quality of good j evolves as follows, conditional on
15All the aggregate variables and technology gap distribution are publicly observable, and firms

make optimal innovation decisions by considering them. In this way, a stationary firm-product distri-
bution is well defined.
16This technology gap summarizes the technological advantage incumbents have in their market.
17An unused technology is assumed to depreciate sufficiently to make it unprofitable for external

innovators to build upon it next period. This approach guarantees the undirected nature of external
innovation and restricts internal innovation to the current owner only.
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the owning firm not displaced by creative destruction:

{
qinj,t+1

}
=


{
λqj,t

}
with probability zj,t{

qj,t

}
with probability 1− zj,t,

zj,t =

(
Rin
j,t

χ̂qj,t

) 1

ψ̂

, χ̂ > 0, ψ̂ > 1.

The success probability of internal innovation, zj,t, depends on R&D investment
Rin
j,t.18

External Innovation Successful external innovation improves the lagged quality
of the obtained product by η > 1. We assume λ2 > η > λ, where η > λ reflects
the findings from Akcigit and Kerr (2018) and our own that external innovation
contributes more to both firm and aggregate growth than internal innovation.19 λ2 >
η is based on the idea that consecutive internal innovation has a significant influence,
and this assumption ensures that firms can protect their own product lines from
potential rivals through internal innovation.20

Firms invest in external innovation. As a result, the following product quality can
be obtained if not pre-empted by the successful internal innovation of the incumbent
in their target market:

{
qexj,t+1

}
=


{
ηqj,t−1

}
with probability xt

∅ with probability 1− xt,

xt =

(
Rex
t

χ̃q̄t

) 1

ψ̃

, χ̃ > 0, ψ̃ > 1.

The success probability of external innovation, xt, is determined by the amount of
18Hereafter, we represent the quality of product j as a point set. This makes it easy to describe

the case where a firm fails to acquire any product lines—in such cases, the product quality set is an
empty set.
19Akcigit and Kerr (2018) and our empirical analysis in Online Appendix G.2 show that external in-

novation is associated with higher firm employment growth compared to internal innovation. We also
find that external innovation is positively associated with TFPR growth and the number of products
added at the firm level.
20We discuss this in more detail in our quantitative analysis shown in Section 4.
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R&D expenditure Rex
t and the average quality q̄t in the economy.21 With probability

1 − xt, the external innovation fails, implying no product takeover and no quality
obtained. See Online Appendix A.1 for illustrative examples of how firms choose
internal and external innovations.

Product Quality Evolution Due to imperfect technology spillovers, the gap be-
tween the current and lagged levels of product quality, ∆j,t =

qj,t
qj,t−1

, reflects the
technological advantage that incumbent firms possess in their markets and enables
them to protect their product lines through internal innovation. The technology gap
can have the following four values.

Lemma 1. There are four possible values for a technology gap, ∆1 = 1, ∆2 = λ,

∆3 = η, and ∆4 = η
λ
, where ∆3 and ∆4 can occur only through external innovation.

Proof: See the Appendix.

Then, incumbents’ product quality (conditional on a technology gap) evolves as
follows:

{
qj,t+1

∣∣∆j,t = ∆1
}
=


∅ , with prob. x{
qj,t
} , with prob. (1− x)(1− z1j ){

λqj,t
} , with prob. (1− x)z1j

(2.2)

{
qj,t+1

∣∣∆j,t = ∆2
}
=


∅ , with prob. x(1− z2j ){
qj,t
} , with prob. (1− x)(1− z2j ){

λqj,t
} , with prob. z2j

(2.3)

{
qj,t+1

∣∣∆j,t = ∆3
}
=


∅ , with prob. 1

2
x(1− z3j ){

qj,t
} , with prob. (1− 1

2
x
)
(1− z3j ){

λqj,t
} , with prob. z3j

(2.4)

21The average quality matters for external innovation as the target product is randomly assigned.
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{
qj,t+1

∣∣∆j,t = ∆4
}
=


∅ , with prob. x (1− 1

2
z4j
){

qj,t
} , with prob. (1− x)(1− z4j ){

λqj,t
} , with prob. (1− 1

2
x
)
z4j .

(2.5)

Note that zℓj is the optimal internal innovation of the firm owning product j with its
technology gap∆ℓ, ℓ ∈ {1, 2, 3, 4}. x is the aggregate creative destruction arrival rate,
representing the probability that a product market faces a rival firm with successful
external innovation. The symbol ∅ indicates that the firm loses product line j in
the next period, and the term 1

2
in the probabilities reflects a coin-toss tiebreaker in

neck-and-neck scenarios.
In the case of∆j,t = 1, incumbents lack any technological advantage and lose their

product lines if a rival firm arrives with successful external innovation, irrespective
of their success in internal innovation.22 In contrast, for other cases where ∆ℓ > 1,
firms can lower the probability of losing their product lines by investing more in
internal innovation.23 Hence, firms are more incentivized to augment their internal
innovation efforts for products with technological advantages (∆ℓ > 1) if competitive
pressure increases (with higher x).24

For rival firms entering into a market, the success probability of product takeover
not just depends on the success of their external innovation but also on the tech-
nology gap and the internal innovation intensity associated with the product owner
(even after successful external innovation). Thus, the success probability of product
takeover xtakeover (≡ xxtakeover) can be decomposed into i) the success probability
of external innovation x, and ii) conditional takeover probability xtakeover, which is
defined as

xtakeover = µ(∆1) + (1− z2)µ(∆2) +
1

2
(1− z3)µ(∆3) +

(
1− 1

2
z4
)
µ(∆4), (2.6)

22Rivals with successful external innovation achieve qrivalj,t+1 = ηqj,t−1, which is greater than λqj,t−1.
23The extent of the reduction in the probability of product loss is contingent on the technology gap.
24The evolution of product quality is defined for rival firms entering into a market in Online Ap-

pendix A.2.
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with technology gap distribution {µ(∆ℓ)
}4
ℓ=1
(the mass of products with a gap∆ℓ).25

Note that the higher the overall innovation intensity (both internal and external),
the wider the average technology gap becomes in the economy (the mass of products
with∆1 decreases). This makes it difficult for firms to successfully take over product
markets.26 This is referred to as the “technological barrier effect,” where increased
internal innovation by incumbents or higher x̄ dampens the external innovation and
growth of firms.27

Potential Startups There is a fixed mass of potential domestic startups Ed. To start
a business, they invest in external R&D and attempt to take over a product line from
an incumbent firm. Potential startups choose R&D expenditure Rex

e and decide the
probability of external innovation xe = (Rex

e / (χ̃eq̄))
1

ψ̃e , where χ̃e > 0 and ψ̃e > 1.
Let V ({(qj,∆j)}) denote the value of a firm that has a product with quality qj and
a technology gap of ∆j. Then a potential startup’s expected profits from entering
through R&D is

Πe = β̃E
[
V ({(q′j,∆′

j)})
∣∣xe]− χ̃e(xe)

ψ̃eq, (2.7)

where β̃ is the stochastic discount factor, and the expectation conditioning on xe is
taken over the distribution of incumbents’ product quality qj and technology gap ∆j

due to the undirected nature of external innovation.28 Potential startups choose the
25This shows that if a firm succeeds in externally innovating a product line with a technology gap

of ∆1, then it takes over that product line with a probability of one. For a product line with ∆2,
this probability becomes 1 − z2; for ∆3, it is 1

2 (1 − z3); and for ∆4, it is 1 − 1
2z

4. It is assumed that
internal innovation intensity z depends solely on technology gap ∆ℓ. In the next section, we prove
this assumption holds true.
26Higher internal innovation intensity widens the technology gap. Simultaneously, higher external

innovation intensity increases the aggregate creative destruction arrival rate, thereby incentivizing
incumbent firms to engage in internal innovation more endogenously, as discussed earlier.
27This technological barrier effect is a novel feature of our model, which is distinct from the well-

known Schumpeterian effect. The Schumpeterian effect is that firm innovation incentives decline
following an increase in x̄ due to lowered expected future profits conditional on successful innovation
and business takeover.
28β̃ = βC

C′ as the household owns all firms.
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probability of external innovation xe that maximizes their expected profits from en-
try. Since there is no ex-ante heterogeneity among potential startups, they all choose
the same level of external innovation intensity x∗e. Hence, the mass of potential do-
mestic startups that succeed in external innovation and attempt to take over product
markets is Edx∗e.

2.5 Exogenous Competitive Pressure and Creative Destruction

As explained before, the aggregate creative destruction arrival rate x is the probabil-
ity that an incumbent faces a rival firm (either a domestic startup, incumbent, or an
outside firm) with successful external innovation. The aggregate creative destruc-
tion arrival rate is equal to the total mass of firms succeeding in external innovation
given the undirected nature of external innovation and the continuum of unit mass
of product lines.29 Let xd denote the total mass of domestic firms with successful
external innovation and xo denote the outside firms’ counterpart. The creative de-
struction arrival rate is defined as

x = xd + xo.

The competitive pressure from outside firms is captured by an exogenous increase
in xo.

2.6 Equilibrium

Optimal Production and Employment The final goods producers choose labor
and intermediate goods inputs. Let pj denote the price of differentiated product j,
and w denote the wage in the domestic economy. The inverse demand for interme-
29This follows along with the assumption that each firm can externally innovate at most one product

line each period, which makes the total mass of firms with successful external innovation equivalent
to the total mass of product markets for which an incumbent faces a rival firm. This assumption is
extended in our full-fledged version, and this result still holds with additional aggregation across
products within successful firms.
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diate good j is:

pj = qθjL
θy−θj . (2.8)

Each product is assumed to be supplied by a single firm. We follow Acemoglu
et al. (2012) and Acemoglu et al. (2018) and assume that the current and former
incumbents engage in the following two-stage price-bidding game for each product
line j: i) each firm pays a fee of ε (> 0), and ii) those that have paid the fee announce
their prices.30

Intermediate producers take (2.8) as given and maximize their operating profits
π(qj) for each product j ∈ J f .31 The optimal production and price are derived as
follows:

yj = (1− θ)
1
θ qj and pj =

1

1− θ
, (2.9)

which simplify the equilibrium profit, wage, and final goods output to the following:

π(qj) = θ(1− θ)
1−θ
θ︸ ︷︷ ︸

≡π

qj, w = θ(1− θ)
1−2θ
θ q, and Y = (1− θ)

1−2θ
θ q. (2.10)

Optimal internal and external innovations Let Φf ≡ {(qj,∆j)}j∈J f denote the
set of product quality and technology gap for intermediate goods producer f . The
firm value is:

V (Φf ) = max
x,

{zj}j∈J f

∑
j∈J f

[
πqj − χ̂zψ̂j qj

]
− q̄χ̃xψ̃ + β̃E

[
V (Φf ′∣∣Φf )

∣∣∣x, {zj}j∈J f

] .

30This is to avoid the case where the former market leader, having lost its leadership to the current
leader in a market, attempts to produce and sell its product through limit pricing. This ensures
that only the firm with the leading-edge technology enters the first stage and announces its price in
equilibrium.
31Since each intermediate product incurs a unit marginal cost in terms of final goods, the problem

is identical for both domestic and outside firms.
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The first three terms define the current profits (revenue net of production and R&D
costs), and the last term is the discounted future expected value. This expectation
is computed over various factors, including the success probabilities of internal and
external innovations, the creative destruction arrival rate, the outcomes of winning
or losing coin tosses, the current-period product quality distribution, and the current-
period technology gap distribution.

Proposition 1. The firm value function and optimal innovation choice are derived as:

V (Φf ) =
4∑
ℓ=1

Aℓ

 ∑
j∈J f |∆j=∆ℓ

qj

+Bq (2.11)

z1 =
[
β̃
(
(1− x)λA2 − (1− x)A1

)
/
(
ψ̂χ̂
)] 1

ψ̂−1 (2.12)

z2 =
[
β̃
(
λA2 − (1− x)A1

)
/
(
ψ̂χ̂
)] 1

ψ̂−1 (2.13)

z3 =
[
β̃
(
λA2 − (1− x/2)A1

)
/
(
ψ̂χ̂
)] 1

ψ̂−1 (2.14)

z4 =
[
β̃
(
λ (1− x/2)A2 − (1− x)A1

)
/
(
ψ̂χ̂
)] 1

ψ̂−1 (2.15)

x =
[
β̃Atakeover/

(
ψ̃χ̃
)] 1

ψ̃−1
, (2.16)

where

A1 = π − χ̂(z1)ψ̂ + β̃
[
A1(1− x)(1− z1) + λA2(1− x)z1

] (2.17)

A2 = π − χ̂(z2)ψ̂ + β̃
[
A1(1− x)(1− z2) + λA2z

2
] (2.18)

A3 = π − χ̂(z3)ψ̂ + β̃
[
A1 (1− x/2) (1− z3) + λA2z

3
] (2.19)

A4 = π − χ̂(z4)ψ̂ + β̃
[
A1(1− x)(1− z4) + λA2 (1− x/2) z4

] (2.20)

B =
(
xβ̃Atakeover − χ̃xψ̃

)
/
(
1− β̃(1 + g)

)
, (2.21)

g is the growth rate of the average product quality, and Atakeover is the ex-ante value of
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a successful takeover of a product line as follows:

Atakeover ≡
1− z3

2
A1µ(∆

3) +

(
1− z4

2

)
A2λµ(∆

4) + A3ηµ(∆
1) + (1− z2)A4

η

λ
µ(∆2).

(2.22)

Proof: See the Appendix.

Note thatAℓ is the sum of discounted expected profits from owning a product with
a technology gap of ∆ℓ, normalized by the current-period product quality. The first
two terms in (2.17) through (2.20) denote the normalized instantaneous profits,
net of the optimal internal R&D spending. The terms inside the brackets are the
normalized future value from internal innovation. B is the sum of the discounted
expected profits from owning an additional product through external innovation,
normalized by the average product quality.32

For the optimal internal innovation (2.12)-(2.15), the first term in the brackets
(after β̃) in the numerator represents the future value from successful internal inno-
vation with the quality increased by λ, and the second term is the counterpart from
no successful internal innovation. Thus, holding x fixed, the net future value of
successful internal innovation depends on the firm’s technology gap, pinning down
its optimal choice. Consequently, internal innovation becomes an endogenous func-
tion of the technology gap, which is a unique feature of this model due to imperfect
technology spillovers. Corollary 1 details this further.

Corollary 1. In an equilibrium where {zℓ}4ℓ=1 are well defined, the probabilities of

internal innovation satisfy z2 > z3 > z4 > z1. Proof: See the Appendix.
32To understand this variable clearly, we can rewrite (2.21) as Bq = xβ̃Atakeoverq− χ̃xψ̃q+ β̃B(1+

g)q. After investing χ̃xψ̃q in external innovation in the current period, the firm receives the discounted
expected profit β̃Atakeoverq in the next period if the external innovation succeeds with probability x.
Then, the firm plans to invest in external innovation next period and receive an expected profit of
Bq′ in the following period, where q′ = (1 + g)q. Thus, (2.21) illustrates that B is the annuity value
of an infinite stream of constant payoffs xβ̃Atakeover − χ̃xψ̃, evaluated at a constant discount rate of
β̃(1 + g), which is the growth rate-adjusted stochastic discount factor.
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This shows that internal innovation increases with the technology gap, which helps
firms protect their markets. However, beyond a certain point, a wider technology
gap can discourage further investment in internal innovation. This occurs because
firms are less likely to lose their product line even without doing additional internal
innovation.
Furthermore, the optimal internal innovation also depends on creative destruc-

tion arrival rate x as shown in Corollary 2, which we label the “market-protection
effect.”33,34

Corollary 2 (Market-Protection Effect). With ψ̃ ∈ (1, 2], the market-protection effect

is maximized and is positive for product lines with a technology gap of ∆2, whereas it

is minimized and is negative for product lines with ∆1. The market-protection effect is

positive for the ∆3 case, whereas its sign is ambiguous for the ∆4 case. Thus,

∂z2

∂x

∣∣∣∣
A1,A2

>
∂z3

∂x

∣∣∣∣
A1,A2

> 0,
∂z3

∂x

∣∣∣∣
A1,A2

>
∂z4

∂x

∣∣∣∣
A1,A2

⋚ 0, and 0 >
∂z1

∂x

∣∣∣∣
A1,A2

.

Proof: See the Appendix.

In the ∆1 case, internal innovation fails to effectively protect the firm’s product
line, as observed in (2.2). Consequently, z1 decreases as the rate of creative de-
struction x increases. In contrast, the ∆2 case demonstrates the strongest market-
protection effect of internal innovation, exerting the highest impact on reducing the
probability of losing a product as in (2.3). In the ∆3 case, increasing z3 reduces the
probability of product loss, albeit to a lesser extent compared to the ∆2 case. This
results in a positive but diminished market-protection effect. Conversely, the effect
in the ∆4 case remains ambiguous, where higher z4 leads to a smaller decrease in
33Note that as A1 and A2 also depend on x, it is difficult to analytically determine the signs of the

partial derivatives of {zℓ}4ℓ=1 with respect to x. However, by holding the values of A1 and A2 fixed,
we can explicitly ascertain these signs as in Corollary 2.
34The term A2 in (2.12)-(2.15) reflects the well-known Schumpeterian effect—the lower the ex-

pected future profits from keeping the product line through internal innovation, the lower the incen-
tive to invest in internal innovation.
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the probability of losing the product line.
This suggests firms that have innovated intensively previously (and thus larger

technology gaps) are more likely to intensify internal innovation in response to in-
creased competition (higher x) than those with less recent innovation. This high-
lights another crucial and unique aspect of our model: firms strategically employ
internal innovation to defend against competitors, leveraging imperfect technology
spillovers.
As a result, optimal external innovation depends on internal innovation, the tech-

nology gap distribution among incumbents, and the expected value of products ({Aℓ}4ℓ=1).
Equations (2.16) and (2.22) show that higher overall internal and external innova-
tion intensities reduce firms’ incentive for external innovation in partial equilibrium,
with {Aℓ}4ℓ=1 held constant. This is because increased overall innovation shifts the
technology gap distribution, which raises the average technology gap, and hampers
firms’ market takeover (the “technological barrier effect”). Furthermore, keeping the
probabilities of internal innovation and the technology gap distribution constant, a
decrease in the expected product values reduces external innovation (the “Schum-
peterian effect”).35 Our simple three-period model in Online Appendix B formally
proves these predictions.
Similarly, the optimal external innovation by potential startups xe is derived as

follows:

xe =
[
β̃
(
Atakeover + xtakeoverB(1 + g)

)
/
(
ψ̃eχ̃e

)] 1

ψ̃e−1
, (2.23)

and the proof is provided in the 5.
35The direction of the changes in the probabilities of internal and external innovation in response

to changes in the aggregate creative destruction arrival rate x are ambiguous in general equilib-
rium. They depend on the relative magnitudes and the directions of the market-protection effect, the
technological barrier effect, and the Schumpeterian effect. Nonetheless, results from the numerical
exercise in Section 4.2 confirm that the partial equilibrium results, given {Aℓ}4ℓ=1 and B, still hold in
general equilibrium within plausible parameter ranges. Furthermore, {Aℓ}4ℓ=1 and B decrease with
an exogenous increase in x.
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Aggregate Creative Destruction Arrival Rate With (2.16) and (2.23), the aggre-
gate creative destruction arrival rate in this economy is defined as follows:

x = Fdx+ Edxe︸ ︷︷ ︸
≡xd

+Fox+ Eo︸ ︷︷ ︸
≡xo

, (2.24)

where Eo is the total mass of outside entrants with successful external innovation,
which is exogenously determined.36,37

2.7 Balanced Growth Path

Proposition 2. The aggregate growth rate g in a Balanced Growth Path is:

g =
[
(1− x)(1− z1) + ∆2(1− x)z1 +∆3x

]
µ(∆1) (2.25)

+
[
(1− x)(1− z2) + ∆2z2 +∆4x(1− z2)

]
µ(∆2)

+
[
1− z3 +∆2z3

]
µ(∆3) +

[
(1− x)(1− z4) + ∆2(z4 + x(1− z4))

]
µ(∆4)− 1,

which can be decomposed into the parts attributed to internal innovation and external

innovation by domestic incumbents and startups (gd), as well as outside firms (go).

Proof: See the Appendix.

2.8 Firm Distribution

Let N = (nf , n
1
f , n

2
f , n

3
f , n

4
f ) denote the technology gap composition of firm f , where

nf is the total number of products and nℓf is the count of products with a technology
gap of ∆ℓ (ℓ = 1, 2, 3, 4). Let µ̃(N ) denote its distribution, and summing µ̃(N ) over
all possible N gives the total mass of firms F .
36Note that an exogenous increase in Eo may not increase x by the same amount in equilibrium,

as the mass of domestic incumbent firms Fd and the probabilities of external innovation x and xe
depend on x. Thus, the level of x is endogenously determined, even when Eo changes exogenously.
37The outside firms in domestic markets make the same innovation decisions as the domestic firms.
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Transition of Technology Gap Portfolio Consider a firmwith technology gap com-
position given by Ñ (nf , k) ≡ (nf , nf − k, k, 0, 0), where k ∈ [0, nf ] ∩ Z and nf > 0.
Ignoring external innovation, the probability of technology gap composition chang-
ing from N = Ñ (nf , k) to N ′ = Ñ (nf , k̃) is

P̃
(
nf , k̃|nf , k

)
=

min{nf−k,k̃}∑
k̃1=max{0,k̃−k}

(
(nf − k)!

k̃1!(nf − k − k̃1)!

)(
k!

(k̃ − k̃1)!(k − (k̃ − k̃1))!

)

×(1− x)nf−(k̃−k̃1)(1− z1)nf−k−k̃
1

(z1)k̃
1

(1− z2)k−(k̃−k̃1)(z2)k̃−k̃
1

,

for nf ≥ 1 and 0 ≤ k̃, k ≤ nf , and zero, otherwise. This follows a binomial process
as in Ates and Saffie (2021).
Using the above, we can track general cases transitioning fromN = (nf , n

1
f , n

2
f , n

3
f , n

4
f )

toN ′ = (n′
f , n

1′
f , n

2′
f , n

3′
f , n

4′
f ) for any n′

f ≤ nf+1 as products with∆3 or∆4 can only be
obtained through external innovation. Details can be found in Online Appendix A.4.

Technology Gap Distribution The aggregate distribution of technology gaps is

µ
(
∆ℓ
)
=

nf∑
nf=1

nf∑
nℓf=0

nf∑
n−ℓ
f =0

nℓf µ̃
(
nf , n

1
f , n

2
f , n

3
f , n

4
f

)
, for ℓ = 1, 2, 3, 4 (2.26)

where the third summation represents the sum over all possible values for n−ℓ
f other

than the focal ℓ. Note∑4
ℓ=1 µ

(
∆ℓ
)
= 1 holds in equilibrium.38

Aggregate Variables and Balanced Growth Path Given the optimal innovation
choices (2.12), (2.13), (2.14), (2.15), (2.16), and (2.23), the aggregate domestic
R&D expenses becomes

Rd = χ̂
4∑
ℓ=1

[∫ 1

0

qjI{∆j=∆ℓ,j∈D}dj

]
(zℓ)ψ̂ + Fdχ̃qx

ψ̃ + Edχ̃e(xe)ψ̃eq, (2.27)

38This is because each product line is occupied by one incumbent and there is a unit mass of
products.
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where I{∆j=∆ℓ,j∈D} is an indicator for product line j owned by a domestic firm with
∆ℓ. With (2.9), the aggregate demand for final goods by domestic intermediate
producers is

Yd =

∫ 1

0

yjI{j∈D}dj = (1− θ)
1
θ

∫ 1

0

qjI{j∈D}dj, (2.28)

and the aggregate consumption is determined by

C = Y −
∫
j /∈D

pjyjdj − Yd −Rd, (2.29)

where the second term is the payments to outside intermediate producers.39 Lastly,
the balanced growth path (BGP) equilibrium is characterized by the following:

Definition 1. A balanced growth path equilibrium consists of y∗j , p∗j ,w∗, L∗, x∗, {zℓ∗}4ℓ=1,

x∗, x∗e, F∗, R∗
d, Y ∗, C∗, g∗, µ̃(N ), {µ(∆ℓ)}4ℓ=1 for j ∈ [0, 1] with qj such that: (i) y∗j

and p∗j satisfy (2.9); (ii) w∗ satisfies (2.10); (iii) L∗ satisfies (2.1); (iv) {zℓ∗}4ℓ=1 satisfy

(2.12)-(2.15), and x∗ satisfies (2.16); (v) x∗ satisfies (2.24); (vi) x∗e satisfies (2.23);
(vii) Y ∗ satisfies (2.10); (viii) R∗

d satisfies (2.27); (ix) C∗ satisfies (2.29); (x) the BGP
growth rate g∗ satisfies (2.25); (xi) the distribution of technology gap portfolio com-

position µ̃(N ) and F∗ satisfy inflow(N ) = outflow(N ); and (xii) the technology gap

distribution {µ(∆ℓ)}4ℓ=1 follows (2.26).

3 Empirics

In this section, we empirically test the model predictions by identifying the causal ef-
fect of competition on the composition of firm innovation and analyzing the industry-
level association between technological barriers and firm entry. We employ the
China’s WTO accession in 2001 as a quasi-experimental increase in competitive pres-
sure.
39We assume outside firms use final goods from their economy for production and R&D.
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3.1 Data and Measurement

To compile comprehensive data on firm innovation and a foreign competition shock,
we combine the USPTO PatentsView database, the Longitudinal Business Database
(LBD), the Longitudinal Firm Trade Transactions Database (LFTTD), the Census of
Manufactures (CMF), the NBER-CES database, and the tariff data in Feenstra et al.
(2002).
The LBD tracks the universe of establishments and firms in the U.S. non-farm pri-

vate sector with at least one paid employee annually from 1976 onward.40 We ag-
gregate establishment-level information into firm-level using these firm identifiers.41

Firm size is measured by total employment or payroll. Firm age is based on the age
of the oldest establishment of the firm when the firm is first observed in the data.
The firm’s main industry of operation is based on the six-digit North American In-
dustry Classification System (NAICS) code associated with the establishment with
the highest level of employment.42

The LFTTD tracks all U.S. international trade transactions at the firm level from
1992 onward. It provides information such as the U.S. dollar value of shipments, the
origin and destination countries, and a related-party flag indicating whether the U.S.
importer and the foreign exporter are related by ownership of at least 6 percent.43

The USPTO PatentsView database records all patents ultimately granted by the
USPTO from 1976 onward.44 This database provides comprehensive details for
patents, including application and grant dates, technology class, citation, and the
name and address of patent assignees. In our analyses, we rely on the citation-
40Details for the LBD and its construction can be found in Jarmin and Miranda (2002).
41An establishment corresponds to the physical location where business activity occurs. Establish-

ments that are operated by the same entity, identified through the Economic Census and the Company
Organization Survey, are grouped under a common firm identifier.
42Time-consistent NAICS codes for LBD establishments are constructed by Fort and Klimek (2018),

and the 2012 NAICS codes are used throughout the entire analysis.
43Bernard et al. (2009) describe the LFTTD in greater detail.
44See https://patentsview.org/download/data-download-tables.
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adjusted number of utility patents as the main measure of firm innovation.45 Using
the patent-level information, we distinguish domestic innovation from foreign inno-
vation, and assess the extent to which each patent represents internal innovation.
The patent application year is used for the innovation year.
We link the USPTO patent database to the LBD to track firm patenting activity

over time. Here, the failure to match a patent assignee to its LBD firm counterpart
can lead to a mismeasurement of changes in firm innovation.46 Due to the USPTO’s
limitation in providing a longitudinally consistent unique firm identifier, we build
our own crosswalk between the two datasets by adopting the internet search-aided
algorithm as in Autor et al. (2020).47 We pool all patents granted up to December
26, 2017 and use patent applications up to 2007 in our main analyses to avoid a
right censoring issue arising from patents applied for but not yet granted. Table G1
in the online Appendix reports summary statistics.
The quinquennial CMF provides detailed information about the U.S. manufactur-

ing establishments and products they produce. It contains product-level details such
as product codes and the value of shipment. We use five-digit SIC codes (for the
pre-2002 years) or seven-digit NAICS codes (for 2002 onward) to define a product.
We obtain the U.S. tariff schedules from Feenstra et al. (2002) to measure the

industry-level Trade Policy Uncertainty (TPU) as a proxy for foreign competitive
pressure.
Lastly, all nominal values are converted to 1997 U.S. dollars, using the industry-

level deflator from the NBER CES Manufacturing Industry Database for manufactur-
ing industries and the Consumer Price Index from the BEA for other industries.48

Following this, for our main analyses, we use the USPTO patents matched to LBD
45See Cohen (2010) for a comprehensive review of the literature on the determination of firm/in-

dustry innovative activity and related patent measures.
46The USPTO assigns patent applications to self-reported firm names, which are frequently mis-

spelled.
47This algorithm utilizes the machine-learning capacities of internet search engines. The entire

matching methodology is outlined in our accompanying paper Ding et al. (2022).
48The NBER CES data are complied by Becker et al. (2013) (http://www.nber.org/nberces/).
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firms and industry-level trade data spanning from 1982 to 2007.49

Measure of Internal Innovation We follow Akcigit and Kerr (2018) and use the
self-citation ratio, the ratio of self-citations to total citations, as a measure of the
likelihood a patent is used for internal innovation.50 A higher self-citation ratio im-
plies a greater probability that a patent reflects internal innovation.51 This is because
the more an idea is based on the firm’s internal knowledge stock (self-citation), the
more likely the innovation is used to improve the firm’s existing products (internal
innovation). Alternatively, we measure internal innovation by the number of patents
with a self-citation ratio above a certain threshold (0% or 10%). Also, we measure
within-firm product sales concentration.

Measure of Foreign Competition Following Pierce and Schott (2016) and Han-
dley and Limão (2017), we use the removal of trade policy uncertainty (TPU) as
a measure of an exogenous competitive pressure shock. Specifically, we use the
following industry-level tariff rate gaps between WTO members and non-market
economies in the year 1999 as a proxy for the industry-level competitive pressure
49Our procedure links patents to the firms initially reported by the USPTO as owners and does not

track ownership changes resulting from, for instance, M&A activities. We expect our analysis not to
be contaminated by firms substituting their innovation activities with the acquisition of other firms,
particularly given the fact that M&A activities in the U.S. have started declining since around 2000
and did not fully recover by 2007 as demonstrated in Phillips and Zhdanov (2023).
50Each granted patent is required to cite all prior patents on which it builds itself. When a cited

patent belongs to the owner of the citing patent, these citations are called self-citations.
51Thus, 100% self-citationmeans the patent is used for internal innovation with a 100% probability,

and 0% self-citation means the patent is used for external innovation with a 100% probability.
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shock from China occurring in 2001.52

NTRGapj = Non NTR Ratej − NTR Ratej (for industry j).

For multi-industry firms, we use the employment-weighted average of NTRGapj.53

The removal of TPU encouraged Chinese firms to enter the U.S. markets and export
their products (Pierce and Schott, 2016), which captures an exogenous increase in
competitive pressure by foreign firms and directly maps into an increase in xo in our
model.

3.2 Empirical Strategy Testing the Market-Protection Effect

Regression Results To test the market-protection effect in our model, we follow
Pierce and Schott (2016) and use the following Difference-in-Difference (DD) spec-
ification to identify the effect of the Chinese competitive pressure shock on the U.S.
firm innovation:

∆yijp =β1Postp ×NTRGapijp0 × InnovIntensijp0 + β2Postp ×NTRGapijp0

+ β3Postp × InnovIntensijp0 + β4NTRGapijp0 × InnovIntensijp0

+ β5NTRGapijp0 + β6InnovIntensijp0

+Xijp0γ1 +Xjp0γ2 + δj + δp + α + εijp , (3.30)
52Nonmarket economies such as China are by default subject to relatively high tariff rates, known

as non-Normal Trade Relations (non-NTR) or column 2 tariffs, when they export to the U.S. On the
other hand, the U.S. offers WTO member countries NTR or column 1 tariffs, which are substantially
lower than non-NTR tariffs. Although the U.S. granted temporary NTR status to China from 1980,
the U.S. Congress voted on a bill to revoke China’s temporary NTR status every year from 1990 to
2001 after the Tiananmen Square protests in 1989. This caused uncertainty about whether the low
tariffs would revert to non-NTR rates. Following an agreement on China’s entry into the WTO, the
U.S. Congress passed a bill granting China permanent NTR (PNTR), and PNTR was implemented on
January 1, 2002. The PNTR has reduced trade policy uncertainty, more for industries with a large
prior gap between NTR and non-NTR tariff rates. See Pierce and Schott (2016) for details.
53Table G2 in the online Appendix reports summary statistics of the NTR-related measures.
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where p ∈ {1992−1999, 2000−2007}, yijp is either i) the total citation-adjusted num-
ber of patents (overall innovation), or ii) the citation-weighted average self-citation
ratio (internalness of innovation) for firm i in industry j, and∆yijp is the DHS (Davis
et al., 1996) growth rate of y between the start-year and end-year for each period
p.54

To maximize the sample size, we include firms that applied for at least one patent
in the start-year and at least one patent in or before the end-year for each period.
We compute the DHS growth rates for the longest available span of years. We also
require firms to have at least one patent before the start-year of each period, or to
have an age greater than 0, to avoid the impact of firm entry. The sample comprises
all patenting LBD firms meeting these three criteria and excludes FIRE (finance,
insurance, and real estate) industries.
Postp is a dummy variable for the post-treatment period 2000-2007. Xijp0 and

Xjp0 is a vector of firm and industry controls, respectively, measured at the start-
year for each period p.55 δj is an industry fixed effect (six-digit NAICS), and δp is a
period fixed effect. The regression is unweighted, and standard errors are clustered
on the six-digit NAICS industries. Firms in low TPU industries are the control group,
whereas firms in high TPU industries are the treatment group. We use the 1992 and
2000 cohorts of firms to gauge firm innovation before and after the policy change in
December 2001. In this way, the composition of firms in terms of their innovation is
minimally affected by the policy change.
InnovIntensijp0 is the lagged five-year average of the ratio of the number of patent

applications to total employment for firm i. This proxies the technological advantage
the firm has. It is measured in the start year for each period p and is normalized by its
time-average at the two-digit NAICS level to control for industry effects. The model
54The long-difference regression specification is standard in settings with a slow-moving process,

such as innovation or technological progress (e.g., Acemoglu and Restrepo, 2020).
55Baseline firm controls include: firm employment, firm age, the past five-year growth of U.S.

patents in the CPC technology classes in which the firm operates, and a dummy variable for publicly
traded firms. Industry control variables include NTR rates measured at the start of each period.
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predicts β1 > 0 when the dependent variable is the changes in self-citation ratio.
The second row of Table 1 shows the estimates of β1.56 The results are consistent

with our model prediction in several dimensions. First, the first two columns show
that the Chinese competitive pressure shock has no statistically significant effect on
firms’ overall innovation, regardless of the set of firm controls included. According to
our model, as competition intensifies, firms increase or decrease internal innovation
based on the technological advantages accumulated within their markets. However,
firms universally decrease their external innovation. Considering both internal and
external innovation changes, the overall effect of competition on firm innovation
need not be statistically significant.
However, when examining the effect on internal innovation by substituting the

dependent variable with the growth rate of the self-citation ratio, the effect becomes
positive and statistically significant, as indicated in the last two columns.57 This
supports the model prediction of the market-protection effect. The estimated co-
efficient implies a 4.2 percentage points increase in the growth rate of the average
self-citation ratio during the period 2000-2007 for a firm with an average lagged
innovation intensity (0.18) in an industry with an average NTR gap (0.291). Given
that the average value of the seven-year growth rate of the average self-citation ratio
between 2000 and 2007 is 28.2 percentage points, this effect represents a 15.0%
increase in internal innovation by firms with technological advantages.
The estimated effect is economically important as well. Table G3 in the online Ap-

pendix shows that for average firms, creating one more patent is associated with a
1.32 percentage points increase in employment growth. However, the magnitude of
this association diminishes if the new patent has a higher self-citation ratio. Combin-
ing this with the main result indicates that the association between patenting and
56To conserve space, Table 1 reports the main coefficient estimates for the triple interaction and

the DD-term only. The full results are available in Table G7 and G8 in the online Appendix.
57Note that because firms do not change their overall innovation, the increasing self-citation ratio

implies that innovative firms (those above the average innovation intensity) increase their internal
innovation while decreasing their external innovation.
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Table 1: Market-Protection Effect
∆Patents ∆Patents ∆Self-cite ∆Self-cite

NTR gap × Post 0.238 0.071 -0.075 -0.062
(0.237) (0.283) (0.257) (0.291)

× Innovation intensity 0.077 -0.054 0.732** 0.795***
(0.231) (0.242) (0.299) (0.277)

Observations 6,500 6,500 6,500 6,500
Fixed effects j, p j, p j, p j, p
Controls no baseline no baseline
Note: The baseline controls include the past five-year U.S. patent growth in firms’ own technology
fields, log employment, firm age, NTR rate, and a dummy for publicly traded firms. The estimates for
industry (j) and the period (p) fixed effects, along with the coefficient associated with the binary in-
dicator, are suppressed due to disclosure restrictions. The constant is also omitted. Robust standard
errors, adjusted for clustering at the level of the firms’ major industries, are displayed below each
coefficient. Observations are unweighted, and observation counts are rounded due to the Census Bu-
reau disclosure avoidance procedures. For the sake of space, only the main coefficients are presented.
Full results are available on request. * p < 0.1, ** p < 0.05, *** p < 0.01.

employment growth decreases by 17.1% (from 1.32pp to 1.10pp) for innovation-
intensive firms following the competitive pressure shock from China.58 Furthermore,
Table G4 in the online Appendix indicates that patents in general exhibit a positive
association with both the number of products added and productivity growth at the
firm level. However, this effect gets muted if patents have a higher self-citation ratio.
Additionally, patents with a higher self-citation ratio increase the growth of product
sales concentration within firms. The result is robust with alternative measures of
external and internal innovations, as shown in the online Appendix Table G5.

Validity of the Identification Strategy and Robustness Tests We also confirm the
validity of our identification and main results across various dimensions. First, we
test the parallel pre-trends assumption, a key identifying assumption for the Diff-in-
Diff model. We estimate (3.30) for the two seven-year periods preceding the policy
change, 1984-1991 and 1992-1999. Table G6 in the online Appendix supports the
validity of the assumption.
58Innovation-intensive firms are those with innovation intensity one standard deviation above the

average.
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Furthermore, we perform several robustness checks. First, we replace the baseline
firm-level NTR gaps with the industry-level NTR gaps based on the primary industry
(with the largest employment size) in which firms operate.59 Second, we include
upstream and downstream competitive pressure shocks as covariates to control the
effect of trade shocks through firms’ I-O network.60,61 The third test addresses a po-
tential sampling bias using the inverse propensity score weights.62,63 The fourth test
adjusts the level of standard error clustering to the firm level.64 In our fifth test,
we assess the robustness of the innovation intensity measure, considering its poten-
tial correlation with firm size or age (e.g., Acemoglu et al., 2018), which may blur
the effect of technological barriers. To address this concern, we control additional
terms that interact the innovation intensity with firm age and size. Moreover, we use
an alternative measure derived from taking the inverse of innovation intensity gap
from the industry frontier level as the level of technological advantage, and take the
average over the past five years. The sixth test confirms the robustness with alterna-
tive measures for external and internal innovations. External innovation is directly
59The baseline measure uses the employment-share weighted average of the industry-level NTR

gaps, where the employment share is measured at the start year of each period and averaged across
the firm’s operating industries.
60The upstream measure captures the effect of trade shocks propagating upstream from an indus-

try’s buyers, and the downstream measure shows the effect of trade shocks propagating downstream
from its suppliers.
61Using the 1992 BEA input-output table, we construct upstream and downstream competitive

pressure shocks as the weighted averages of industry-level trade shocks. Following the approach in
Pierce and Schott (2016), we assign I-O weights to zero for both upstream and downstream industries
within the same three-digit NAICS broad industries for each six-digit NAICS industry. We assume that
the shocks within the same three-digit industries capture direct effects rather than indirect effects
through the I-O linkage. This is grounded in empirical evidence presented in Bernard et al. (2010),
documenting that U.S. manufacturing establishments commonly manufacture clusters of products
within the same three-digit NAICS industry.
62This issue can potentially arise from the selection of samples with a positive number of patents

granted in the start year and in any of the last four years of each period in the regression analysis,
which is inevitable to compute the self-citation ratio over two years for each period.
63To formulate the weights, we employ a logit regression on the entire universe of the LBD. The

dependent variable is set to one if the firm belongs to the regression sample and zero otherwise. The
independent variables include firm size, age, employment growth rate, industry, and a multi-unit
status indicator.
64In our baseline analysis, we cluster the standard errors at the six-digit NAICS level as most vari-

ations in the firm-level NTR gap occur at the industry-level.
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Table 2: Technological Barrier Effect
Firm entry Firm entry

Technological barriers -0.012** -0.016**
(0.006) (0.007)

Observation 1,300 1,300
Fixed effects j, t j, t
Tech. barrier thresholds Top 5% Top 10%
Note: Industries are NAICS6 defined in the Census of Manufacturers. Technological barriers are
measured by either the top 5th or top 10th percentile level of firm-level TFPR (normalized by the
frontier level) within each industry. The first column uses the top 5th percentile, and the second
column uses the top 10th percentile. Estimates for industry (j) and year (t) fixed effects as well as
the constant are suppressed. Observations are unweighted. Observation counts are rounded due to
Census Bureau disclosure avoidance procedures.

measured by the number of new product added, and internal innovation is directly
measured by the number of patents with a self-citation ratio above 0% or 10%. Also,
we examine the impact on within-firm product market concentration. Lastly, we in-
clude additional controls (such as the cumulative number of patents, firm payroll,
the number of industries or products, industry-level skill and capital intensities, as
well as dummies for importers and exporters) beyond the baseline set to eliminate
potential alternative interpretations. Table G9-G19 in the online Appendix present
the results for each test, all of which confirm the robustness.65

3.3 Technological Barrier Effect

To test the technological barrier effect, we run the following industry-level regres-
sion:

FirmEntryjt = βTechBarrierjt + δj + δt + α + εjt. (3.31)
65Tables G15-G17 in the online Appendix are consistent with our model prediction: higher compet-

itive pressure reduces the number of new products added (external innovation) for all firms; increases
the number of patents with a high level of self-citation (internal innovation) for innovative firms; and
increases product market concentration.
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Table 3: Parameter Estimates
External calibration Internal calibration

Param. Description Value Param. Description Value
β Time discount rate 0.947 χ̂ Scale of internal R&D 0.044
ψ̂ Curvature of internal R&D 2.000 χ̃ Scale of external R&D 0.405
ψ̃ Curvature of external R&D 2.000 χ̃e Scale of startup R&D 1.689
ψ̃e Curvature of startup R&D 2.000 λ Step size, internal innovation 1.040
θ Quality share, final goods 0.109 η Step size, external innovation 1.075

Eo Mass of outside entrants 0.007

FirmEntryjt is the firm entry rate, and TechBarrierjt is the technological barrier
in industry j at year t. We measure the industry-level technological barrier using the
skewness of the firm-level TFPR distribution (normalized by the industry frontier
level). A right-skewed distribution indicates more firms near the frontier, implying
intensive innovation in that industry. Specifically, we normalize firm-level TFPR by
the industry frontier level and use the top 5th or 10th percentile value.66

Table 2 indicates that firm entry is lower in industries with higher technological
barriers, which supports the technological barrier effect predicted in our model.

4 Quantitative Analysis

In this section, we calibrate the model to the U.S. manufacturing sector in 1992 and
conduct counterfactual exercises to analyze the aggregate effects of increased com-
petition and shifts in firm innovation composition. To better align the model with
data, we expand the baseline model in Section 2 by allowing firms to undertake mul-
tiple external innovations simultaneously, depending on their number of products,
as in Klette and Kortum (2004).67
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Table 4: Target Moments
Moment Data Model Moment Data Model
Number of products 2.3 2.3 Avg. productivity growth (%) 1.9 1.9
Number of products added 0.3 0.3 High-growth firm growth (%) 22.5 22.3
Firm entry rate (%) 7.6 7.6 Import penetration rate (%) 15.3 15.3

4.1 Calibration

There are eleven structural parameters in the model, listed in Table 3. The first group
of five parameters is externally calibrated, and the second group of six parameters is
internally calibrated to match moments associated with firm-level variables and the
import penetration ratio in the U.S. manufacturing sector.68 We normalize the mass
of potential domestic startups.

Externally Calibrated Parameters The time discount factor (β) is set to 0.947,
which corresponds to an annual interest rate of 5.6%. The curvature parameters of
the three R&D cost functions (ψ̂, ψ̃, ψ̃e) are taken from Acemoglu et al. (2018) and
Akcigit and Kerr (2018). We set the average profit-to-sales ratio θ (= ∫

f

profitf
salesf

df) to
match the quality share in final goods production (10.9%) reported in Akcigit and
Kerr (2018).

Internally Calibrated Parameters The remaining six parameters are internally
calibrated to minimize the following objective function with the six target moments
in Table 4: min

∑6
i=1

∣∣model momenti − data momenti∣∣
1
2

∣∣model momenti∣∣+ 1
2

∣∣data momenti∣∣ . Although the param-
eters are jointly calibrated, the most relevant moments for each set of parameters
can be noted. Internal and external R&D scales (χ̂, χ̃) are set to match the average
66Note that this is the inverse of the TFPR gap in Aghion et al. (2005) (i.e., 1-TFPR gap).
67See Online Appendix C and D for further details and computational algorithms used to solve the

model.
68The average number of products and the number of products added are from the 1992 CMF. The

high-growth firm growth rate is sourced from the LBD (Decker et al., 2016). Data on manufacturing
imports and exports for the import penetration ratio come from Schott (2008), while data on man-
ufacturing value added and productivity are from the NBER-CES Manufacturing Industry Database.
The firm entry rate is taken from the BDS.
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Figure 1: Firm Size Distribution: Theory and Data

number of products and the number of products added per firm. The startup exter-
nal R&D scale (χ̃e) matches the firm entry rate. We target the average productivity
growth rate and the employment growth rate of high-growth firms (90th percentile)
to determine the quality multipliers for internal (λ) and external innovations (η).
Lastly, the mass of potential outside entrants (εo) targets the import penetration
ratio in the manufacturing sector.

Model Properties The calibration results are presented in Table 4, where ourmodel
performs well in matching the target moments overall. In particular, it matches well
the number of products and products added. Conditional on the number of products,
the number of products added reflects both innovation intensity and the duration
for learning the frontier technology in data. These two variables may vary across
different products or technology, and the learning time may not be strictly annual.
Assuming a fixed annual duration of learning in the model, the calibration adjusts
the R&D cost parameters (the innovation intensity) accordingly to map the data to
the annual frequency of the model.
Also, note that targeting the growth of high-growth firms helps us pin down the

relative size of the two step sizes λ and η, since external innovation has a greater
impact on the right tail of the firm growth distribution. Our model aligns well with
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these moments, and the estimated parameter values suggest that external innova-
tion contributes 1.88 (0.075

0.04
) times more to growth compared to internal innovation.

Also, the estimates satisfy the assumption λ2 > η > λ, even without imposing any
parameter restrictions such as λ2 > η.
Figure 1 compares firm size distribution (in terms of the number of products)

between the model and the data, which is untargeted. Although the model exhibits
a thicker right tail, indicating more firms with 11 or more products, it closely aligns
with the data in general.
Another untargeted one is the aggregate R&D to sales ratio.69 Our model esti-

mate is 4.6%, which closely matches the data estimate of 4.1% in Akcigit and Kerr
(2018). Our model incorporates all resources used for product quality improvement
and product scope expansion into R&D expenses, some of which might not be fully
captured in the data.

4.2 Counterfactual Exercises

In this section, we assess the impact of heightened competition on overall firm in-
novation, the composition of firm innovation, and aggregate growth. In the model,
we increase the mass of potential outside entrants Eo by 83%, corresponding to the
rise in import penetration ratio in the U.S. manufacturing sector from 1992 to 2007
(from 15.3% to 25.1%).70

Increasing Competitive Pressure from Outside Firms Table 5 shows that an ex-
ogenous increase in outside firm entry leads to a rise in the aggregate creative de-
struction arrival rate x and results in three key effects: i) the expected profits of both
internal and external innovation ({Aℓ}4ℓ=1 and B) decrease, known as the Schum-
69The aggregate R&D to sales ratio is defined as the ratio of total R&D expenses (the sum of internal

and external R&D expenses) of domestic incumbents to their total sales.
70In Online Appendix F, we explore an additional counterfactual analysis involving an increase in

the creative destruction arrival rate by domestic startups. This comparison allows us to assess the
results in light of varying sources of increased competitive pressure.
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peterian effect (Panel B); ii) incumbents intensify internal innovation to protect their
existing product lines, especially those with a technology gap of ∆ℓ > 1, referred to
as the market-protection effect; iii) the market-protection efforts along with the in-
crease in x raise the average technology gap, making it harder for firms to take over
product markets via external innovation, labeled as the technological barrier effect
(Panel C).71

Our novel mechanism comes through ii) and iii). In the general equilibrium, these
effects come into play together and interact. For instance, the technological barrier
effect in iii) additionally influences the aggregate creative destruction arrival rate
x, causing a feedback loop involving i) to iii). This effect arises as external inno-
vation by outside firms and successful internal innovation shift the technology gap
distribution (Panel C). Specifically, the density of ∆2, ∆3, and ∆4 increases, reduc-
ing the conditional takeover probability and the ex-ante value of successful product
takeover.72 Consequently, firm incentives for external innovation and domestic firm
entry get reduced. This effect contributes to the decline observed in x and xe in Table
5.73

Finally, Table 6 summarizes how aggregate variables change in response to the
increased competitive pressure from outside firms. The aggregate R&D to sales
ratio of domestic incumbents drops, indicating that the decrease in external inno-
vation outweighs the increase in internal innovation. Consequently, external R&D
intensity—the ratio of domestic R&D expenses for external innovation to domes-
tic R&D expenses—decreases. The average number of products per firm declines,
aligning with the empirical findings of Bernard et al. (2011). Furthermore, the total
71A ≡

∑4
ℓ=1Aℓµ(∆

ℓ). Table E1 in Online Appendix E presents details for the changes in {Aℓ}4ℓ=1.72xtakeover decreases from 73.2% to 73.0%. The increase in densities µ(∆3) and µ(∆4) is solely
attributed to increased external innovation by outside firms. The higher density of ∆2 reflects both
increased internal innovation driven by the market-protection effect and external innovation by out-
side firms.
73Recall that the total decline in x and xe results from the combined impact of the Schumpeterian

and technological barrier effects. A decomposition reveals that 17.0% and 15.0% of the total change
in x and xe are ascribed to the technological barrier effect (due to the shifts in µ(∆ℓ), given all else
equal).
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Table 5: Counterfactual: Increasing Competitive Pressure in the U.S.
Description Variables Before After % Change

Panel A: Changes in Firm Innovation
creative destruction arrival rate by outside firms (%) xo 3.3 5.5 66.4%
aggregate creative destruction arrival rate (%) x 21.5 21.9 1.51%
prob. of internal innovation (∆1 = 1, %) z1 16.9 16.8 -0.43%
prob. of internal innovation (∆2 = λ, %) z2 57.8 57.9 0.19%
prob. of internal innovation (∆3 = η, %) z3 39.7 39.7 0.13%
prob. of internal innovation (%) (∆4 = η

λ , %) z4 37.3 37.4 0.05%
prob. of external innovation, incumbents (%) x 16.8 16.5 -1.33%
prob. of external innovation, potential startups (%) xe 4.02 3.97 -1.33%

Panel B: Changes in Innovation Values
Average of internal innovation values A 0.167 0.165 -1.04%
External innovation value B 0.011 0.011 -2.6%

Panel C: Changes in Technology Gap Distribution

Technology gap distribution (shares)
∆1 = 1 0.541 0.539 -0.4%
∆2 = λ 0.314 0.314 0.2%
∆3 = η 0.116 0.118 1.1%
∆4 = η

λ 0.028 0.029 1.4%

Table 6: Changes in Aggregate Moments
Description Before After % Change

Panel A: Changes in the Aggregate Moments
R&D to sales ratio (%) 4.6 4.5 -1.6%
External R&D intensity (%) 63.9 63.1 -1.2%
Average number of products 2.3 2.2 -5.5%
Total mass of domestic firms 0.386 0.361 -6.4%

Panel B: Changes in the Aggregate Growth and Decomposition
Average productivity growth by domestic firms (%) 1.9 1.7 -11.0%
Growth from domestic internal innovation (%) 1.0 0.9 -11.4%
Growth from domestic external innovation (%) 0.7 0.6 -13.0%
Growth from domestic startups (%) 0.2 0.2 -1.7%

number of domestic firms falls.
In addition, Panel B shows that the average productivity growth of domestic firms

(gd) declines. This decrease is attributed to shifts in firm-level innovation intensities
and the mass of firms. Keeping the mass of domestic incumbents constant, 12.7%
of this decline in growth can be attributed to changes in firm-level external innova-
tion.74
74For more detailed breakdowns, refer to Tables E2 and E3 in Online Appendix E. Note that if we

take into account the contribution of outside firms, the aggregate growth rate increases.
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Figure 2: Decomposition of Innovation Change Across different χ̃

Comparison: Economy with High External Innovation Costs To compare im-
plications across environments with different innovation structures, we re-calibrate
the model to hypothetical economies characterized by lower creativity (less external
innovation due to higher frictions) compared to the U.S. Specifically, we increase the
parameter associated with external innovation costs (χ̃) up to 80 times higher than
the baseline value of 0.405, while keeping other parameters unchanged. We then
perform the same counterfactual analysis.
Figure 2 shows the results across different initial levels of x (reflecting different

degrees of initial competitive pressure) corresponding to varied values of χ̃ (that
negatively affects x). The U.S. economy represents the highest x level in the fig-
ures. The left panel shows the initial R&D to sales ratios and their changes following
a competitive pressure shock, and the right panel breaks down the latter into the
changes in internal and external innovations.
Internal R&D expenses rise as competitive pressure intensifies, while external R&D

expenses decline. However, the decrease in external R&D is more pronounced when
its cost χ̃ is low (high initial x). While both types of innovation shift similarly across
different economies, internal innovation increases more than external innovation
in high-cost external innovation (low initial x) environments, whereas the reverse
holds for low-cost (high initial x) environments.75 Thus, in economies where exter-
75See Table E4 in Online Appendix E for detailed results when χ̃ is 80 times higher than the U.S.
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Table 7: Aggregate Moment Comparison: U.S. vs. High External Innovation Cost
Economy
Moment Baseline High Ext. Costs After Shock % Change
R&D to sales ratio (%) 4.58 1.39 1.41 1.0%
External R&D intensity (%) 63.9 8.6 7.8 -9.8%
Average number of products 2.3 1.0 1.0 -0.2%
Avg. growth by domestic firms (%) 1.9 1.4 1.3 -9.7%

nal innovation costs are high, aggregate R&D increases in response to competitive
pressure, contrasting with the U.S.
Table 7 compares aggregate moments between the U.S. and an economy with high

external innovation costs (χ̃ × 80), as well as the response of the latter economy to
a competition shock. The first two columns show that the low creativity economy
exhibits lower dynamism than the U.S. with less R&D, fewer products, and lower
average productivity growth. The last two columns indicate that both economies re-
spond similarly to increased foreign competition, except for the R&D to sales ratio,
where the difference arises from the initially lower level of external innovation in the
low creativity economy. Despite the increased domestic innovation, the growth at-
tributable to domestic innovation drops in this economy. The reduction is associated
with decreases in external innovation by domestic incumbents and startups, coupled
with a decline in the mass of domestic incumbents.76

Discussion Our results underscore the importance of examining changes in inno-
vation composition, which can further help reconcile disparate findings from previ-
ous studies. For instance, if the European economy faces higher external innovation
costs due to barriers like complex approval processes or labor regulation (e.g., Peters,
2020; Aghion et al., 2023), our model suggests that increased foreign competition
may enhance overall innovation in Europe compared to the U.S. through the changes
in innovation composition. This extends Aghion et al. (2005) by integrating multi-
76The version with the mass of firms fixed is presented in Table E5 in Online Appendix E. Note that

this pattern holds even without the effect of the changes in firm mass.
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ple strands of literature and highlighting compositional changes as a mechanism
determining the aggregate impacts of competition.
Understanding the compositional changes in innovation is also important to prop-

erly evaluate the aggregate implications of competition. Increased overall innovation
from heightened competition may not be beneficial if driven by defensive internal
innovation, which contributes less to economic growth than external innovation and
limits firm entry. Our findings suggest that competition does not effectively address
the challenge of low external innovation in low-creativity economies but could rather
exacerbate this issue.77

5 Conclusion

In this paper, we explore the impact of competition on firm innovation under imper-
fect technology spillovers by examining the shifts in innovation composition driven
by firms’ strategic choices, both theoretically and empirically. We find that height-
ened competition prompts firms to increase internal innovation within product lines
with technological advantages, while dampening external innovation. Moreover, the
overall impact of competition on innovation is contingent upon innovation cost struc-
tures, leading to changes in innovation composition with different magnitudes and
shaping distinct aggregate implications. This channel helps to fill gaps in existing lit-
erature, reconcile previous findings, and advance our understanding of the intricate
role of competition in firm innovation.

Supplementary Materials The online Appendix contains supplementary materi-
als.

77Peters (2020) also documents that external innovation reduces misallocation in the economy by
limiting the market power accumulation of incumbents. This provides further evidence supporting
our claim that increasing overall innovation does not always benefit the economy.
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Appendix: Proofs of Propositions

Proof of Lemma 1 . Consider the following two cases: 1) no ownership change be-
tween t−1 and t, and 2) ownership change happens between t−1 and t. In scenario
1), qj,t = ∆j,tqj,t−1 with only ∆j,t ∈ {∆1 = 1,∆2 = λ} as a result of internal inno-
vation. In scenario 2), qj,t = ηqj,t−2 holds. Let’s consider all possible cases where i)
∆j,t = 1, ii) ∆j,t = λ, iii) ∆j,t = η, iv) ∆j,t =

η
λ
, v) ∆j,t =

ηn

λm
with n ≥ m > 0, and vi)

∆j,t =
λn

ηm
with n > m > 0. These are the only possible values ∆ can assume, given

that product quality can only be adjusted by three step sizes (1, λ, and η) between
two periods without technology regression (qt < qt−1).

• i) ∆j,t = 1: For this to be true, qj,t = qj,t−1 should hold. Since qj,t = ηqj,t−2, we
need qj,t−1 = ηqj,t−2. This is possible if there was external innovation between
t− 2 and t− 1, and no internal innovation between t− 3 and t− 1, leading to
qj,t−2 = qj,t−3.

• ii) ∆j,t = λ: For this to be true, ∆j,t−1 = η
λ
should hold, as ∆j,t =

qj,t
qj,t−1

=

ηqj,t−2

∆j,t−1qj,t−2
. This can be possible if there were internal innovation between t− 3

and t−2, and external innovation between t−2 and t−1, but no internal inno-
vation between t− 2 and t− 1. In this case, qj,t−2 = λqj,t−3 and qj,t−1 = ηqj,t−3

holds, and thus ∆j,t−1 =
qj,t−1

qj,t−2
=

ηqj,t−3

λqj,t−3
= η

λ
follows. So we have shown that

both ∆j,t = λ and ∆j,t =
η
λ
are possible, and ∆j,t =

η
λ
can be realized only

through external innovation between t− 1 and t.

• iii) ∆j,t = η: For this to be true, qj,t−1 = qj,t−2 should hold. This is possible if there
was neither ownership change nor internal innovation between t−1 and t−2.

• iv) ∆j,t =
η
λ
: This follows the illustration in case ii)

• v) ∆j,t =
ηn

λm
with n ≥ m > 0: Suppose this is the case. As ∆j,t /∈ {∆1 = 1,∆2 =

λ}, there should be an ownership change between t−1 and t. Thus qj,t = ηqj,t−2
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holds, implying qj,t−1 =
λm

ηn−1 qj,t−2. Note that m ≤ n− 1 is not possible without
technology regression. Thus, m = n (as m > n − 1 and n ≥ m > 0). If
λm

ηm−1 < 1, this implies technology regression and can be ruled out. Suppose
λm

ηm−1 > 1. If m = 1, we are back to the cases ii) and iv). Suppose m > 1.
As λm

ηm−1 ̸= 1 or λ, there should be an ownership change between t − 2 and
t − 1. Thus, qj,t−1 = ηqj,t−3 holds, implying qj,t−2 = ηm

λm
qj,t−3. If ∆j,t =

ηn

λm
is

possible, qj,t−s = ηm

λm
qj,t−s−1 holds for even numbers s, and λm

ηm−1 qj,t−s−1 holds
for odd numbers s. Thus, in this case, either qj,1 = ηm

λm
qj,0 or qj,1 = λm

ηm−1 qj,0 must
hold, which can be ruled out (or we assume this case does not occur). Thus,
∆j,t =

ηn

λm
with n ≥ m > 0 is not possible.

• vi) ∆j,t = λn

ηm
with n > m > 0: Following the same argument, this case is not

possible.

Therefore ∆j,t can assume only the four values of
{
1, λ, η, η

λ

}.
Proof of Proposition 1. Using the conjectured value function, we can decompose
the expected value into two parts with the linearity of expectation: the expected
value of existing product lines E

[∑2
ℓ=1Aℓ

∑
j∈J f |(∆′

j |∆j)=∆ℓ ∆
ℓqj

]
and the expected

value for the new product line added through external innovationE[∑4
ℓ=1AℓI{η/∆j=∆ℓ}

η
∆j
qj
]. As the realization of internal innovation outcomes and the creative destruc-

tion are independent of the realization of external innovation, the expected value of
a new product line becomes:

E

[
4∑
ℓ=1

Aℓ I{ η
∆j

=∆ℓ
} η

∆j

qj

]
=

1∑
Ix=0

xI
x

(1− x)1−I
xEqj ,∆j

[
4∑
ℓ=1

Aℓ I{ η
∆j

=∆ℓ
} Ix η

∆j

qj

]

= x

[
1− z3

2
A1µ(∆

3) +

(
1− z4

2

)
A2λµ(∆

4) + A3ηµ(∆
1) + (1− z2)A4

η

λ
µ(∆2)

]
q .

The terms in the bracket arise from the random property of external innovation.
The assigned product can have a technology gap of ∆ℓ with a probability of µ(∆ℓ),
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and the probability of taking over this product line depends on its technology gap.
Integrating over all possible qualities qj over the entire set of available products gives
us q.78

The expected value of existing product lines can further be broken down into
the four cases of ∆ and integrated as ∑4

ℓ̃=1 E
[∑2

ℓ=1Aℓ
∑

j∈J f |(∆′
j |∆j=∆ℓ̃)=∆ℓ

∆ℓqj

]
.

To simplify the derivation, we reorder product quality qj by its technology gap ∆j

and categorize it into the following four groups: qf1 = {qj1 , qj2 , . . . , qjn1
f

}; qf2 =

{qj
n1
f
+1
, . . . , qj

n1
f
+n2

f

}; qf3 = {qj
n1
f
+n2

f
+1
, . . . , qj

n1
f
+n2

f
+n3

f

}; and qf4 = {qj
n1
f
+n2

f
+n3

f
+1
, . . . ,

qj
n1
f
+n2

f
+n3

f
+n4

f

}, qf = ∪4
ℓ̃=1
qf
ℓ̃
.

If∆ = ∆1 (ℓ̃ = 1), the expected value can be rephrased as∑n1
f

i=1

[
A1(1−x)(1−z1i )+

λA2(1−x)z1i
]
qji; if∆ = ∆2 (ℓ̃ = 2), it becomes∑n1

f+n
2
f

i=n1
f+1

[
A1(1−x)(1−z2i )+λA2z

2
i

]
qji ;

if ∆ = ∆3 (ℓ̃ = 3), it is∑nf−n4
f

i=n1
f+n

2
f+1

[
A1

(
1− 1

2
x
)
(1− z3i ) + λA2z

3
i

]
qji ; and if ∆ = ∆4

(ℓ̃ = 4), it is∑nf
i=nf−n4

f

[
A1(1− x)(1− z4i ) + λA2

(
1− 1

2
x
)
z4i
]
qji .

The Bq portion of the conjectured value function in E
[
V
(
Φf ′
∣∣ Φf

) ∣∣∣{zj}j∈J f , x
]

can be expressed as EBq′ = B(1 + g)q, where g denotes the growth rate of prod-
uct quality in a balanced growth path (BGP) equilibrium. Plugging this into the
conjectured value function, we can rephrase the original value function as:

n1
f∑

i=1

A1qji +

n1
f+n

2
f∑

i=n1
f+1

A2qji +

nf−n4
f∑

i=n1
f+n

2
f+1

A3qji +

nf∑
i=nf−n4

f+1

A4qji +Bq =

78Note that individual firms only have information about the distribution of technology gaps
{µ(∆ℓ)}4ℓ=1 and the average quality level q. That is, for an individual firm, a technology gap and
product quality are independent considerations.
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max
x∈[0,x̄],

{zi∈[0,z̄]}
nf
i=1



∑nf
i=1

[
πqji − χ̂zψ̂i qji

]
− q̄χ̃xψ̃

+β̃
∑n1

f

i=1

[
A1(1− x)(1− z1i ) + λA2(1− x)z1i

]
qji

+β̃
∑n1

f+n
2
f

i=n1
f+1

[
A1(1− x)(1− z2i ) + λA2z

2
i

]
qji

+β̃
∑nf−n4

f

i=n1
f+n

2
f+1

[
A1

(
1− 1

2
x
)
(1− z3i ) + λA2z

3
i

]
qji

+β̃
∑nf

i=nf−n4
f

[
A1(1− x)(1− z4i ) + λA2

(
1− 1

2
x
)
z4i
]
qji

+β̃x

[
1
2
(1− z3)A1µ(∆

3) +
(
1− 1

2
z4
)
A2λµ(∆

4)

+A3ηµ(∆
1) + (1− z2)A4

η
λ
µ(∆2)

]
q

+β̃B(1 + g)q



.

By taking the first-order conditions with respect to each innovation intensity, we
derive the optimal innovation decision rules, which depend solely on technology
gaps. Subsequently, by substituting these optimal innovation intensities into the
value function, equating the left-hand side (LHS) to the right-hand side (RHS), and
collecting terms, we obtain the five coefficients of the conjectured value function.

Proof of Corollary 1. Define z̃ℓ = ψ̂χ̂

β̃

(
zℓ
)(ψ̂−1). Then zℓ > zℓ

′ ⇔ z̃ℓ > z̃ℓ
′ for all

ℓ, ℓ′ ∈ [1, 4] ∩ Z under the condition ψ̂ > 1. Given z̃2 − z̃3 = 1
2
xA1 > 0, z̃2 − z̃1 =

xλA2 > 0, z̃2−z̃4 = 1
2
xλA2 > 0, and z̃4−z̃1 = 1

2
xλA2 > 0, we can obtain the following

relationships: z2 > z3, z2 > z1, z2 > z4, and z4 > z1. Given z̃1 = (1−x) [λA2 − A1] >

0 in equilibrium, λA2 − A1 > 0 holds, and z̃3 > z̃4 ⇔ z3 > z4 is derived. Thus, the
order of {zℓ}4ℓ=1 in equilibrium is z2 > z3 > z4 > z1.

Proof of Corollary 2. The partial derivatives of {zℓ}4ℓ=1 with respect to x are (af-
ter removing the common terms) ∂z1

∂x

∣∣∣
A1,A2

: −(z1)2−ψ̂
[
λA2 − A1

]
< 0; ∂z2

∂x

∣∣∣
A1,A2

:

(z2)2−ψ̂A1 > 0; ∂z3
∂x

∣∣∣
A1,A2

: (z3)2−ψ̂ 1
2
A1 > 0; and ∂z4

∂x

∣∣∣
A1,A2

: −(z4)2−ψ̂
[
1
2
λA2 −A1

]
≷ 0,
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with A1 and A2 fixed. As λA2 − A1 > 0, it follows that ∂z1

∂x

∣∣∣
A1,A2

< 0. Similarly,
∂z2

∂x

∣∣∣
A1,A2

> ∂z3

∂x

∣∣∣
A1,A2

holds with z2 > z3, and ∂z3

∂x

∣∣∣
A1,A2

> ∂z4

∂x

∣∣∣
A1,A2

holds with z3 > z4

and λA2 − A1 > 0. However, the sign for 1
2
λA2 − A1 remains ambiguous.

Proof of Potential Startups’ Problem. With the value function defined for incum-
bents, we have EV ({(q′j,∆′

j)}) = xe
[
1
2
(1 − z3)A1µ(∆

3) +
(
1 − 1

2
z4
)
A2λµ(∆

4) +

A3ηµ(∆
1)+(1−z2)A4

η
λ
µ(∆2)

]
q+xe

[
1
2
(1−z3)µ(∆3)+

(
1− 1

2
z4
)
µ(∆4)+µ(∆1)+(1−

z2)µ(∆2)
]
B(1+g)q, from which the optimal external innovation choice for potential

startups can be derived.

Proof of Proposition 2. In this model, the output growth rate is the same as the
product quality growth rate. For product j with quality qj and a technology gap of
∆j = ∆ℓ, we can derive the following law of motion of qj:

∆1 : q′j = ∆1qj prob. (1− x)(1− z1) ∆2 : q′j = ∆1qj prob. (1− x)(1− z2)

q′j = ∆2qj prob. (1− x)z1 q′j = ∆2qj prob. z2

q′j = ∆3qj prob. x q′j = ∆3qj prob. 0

q′j = ∆4qj prob. 0 q′j = ∆4qj prob. x(1− z2)

∆3 : q′j = ∆1qj prob. 1− z3 ∆4 : q′j = ∆1qj prob. (1− x)(1− z4)

q′j = ∆2qj prob. z3 q′j = ∆2qj prob. z4 + x(1− z4)

q′j = ∆3qj prob. 0 q′j = ∆3qj prob. 0

q′j = ∆4qj prob. 0 q′j = ∆4qj prob. 0.

Following this, we can compute the expected growth rate of qj (E
[
q′j
∣∣ qj]/qj − 1)

and the aggregate growth rate in (2.25) by taking the expectation across all product
lines.
Using the share of products owned by domestic incumbents (sd = Fd/F), the defi-

nition of x, and the evolution of product quality, the growth rate can be decomposed
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as follows:

g =
(
∆2 − 1

)
sd

[
(1− x)z1µ(∆1) + z2µ(∆2) + z3µ(∆3) +

(
1− 1

2
x

)
z4µ(∆4)

]
︸ ︷︷ ︸

internal innovation by domestic incumbent firms

+
(
∆2 − 1

)
(1− sd)

[
(1− x)z1µ(∆1) + z2µ(∆2) + z3µ(∆3) +

(
1− 1

2
x

)
z4µ(∆4)

]
︸ ︷︷ ︸

internal innovation by foreign firms

+
(
∆ex − 1

)
Fdxµ(∆ex)︸ ︷︷ ︸

external innov. by domestic incumbents

+
(
∆ex − 1

)
Edxeµ(∆ex)︸ ︷︷ ︸

external innov. by domestic startups

+
(
∆ex − 1

)
xoµ(∆ex)︸ ︷︷ ︸

external innov. by foreign firms

,

where ∆ex ≡ ∆3µ(∆1)+∆4(1−z2)µ(∆2)+ 1
2
(1−z3)µ(∆3)+∆2(1− 1

2
z4)µ(∆4)

µ(∆1)+(1−z2)µ(∆2)+ 1
2
(1−z3)µ(∆3)+(1− 1

2
z4)µ(∆4)

is an increase in the
average product quality due to external innovation and successful business takeover,
and µ(∆ex) ≡ µ(∆1)+ (1− z2)µ(∆2)+ 1

2
(1− z3)µ(∆3)+

(
1− 1

2
z4
)
µ(∆4) is the share

of product lines affected by external innovation.
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