
ADEP WORKING PAPER SERIES

Ranked short text classification using co-occurrence features

and score functions

Brian Dumbacher

U.S. Census Bureau

Daniel Whitehead

U.S. Census Bureau

Working Paper 2024-06

June 2024

Associate Directorate for Economic Programs

U.S. Census Bureau

Washington DC 20233

Disclaimer: Any views expressed are those of the author(s) and not necessarily those of the U.S.

Census Bureau. Results were approved for release by the Census Bureau's Disclosure Review

Board, authorization number CBDRB-FY22-ESMD001-008.

Ranked short text classification using co-occurrence features and score functions

Brian Dumbacher, U.S. Census Bureau, brian.dumbacher@census.gov

Daniel Whitehead, U.S. Census Bureau, daniel.whitehead@census.gov

ADEP Working Paper 2024-06

June 2024

Abstract

This article explores the use of co-occurrence features and score functions to perform ranked

classification of short text. Unlike features based on word sequences, co-occurrence features are

based on word combinations with no restrictions on word order or distance. Co-occurrence

features are appropriate for short text because documents in this setting contain very few words.

We consider a variation of the Vector Space Model called the “umbrella” vectorization that

emphasizes textual details and reduces feature redundancy. We also propose a complementary

score function based on a weighted average of the features’ class distributions in the corpus. For

validation, the methods are applied to four short text datasets and compared to baseline

classifiers. The proposed score function performs better than a modified BM25 classifier and

achieves a level of accuracy similar to that of logistic regression.

Keywords:

Co-occurrence features; Information retrieval; Ranked classification; Short text; Umbrella

vectorization; Vector Space Model

JEL Classification Codes:

C. Mathematical and Quantitative Methods

• C1. Econometric and Statistical Methods and Methodology: General

o C15 Statistical Simulation Methods: General

mailto:brian.dumbacher@census.gov
mailto:daniel.whitehead@census.gov

Ranked short text classification using co-occurrence
features and score functions

Brian Dumbacher1,* and Daniel Whitehead1

1U.S. Census Bureau, 4600 Silver Hill Road, Washington, DC 20233, USA

*Corresponding author. Email: brian.dumbacher@census.gov

Abstract

This article explores the use of co-occurrence features and score functions to perform ranked

classification of short text. Unlike features based on word sequences, co-occurrence features

are based on word combinations with no restrictions on word order or distance. Co-occurrence

features are appropriate for short text because documents in this setting contain very few

words. We consider a variation of the Vector Space Model called the “umbrella” vectorization

that emphasizes textual details and reduces feature redundancy. We also propose a

complementary score function based on a weighted average of the features’ class distributions

in the corpus. For validation, the methods are applied to four short text datasets and compared

to baseline classifiers. The proposed score function performs better than a modified BM25

classifier and achieves a level of accuracy similar to that of logistic regression.

Keywords: Co-occurrence features, Information retrieval, Ranked classification, Short text,

Umbrella vectorization, Vector Space Model

1. Introduction

Text classification is the problem of classifying documents according to a pre-defined set of

categories. It is an important task with many applications such as online content tagging,

search engine optimization (Lei et al., 2020), digital marketing (Salminen et al., 2019), news

article categorization (Elnagar et al., 2020), sentiment analysis (Ghiassi et al., 2013; Melville et

al., 2009), spam filtering (Nagwani and Sharaff, 2017), survey response classification (Tarnow-

Mordi, 2017; Giorgetti and Sebastiani, 2003), occupation coding (Schierholz and Schonlau,

2021), and electronic health record classification (Mascio et al., 2020). With the explosion of

digital information, the needs and opportunities for text classification have increased

significantly. Text classification is interdisciplinary and lies at the intersection of machine

learning (Aggarwal, 2018), natural language processing (Jurafsky and Martin, 2009), and

information retrieval (Goswami, 2014; Cunningham et al., 1997). Consequently, there are

various ways in which to frame the problem and build a model.

A common approach to text classification uses the Vector Space Model (VSM) representation of

text (Turney and Pantel, 2010; Salton et al., 1975). Under the VSM, a document is represented

as a high-dimensional vector of weights corresponding to terms in the corpus. For example, the

mailto:brian.dumbacher@census.gov

terms could be individual words, which are also known as single features, s-features (Figueiredo

et al., 2011), and unigrams. This is the so-called “bag-of-words” (BOW) representation. More

generally, the terms could be longer word sequences of length n, which are commonly referred

to as n-grams. The weights in the VSM reflect term importance and serve as the feature values.

Possible weighting methods include binary (simply indicating the presence of terms), term

frequency, and term frequency-inverse document frequency (TF-IDF). The popular TF-IDF

method gives more weight to terms that occur frequently in the given document and

infrequently in the corpus (defined by the number of documents containing the term). Figure 1

shows an example VSM representation.

Figure 1. Example Vector Space Model (VSM) representation. The example text is “This is a

Retail Store and Market.” The features are individual words and are indicated by curly

brackets. Common stop words in the text such as “is” and “a” are ignored.

In the case of multi-class classification (three or more classes), there is an important distinction

between “hard” and “ranked” classification (Sebastiani, 2002). In “hard” classification, the

model predicts a single class for a given document. However, for information retrieval

applications and similar problems, it may be desirable for the model to return multiple classes.

In “ranked” classification, the model ranks the classes according to some measure of

confidence and then returns the highest-scoring classes. This measure could be a directly

estimated probability or a relevance score calculated using a nonparametric score function

(Goswami, 2014; Robertson and Zaragoza, 2009).

Another distinction in text classification involves document length. Text classification is broad

in definition and could refer to classifying documents ranging from short phrases to entire

books (Worsham, 2018). There are no agreed-upon criteria for what makes a document “short”

or “long”, but “short” in this article refers to a single sentence. Examples of short text include

search queries, micro-blogs, text messages, news article headlines, and open-ended survey

responses. The typical document length in the corpus has implications for the VSM weights.

For example, because there tend to be fewer repeated words in short text, the term

frequencies behave like binary indicators. In turn, the TF-IDF weights behave like functions of

the inverse document frequencies.

Text classification based on short text is more challenging because there are fewer words and

phrases on which to base a prediction (Wang et al., 2017). To improve classification in this

setting, additional VSM features have been proposed to capture greater semantic and

contextual detail (Man, 2014; Pôssas et al., 2002). For example, some VSMs use word co-

occurrence features based on word combinations. Unlike word sequences, word combinations

place no restrictions on the order of words or the distances between them. Words are

considered co-occurring even if they are the first and last words of the text. Co-occurrence

features are also referred to as compound features, c-features (Figueiredo et al., 2011),

termsets (Badawi, 2015), and itemsets. For consistency with the n-gram terminology, we

introduce “n-combs” as another synonym for word combinations. N-grams and n-combs are

examples of so-called composite features because they are composed of multiple words.

This article focuses on the problem of ranked classification of short text. We consider a

vectorization that uses co-occurrence features to emphasize textual details and reduce feature

redundancy. A complementary score function is proposed that computes a weighted average

of the features’ class distributions in the corpus. The rest of the article is organized as follows.

Section 2 reviews related work on short text classification, co-occurrence features, and score

functions. Section 3 introduces notation for the problem and describes the methodology.

Next, four datasets suitable for ranked short text classification are described in Section 4.

Section 5 outlines a comparative study of classifiers using these datasets, and Section 6

presents results. Lastly, Section 7 summarizes findings and describes ideas for future work.

2. Related work
As stated in Wang et al. (2017), “short text is considerably different from traditional long text

documents due to its shortness and conciseness, which somehow hinders the applications of

conventional machine learning and data mining algorithms in short text classification.” To

provide the BOW-based VSM more semantic context, composite features such as n-grams and

n-combs can be added. N-grams may seem more attractive because they are based on words

appearing in the same part of the document (Badawi, 2015). However, documents such as

single sentences are too short to have multiple parts. Even the first and last words of short text

have some relation. Therefore, in this setting n-combs may pick up on useful associations that

n-grams do not. There are typically a large number of possible n-combs in the corpus that can

be used as features. Adding too many n-combs leads to model overfitting (Badawi, 2015), so it

is best to augment the VSM with a subset.

There are various examples in the literature of using n-combs and feature selection methods

along these lines. In the context of short text classification with support vector machines, Man

(2014) augments the conventional VSM with 2-combs that occur frequently in the corpus. The

author finds that these additional features improve model performance, especially when the

number of training documents is small. Similarly, Soumya and Shibily (2014) use the chi-

squared statistic to determine the most discriminating words and then augment the VSM with

associated, frequently occurring n-combs. The authors report a slight improvement in their

naïve Bayes model and note that co-occurrence features may also benefit information retrieval.

Figueiredo et al. (2011) propose a feature extraction method that applies a threshold based on

the concept of dominance (discriminative ability) to determine what 2-combs to add. The

authors conduct a comparative study with three feature types: words, words and 2-combs

(proposed method), and words and 2-grams. They also consider three machine learning

algorithms: k-nearest neighbors, naïve Bayes, and support vector machines. An increase in F1-

type measures (Tan et al., 2019), which balance recall and precision, is observed when the

proposed 2-comb extraction method is used.

Wan et al. (2019) propose a method for selecting composite features called Syntax Augmented

Bigram. Their method applies to 2-grams and 2-combs and is based on a metric called

relevance category frequency. This metric accounts for both the discriminative ability and

redundancy of composite features. Redundancy refers to the undesirable correlation between

the composite feature and its sub-features. The authors provide {machine, learning} as an

example of an n-comb that does not introduce redundancy; it provides useful discriminative

information not already provided by the words {machine} and {learning}. The authors apply

their method to three datasets using naïve Bayes and support vector machines.

Complementary to these “hard” text classification studies is research on what weights to assign

the features. Pekar et al. (2004) conduct a comparative study of weighting methods for co-

occurrence features. The authors distinguish between methods identifying features that

discriminate classes (odds ratio, gain ratio, and mutual information) and methods favoring

features that characterize classes (term strength). They conclude it is possible to obtain

consistent improvement over unweighted features if the method and corresponding

parameters are chosen carefully. On a related note, Carvalho and Guedes (2020) and Erenel et

al. (2011) study the performance of various supervised and unsupervised weighting methods

for text classification. Unsupervised weighting methods such as TF-IDF do not consider class

information, whereas supervised weighting methods do. It is observed that the supervised

weighting methods perform better.

Weighting methods such as TF-IDF can also be used by ranked text classifiers and retrieval

models. These models are based on a score function, which calculates a relevance score for

each class. This score serves as a measure of confidence that the corresponding class is true.

The classes are then ranked according to score. Score functions can be theoretically motivated

or more nonparametric in nature. Many effective score functions can be expressed as a sum of

contributions from the various features associated with the given document (Aggarwal, 2018;

Goswami, 2014). Two examples are the score functions used by the binary independence

model (Aggarwal, 2018) and the popular BM25, or Okapi, model (Robertson and Zaragoza,

2009). The sum of contributions can incorporate weights to account for TF-IDF-related

information and give the features appropriate influence in calculating relevance scores. In the

context of information retrieval, Pôssas et al. (2002) explore set-based models based on co-

occurrence features called closed and maximal termsets. Association rules are used to

calculate weights for these features. The authors apply their proposed method to three

datasets and demonstrate improvement in retrieval performance over the BOW-based VSM.

3. Methodology

This section introduces notation for the ranked short text classification problem and describes

the “umbrella” vectorization and weighted dominance score function.

3.1 Setup and features

Consider a classification scheme with 𝐷 ≥ 3 classes. Denote the raw training data consisting of

𝑁 documents by {(𝑟𝑖, 𝑦𝑖)}𝑖=1
𝑁 , where 𝑟𝑖 and 𝑦𝑖 are the raw text and class for document 𝑖,

respectively. Furthermore, denote by 𝒮 the set of all possible strings that can be constructed

using keyboard characters. There is a practical limit on the length of strings in 𝒮 so that they

can be considered short text. The 𝑟𝑖 are cleaned by an algorithm 𝑐𝑙𝑒𝑎𝑛: 𝒮 → 𝒮 that performs

tasks such as stop word removal, stemming, lemmatization, and spelling correction (Jurafsky

and Martin, 2009). The resulting clean text for document 𝑖 is denoted 𝑡𝑖 = 𝑐𝑙𝑒𝑎𝑛(𝑟𝑖).

Next, the feature type is chosen. For example, possible feature types include individual words

(BOW); words and 2-combs; or words, 2-grams, and 3-grams. All 𝐹 possible features of the

chosen type are identified in the clean text. Let these features be indexed by 𝑓 ∈ ℬ =
{1,2, … , 𝐹}. Furthermore, denote by 𝑥𝑖𝑓 the binary variable indicating the presence of feature

𝑓 in 𝑡𝑖:

𝑥𝑖𝑓 = {
1, if feature 𝑓 appears in 𝑡𝑖

0, otherwise
(1)

To reduce the number of features used in modeling, a frequency threshold 𝜏 is used (Man,

2014; Pôssas et al., 2002). Define

ℬ𝑑𝑖𝑐𝑡 = {𝑓 ∈ ℬ: ∑ 𝑥𝑖𝑓

𝑁

𝑖=1

≥ 𝜏} (2)

to be the set of features that occur in at least 𝜏 documents. These features are said to form the

dictionary. Let 𝐹𝑑𝑖𝑐𝑡 = |ℬ𝑑𝑖𝑐𝑡| denote the dictionary size.

3.2 Weights

For each feature 𝑓 ∈ ℬ𝑑𝑖𝑐𝑡 , a supervised weight 𝑤𝑓 (Carvalho and Guedes, 2020; Erenel et al.,

2011) is calculated based on the feature’s class distribution. This distribution is defined by the

following proportions. Denote by

𝑝𝑓𝑑 =
∑ 1(𝑦𝑖 = 𝑑)𝑥𝑖𝑓

𝑁
𝑖=1

∑ 𝑥𝑖𝑓
𝑁
𝑖=1

(3)

the proportion of documents in the training data containing feature 𝑓 that are in class 𝑑. This

quantity is also referred to as dominance by Figueiredo et al. (2011). The weight 𝑤𝑓 takes on

values in the range 0 to 1, inclusive, and quantifies how concentrated the feature’s class

distribution is. Larger values of 𝑤𝑓 mean the feature’s distribution is more concentrated and,

therefore, that the feature is more discriminative. This concept is equivalent to leaf node purity

in decision trees (Tan et al., 2019). As in the decision tree setting, 𝑤𝑓 can be defined in multiple

ways:

𝑤𝑓
𝑀𝑎𝑥 = (

𝐷

𝐷 − 1
) [max

𝑑
(𝑝𝑓1 , … , 𝑝𝑓𝐷) −

1

𝐷
] (4)

𝑤𝑓
𝑅𝑎𝑛𝑔𝑒

= max
𝑑

(𝑝𝑓1, … , 𝑝𝑓𝐷) − min
𝑑

(𝑝𝑓1 , … , 𝑝𝑓𝐷) (5)

𝑤𝑓
𝐺𝑖𝑛𝑖 = (

𝐷

𝐷 − 1
) [(∑ 𝑝𝑑

2

𝐷

𝑑=1

) −
1

𝐷
] (6)

𝑤𝑓
𝐸𝑛𝑡𝑟𝑜𝑝𝑦

= 1 + ∑ 𝑝𝑓𝑑log𝐷(𝑝𝑓𝑑)

𝐷

𝑑=1

(7)

For the entropy definition, the logarithm is taken with respect to base 𝐷, and 0 × log𝐷(0) is

defined to be 0. For these four definitions, 𝑤𝑓 = 0 if and only if all proportions are equal,

𝑝𝑓𝑑 = 1 𝐷⁄ (𝑑 = 1, … , 𝐷). Conversely, 𝑤𝑓 = 1 if and only if one proportion equals 1 and the

other 𝐷 − 1 proportions equal 0.

The weight can also be defined in terms of the feature’s class support, 𝐷𝑓 = |{𝑑: 𝑝𝑓𝑑 > 0}|.

This is the number of classes in which feature 𝑓 appears. The following are two definitions of

𝑤𝑓 based on this concept:

𝑤𝑓
𝑆𝑢𝑝𝑝𝑜𝑟𝑡

= (
𝐷

𝐷 − 1
) (

1

𝐷𝑓
−

1

𝐷
) (8)

𝑤𝑓
𝐿𝑜𝑔𝑆𝑢𝑝𝑝𝑜𝑟𝑡

= 1 −
ln(𝐷𝑓)

ln(𝐷)
(9)

For these two definitions, 𝑤𝑓 = 0 if and only if 𝐷𝑓 = 𝐷. Conversely, 𝑤𝑓 = 1 if and only if 𝐷𝑓 =

1. Setting the weight equal to a constant value is also an option:

𝑤𝑓
𝐸𝑞𝑢𝑎𝑙

= 1 (10)

3.3 Standard and umbrella vectorizers

To put the data in a format suitable for modeling, a vectorizer is applied to the clean text. The

vectorizer is a function of the form 𝑣𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑒: 𝒮 → [0,1]𝐹𝑑𝑖𝑐𝑡
 that expresses the clean text as a

vector of feature values incorporating the weights 𝑤𝑓 . The vector for document 𝑖 is given by

𝒛𝑖 = 𝑣𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑒(𝑡𝑖) = [𝑧𝑖,ℎ(1), 𝑧𝑖,ℎ(2), … , 𝑧𝑖,ℎ(𝐹𝑑𝑖𝑐𝑡)]
𝑇

(11)

where the 𝑧𝑖𝑓 , 𝑓 ∈ ℬ𝑑𝑖𝑐𝑡 , are the feature values and ℎ: {1,2, … , 𝐹𝑑𝑖𝑐𝑡} → ℬ𝑑𝑖𝑐𝑡 is a bijection that

makes the ordering of the features in vector 𝒛𝑖 well-defined.

For the “standard” vectorization, we have

𝑧𝑖𝑓 = 𝑤𝑓𝑥𝑖𝑓 (12)

That is, 𝒛𝑖 simply identifies the dictionary features appearing in 𝑡𝑖 with weights applied. We

consider an alternative “umbrella” vectorization that can be used for feature types involving n -

combs and n-grams. The umbrella vectorization restricts attention to higher-order n-combs

and n-grams to reduce redundancy (Wan et al., 2019) and focus on detail. These higher-order

composite features act like umbrellas that cover sub-features. They are similar to the closed

and maximal termsets introduced by Pôssas et al. (2002), but the umbrella vectorization

described here applies to both n-grams and n-combs. For this vectorization,

𝑧𝑖𝑓 = 𝑤𝑓𝑢𝑖𝑓 (13)

where

𝑢𝑖𝑓 = {
1, if 𝑥𝑖𝑓 = 1 and 𝑓 ⊄ 𝑔 ∀𝑔 ∈ ℬ𝑑𝑖𝑐𝑡 such that 𝑥𝑖𝑔 = 1

0, otherwise
(14)

is the umbrella indicator. The notation feature 𝑓 ⊄ feature 𝑔 is meant to suggest that the n-

comb (or n-gram) 𝑓 is not a sub-feature of some larger n-comb (or n-gram) 𝑔.

As a demonstration of the two vectorizers, consider the following dictionary of words and 2-

combs: {market}, {pet}, {retail}, {store}, {market, retail}, {pet, retail}, and {pet, store}. Tables 1

and 2 list the values of 𝑤𝑓𝑥𝑖𝑓 and 𝑤𝑓𝑢𝑖𝑓, respectively, for four hypothetical documents. For

example, the first document has raw text “This is a Retail Market” and clean text “retail

market”. The words {market} and {retail} and 2-comb {market, retail} appear in the clean text,

so 𝑤𝑓𝑥𝑖𝑓 = 𝑤𝑓 × 1 = 𝑤𝑓 for these three features (see Table 1). However, {market} and {retail}

are subsets of the 2-comb {market, retail}, so 𝑤𝑓𝑢𝑖𝑓 = 𝑤𝑓 × 0 = 0 for these two words (see

Table 2).

Table 1. Example standard vectorizations: values of 𝑤𝑓𝑥𝑖𝑓
𝑓 Word or

2-comb

Raw text and corresponding clean text

This is a Retail

Market

Market/Store Store for Pets. Retailer – Pet

Store & Market

retail market market store store pet retail pet store

market

1 {market} 𝑤1 𝑤1 0 𝑤1

2 {pet} 0 0 𝑤2 𝑤2

3 {retail} 𝑤3 0 0 𝑤3

4 {store} 0 𝑤4 𝑤4 𝑤4

5 {market, retail} 𝑤5 0 0 𝑤5

6 {pet, retail} 0 0 0 𝑤6

7 {pet, store} 0 0 𝑤7 𝑤7

Table 2. Example umbrella vectorizations: values of 𝑤𝑓𝑢𝑖𝑓

𝑓 Word or

2-comb

Raw text and corresponding clean text

This is a Retail

Market

Market/Store Store for Pets. Retailer – Pet

Store & Market

retail market market store store pet retail pet store

market

1 {market} 0 𝑤1 0 0

2 {pet} 0 0 0 0

3 {retail} 0 0 0 0

4 {store} 0 𝑤4 0 0

5 {market, retail} 𝑤5 0 0 𝑤5

6 {pet, retail} 0 0 0 𝑤6

7 {pet, store} 0 0 𝑤7 𝑤7

3.4 Weighted dominance score function

Using the class proportions and choice of vectorizer, relevance scores can be calculated.

Consider a new, previously unseen document with raw text 𝑟𝑛𝑒𝑤 and unknown class 𝑦𝑛𝑒𝑤. This

document goes through the same cleaning and vectorization process as the training data,

yielding clean text 𝑡𝑛𝑒𝑤 = 𝑐𝑙𝑒𝑎𝑛(𝑟𝑛𝑒𝑤) and feature vector 𝒛𝑛𝑒𝑤 = 𝑣𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑒(𝑡𝑛𝑒𝑤). The

proposed weighted dominance score function calculates the relevance score for class 𝑑,

denoted 𝜃𝑑
𝑊𝑔𝑡𝐷𝑜𝑚

, to be the weighted average of the class proportions 𝑝𝑓𝑑 :

𝜃𝑑
𝑊𝑔𝑡𝐷𝑜𝑚

=
∑ 𝑧𝑛𝑒𝑤,𝑓𝑝𝑓𝑑𝑓∈ℬ𝑑𝑖𝑐𝑡

∑ 𝑧𝑛𝑒𝑤,𝑓𝑓∈ℬ𝑑𝑖𝑐𝑡

(15)

The 𝜃𝑑
𝑊𝑔𝑡𝐷𝑜𝑚

, 𝑑 = 1, … , 𝐷, take on values between 0 and 1, inclusive, and sum to 1. [In the

case ∑ 𝑧𝑛𝑒𝑤,𝑓𝑓∈ℬ𝑑𝑖𝑐𝑡 = 0, the 𝜃𝑑
𝑊𝑔𝑡𝐷𝑜𝑚

 are defined to equal 0.] For ranked classification, the

𝜃𝑑
𝑊𝑔𝑡𝐷𝑜𝑚

 are used to rank the classes. For hard classification, the predicted class is the one

with the highest relevance score:

𝑦̂𝑛𝑒𝑤 = argmax
𝑑

(𝜃𝑑
𝑊𝑔𝑡𝐷𝑜𝑚

) (16)

Conceptually, the weighted dominance score function averages the class distributions of the

features, with more weight given to the distributions that are more concentrated. Figure 2

illustrates the relevance score calculation. It displays hypothetical class distributions of {retail},

{market}, and the 2-comb {market, retail} with weights equal to 0.125, 0.375, and 0.75,

respectively. These weights are calculated according to the 𝑤𝑓
𝑀𝑎𝑥 definition (Equation 4). The

co-occurrence feature {market, retail} has the most concentrated distribution.

In the context of the standard vectorization, {market, retail} has the most influence in the

weighted average of the features’ distributions. In this case, the weighted dominance score

function produces the following class ranking: class 3 (𝜃3
𝑊𝑔𝑡𝐷𝑜𝑚

= 0.66), class 4 (𝜃4
𝑊𝑔𝑡𝐷𝑜𝑚

=

0.215), class 1 (𝜃1
𝑊𝑔𝑡𝐷𝑜𝑚

= 0.065), class 5 (𝜃5
𝑊𝑔𝑡𝐷𝑜𝑚

= 0.035), and class 2 (𝜃2
𝑊𝑔𝑡𝐷𝑜𝑚

= 0.025).

Note that every class is assigned a positive score.

However, if the umbrella vectorization is used, the distributions of the words {retail} and

{market} are not considered. The relevance scores simply equal the class proportions of the

umbrella feature {market, retail}. In this case, the weighted dominance score function

produces the following class ranking: class 3 (𝜃3
𝑊𝑔𝑡𝐷𝑜𝑚

= 0.8) and class 4 (𝜃4
𝑊𝑔𝑡𝐷𝑜𝑚

= 0.2).

The proportions for classes 1, 2, and 5 equal 0, so these classes are assigned a score of 0.

Compared to the standard vectorizer, the weighted dominance score function with the

umbrella vectorizer assigns a higher score to class 3 and is more confident in its being the true

class.

Figure 2. Illustration of relevance score calculation. This calculation is based on the features

{retail}, {market}, and {market, retail} with weights 0.125, 0.375, and 0.75, respectively. The

class distribution of {market, retail} over the five classes is the most concentrated and thus has

the most influence in the weighted average.

4. Datasets

This section describes four datasets suitable for ranked short text classification. We use these

datasets in a comparative study of proposed and baseline methods

4.1 HuffPost

HuffPost is an online news aggregator and blog. A related dataset is available on Kaggle that

consists of 200,853 HuffPost article headlines from 2012 to 2018 (Misra, 2018; Grover and

Misra, 2021). The headlines are classified according to 41 topics including politics,

entertainment, travel, comedy, sports, crime, and world news. The dataset also contains a text

variable that summarizes the news article, but we focus on using the shorter headline to

classify the topic.

4.2 NAICS

The North American Industry Classification System (NAICS) is a hierarchical coding system used

by government agencies to classify the principal economic activity of business establishments

(U.S. Census Bureau, 2021a). For example, Economic Census (U.S. Census Bureau, 2021b) data

products released by the U.S. Census Bureau are based on NAICS. NAICS codes are six digits

long with the first two digits identifying the economic sector. There are 20 sectors including

construction, manufacturing, wholesale trade, and accommodation and food services. To

research sector classification based on short text, we compiled business descriptions and

corresponding NAICS codes from two data sources: the Economic Census (2002, 2007, 2012,

and 2017) and the Internal Revenue Service’s SS-4 form (Internal Revenue Service, 2021) (2002

through 2016), which is used by employers for tax purposes. Both the Economic Census

questionnaire and SS-4 form allow respondents to write an open-ended description of their

business (for example, products sold and services performed). The dataset consists of

2,192,275 documents.

4.3 NAICS Wholesale

To examine NAICS classification at a more granular level, we focus on one economic sector

from the NAICS dataset and consider the more challenging problem of classifying at the 6-digit

level. Wholesale trade is one of the largest sectors in the NAICS dataset with 271,025

documents and 71 classes, making this dataset interesting for evaluating ranked classifiers.

4.4 Stack Overflow

Stack Overflow is a popular question-and-answer website for computer programmers. A

related dataset is made available by Xu et al. (2015 and 2017) and Kaggle that represents a

sample of 20,000 Stack Overflow thread titles evenly distributed over 20 topics. The topics

touch on computer applications, operating systems, and programming languages. Examples

include Oracle, SVN, Apache, Excel, MATLAB, SharePoint, and Ajax. The problem is to classify

the topic under discussion based on the thread title.

4.5 Summary of datasets

Table 3 presents descriptive statistics for the four datasets. The class imbalance degree is the

measure described by Ortigosa-Hernández et al. (2017) and is based on Euclidean distance. We

divide this imbalance degree by the number of classes to allow comparison among datasets. A

related measure is the class imbalance ratio, which equals the maximum class proportion

divided by the minimum class proportion. The HuffPost and two NAICS datasets exhibit class

imbalance, whereas the Stack Overflow dataset is, by design, perfectly balanced. In terms of

characters and words, the documents for the two NAICS datasets are shorter on average than

the documents for the HuffPost and Stack Overflow datasets. Words are defined as sequences

of non-whitespace characters.

Table 3. Dataset descriptive statistics
Dataset Number of

documents

Number of

classes

Class

imbalance

degree

Class

imbalance

ratio

Raw text length

(characters)

Raw text length

(words*)

Average Max Average Max

HuffPost 200,853 41 0.71 32.61 57.94 320 9.54 44

NAICS 2,192,275 20 0.47 323.58 26.33 268 3.52 49

NAICS

Wholesale

271,025 71 0.65 121.99 28.43 259 3.76 43

Stack Overflow 20,000 20 0.00 1.00 48.69 213 8.00 34

*Defined here as strings of non-whitespace

5. Evaluation

We compare the performance of the weighted dominance score function to that of three other

classifiers: a modified BM25 score function, multinomial logistic regression, and decision tree.

The modified BM25 score is given by

𝜃𝑑
𝐵𝑀25 ∝ ∑ [𝑧𝑛𝑒𝑤,𝑓𝑙𝑛 (

𝐷 + 1

𝐷𝑓 + 0.5
)

(𝑚 + 1)𝑁𝑓𝑑

𝑚 [(1 − 𝑏) + 𝑏 (
𝑁𝑑𝐷

𝑁
)] + 𝑁𝑓𝑑

]

𝑓∈ℬ𝑑𝑖𝑐𝑡

(17)

where 𝑁𝑓𝑑 = ∑ 1(𝑦𝑖 = 𝑑)𝑥𝑖𝑓
𝑁
𝑖=1 and 𝑁𝑑 = ∑ 1(𝑦𝑖 = 𝑑)𝑁

𝑖=1 . The argument to the natural

logarithm has been increased by one to ensure a positive score, and the BM25 factor

accounting for within-query term frequencies has been omitted (Robertson and Zaragoza,

2009). The values of 𝑚 and 𝑏 are set to 1.2 and 0.75, respectively. The logistic regression and

decision tree classifiers produce class probabilities, which can be used like scores to rank

classes. The weighted dominance and modified BM25 classifiers are implemented using base

Python functions and data structures. The logistic regression and decision tree classifiers, on

the other hand, are fit using the Natural Language Toolkit (NLTK) (Bird et al., 2009) and Scikit-

learn (Pedregosa et al., 2011) modules. For these two classifiers, most parameters are set to

their default values. Results are not believed to be sensitive to software implementation.

In terms of features, we study all combinations of feature type (BOW, words and 2-combs, and

words and 2-grams) and vectorizer (standard and umbrella). There are only five such

combinations because the standard and umbrella vectorizers are the same for BOW. We do

not consider n-combs and n-grams longer than two because of diminishing returns for the

increase in complexity; Choueka and Lusignan (1985) show that simply adding a second word of

context can greatly help with term disambiguation. We also consider three weight types

representative of the different weight definitions: 𝑤𝑓
𝐸𝑞𝑢𝑎𝑙, 𝑤𝑓

𝐿𝑜𝑔𝑆𝑢𝑝𝑝𝑜𝑟𝑡 , and 𝑤𝑓
𝑀𝑎𝑥. There are 15

(= 5 × 3) feature/weight combinations in total.

The same cleaning algorithm is applied to the four datasets. This algorithm consists of

converting text to lowercase, removing punctuation, removing extraneous whitespace,

removing stop words, and stemming (stripping suffixes to reduce the number of word

variations). The stop words are based on a default list from NLTK. NLTK is also used to

implement the popular Porter 2/Snowball stemmer (Porter, 2001). In practice, the stop words

and stemmer would be tailored to the dataset. For example, additional rules may be added to

the stemmer to address known under- and over-stemming errors. In all cases, the frequency

threshold 𝜏 used to determine the dictionary is set to 3.

To evaluate the various combinations of classifier, features, and weight type, we apply the

holdout method (Tan et al., 2019). For each dataset, we select a stratified random sample with

classes as strata. The sampling fraction in each stratum is set to 0.9. The selected documents

form the training data, and the remaining documents form the test data. The training data are

used to determine the dictionary and fit the various classifiers. Finally, the fitted classifiers are

applied to and evaluated on the test data. Table 4 describes the metrics used to assess

performance. These metrics are mean reciprocal rank (MRR), mean score of the true class

(MSCORE), accuracy (TOP-𝑘), time to fit the classifier, and time to apply the classifier.

Table 4. Evaluation metrics

Metric Description

MRR Mean reciprocal rank of the true class. If the true class is assigned a score
of 0, its reciprocal rank is defined to be 0.

MSCORE Mean score of the true class. This metric reflects model confidence in
predicting the true class.

TOP-𝑘 Accuracy, where success is defined as the true class being among the 𝑘
highest-scoring classes. This metric is calculated for different values of 𝑘.
The case 𝑘 = 1 corresponds to “hard” classification accuracy.

Fitting time Time (in seconds) it takes to fit the classifier on the training data.

Application
time

Time (in seconds) it takes to apply the classifier to the test data on a
document-by-document basis (i.e., not batch processing).

6. Results

For each metric, we present global values and then focus on a specific dataset to highlight

interesting results. The four classifiers are abbreviated WgtDom, BM25, LogReg, and DecTree.

The five sets of features are abbreviated BOW, CS, CU, GS, and GU. C and G stand for n-combs

and n-grams, respectively. S and U stand for the standard and umbrella vectorizers,

respectively.

6.1 Dictionary size

Table 5 presents the dictionary sizes for the four datasets. As a reminder, the dictionaries are

determined using the documents randomly selected for training. The dictionary for the NAICS

dataset is the largest with 150,456 2-grams and 313,034 2-combs. In general, there are

approximately 2-4 times as many 2-combs as 2-grams. Even though the HuffPost dataset has

fewer documents than the NAICS Wholesale dataset, its dictionary is appreciably larger.

Table 5. Dictionary sizes

Dataset Words 2-grams 2-combs

HuffPost 17,048 49,770 238,768

NAICS 19,324 150,456 313,034

NAICS Wholesale 5,995 27,702 55,622

Stack Overflow 2,515 3,733 14,753

6.2 MRR

Figure 3 presents the largest value of MRR for each combination of classifier and dataset. The

corresponding features and weight type are identified by color and symbol, respectively.

Between n-combs and n-grams, the n-comb features (CS and CU) occur more frequently in

Figure 3 and are prevalent for WgtDom and BM25. The performance of WgtDom is most

similar to that of BM25, with WgtDom producing slightly larger MRR values across nearly all

feature/weight combinations for each dataset. This is understandable given that WgtDom has

a similar model structure to BM25 but, arguably, makes better use of the features’ class

distributions. There are mixed results regarding weight type, although 𝑤𝑓
𝐿𝑜𝑔𝑆𝑢𝑝𝑝𝑜𝑟𝑡

 tends to

perform the best for DecTree.

WgtDom with CS features produces the largest value of MRR for the Stack Overflow dataset.

LogReg produces the largest value of MRR for the other three datasets. In terms of MRR,

LogReg has an advantage over the other classifiers. It always assigns a positive score to the true

class, and thus the reciprocal rank is always positive for a given document. WgtDom and BM25

are limited by their features’ support, resulting in a reciprocal rank equal to 0 for some

documents. Similarly, DecTree is limited by the classes represented in the leaf node at which

classification occurs.

Figure 3. Largest value of MRR for each combination of classifier and dataset. The

corresponding features and weight type are identified by color and symbol, respectively.

Figure 4 shows MRR for each combination of feature and weight type for the NAICS Wholesale

dataset. The features and weight type are identified by color and shading, respectively. Note

that the y-axis starts at 0.4 to emphasize differences. BM25, WgtDom, and LogReg perform the

worst when 𝑤𝑓
𝐿𝑜𝑔𝑆𝑢𝑝𝑝𝑜𝑟𝑡

 is used. Weight type has some effect on DecTree, but this is not

consistent across all datasets.

Figure 4: MRR by feature and weight type for the NAICS Wholesale dataset. The features and

weight type are identified by color and shading, respectively. Note that the y-axis starts around

0.4 to emphasize differences.

6.3 MSCORE

Larger values of MSCORE indicate higher confidence in predicting the true class. This is an

important consideration if results are filtered using a score threshold. Figure 5 presents the

largest value of MSCORE for each combination of classifier and dataset. The CU and GU

features are prevalent for WgtDom and BM25. By restricting attention to higher order

composite features, the umbrella vectorization helps the two score functions focus on detail

and assign higher scores to the true class. On the other hand, the CS and GS features are

prevalent for LogReg and DecTree. For the MSCORE metric, there is more of a pattern

regarding weight type. The weight type 𝑤𝑓
𝑀𝑎𝑥 works best for WgtDom, 𝑤𝑓

𝐸𝑞𝑢𝑎𝑙
 for LogReg, and

𝑤𝑓
𝐿𝑜𝑔𝑆𝑢𝑝𝑝𝑜𝑟𝑡

 for BM25 and DecTree.

For all four datasets, LogReg and DecTree produce the largest and second largest values of

maximum MSCORE in Figure 5; WgtDom produces the third largest value. However, for

particular datasets and combinations, WgtDom does outperform LogReg. For example, see

Figure 6, which shows MSCORE for each combination of feature and weight type for the Stack

Overflow dataset. WgtDom produces a higher MSCORE than LogReg for two of the three

combinations involving the CU features. For WgtDom and BM25, the CU features perform

better than CS for all weight types. WgtDom and BM25 perform the worst when 𝑤𝑓
𝐸𝑞𝑢𝑎𝑙

 is

used. This demonstrates that, on average, the supervised weights help the score functions

assign large scores to the true class. LogReg performs the worst when 𝑤𝑓
𝐿𝑜𝑔𝑆𝑢𝑝𝑝𝑜𝑟𝑡

 is used. In

contrast, the weight type has little effect on DecTree.

Figure 5. Largest value of MSCORE for each combination of classifier and dataset. The

corresponding features and weight type are identified by color and symbol, respectively.

Figure 6: MSCORE by feature and weight type for the Stack Overflow dataset. The features and

weight type are identified by color and shading, respectively.

6.4 TOP-𝒌

The TOP-𝑘 accuracy measures how successful the classifier is in ranking the true class among

the 𝑘 highest-scoring results. Ranking the true class first is more difficult than ranking it among

the top 𝑘 results when 𝑘 is large. Figure 7 presents the largest value of TOP-5 for each

combination of classifier and dataset. Results differ for different values of 𝑘. The choice 𝑘 = 5

seems reasonable given the number of classes in each dataset. The CS and BOW features are

the most prevalent in Figure 7, with the GS features yielding the largest value of TOP-5 for

LogReg for two datasets. The CU and GU features do not correspond to any values in Figure 7.

Regarding weight type patterns, 𝑤𝑓
𝑀𝑎𝑥 performs the best for WgtDom, whereas 𝑤𝑓

𝐸𝑞𝑢𝑎𝑙

performs the best for LogReg. According to TOP-5, the classifiers can be ranked from most to

least accurate roughly as LogReg, WgtDom, BM25, and DecTree. LogReg, WgtDom, and BM25

perform similarly on the Stack Overflow dataset. LogReg and WgtDom perform similarly on the

NAICS Wholesale dataset.

Figure 7. Largest value of TOP-5 for each combination of classifier and dataset. The

corresponding features and weight type are identified by color and symbol, respectively.

Figure 8 displays TOP-𝑘 of each classifier on the NAICS Wholesale dataset for selected values of

𝑘. We focus on results using the weight type 𝑤𝑓
𝑀𝑎𝑥. Although WgtDom either performs the

best or essentially as well as any other classifier for this particular dataset, that is not always

true. As shown previously, for other datasets, LogReg is the most accurate, depending on the

weight type. DecTree is generally the least accurate. WgtDom tends to improve upon BM25

consistently in terms of TOP-𝑘 accuracy.

Figure 8. TOP-𝑘 by classifier and feature for the NAICS Wholesale dataset. Results are displayed

for the weight type 𝑤𝑓
𝑀𝑎𝑥 and for selected values of 𝑘.

6.5 Fitting time

Fitting WgtDom is defined as calculating the proportions 𝑝𝑓𝑑 appearing in Equation 15 for

𝜃𝑑

𝑊𝑔𝑡𝐷𝑜𝑚
. Similarly, fitting BM25 is defined as calculating the quantities 𝐷𝑓, 𝑁𝑓𝑑 , and 𝑁𝑑

appearing in Equation 17 for 𝜃𝑑
𝐵𝑀25. As expected, for all datasets, LogReg and DecTree fit the

slowest. The fitting times for WgtDom and BM25 are negligible in comparison. DecTree fits

more slowly for the CU and GU features compared to CS and GS. The opposite is true for

LogReg. Whereas the choice of weight has little impact on the fitting time of DecTree, the

effect of using 𝑤𝑓
𝐸𝑞𝑢𝑎𝑙

 is much more apparent for LogReg. Figure 9 displays fitting times for

DecTree and LogReg on the NAICS dataset, the largest of the four datasets. The maximum

values for WgtDom, BM25, LogReg, and DecTree for this dataset are 17.8, 17.6, 2,729, and

5,328 seconds, respectively.

Figure 9. Fitting times (in seconds) for DecTree and LogReg by feature and weight type on the

NAICS dataset. The features and weight type are identified by color and shading, respectively.

The fitting times for WgtDom and BM25 are negligible in comparison to those for DecTree and

LogReg.

6.6 Application time

The classifiers are applied to the test data one document at a time, as opposed to using a batch

method Scikit-learn method available to LogReg and DecTree. This allows for a fairer

comparison and better simulates information retrieval applications. Applying WgtDom and

BM25 is fast for all datasets. The application time for LogReg is much longer. Figure 10 displays

application times for DecTree and LogReg on the NAICS dataset. The maximum values for

WgtDom, BM25, LogReg, and DecTree for this dataset are 9.9, 23.7, 2,475, and 117 seconds,

respectively.

Figure 10. Application times (in seconds) for DecTree and LogReg by feature and weight type on

the NAICS dataset. The features and weight type are identified by color and shading,

respectively. The application times for WgtDom and BM25 are negligible in comparison to

those for LogReg.

7. Conclusions and future work

In the context of ranked short text classification, we examine the use of co-occurrence features

and an alternative VSM and score function. N-combs are both feasible and appropriate for

short text, making them an interesting option in this setting. An evaluation was conducted in

which four classifiers were compared across four datasets that represent news headlines,

business descriptions, and online forum postings. We considered 15 combinations of features

and weight type. The classifiers were evaluated according to five metrics. Three metrics

quantify accuracy, and the other two measure the time required to fit and apply the classifier.

The results show the classifiers have different strengths and weaknesses, but there are also

some patterns. The umbrella vectorization appears better suited for score functions than for

the more traditional multinomial logistic regression and decision tree classifiers. N-combs

performed well in general, but the advantage of using them over n-grams, as measured by

MRR, MSCORE, and TOP-𝑘, is clearer for the score functions. As a generalized linear model,

logistic regression is versatile and performs very well on all four datasets. However, as

expected, it takes a long time to fit and apply. Logistic regression does not scale well like the

weighted dominance and modified BM25 score functions. Score functions in general can

handle a large number of documents, features, and classes. Weighted dominance outperforms

the modified BM25 with respect to the accuracy metrics. For these reasons, the weighted

dominance classifier based on n-combs could serve as a useful baseline classifier for ranked

short text classification, especially for large datasets.

With regard to the performance of the BM25, logistic regression, and decision tree classifiers,

there are potential gains by fine-tuning the model parameters. The decision tree classifier, in

particular, has many parameters that govern complexity. The default minimum sample size

needed to terminate branches was increased to try to protect against model overfitting, but

parameter values are not optimal. Decision tree overfitting is reflected in large values of

MSCORE and small values of MRR and TOP-𝑘. Still, the evaluation shows the much simpler

weighted dominance score function performs at the same level as the other classifiers.

In terms of improving the weighted dominance score function, it would be interesting to

research a hybrid approach based on both CS and CU features. The CS features perform well in

terms of MRR and TOP-𝑘, whereas the umbrella vectorization clearly performs the best in

terms of MSCORE. CS allows the weighted dominance score function to consider all words and

word combinations in a given document. This results in a wider range of classes that are

assigned a positive score. CU, on the other hand, restricts positive score assignment to a subset

of these classes. Employing a model ensemble (Tan et al., 2019) based on both sets of features

could result in a classifier that optimally balances these metrics.

Another idea for future work is using model stacking (Pavlyshenko, 2018; Güneş, 2017), or meta

ensembling, to transform and weight the scores from CS- and CU-based classifiers instead of

simply averaging them. Such an approach could adaptively account for the differences of each

classifier and the unique characteristics of each class. Any insights uncovered through such

second-stage modeling could also motivate internal refinements of the weighted dominance

score function.

Abbreviations

BOW: bag-of-words; MRR: mean reciprocal rank of the true class; MSCORE: mean score of the

true class; NAICS: North American Industry Classification System; NLTK: Natural Language

Toolkit; TF-IDF: term frequency-inverse document frequency; TOP-𝑘: accuracy, where success is

defined as the true class being among the 𝑘 highest-scoring classes; VSM: Vector Space Model

Acknowledgments

The authors would like to acknowledge and thank colleagues at the U.S. Census Bureau for

reviewing drafts of this article and providing helpful comments.

Declarations

Disclaimer

Any opinions and conclusions expressed herein are those of the authors and do not reflect the

views of the U.S. Census Bureau. The Census Bureau has reviewed this data product for

unauthorized disclosure of confidential information and has approved the disclosure avoidance

practices applied (Approval ID: CBDRB-FY22-ESMD001-008).

Funding

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

The HuffPost and Stack Overflow datasets are publicly available at the references cited. The

NAICS dataset, which consists of confidential data collected by the U.S. Census Bureau and

Internal Revenue Service, is not publicly available.

Code availability

The code is available upon request.

Authors’ contributions

Brian Dumbacher is the primary author and led work on the proposed methodology. Daniel

Whitehead helped conduct the evaluation, assess findings, and create visualizations. All

authors read and approved the final manuscript.

References

Aggarwal, C.C. (2018). Machine learning for text. Cham, Switzerland: Springer International

Publishing.

Badawi, D. (2015). Termset selection and weighting in binary classification. Ph.D. dissertation.

Eastern Mediterranean University.

Bird, S., Klein, E., and Loper, E. (2009). Natural language processing with Python: analyzing text

with the natural language toolkit. Sebastopol, CA: O’Reilly Media.

Carvalho, F. and Guedes, G.P. (2020). TF-IDFC-RF: a novel supervised term weighting scheme.

arXiv. doi:10.48550/arXiv.2003.07193

Choueka, Y. and Lusignan, S. (1985). Disambiguation by short text contexts. Computers and

Humanities, 19, 147-157.

Cunningham, S.J., Littin, J., and Witten, I.H. (1997). Applications of machine learning in

information retrieval. Working paper. Hamilton, New Zealand: University of Waikato,

Department of Computer Science.

Elnagar, A., Al-Debsi, R., and Einea, O. (2020). Arabic text classification using deep learning

models. Information Processing & Management, 57(1), 102121.

doi:10.1016/j.ipm.2019.102121

Erenel, Z., Altinçay, H., and Varoğlu, E. (2011). Explicit use of term occurrence probabilities for

term weighting in text categorization. Journal of Information Science and Engineering, 27,

819-834.

Figueiredo, F., Rocha, L., Couto, T., Salles, T., Gonçalves, M.A., and Meira Jr., W. (2011). Word

co-occurrence features for text classification. Information Systems, 36, 843-858.

doi:10.1016/j.is.2011.02.002

Ghiassi, M., Skinner, J., and Zimbra, D. (2013). Twitter brand sentiment analysis: a hybrid

system using n-gram analysis and dynamic artificial neural network. Expert Systems with

Applications, 40(16), 6266-6282. doi:10.1016/j.eswa.2013.05.057

Giorgetti, D. and Sebastiani, F. (2003). Automating survey coding by multiclass text

categorization techniques. Journal of the American Society for Information Science and

Technology, 54(14), 1269-1277. doi:10.1002/asi.10335

Goswami, P. (2014). Learning information retrieval functions and parameters on labeled

collections. Ph.D. dissertation. Université Joseph Fourier.

Grover, J. and Misra, R. (2021). Sculpting data for ML: the first act of machine learning. January

2021.

Güneş, F. (2017). Why do stacked ensemble models win data science competitions? The SAS

Data Science Blog. May 18, 2017.

https://blogs.sas.com/content/subconsciousmusings/2017/05/18/stacked-ensemble-

models-win-data-science-competitions/. Accessed April 21, 2022.

Internal Revenue Service. (2021). Form SS-4: Application for Employer Identification Number.

https://www.irs.gov/pub/irs-pdf/fss4.pdf. Accessed September 30, 2021.

Jurafsky, D. and Martin, J.H. (2009). Speech and language processing: an introduction to natural

language processing, computational linguistics, and speech recognition. Upper Saddle River,

NJ: Pearson Education, Inc.

Lei, K., Fu, Q., Yang, M., and Liang, Y. (2020). Tag recommendation by text classification with

attention-based capsule network. Neurocomputing, 391, 65-73.

doi:10.1016/j.neucom.2020.01.091

Man, Y. (2014). Feature Extension for Short Text Categorization Using Frequent Term Sets. 2nd

International Conference on Information Technology and Quantitative Management ITQM

2014. Procedia Computer Science, 31, 663-670. doi:10.1016/j.procs.2014.05.314

Mascio, A., Kraljevic, Z., Bean, D., Dobson, R., Stewart, R., Bendayan, R., and Roberts, A. (2020).

Comparative analysis of text classification approaches in electronic health records. arXiv.

doi:10.48550/arXiv.2005.06624

Melville, P., Gryc, W., and Lawrence, R.D. (2009). Sentiment analysis of blogs by combining

lexical knowledge with text classification. Proceedings of the 15th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 1275-1284.

doi:10.1145/1557019.1557156

Misra, R. (2018). News category dataset. https://www.kaggle.com/rmisra/news-category-

dataset. doi:10.13140/RG.2.2.20331.18729.

Nagwani, N.K. and Sharaff, A. (2017). SMS spam filtering and thread identification using bi-level

text classification and clustering techniques. Journal of Information Science, 43(1), 75-87.

doi:10.1177/0165551515616310

Ortigosa-Hernández, J., Inza, I., and Lozano, J.A. (2017). Measuring the class-imbalance extent

of multi-class problems. Pattern Recognition Letters, 98, 32-38.

doi:10.1016/j.patrec.2017.08.002

Pavlyshenko, B. (2018). Using stacking approaches for machine learning models. 2018 IEEE

Second International Conference on Data Stream Mining & Processing (DSMP), 2018, 255-

258. doi:10.1109/DSMP.2018.8478522

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,

M., Perrot, M., and Duchesnay, É. (2011). Scikit-learn: machine learning in Python. Journal

of Machine Learning Research, 12, 2825-2830.

Pekar, V., Krkoska, M., and Staab, S. (2004). Feature weighting for co-occurrence-based

classification of words. COLING 2004: Proceedings of the 20th International Conference on

Computational Linguistics, 799-805.

Porter, M.F. (2001). Snowball: a language for stemming algorithms.

http://snowball.tartarus.org/texts/introduction.html. Accessed April 4, 2022.

Pôssas, B., Ziviani, N., Meira Jr., W., and Ribeiro-Neto, B. (2002). Set-based model: a new

approach for information retrieval. Proceedings of the 25th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, 230-237.

Robertson, S. and Zaragoza, H. (2009). The probabilistic relevance framework: BM25 and

beyond. Foundations and Trends in Information Retrieval, 3(4), 333-389.

doi:10.1561/1500000019

Salminen, J., Yoganathan, V., Corporan, J., Jansen, B.J., and Jung, S.-G. (2019). Machine learning

approach to auto-tagging online content marketing efficiency: a comparative analysis

between methods and content type. Journal of Business Research, 101, 203-217.

doi:10.1016/j.jbusres.2019.04.018

Salton, G., Wong, A., and Yang, C.-S. (1975). A vector space model for automatic indexing.

Communications of the ACM, 18(11), 613-620. doi:10.1145/361219.361220

Schierholz, M. and Schonlau, M. (2021). Machine learning for occupation coding—a comparison

study. Journal of Survey Statistics and Methodology, 9(5), 1013-1034.

doi:10.1093/jssam/smaa023

Sebastiani, F. (2002). Machine learning in automated text categorization. ACM computing

surveys (CSUR), 34(1), 1-47.

Soumya, G.K. and Shibily, J. (2014). Text classification by augmenting bag of words (BOW)

representation with co-occurrence feature. IOSR Journal of Computer Engineering (IOSR-

JCE), 16, 34-38. doi:10.9790/0661-16153438

Tan, P.-N., Steinbach, M., Karpatne, A., and Kumar, V. (2019). Introduction to data mining (2nd

edition). New York: Pearson Education, Inc.

Tarnow-Mordi, R. (2017). The intelligent coder: developing a machine-learning classification

system. Australian Bureau of Statistics Methodological News 1504.0. Issued September 21,

2017.

https://www.abs.gov.au/ausstats/abs@.nsf/Previousproducts/1504.0Main%20Features5Se

p%202017. Accessed October 1, 2021.

Turney, P.D. and Pantel, P. (2010). From frequency to meaning: vector space models of

semantics. Journal of Artificial Intelligence Research, 37, 141-188. doi:10.1613/jair.2934

U.S. Census Bureau. (2021a). North American industry classification system.

https://www.census.gov/naics/. Accessed September 30, 2021.

U.S. Census Bureau. (2021b). Economic Census. https://www.census.gov/programs-

surveys/economic-census.html. Accessed September 30, 2021.

Wan, C., Wang, Y., Liu, Y., Ji, J., and Feng, G. (2019). Composite Feature Extraction and Selection

for Text Classification. IEEE Access, 7, 35208-35219. doi:10.1109/ACCESS.2019.2904602

Wang, Y., Zhou, Z., Jin, S., Liu, D., and Lu, M. (2017). Comparisons and selections of features and

classifiers for short text classification. IOP Conf. Series: Materials Science and Engineering,

261, 012018.

Worsham, J.M. (2018). Towards literary genre identification: applied neural networks for large

text classification. M.S. thesis. University of Colorado at Colorado Springs.

Xu, J., Wang, P., Guanhua, T., Xu, B., Zhao, J., Wang, F., and Hao, H. (2015). Short text clustering

via convolutional neural networks. NAACL 2015 Vector Space Modeling for NLP Workshop,

62-69.

Xu, J., Wang, P., Guanhua, T., Xu, B., Zhao, J., Wang, F., and Hao, H. (2017). Short text dataset

for classification and clustering extracted from StackOverflow.

https://github.com/jacoxu/StackOverflow. Accessed September 30, 2021.

