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Abstract 

This article explores the use of co-occurrence features and score functions to perform ranked 

classification of short text.  Unlike features based on word sequences, co-occurrence features 

are based on word combinations with no restrictions on word order or distance.  Co-occurrence 

features are appropriate for short text because documents in this setting contain very few 

words.  We consider a variation of the Vector Space Model called the “umbrella” vectorization 

that emphasizes textual details and reduces feature redundancy.  We also propose a 

complementary score function based on a weighted average of the features’ class distributions 

in the corpus.  For validation, the methods are applied to four short text datasets and compared 

to baseline classifiers.  The proposed score function performs better than a modified BM25 

classifier and achieves a level of accuracy similar to that of logistic regression. 

 

Keywords: Co-occurrence features, Information retrieval, Ranked classification, Short text, 

Umbrella vectorization, Vector Space Model 

 

1. Introduction 

Text classification is the problem of classifying documents according to a pre-defined set of 

categories.  It is an important task with many applications such as online content tagging, 

search engine optimization (Lei et al., 2020), digital marketing (Salminen et al., 2019), news 

article categorization (Elnagar et al., 2020), sentiment analysis (Ghiassi et al., 2013; Melville et 

al., 2009), spam filtering (Nagwani and Sharaff, 2017), survey response classification (Tarnow-

Mordi, 2017; Giorgetti and Sebastiani, 2003), occupation coding (Schierholz and Schonlau, 

2021), and electronic health record classification (Mascio et al., 2020).  With the explosion of 

digital information, the needs and opportunities for text classification have increased 

significantly.  Text classification is interdisciplinary and lies at the intersection of machine 

learning (Aggarwal, 2018), natural language processing (Jurafsky and Martin, 2009), and 

information retrieval (Goswami, 2014; Cunningham et al., 1997).  Consequently, there are 

various ways in which to frame the problem and build a model. 

 

A common approach to text classification uses the Vector Space Model (VSM) representation of 

text (Turney and Pantel, 2010; Salton et al., 1975).  Under the VSM, a document is represented 

as a high-dimensional vector of weights corresponding to terms in the corpus.  For example, the 
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terms could be individual words, which are also known as single features, s-features (Figueiredo 

et al., 2011), and unigrams.  This is the so-called “bag-of-words” (BOW) representation.  More 

generally, the terms could be longer word sequences of length n, which are commonly referred 

to as n-grams.  The weights in the VSM reflect term importance and serve as the feature values.  

Possible weighting methods include binary (simply indicating the presence of terms), term 

frequency, and term frequency-inverse document frequency (TF-IDF).  The popular TF-IDF 

method gives more weight to terms that occur frequently in the given document and 

infrequently in the corpus (defined by the number of documents containing the term).  Figure 1 

shows an example VSM representation. 

 

 
Figure 1. Example Vector Space Model (VSM) representation.  The example text is “This is a 

Retail Store and Market.”  The features are individual words and are indicated by curly 

brackets.  Common stop words in the text such as “is” and “a” are ignored.  

 

In the case of multi-class classification (three or more classes), there is an important distinction 

between “hard” and “ranked” classification (Sebastiani, 2002).  In “hard” classification, the 

model predicts a single class for a given document.  However, for information retrieval 

applications and similar problems, it may be desirable for the model to return multiple classes.  

In “ranked” classification, the model ranks the classes according to some measure of 

confidence and then returns the highest-scoring classes.  This measure could be a directly 

estimated probability or a relevance score calculated using a nonparametric score function 

(Goswami, 2014; Robertson and Zaragoza, 2009). 

 

Another distinction in text classification involves document length.  Text classification is broad 

in definition and could refer to classifying documents ranging from short phrases to entire 



books (Worsham, 2018).  There are no agreed-upon criteria for what makes a document “short” 

or “long”, but “short” in this article refers to a single sentence.  Examples of short text include 

search queries, micro-blogs, text messages, news article headlines, and open-ended survey 

responses.  The typical document length in the corpus has implications for the VSM weights.  

For example, because there tend to be fewer repeated words in short text, the term 

frequencies behave like binary indicators.  In turn, the TF-IDF weights behave like functions of 

the inverse document frequencies. 

 

Text classification based on short text is more challenging because there are fewer words and 

phrases on which to base a prediction (Wang et al., 2017).  To improve classification in this 

setting, additional VSM features have been proposed to capture greater semantic and 

contextual detail (Man, 2014; Pôssas et al., 2002).  For example, some VSMs use word co-

occurrence features based on word combinations.  Unlike word sequences, word combinations 

place no restrictions on the order of words or the distances between them.  Words are 

considered co-occurring even if they are the first and last words of the text.  Co-occurrence 

features are also referred to as compound features, c-features (Figueiredo et al., 2011), 

termsets (Badawi, 2015), and itemsets.  For consistency with the n-gram terminology, we 

introduce “n-combs” as another synonym for word combinations.  N-grams and n-combs are 

examples of so-called composite features because they are composed of multiple words. 

 

This article focuses on the problem of ranked classification of short text.  We consider a 

vectorization that uses co-occurrence features to emphasize textual details and reduce feature 

redundancy.  A complementary score function is proposed that computes a weighted average 

of the features’ class distributions in the corpus.  The rest of the article is organized as follows.  

Section 2 reviews related work on short text classification, co-occurrence features, and score 

functions.  Section 3 introduces notation for the problem and describes the methodology.  

Next, four datasets suitable for ranked short text classification are described in Section 4.  

Section 5 outlines a comparative study of classifiers using these datasets, and Section 6 

presents results.  Lastly, Section 7 summarizes findings and describes ideas for future work.  

 

2. Related work 
As stated in Wang et al. (2017), “short text is considerably different from traditional long text 

documents due to its shortness and conciseness, which somehow hinders the applications of 

conventional machine learning and data mining algorithms in short text classification.”   To 

provide the BOW-based VSM more semantic context, composite features such as n-grams and 

n-combs can be added.  N-grams may seem more attractive because they are based on words 

appearing in the same part of the document (Badawi, 2015).  However, documents such as 

single sentences are too short to have multiple parts.  Even the first and last words of short text 

have some relation.  Therefore, in this setting n-combs may pick up on useful associations that 

n-grams do not.  There are typically a large number of possible n-combs in the corpus that can 



be used as features.  Adding too many n-combs leads to model overfitting (Badawi, 2015), so it 

is best to augment the VSM with a subset. 

 

There are various examples in the literature of using n-combs and feature selection methods 

along these lines.  In the context of short text classification with support vector machines, Man 

(2014) augments the conventional VSM with 2-combs that occur frequently in the corpus.  The 

author finds that these additional features improve model performance, especially when the 

number of training documents is small.  Similarly, Soumya and Shibily (2014) use the chi-

squared statistic to determine the most discriminating words and then augment the VSM with 

associated, frequently occurring n-combs.  The authors report a slight improvement in their 

naïve Bayes model and note that co-occurrence features may also benefit information retrieval. 

 

Figueiredo et al. (2011) propose a feature extraction method that applies a threshold based on 

the concept of dominance (discriminative ability) to determine what 2-combs to add.  The 

authors conduct a comparative study with three feature types: words, words and 2-combs 

(proposed method), and words and 2-grams.  They also consider three machine learning 

algorithms: k-nearest neighbors, naïve Bayes, and support vector machines.  An increase in F1-

type measures (Tan et al., 2019), which balance recall and precision, is observed when the 

proposed 2-comb extraction method is used. 

 

Wan et al. (2019) propose a method for selecting composite features called Syntax Augmented 

Bigram.  Their method applies to 2-grams and 2-combs and is based on a metric called 

relevance category frequency.  This metric accounts for both the discriminative ability and 

redundancy of composite features.  Redundancy refers to the undesirable correlation between 

the composite feature and its sub-features.  The authors provide {machine, learning} as an 

example of an n-comb that does not introduce redundancy; it provides useful discriminative 

information not already provided by the words {machine} and {learning}.  The authors apply 

their method to three datasets using naïve Bayes and support vector machines. 

 

Complementary to these “hard” text classification studies is research on what weights to assign 

the features.  Pekar et al. (2004) conduct a comparative study of weighting methods for co-

occurrence features.  The authors distinguish between methods identifying features that 

discriminate classes (odds ratio, gain ratio, and mutual information) and methods favoring 

features that characterize classes (term strength).  They conclude it is possible to obtain 

consistent improvement over unweighted features if the method and corresponding 

parameters are chosen carefully.  On a related note, Carvalho and Guedes (2020) and Erenel et 

al. (2011) study the performance of various supervised and unsupervised weighting methods 

for text classification.  Unsupervised weighting methods such as TF-IDF do not consider class 

information, whereas supervised weighting methods do.  It is observed that the supervised 

weighting methods perform better. 

 



Weighting methods such as TF-IDF can also be used by ranked text classifiers and retrieval 

models.  These models are based on a score function, which calculates a relevance score for 

each class.  This score serves as a measure of confidence that the corresponding class is true.  

The classes are then ranked according to score.  Score functions can be theoretically motivated 

or more nonparametric in nature.  Many effective score functions can be expressed as a sum of 

contributions from the various features associated with the given document (Aggarwal, 2018; 

Goswami, 2014).  Two examples are the score functions used by the binary independence 

model (Aggarwal, 2018) and the popular BM25, or Okapi, model (Robertson and Zaragoza, 

2009).  The sum of contributions can incorporate weights to account for TF-IDF-related 

information and give the features appropriate influence in calculating relevance scores.  In the 

context of information retrieval, Pôssas et al. (2002) explore set-based models based on co-

occurrence features called closed and maximal termsets.  Association rules are used to 

calculate weights for these features.  The authors apply their proposed method to three 

datasets and demonstrate improvement in retrieval performance over the BOW-based VSM. 

 

3. Methodology 

This section introduces notation for the ranked short text classification problem and describes 

the “umbrella” vectorization and weighted dominance score function.  

 

3.1 Setup and features 

Consider a classification scheme with 𝐷 ≥ 3 classes.  Denote the raw training data consisting of 

𝑁 documents by {(𝑟𝑖, 𝑦𝑖)}𝑖=1
𝑁 , where 𝑟𝑖  and 𝑦𝑖  are the raw text and class for document 𝑖, 

respectively.  Furthermore, denote by 𝒮 the set of all possible strings that can be constructed 

using keyboard characters.  There is a practical limit on the length of strings in 𝒮 so that they 

can be considered short text.  The 𝑟𝑖  are cleaned by an algorithm 𝑐𝑙𝑒𝑎𝑛: 𝒮 → 𝒮 that performs 

tasks such as stop word removal, stemming, lemmatization, and spelling correction (Jurafsky 

and Martin, 2009).  The resulting clean text for document 𝑖 is denoted 𝑡𝑖 = 𝑐𝑙𝑒𝑎𝑛(𝑟𝑖). 

 

Next, the feature type is chosen.  For example, possible feature types include individual words 

(BOW); words and 2-combs; or words, 2-grams, and 3-grams.  All 𝐹 possible features of the 

chosen type are identified in the clean text.  Let these features be indexed by 𝑓 ∈ ℬ =
{1,2, … , 𝐹}.  Furthermore, denote by 𝑥𝑖𝑓 the binary variable indicating the presence of feature 

𝑓 in 𝑡𝑖: 

 

𝑥𝑖𝑓 = {
1, if feature 𝑓 appears in 𝑡𝑖

0, otherwise
(1) 

 

To reduce the number of features used in modeling, a frequency threshold 𝜏 is used (Man, 

2014; Pôssas et al., 2002).  Define 

 



ℬ𝑑𝑖𝑐𝑡 = {𝑓 ∈ ℬ: ∑ 𝑥𝑖𝑓

𝑁

𝑖=1

≥ 𝜏} (2) 

 

to be the set of features that occur in at least 𝜏 documents.  These features are said to form the 

dictionary.  Let 𝐹𝑑𝑖𝑐𝑡 = |ℬ𝑑𝑖𝑐𝑡| denote the dictionary size. 

 

3.2 Weights 

For each feature 𝑓 ∈ ℬ𝑑𝑖𝑐𝑡 , a supervised weight 𝑤𝑓  (Carvalho and Guedes, 2020; Erenel et al., 

2011) is calculated based on the feature’s class distribution.  This distribution is defined by the 

following proportions.  Denote by 

 

𝑝𝑓𝑑 =
∑ 1(𝑦𝑖 = 𝑑)𝑥𝑖𝑓

𝑁
𝑖=1

∑ 𝑥𝑖𝑓
𝑁
𝑖=1

(3) 

 

the proportion of documents in the training data containing feature 𝑓 that are in class 𝑑.  This 

quantity is also referred to as dominance by Figueiredo et al. (2011).  The weight 𝑤𝑓  takes on 

values in the range 0 to 1, inclusive, and quantifies how concentrated the feature’s class 

distribution is.  Larger values of 𝑤𝑓  mean the feature’s distribution is more concentrated and, 

therefore, that the feature is more discriminative.  This concept is equivalent to leaf node purity 

in decision trees (Tan et al., 2019).  As in the decision tree setting, 𝑤𝑓  can be defined in multiple 

ways: 

 

𝑤𝑓
𝑀𝑎𝑥 = (

𝐷

𝐷 − 1
) [max

𝑑
(𝑝𝑓1 , … , 𝑝𝑓𝐷) −

1

𝐷
] (4) 

 

𝑤𝑓
𝑅𝑎𝑛𝑔𝑒

= max
𝑑

(𝑝𝑓1, … , 𝑝𝑓𝐷) − min
𝑑

(𝑝𝑓1 , … , 𝑝𝑓𝐷) (5) 

 

𝑤𝑓
𝐺𝑖𝑛𝑖 = (

𝐷

𝐷 − 1
) [(∑ 𝑝𝑑

2

𝐷

𝑑=1

) −
1

𝐷
] (6) 

 

𝑤𝑓
𝐸𝑛𝑡𝑟𝑜𝑝𝑦

= 1 + ∑ 𝑝𝑓𝑑log𝐷(𝑝𝑓𝑑)

𝐷

𝑑=1

(7) 

 

For the entropy definition, the logarithm is taken with respect to base 𝐷, and 0 × log𝐷(0) is 

defined to be 0.  For these four definitions, 𝑤𝑓 = 0 if and only if all proportions are equal, 

𝑝𝑓𝑑 = 1 𝐷⁄  (𝑑 = 1, … , 𝐷).  Conversely, 𝑤𝑓 = 1 if and only if one proportion equals 1 and the 

other 𝐷 − 1 proportions equal 0. 

 



The weight can also be defined in terms of the feature’s class support, 𝐷𝑓 = |{𝑑: 𝑝𝑓𝑑 > 0}|.  

This is the number of classes in which feature 𝑓 appears.  The following are two definitions of 

𝑤𝑓  based on this concept: 

𝑤𝑓
𝑆𝑢𝑝𝑝𝑜𝑟𝑡

= (
𝐷

𝐷 − 1
) (

1

𝐷𝑓
−

1

𝐷
) (8) 

 

𝑤𝑓
𝐿𝑜𝑔𝑆𝑢𝑝𝑝𝑜𝑟𝑡

= 1 −
ln(𝐷𝑓)

ln(𝐷)
(9) 

 

For these two definitions, 𝑤𝑓 = 0 if and only if 𝐷𝑓 = 𝐷.  Conversely, 𝑤𝑓 = 1 if and only if 𝐷𝑓 =

1.  Setting the weight equal to a constant value is also an option: 

 

𝑤𝑓
𝐸𝑞𝑢𝑎𝑙

= 1 (10) 

 

3.3 Standard and umbrella vectorizers 

To put the data in a format suitable for modeling, a vectorizer is applied to the clean text.  The 

vectorizer is a function of the form 𝑣𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑒: 𝒮 → [0,1]𝐹𝑑𝑖𝑐𝑡
 that expresses the clean text as a 

vector of feature values incorporating the weights 𝑤𝑓 .  The vector for document 𝑖 is given by 

 

𝒛𝑖 = 𝑣𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑒(𝑡𝑖) = [𝑧𝑖,ℎ(1), 𝑧𝑖,ℎ(2), … , 𝑧𝑖,ℎ(𝐹𝑑𝑖𝑐𝑡)]
𝑇

(11) 

 

where the 𝑧𝑖𝑓 , 𝑓 ∈ ℬ𝑑𝑖𝑐𝑡 , are the feature values and ℎ: {1,2, … , 𝐹𝑑𝑖𝑐𝑡} → ℬ𝑑𝑖𝑐𝑡  is a bijection that 

makes the ordering of the features in vector 𝒛𝑖  well-defined. 

 

For the “standard” vectorization, we have 

 
𝑧𝑖𝑓 = 𝑤𝑓𝑥𝑖𝑓 (12) 

 

That is, 𝒛𝑖  simply identifies the dictionary features appearing in 𝑡𝑖 with weights applied.  We 

consider an alternative “umbrella” vectorization that can be used for feature types involving n -

combs and n-grams.  The umbrella vectorization restricts attention to higher-order n-combs 

and n-grams to reduce redundancy (Wan et al., 2019) and focus on detail.  These higher-order 

composite features act like umbrellas that cover sub-features.  They are similar to the closed 

and maximal termsets introduced by Pôssas et al. (2002), but the umbrella vectorization 

described here applies to both n-grams and n-combs.  For this vectorization, 

 

𝑧𝑖𝑓 = 𝑤𝑓𝑢𝑖𝑓 (13) 

 

where 



 

𝑢𝑖𝑓 = {
1, if 𝑥𝑖𝑓 = 1 and 𝑓 ⊄ 𝑔 ∀𝑔 ∈ ℬ𝑑𝑖𝑐𝑡  such that 𝑥𝑖𝑔 = 1

0, otherwise
(14) 

is the umbrella indicator.  The notation feature 𝑓 ⊄ feature 𝑔 is meant to suggest that the n-

comb (or n-gram) 𝑓 is not a sub-feature of some larger n-comb (or n-gram) 𝑔. 

 

As a demonstration of the two vectorizers, consider the following dictionary of words and 2-

combs: {market}, {pet}, {retail}, {store}, {market, retail}, {pet, retail}, and {pet, store}.  Tables 1 

and 2 list the values of 𝑤𝑓𝑥𝑖𝑓 and 𝑤𝑓𝑢𝑖𝑓, respectively, for four hypothetical documents.  For 

example, the first document has raw text “This is a Retail Market” and clean text “retail 

market”.  The words {market} and {retail} and 2-comb {market, retail} appear in the clean text, 

so 𝑤𝑓𝑥𝑖𝑓 = 𝑤𝑓 × 1 = 𝑤𝑓  for these three features (see Table 1).  However, {market} and {retail} 

are subsets of the 2-comb {market, retail}, so 𝑤𝑓𝑢𝑖𝑓 = 𝑤𝑓 × 0 = 0 for these two words (see 

Table 2). 

 

Table 1. Example standard vectorizations: values of 𝑤𝑓𝑥𝑖𝑓  
𝑓  Word or 

2-comb 

Raw text and corresponding clean text 

This is a Retail 

Market 

Market/Store Store for Pets. Retailer – Pet 

Store & Market 

retail market market store store pet retail pet store 

market 

1 {market} 𝑤1  𝑤1  0 𝑤1  

2 {pet} 0 0 𝑤2  𝑤2  

3 {retail} 𝑤3  0 0 𝑤3  

4 {store} 0 𝑤4 𝑤4 𝑤4 

5 {market, retail} 𝑤5 0 0 𝑤5 

6 {pet, retail} 0 0 0 𝑤6  

7 {pet, store} 0 0 𝑤7  𝑤7  

 

Table 2. Example umbrella vectorizations: values of 𝑤𝑓𝑢𝑖𝑓 

𝑓  Word or 

2-comb 

Raw text and corresponding clean text 

This is a Retail 

Market 

Market/Store Store for Pets. Retailer – Pet 

Store & Market 

retail market market store store pet retail pet store 

market 

1 {market} 0 𝑤1  0 0 

2 {pet} 0 0 0 0 

3 {retail} 0 0 0 0 

4 {store} 0 𝑤4 0 0 

5 {market, retail} 𝑤5 0 0 𝑤5 



6 {pet, retail} 0 0 0 𝑤6  

7 {pet, store} 0 0 𝑤7  𝑤7  

 

3.4 Weighted dominance score function 

Using the class proportions and choice of vectorizer, relevance scores can be calculated.  

Consider a new, previously unseen document with raw text 𝑟𝑛𝑒𝑤 and unknown class 𝑦𝑛𝑒𝑤.  This 

document goes through the same cleaning and vectorization process as the training data, 

yielding clean text 𝑡𝑛𝑒𝑤 = 𝑐𝑙𝑒𝑎𝑛(𝑟𝑛𝑒𝑤) and feature vector 𝒛𝑛𝑒𝑤 = 𝑣𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑒(𝑡𝑛𝑒𝑤).  The 

proposed weighted dominance score function calculates the relevance score for class 𝑑, 

denoted 𝜃𝑑
𝑊𝑔𝑡𝐷𝑜𝑚

, to be the weighted average of the class proportions 𝑝𝑓𝑑 : 

 

𝜃𝑑
𝑊𝑔𝑡𝐷𝑜𝑚

=
∑ 𝑧𝑛𝑒𝑤,𝑓𝑝𝑓𝑑𝑓∈ℬ𝑑𝑖𝑐𝑡

∑ 𝑧𝑛𝑒𝑤,𝑓𝑓∈ℬ𝑑𝑖𝑐𝑡

(15) 

 

The 𝜃𝑑
𝑊𝑔𝑡𝐷𝑜𝑚

, 𝑑 = 1, … , 𝐷, take on values between 0 and 1, inclusive, and sum to 1.  [In the 

case ∑ 𝑧𝑛𝑒𝑤,𝑓𝑓∈ℬ𝑑𝑖𝑐𝑡 = 0, the 𝜃𝑑
𝑊𝑔𝑡𝐷𝑜𝑚

 are defined to equal 0.]  For ranked classification, the 

𝜃𝑑
𝑊𝑔𝑡𝐷𝑜𝑚

 are used to rank the classes.  For hard classification, the predicted class is the one 

with the highest relevance score: 

 

𝑦̂𝑛𝑒𝑤 = argmax
𝑑

(𝜃𝑑
𝑊𝑔𝑡𝐷𝑜𝑚

) (16) 

 

Conceptually, the weighted dominance score function averages the class distributions of the 

features, with more weight given to the distributions that are more concentrated.  Figure 2 

illustrates the relevance score calculation.  It displays hypothetical class distributions of {retail}, 

{market}, and the 2-comb {market, retail} with weights equal to 0.125, 0.375, and 0.75, 

respectively.  These weights are calculated according to the 𝑤𝑓
𝑀𝑎𝑥 definition (Equation 4).  The 

co-occurrence feature {market, retail} has the most concentrated distribution. 

 

In the context of the standard vectorization, {market, retail} has the most influence in the 

weighted average of the features’ distributions.  In this case, the weighted dominance score 

function produces the following class ranking: class 3 (𝜃3
𝑊𝑔𝑡𝐷𝑜𝑚

= 0.66), class 4 (𝜃4
𝑊𝑔𝑡𝐷𝑜𝑚

=

0.215), class 1 (𝜃1
𝑊𝑔𝑡𝐷𝑜𝑚

= 0.065), class 5 (𝜃5
𝑊𝑔𝑡𝐷𝑜𝑚

= 0.035), and class 2 (𝜃2
𝑊𝑔𝑡𝐷𝑜𝑚

= 0.025).  

Note that every class is assigned a positive score. 

 

However, if the umbrella vectorization is used, the distributions of the words {retail} and 

{market} are not considered.  The relevance scores simply equal the class proportions of the 

umbrella feature {market, retail}.  In this case, the weighted dominance score function 

produces the following class ranking: class 3 (𝜃3
𝑊𝑔𝑡𝐷𝑜𝑚

= 0.8) and class 4 (𝜃4
𝑊𝑔𝑡𝐷𝑜𝑚

= 0.2).  



The proportions for classes 1, 2, and 5 equal 0, so these classes are assigned a score of 0.  

Compared to the standard vectorizer, the weighted dominance score function with the 

umbrella vectorizer assigns a higher score to class 3 and is more confident in its being the true 

class. 

 

 
Figure 2. Illustration of relevance score calculation.  This calculation is based on the features 

{retail}, {market}, and {market, retail} with weights 0.125, 0.375, and 0.75, respectively.  The 

class distribution of {market, retail} over the five classes is the most concentrated and thus has 

the most influence in the weighted average. 

 

4. Datasets 

This section describes four datasets suitable for ranked short text classification.  We use these 

datasets in a comparative study of proposed and baseline methods 



4.1 HuffPost 

HuffPost is an online news aggregator and blog.  A related dataset is available on Kaggle that 

consists of 200,853 HuffPost article headlines from 2012 to 2018 (Misra, 2018; Grover and 

Misra, 2021).  The headlines are classified according to 41 topics including politics, 

entertainment, travel, comedy, sports, crime, and world news.  The dataset also contains a text 

variable that summarizes the news article, but we focus on using the shorter headline to 

classify the topic. 

 

4.2 NAICS 

The North American Industry Classification System (NAICS) is a hierarchical coding system used 

by government agencies to classify the principal economic activity of business establishments 

(U.S. Census Bureau, 2021a).  For example, Economic Census (U.S. Census Bureau, 2021b) data 

products released by the U.S. Census Bureau are based on NAICS.  NAICS codes are six digits 

long with the first two digits identifying the economic sector.  There are 20 sectors including 

construction, manufacturing, wholesale trade, and accommodation and food services.  To 

research sector classification based on short text, we compiled business descriptions and 

corresponding NAICS codes from two data sources: the Economic Census (2002, 2007, 2012, 

and 2017) and the Internal Revenue Service’s SS-4 form (Internal Revenue Service, 2021) (2002 

through 2016), which is used by employers for tax purposes.  Both the Economic Census 

questionnaire and SS-4 form allow respondents to write an open-ended description of their 

business (for example, products sold and services performed).  The dataset consists of 

2,192,275 documents. 

 

4.3 NAICS Wholesale 

To examine NAICS classification at a more granular level, we focus on one economic sector 

from the NAICS dataset and consider the more challenging problem of classifying at the 6-digit 

level.  Wholesale trade is one of the largest sectors in the NAICS dataset with 271,025 

documents and 71 classes, making this dataset interesting for evaluating ranked classifiers.  

 

4.4 Stack Overflow 

Stack Overflow is a popular question-and-answer website for computer programmers.  A 

related dataset is made available by Xu et al. (2015 and 2017) and Kaggle that represents a 

sample of 20,000 Stack Overflow thread titles evenly distributed over 20 topics.  The topics 

touch on computer applications, operating systems, and programming languages.  Examples 

include Oracle, SVN, Apache, Excel, MATLAB, SharePoint, and Ajax.  The problem is to classify 

the topic under discussion based on the thread title. 

 

4.5 Summary of datasets 

Table 3 presents descriptive statistics for the four datasets.  The class imbalance degree is the 

measure described by Ortigosa-Hernández et al. (2017) and is based on Euclidean distance.  We 



divide this imbalance degree by the number of classes to allow comparison among datasets.  A 

related measure is the class imbalance ratio, which equals the maximum class proportion 

divided by the minimum class proportion.  The HuffPost and two NAICS datasets exhibit class 

imbalance, whereas the Stack Overflow dataset is, by design, perfectly balanced.  In terms of 

characters and words, the documents for the two NAICS datasets are shorter on average than 

the documents for the HuffPost and Stack Overflow datasets.  Words are defined as sequences 

of non-whitespace characters. 

 

Table 3. Dataset descriptive statistics 
Dataset Number of 

documents 

Number of 

classes 

Class 

imbalance 

degree 

Class 

imbalance 

ratio 

Raw text length 

(characters) 

Raw text length 

(words*) 

Average Max Average Max 

HuffPost 200,853 41 0.71 32.61 57.94 320 9.54 44 

NAICS 2,192,275 20 0.47 323.58 26.33 268 3.52 49 

NAICS 

Wholesale 

271,025 71 0.65 121.99 28.43 259 3.76 43 

Stack Overflow 20,000 20 0.00 1.00 48.69 213 8.00 34 

*Defined here as strings of non-whitespace 

 

5. Evaluation 

We compare the performance of the weighted dominance score function to that of three other 

classifiers: a modified BM25 score function, multinomial logistic regression, and decision tree.  

The modified BM25 score is given by 

 

𝜃𝑑
𝐵𝑀25 ∝ ∑ [𝑧𝑛𝑒𝑤,𝑓𝑙𝑛 (

𝐷 + 1

𝐷𝑓 + 0.5
)

(𝑚 + 1)𝑁𝑓𝑑

𝑚 [(1 − 𝑏) + 𝑏 (
𝑁𝑑𝐷

𝑁
)] + 𝑁𝑓𝑑

]

𝑓∈ℬ𝑑𝑖𝑐𝑡

(17) 

 

where 𝑁𝑓𝑑 = ∑ 1(𝑦𝑖 = 𝑑)𝑥𝑖𝑓
𝑁
𝑖=1  and 𝑁𝑑 = ∑ 1(𝑦𝑖 = 𝑑)𝑁

𝑖=1 .  The argument to the natural 

logarithm has been increased by one to ensure a positive score, and the BM25 factor 

accounting for within-query term frequencies has been omitted (Robertson and Zaragoza, 

2009).  The values of 𝑚 and 𝑏 are set to 1.2 and 0.75, respectively.  The logistic regression and 

decision tree classifiers produce class probabilities, which can be used like scores to rank 

classes.  The weighted dominance and modified BM25 classifiers are implemented using base 

Python functions and data structures.  The logistic regression and decision tree classifiers, on 

the other hand, are fit using the Natural Language Toolkit (NLTK) (Bird et al., 2009) and Scikit-

learn (Pedregosa et al., 2011) modules.  For these two classifiers, most parameters are set to 

their default values.  Results are not believed to be sensitive to software implementation.  

 

In terms of features, we study all combinations of feature type (BOW, words and 2-combs, and 

words and 2-grams) and vectorizer (standard and umbrella).  There are only five such 

combinations because the standard and umbrella vectorizers are the same for BOW.  We do 



not consider n-combs and n-grams longer than two because of diminishing returns for the 

increase in complexity; Choueka and Lusignan (1985) show that simply adding a second word of 

context can greatly help with term disambiguation.  We also consider three weight types 

representative of the different weight definitions: 𝑤𝑓
𝐸𝑞𝑢𝑎𝑙, 𝑤𝑓

𝐿𝑜𝑔𝑆𝑢𝑝𝑝𝑜𝑟𝑡 , and 𝑤𝑓
𝑀𝑎𝑥.  There are 15 

(= 5 × 3) feature/weight combinations in total. 

 

The same cleaning algorithm is applied to the four datasets.  This algorithm consists of 

converting text to lowercase, removing punctuation, removing extraneous whitespace, 

removing stop words, and stemming (stripping suffixes to reduce the number of word 

variations).  The stop words are based on a default list from NLTK.  NLTK is also used to 

implement the popular Porter 2/Snowball stemmer (Porter, 2001).  In practice, the stop words 

and stemmer would be tailored to the dataset.  For example, additional rules may be added to 

the stemmer to address known under- and over-stemming errors.  In all cases, the frequency 

threshold 𝜏 used to determine the dictionary is set to 3. 

 

To evaluate the various combinations of classifier, features, and weight type, we apply the 

holdout method (Tan et al., 2019).  For each dataset, we select a stratified random sample with 

classes as strata.  The sampling fraction in each stratum is set to 0.9.  The selected documents 

form the training data, and the remaining documents form the test data.  The training data are 

used to determine the dictionary and fit the various classifiers.  Finally, the fitted classifiers are 

applied to and evaluated on the test data.  Table 4 describes the metrics used to assess 

performance.  These metrics are mean reciprocal rank (MRR), mean score of the true class 

(MSCORE), accuracy (TOP-𝑘), time to fit the classifier, and time to apply the classifier. 

 

Table 4. Evaluation metrics 

Metric Description 

MRR Mean reciprocal rank of the true class.  If the true class is assigned a score 
of 0, its reciprocal rank is defined to be 0. 

MSCORE Mean score of the true class.  This metric reflects model confidence in 
predicting the true class. 

TOP-𝑘 Accuracy, where success is defined as the true class being among the 𝑘 
highest-scoring classes.  This metric is calculated for different values of 𝑘.  
The case 𝑘 = 1 corresponds to “hard” classification accuracy. 

Fitting time Time (in seconds) it takes to fit the classifier on the training data. 

Application 
time 

Time (in seconds) it takes to apply the classifier to the test data on a 
document-by-document basis (i.e., not batch processing). 

 

6. Results 

For each metric, we present global values and then focus on a specific dataset to highlight 

interesting results.  The four classifiers are abbreviated WgtDom, BM25, LogReg, and DecTree.  

The five sets of features are abbreviated BOW, CS, CU, GS, and GU.  C and G stand for n-combs 



and n-grams, respectively.  S and U stand for the standard and umbrella vectorizers, 

respectively. 

 

6.1 Dictionary size 

Table 5 presents the dictionary sizes for the four datasets.  As a reminder, the dictionaries are 

determined using the documents randomly selected for training.  The dictionary for the NAICS 

dataset is the largest with 150,456 2-grams and 313,034 2-combs.  In general, there are 

approximately 2-4 times as many 2-combs as 2-grams.  Even though the HuffPost dataset has 

fewer documents than the NAICS Wholesale dataset, its dictionary is appreciably larger. 

 

Table 5. Dictionary sizes 

Dataset Words 2-grams 2-combs 

HuffPost 17,048 49,770 238,768 

NAICS 19,324 150,456 313,034 

NAICS Wholesale 5,995 27,702 55,622 

Stack Overflow 2,515 3,733 14,753 

 

6.2 MRR 

Figure 3 presents the largest value of MRR for each combination of classifier and dataset.  The 

corresponding features and weight type are identified by color and symbol, respectively.  

Between n-combs and n-grams, the n-comb features (CS and CU) occur more frequently in 

Figure 3 and are prevalent for WgtDom and BM25.  The performance of WgtDom is most 

similar to that of BM25, with WgtDom producing slightly larger MRR values across nearly all 

feature/weight combinations for each dataset.  This is understandable given that WgtDom has 

a similar model structure to BM25 but, arguably, makes better use of the features’ class 

distributions.  There are mixed results regarding weight type, although 𝑤𝑓
𝐿𝑜𝑔𝑆𝑢𝑝𝑝𝑜𝑟𝑡

 tends to 

perform the best for DecTree. 

 

WgtDom with CS features produces the largest value of MRR for the Stack Overflow dataset.  

LogReg produces the largest value of MRR for the other three datasets.  In terms of MRR, 

LogReg has an advantage over the other classifiers.  It always assigns a positive score to the true 

class, and thus the reciprocal rank is always positive for a given document.  WgtDom and BM25 

are limited by their features’ support, resulting in a reciprocal rank equal to 0 for some 

documents.  Similarly, DecTree is limited by the classes represented in the leaf node at which 

classification occurs. 

 



 
Figure 3. Largest value of MRR for each combination of classifier and dataset.  The 

corresponding features and weight type are identified by color and symbol, respectively.  

 

Figure 4 shows MRR for each combination of feature and weight type for the NAICS Wholesale 

dataset.  The features and weight type are identified by color and shading, respectively.  Note 

that the y-axis starts at 0.4 to emphasize differences.  BM25, WgtDom, and LogReg perform the 

worst when 𝑤𝑓
𝐿𝑜𝑔𝑆𝑢𝑝𝑝𝑜𝑟𝑡

 is used.  Weight type has some effect on DecTree, but this is not 

consistent across all datasets. 

 



 
Figure 4: MRR by feature and weight type for the NAICS Wholesale dataset.  The features and 

weight type are identified by color and shading, respectively.  Note that the y-axis starts around 

0.4 to emphasize differences. 

 

6.3 MSCORE 

Larger values of MSCORE indicate higher confidence in predicting the true class.  This is an 

important consideration if results are filtered using a score threshold.  Figure 5 presents the 

largest value of MSCORE for each combination of classifier and dataset.  The CU and GU 

features are prevalent for WgtDom and BM25.  By restricting attention to higher order 

composite features, the umbrella vectorization helps the two score functions focus on detail 

and assign higher scores to the true class.  On the other hand, the CS and GS features are 

prevalent for LogReg and DecTree.  For the MSCORE metric, there is more of a pattern 

regarding weight type.  The weight type 𝑤𝑓
𝑀𝑎𝑥 works best for WgtDom, 𝑤𝑓

𝐸𝑞𝑢𝑎𝑙
 for LogReg, and 

𝑤𝑓
𝐿𝑜𝑔𝑆𝑢𝑝𝑝𝑜𝑟𝑡

 for BM25 and DecTree. 

 

For all four datasets, LogReg and DecTree produce the largest and second largest values of 

maximum MSCORE in Figure 5; WgtDom produces the third largest value.  However, for 

particular datasets and combinations, WgtDom does outperform LogReg.  For example, see 

Figure 6, which shows MSCORE for each combination of feature and weight type for the Stack 



Overflow dataset.  WgtDom produces a higher MSCORE than LogReg for two of the three 

combinations involving the CU features.  For WgtDom and BM25, the CU features perform 

better than CS for all weight types.  WgtDom and BM25 perform the worst when 𝑤𝑓
𝐸𝑞𝑢𝑎𝑙

 is 

used.  This demonstrates that, on average, the supervised weights help the score functions 

assign large scores to the true class.  LogReg performs the worst when 𝑤𝑓
𝐿𝑜𝑔𝑆𝑢𝑝𝑝𝑜𝑟𝑡

 is used.  In 

contrast, the weight type has little effect on DecTree. 

 

 
Figure 5. Largest value of MSCORE for each combination of classifier and dataset.  The 

corresponding features and weight type are identified by color and symbol, respectively.  

 

 



 
Figure 6: MSCORE by feature and weight type for the Stack Overflow dataset.  The features and 

weight type are identified by color and shading, respectively. 

 

6.4 TOP-𝒌 

The TOP-𝑘 accuracy measures how successful the classifier is in ranking the true class among 

the 𝑘 highest-scoring results.  Ranking the true class first is more difficult than ranking it among 

the top 𝑘 results when 𝑘 is large.  Figure 7 presents the largest value of TOP-5 for each 

combination of classifier and dataset.  Results differ for different values of 𝑘.  The choice 𝑘 = 5 

seems reasonable given the number of classes in each dataset.  The CS and BOW features are 

the most prevalent in Figure 7, with the GS features yielding the largest value of TOP-5 for 

LogReg for two datasets.  The CU and GU features do not correspond to any values in Figure 7.  

Regarding weight type patterns, 𝑤𝑓
𝑀𝑎𝑥 performs the best for WgtDom, whereas 𝑤𝑓

𝐸𝑞𝑢𝑎𝑙
 

performs the best for LogReg.  According to TOP-5, the classifiers can be ranked from most to 

least accurate roughly as LogReg, WgtDom, BM25, and DecTree.  LogReg, WgtDom, and BM25 

perform similarly on the Stack Overflow dataset.  LogReg and WgtDom perform similarly on the 

NAICS Wholesale dataset. 

 

 



 
Figure 7. Largest value of TOP-5 for each combination of classifier and dataset.  The 

corresponding features and weight type are identified by color and symbol, respectively.  

 

Figure 8 displays TOP-𝑘 of each classifier on the NAICS Wholesale dataset for selected values of 

𝑘.  We focus on results using the weight type 𝑤𝑓
𝑀𝑎𝑥.  Although WgtDom either performs the 

best or essentially as well as any other classifier for this particular dataset, that is not always 

true.  As shown previously, for other datasets, LogReg is the most accurate, depending on the 

weight type.  DecTree is generally the least accurate.  WgtDom tends to improve upon BM25 

consistently in terms of TOP-𝑘 accuracy. 

 



 
Figure 8. TOP-𝑘 by classifier and feature for the NAICS Wholesale dataset.  Results are displayed 

for the weight type 𝑤𝑓
𝑀𝑎𝑥 and for selected values of 𝑘. 

 

6.5 Fitting time 

Fitting WgtDom is defined as calculating the proportions 𝑝𝑓𝑑  appearing in Equation 15 for 

𝜃𝑑

𝑊𝑔𝑡𝐷𝑜𝑚
.  Similarly, fitting BM25 is defined as calculating the quantities 𝐷𝑓, 𝑁𝑓𝑑 , and 𝑁𝑑  



appearing in Equation 17 for 𝜃𝑑
𝐵𝑀25.  As expected, for all datasets, LogReg and DecTree fit the 

slowest.  The fitting times for WgtDom and BM25 are negligible in comparison.  DecTree fits 

more slowly for the CU and GU features compared to CS and GS.  The opposite is true for 

LogReg.  Whereas the choice of weight has little impact on the fitting time of DecTree, the 

effect of using 𝑤𝑓
𝐸𝑞𝑢𝑎𝑙

 is much more apparent for LogReg.  Figure 9 displays fitting times for 

DecTree and LogReg on the NAICS dataset, the largest of the four datasets.  The maximum 

values for WgtDom, BM25, LogReg, and DecTree for this dataset are 17.8, 17.6, 2,729, and 

5,328 seconds, respectively. 

 

 
Figure 9. Fitting times (in seconds) for DecTree and LogReg by feature and weight type on the 

NAICS dataset.  The features and weight type are identified by color and shading, respectively.  

The fitting times for WgtDom and BM25 are negligible in comparison to those for DecTree and 

LogReg. 

 

6.6 Application time 

The classifiers are applied to the test data one document at a time, as opposed to using a batch 

method Scikit-learn method available to LogReg and DecTree.  This allows for a fairer 



comparison and better simulates information retrieval applications.  Applying WgtDom and 

BM25 is fast for all datasets.  The application time for LogReg is much longer.  Figure 10 displays 

application times for DecTree and LogReg on the NAICS dataset.  The maximum values for 

WgtDom, BM25, LogReg, and DecTree for this dataset are 9.9, 23.7, 2,475, and 117 seconds, 

respectively. 

 

 
Figure 10. Application times (in seconds) for DecTree and LogReg by feature and weight type on 

the NAICS dataset.  The features and weight type are identified by color and shading, 

respectively.  The application times for WgtDom and BM25 are negligible in comparison to 

those for LogReg. 

 

7. Conclusions and future work 

In the context of ranked short text classification, we examine the use of co-occurrence features 

and an alternative VSM and score function.  N-combs are both feasible and appropriate for 

short text, making them an interesting option in this setting.  An evaluation was conducted in 

which four classifiers were compared across four datasets that represent news headlines, 

business descriptions, and online forum postings.  We considered 15 combinations of features 

and weight type.  The classifiers were evaluated according to five metrics.  Three metrics 

quantify accuracy, and the other two measure the time required to fit and apply the classifier.  

 



The results show the classifiers have different strengths and weaknesses, but there are also 

some patterns.  The umbrella vectorization appears better suited for score functions than for 

the more traditional multinomial logistic regression and decision tree classifiers.  N-combs 

performed well in general, but the advantage of using them over n-grams, as measured by 

MRR, MSCORE, and TOP-𝑘, is clearer for the score functions.  As a generalized linear model, 

logistic regression is versatile and performs very well on all four datasets.  However, as 

expected, it takes a long time to fit and apply.  Logistic regression does not scale well like the 

weighted dominance and modified BM25 score functions.  Score functions in general can 

handle a large number of documents, features, and classes.  Weighted dominance outperforms 

the modified BM25 with respect to the accuracy metrics.  For these reasons, the weighted 

dominance classifier based on n-combs could serve as a useful baseline classifier for ranked 

short text classification, especially for large datasets. 

 

With regard to the performance of the BM25, logistic regression, and decision tree classifiers, 

there are potential gains by fine-tuning the model parameters.  The decision tree classifier, in 

particular, has many parameters that govern complexity.  The default minimum sample size 

needed to terminate branches was increased to try to protect against model overfitting, but 

parameter values are not optimal.  Decision tree overfitting is reflected in large values of 

MSCORE and small values of MRR and TOP-𝑘.  Still, the evaluation shows the much simpler 

weighted dominance score function performs at the same level as the other classifiers. 

 

In terms of improving the weighted dominance score function, it would be interesting to 

research a hybrid approach based on both CS and CU features.  The CS features perform well in 

terms of MRR and TOP-𝑘, whereas the umbrella vectorization clearly performs the best in 

terms of MSCORE.  CS allows the weighted dominance score function to consider all words and 

word combinations in a given document.  This results in a wider range of classes that are 

assigned a positive score.  CU, on the other hand, restricts positive score assignment to a subset 

of these classes.  Employing a model ensemble (Tan et al., 2019) based on both sets of features 

could result in a classifier that optimally balances these metrics. 

 

Another idea for future work is using model stacking (Pavlyshenko, 2018; Güneş, 2017), or meta 

ensembling, to transform and weight the scores from CS- and CU-based classifiers instead of 

simply averaging them.  Such an approach could adaptively account for the differences of each 

classifier and the unique characteristics of each class.  Any insights uncovered through such 

second-stage modeling could also motivate internal refinements of the weighted dominance 

score function. 
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