

Single Intravenous Treatment with Zinc Finger Repressor Leads to Brainwide Reduction of Prion in Nonhuman Primates and Significantly Prolongs Survival in the RML Mouse Model

Shih-Wei Chou¹, Toufan Parman¹, Annemarie Ledeboer¹, Kimberly Marlen¹, David Ojala¹, Matthew Tiffany¹, Meredith A Pokatayev², Michael Howard², Kenney Lenz², Kenia Guzman², Nikita Kamath², Giulia Cisbani³, Finn Peters³, Chiara Melis³, Jing Hu¹, Qi Yu¹, Sarah Hinkley¹, Mohad Mehrabian¹, Alissa Coffey², Alaric Falcon¹, Marian Glynn¹, Yanmei Lu¹, Kathleen Meyer¹, Amy M Pooler¹, Eric Vallabh Minikel², Sonia M Vallabh², Bryan Zeitler¹

¹ Sangamo Therapeutics Inc., ² Broad Institute of MIT and Harvard, ³ Evotec SE.

Prion Conference, October 23, 2024

Disclosure

I am a full-time employee of Sangamo Therapeutics

Outline of this talk

- I. Background of zinc finger repressor (ZFR) technology
- 2. Potential therapeutic approach for prion disease
- 3. Overview of compelling data supporting this approach
 - Potency and specificity of ZFR
 - ZFR efficacy in RML prion disease mouse model
 - AAV-ZFR delivery and prion repression in non-human primates

Zinc fingers are nature's solution for highly specific DNA binding

Zinc Fingers are natural proteins that bind DNA sequences with high specificity At least 782 human genes encode for Zinc Finger Proteins

Most natural Zinc Finger Proteins function to regulate the epigenetic state of other genes

One-time IV administration of a ZFR for prion disease

Potent ZFR repression of mouse Prnp with high specificity in vitro

- 384 ZFRs were designed against the mouse *Prnp* locus and screened for on- and off-target activity
- Candidates mZFR1 and mZFR2 were selected due to potent *Prnp* mRNA repression in primary mouse neurons in vitro
- Whole transcriptome profiling of >20,000 transcripts revealed no offtarget genes were significantly downregulated, demonstrating the ZFRs had excellent specificity
- These lead mouse ZFRs were advanced to in vivo evaluation

Potent in vivo reduction of Prnp mRNA across the mouse brain

Thalamus*; all other regions ns

Thalamus**; all other regions ns

N=4-8 mice per group. Mean ± SD; Two-way ANOVA; Dunnett's *Every region* **** comparisons against GFP group *Every region* ****

Sangame

Potent reduction of PrP protein in the brain and CSF of mice

Efficacy study #1: evaluate survival of RML-inoculated mice with a single ZFR dose at pre-symptomatic and symptomatic

9

mZFRs extend survival, slow NfL increase in plasma, and improve weight gain of RML-inoculated mice treated at pre-symptomatic and symptomatic

mZFRs significantly reduced PrP^{Sc} protein in RML-inoculated mice

Sangame

Efficacy study#2: mZFR, at a wide dosing range, successfully extended survival and improved body weight of RML-inoculated mice

Prnp mRNA and PrP protein reduction level correlates with survival extension in a dose-dependent manner

N=8-9 mice per group. Mean ± SDI; Two-way ANOVA; Dunnett's test comparisons against Vehicle group N=6-9 mice per group. Mean ± 95%CI; Kruskal-Wallis, Dunnett's test comparisons against Vehicle group

Dose-dependent ZFR expression and *Prnp* repression specifically in neurons of wild type mice

AAV-ZFR dose titrated % transduction and ZFR expression but not the *Prnp* repression in a single neuron received ZFR

PrP lowering with ZFR as a therapeutic treatment

- Potent, rapid ZFR-mediated Prnp mRNA and PrP protein repression in neurons throughout the brain significantly extend survival in RML-mice
 - **Clear dose response** for both ZFR expression and target gene repression throughout the brain at both tissue and single cell level

Evaluation of STAC-BBB capsid with PRNP-targeting ZFR cargo

STAC-BBB drives widespread and robust expression throughout the non-human primate brain

AR	STAC-BBB (Nuclear-localized GFP)	Negative control (no AAV treatment) – No signal	
Grey matter (cell bodies) White matter (nerve fibers)	File and the set of the		Nissl staining (light blue): All cell nuclei Antibody labeling for green florescent prote (GFP) expression (black): Cells transduced with STAC-BBB

ın

STAC-BBB mediates widespread NHP brain transduction

STAC-BBB widely transduced neurons across the NHP brain

STAC-BBB mediates prion-targeted ZFR expression throughout the entire brain in all animals tested

2e13 vg/kg dose, 19 days post administration, RT-qPCR bulk analysis

STAC-BBB mediates ZFR expression and Prion repression in neurons

Vehicle Control

STAC-BBB

STAC-BBB mediates ZFR expression and Prion repression in neurons **STAC-BBB**

Vehicle Control

GFP

STAC-BBB mediates ZFR expression and Prion repression in neurons **STAC-BBB**

Vehicle Control

GFP Neurons (NeuN) Prion mRNA **ZFR mRNA**

Sangamo is progressing development of this one-time IV administered ZFR therapy for prion disease

- **Potent, rapid ZFR-mediated** *Prnp* mRNA and PrP protein repression in neurons throughout the brain **significantly extend survival** in RML-mice
- Clear dose response for both ZFR expression and target gene repression throughout the brain at both tissue and single cell level

-) Novel STAC-BBB AAV capsid demonstrated robust **blood-brain barrier crossing** and **widespread neuronal transduction** throughout the adult nonhuman primate brain.
- **STAC-BBB-ZFR** transduced neurons showed lower *PRNP* mRNA expression in nonhuman primate brain.

Acknowledgements

Sangamo Team

Bryan Zeitler Kimberly Marlen Oi Yu Jing Hu Amy Pooler Garrett Lew Sarah Hinkley Alicia Goodwin Asa Hatami Mohad Mehrabian Lei Zhang Alaric Falcon Alissa Resch

Patrick Dunn lisoo Lee David Ojala Matthew Tiffany Sarah Muller Hung Tran Julian Perez Carolyn Gasper Annemarie Ledeboer Toufan Parman Kathleen Meyer Madeleine Jensen Gill Atkinson

Broad Institute Team

Meredith Mortberg Michael Howard Samantha Graffam Kenney Lenz Tyler Caron Alissa Coffey Eric Vallabh Minikel Sonia Vallabh

Funding sources

CJD Foundation Prion Alliance

Evotec Team

Giulia Cisbani Finn Peters Chiara Melis

Special thanks to

Stuart Schreiber Adrian Woolfson Ben Deverman Melanie Hermann

Thank You