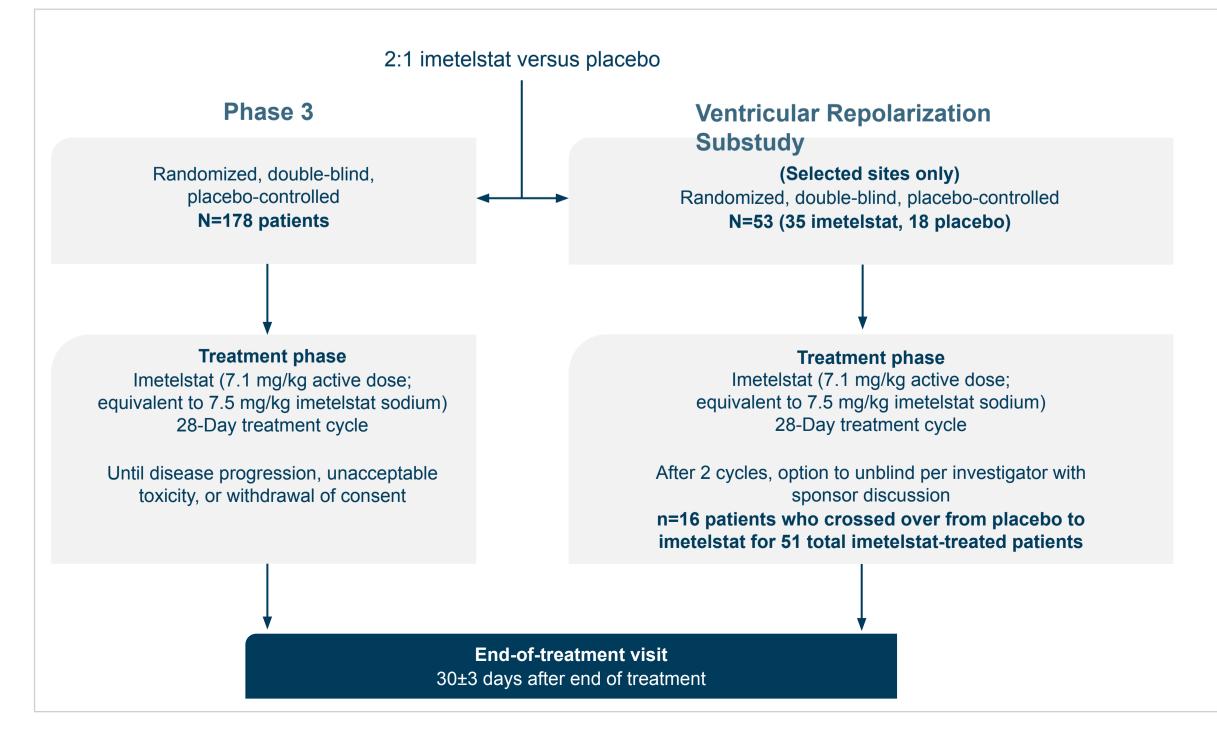
Erythropoiesis-Stimulating Agents

Rami S. Komrokji, MD,¹ Valeria Santini, MD,² Uwe Platzbecker, MD,³ Koen Van Eygen, MD,⁴ María Díez-Campelo, MD, PhD,⁵ Raquel De Paz, MD,⁶ Guillermo Sanz Santillana, MD, PhD,⁷ Sylvain Thépot, MD,⁸ Maciej Kaźmierczak, MD, PhD,⁹ Esther Natalie Oliva, MD, MSc,¹⁰

Mikkael A. Sekeres, MD, MS,¹¹ Pierre Fenaux, MD, PhD,¹² Yazan F. Madanat, MD,¹⁵ Ashley Lennox, PhD,¹⁵ Qi Xia, PhD,¹⁵ Libo Sun, PhD,¹⁵ Tymara Berry, MD,¹⁵ Amer M. Zeidan, MBBS, MHS¹⁶


¹Moffitt Cancer Center, Tampa, FL, USA; ²MDS Unit Hematology, AOUC, University of Florence, Italy; ³Leipzig, Germany; ⁴AZ Groeninge, Kortrijk, Belgium; ⁵University Hospital of Salamanca, Salamanca, Spain; ⁶Servicio de Hematología y Hemoterapia, Hospital Universitario La Paz, Madrid, Spain; ⁷Hospital Universitario y Politécnico La Fe, Valencia, Spain; ⁸Centre Hospitalier Universitaire d'Angers, Angers, France; ⁹Poznań University of Hemoterapia, Spain; ⁸Centre Hospital Universitario La Paz, Madrid, Spain; ⁹Poznań University of Hemoterapia, Health Research Institute La Fe, Valencia, Spain; ⁸Centre Hospitalier Universitaire d'Angers, Angers, France; ⁹Poznań University of Hemoterapia, Health Research Institute La Fe, Valencia, Spain; ⁸Centre Hospitalier Universitaire d'Angers, Angers, France; ⁹Poznań University of Hemoterapia, Health Research Institute La Fe, Valencia, Spain; ⁸Centre Hospitalier Universitaire d'Angers, Angers, France; ⁹Poznań University of Hemoterapia, Health Research Institute La Fe, Valencia, Spain; ⁸Centre Hospitalier Universitaire d'Angers, Angers, France; ⁹Poznań University of Hemoterapia, Health Research Institute, Spain; ⁸Centre Hospitalier Universitaire d'Angers, Angers, France; ⁹Poznań University of Hemoterapia, Health Research Institute, Spain; ⁹Poznań University of Hemoterapia, Health Research Institute, Hemoterapia, Health Research Institute, Spain; ⁹Poznań University, Health Research Institute, Hemoterapia, Health Research Hemoterapia, Medical Sciences, Poznań, Poland;

¹⁰Grande Ospedale Metropolitano BMM, Reggio Calabria, Italy; ¹¹Sylvester Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; ¹⁴Vanderbilt-Ingram Cancer Center, Vanderbilt University, New Haven, CT, USA; ¹⁶Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA; ¹⁶Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA; ¹⁶Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA; ¹⁶Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA; ¹⁶Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA; ¹⁶Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA; ¹⁶Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA; ¹⁶Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA; ¹⁶Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA; ¹⁶Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA; ¹⁶Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA; ¹⁶Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA; ¹⁶Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA; ¹⁶Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA; ¹⁶Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA; ¹⁶Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA; ¹⁶Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA; ¹⁶Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA; ¹⁶Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA; ¹⁶Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA; ¹⁶Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA; ¹⁶Yale School of Medicine and Yale Cancer Center, Yale Cancer Center,

Introduction

- Imetelstat is a first-in-class, direct and competitive inhibitor of telomerase enzymatic activity
- Approved by the United States Food and Drug Administration (FDA) in June 2024 for adult patients with lower-risk myelodysplastic syndromes (LR-MDS) and red blood cell (RBC) transfusion-dependent (TD) anemia who have relapsed or are refractory to, or ineligible for erythropoiesis-stimulating agents (ESA) based on the results of the pivotal phase 3 IMerge trial (NCT02598661)^{1,2}
- In the IMerge phase 3 trial, imetelstat demonstrated a clinically meaningful and statistically significant RBC transfusion independence (TI) rate versus placebo for the primary end point¹
- ≥8-Week RBC-TI: 40% imetelstat versus 15% placebo (*P*<.001)
- Imetelstat had a generally manageable safety profile
- A ventricular repolarization substudy of IMerge was conducted per FDA guidance³⁻⁵
- Here, we report the first efficacy and safety results from this substudy
- As part of the phase 3 IMerge trial of imetelstat in TD patients with International Prognostic Scoring System low- or intermediate-1–risk MDS who were relapsed or refractory/ineligible to ESA treatment, a separate ventricular repolarization substudy was included as a double-blind, randomized, placebo-controlled assessment (Figure 1)
- Adult patients were randomized to imetelstat 7.1 mg/kg active dose (equivalent to 7.5 mg/kg imetelstat sodium) or placebo, both administered as 2-hour intravenous infusions every 4 weeks
- The primary objective of the substudy was to evaluate the relationship between imetelstat plasma concentration and QTc interval changes (using change from baseline Fridericia QT correction [\triangle QTcF]) with a linear mixed-effect modeling approach
- Triplicate electrocardiograms and time-matched postdose pharmacokinetic samples were collected on cycle 1, day 1 (-1, -0.5, and 0 hours predose, and at 0.5, 1, 2, 4, 6, and 8 hours after the start of infusions)
- Efficacy end points included ≥8-week and ≥24-week RBC-TI rates, RBC transfusion dependence, hematologic improvement-erythroid, Hb rise ≥ 1.5 g/dL lasting ≥ 8 weeks, and progression to acute myeloid leukemia (AML)
- ⁻ Proportion of patients with RBC-TI, and other binary end points, were summarized with percentage and 2-sided exact Clopper-Pearson 95% CI. Kaplan-Meier methodology estimated the distribution of duration of TI
- This substudy differed from the IMerge phase 3 trial in its crossover design, the inclusion of patients with del(5q) MDS, and by allowing prior lenalidomide and hypomethylating agent (HMA) therapy besides ESAs

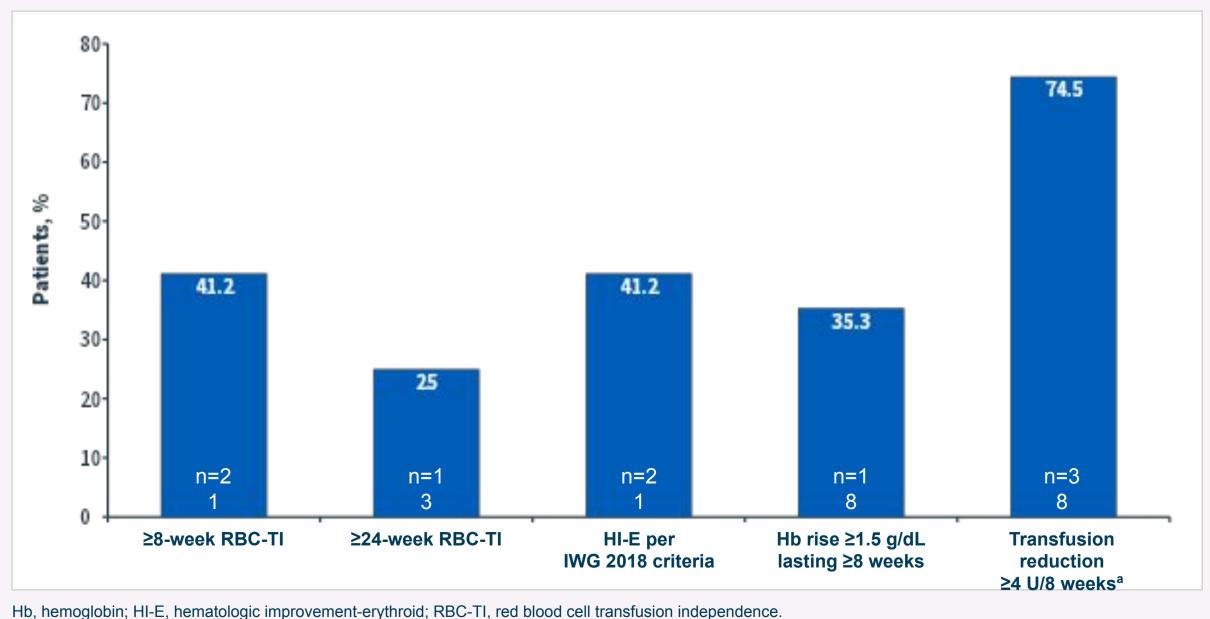
- Patients could cross over from placebo to imetelstat after 2 cycles at the Figure stig Stohe matic Qverview of the Substudy

Results

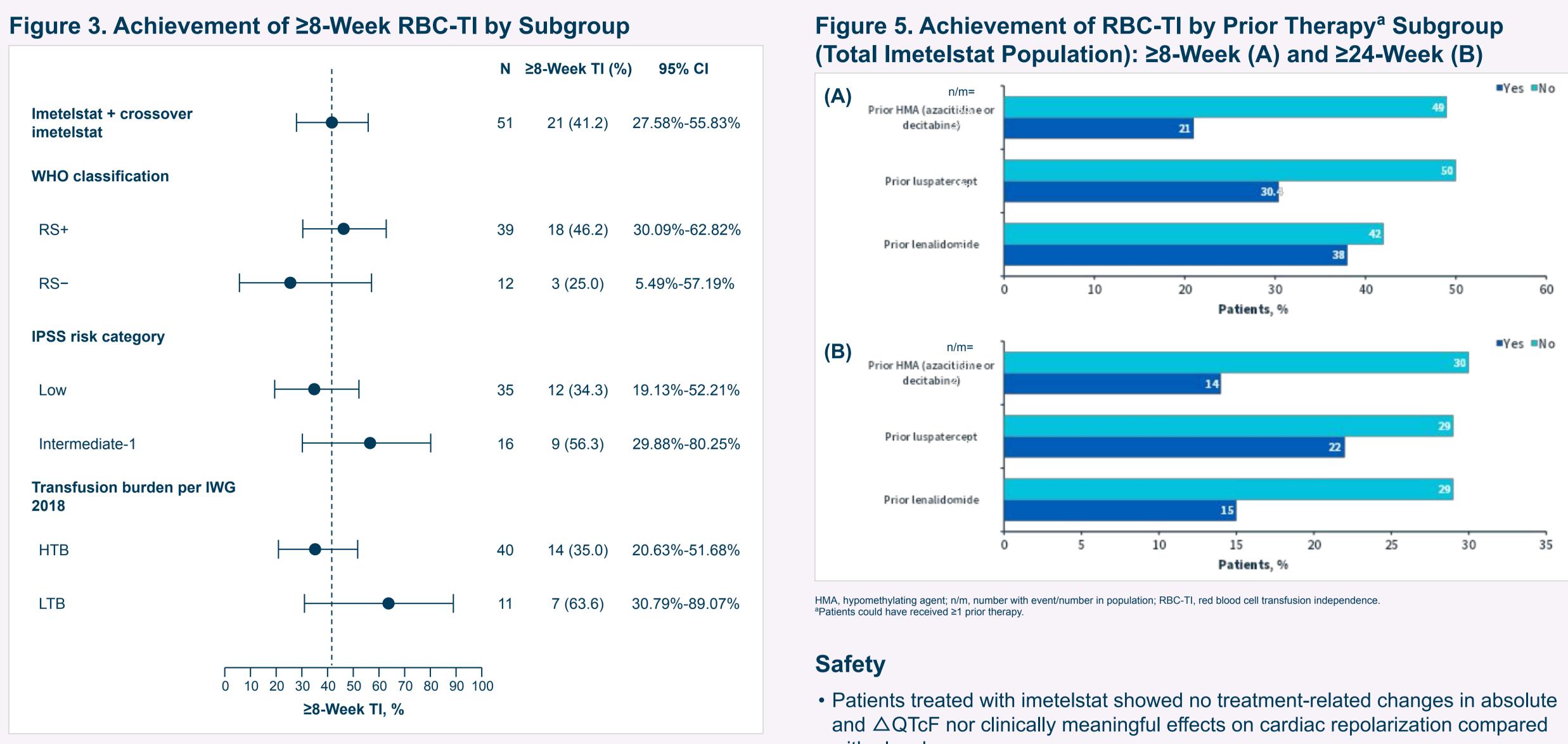
- QTc substudy population comprised 53 treated patients (n=35 imetelstat, n=18 placebo)
- Baseline characteristics were comparable between imetelstat and placebo arms
- As of the data cutoff (May 10, 2024), 16/18 placebo recipients crossed over to receive imetelstat
- 57% of imetelstat, including crossover (n=51) were receiving >6 U RBC/8 weeks and median Hb was 7.5 g/dL at baseline (Table 1)
- Median treatment duration on imetelstat, including crossover (n=51) was 29.3
- weeks

Table 1 Baseline Characteristics

Characteristic	Imetelstat (n=35)	Crossover (n=16)	Imetelstat tota (n=51)
Age, median (range), y	71 (43-84)	71 (54-81)	71 (43-84)
≥65 y, n (%)	29 (83)	11 (69)	40 (78)
Male, n (%)	27 (77)	14 (88)	41 (80)
Median (SD) time since diagnosis, y	2.8 (5.3)	2.9 (5.4)	2.8 (5.3)
Median (range) Hb, g/dL	7.7 (5.1-9.0)	7.4 (6.3-8.9)	7.5 (5.1-9.0)
WHO classification, n (%)			
RS+	25 (71)	14 (88)	39 (76)
RS-	10 (29)	2 (13)	12 (24)
IPSS risk category, n (%)			
Low	24 (69)	11 (69)	35 (69)
Intermediate-1	11 (31)	5 (31)	16 (31)
Transfusion burden per IWG 2018, n (%)			
HTB	28 (80)	12 (75)	40 (78)
LTB	7 (20)	4 (25)	11 (22)
Prior RBC transfusion burden, n (%)			
≤6 U/8 weeks	16 (46)	6 (38)	22 (43)
>6 U/8 weeks	19 (54)	10 (62)	29 (57)
Serum EPO level			
Median (range)	228 (33-4453)	191 (38-5424)	213 (33-5424)
≤500 mU/mL, n (%)	24 (69)	11 (69)	35 (69)
>500 mU/mL, n (%)	11 (31)	5 (31)	16 (31)
Prior ESA use, n (%)	32 (91)	13 (81)	45 (88)
Prior HMA, n (%)	11 (31)	3 (19)	14 (27)
Prior luspatercept use, n (%)	15 (43)	8 (50)	23 (45)
Prior lenalidomide, n (%)	9 (26)	4 (25)	13 (25)

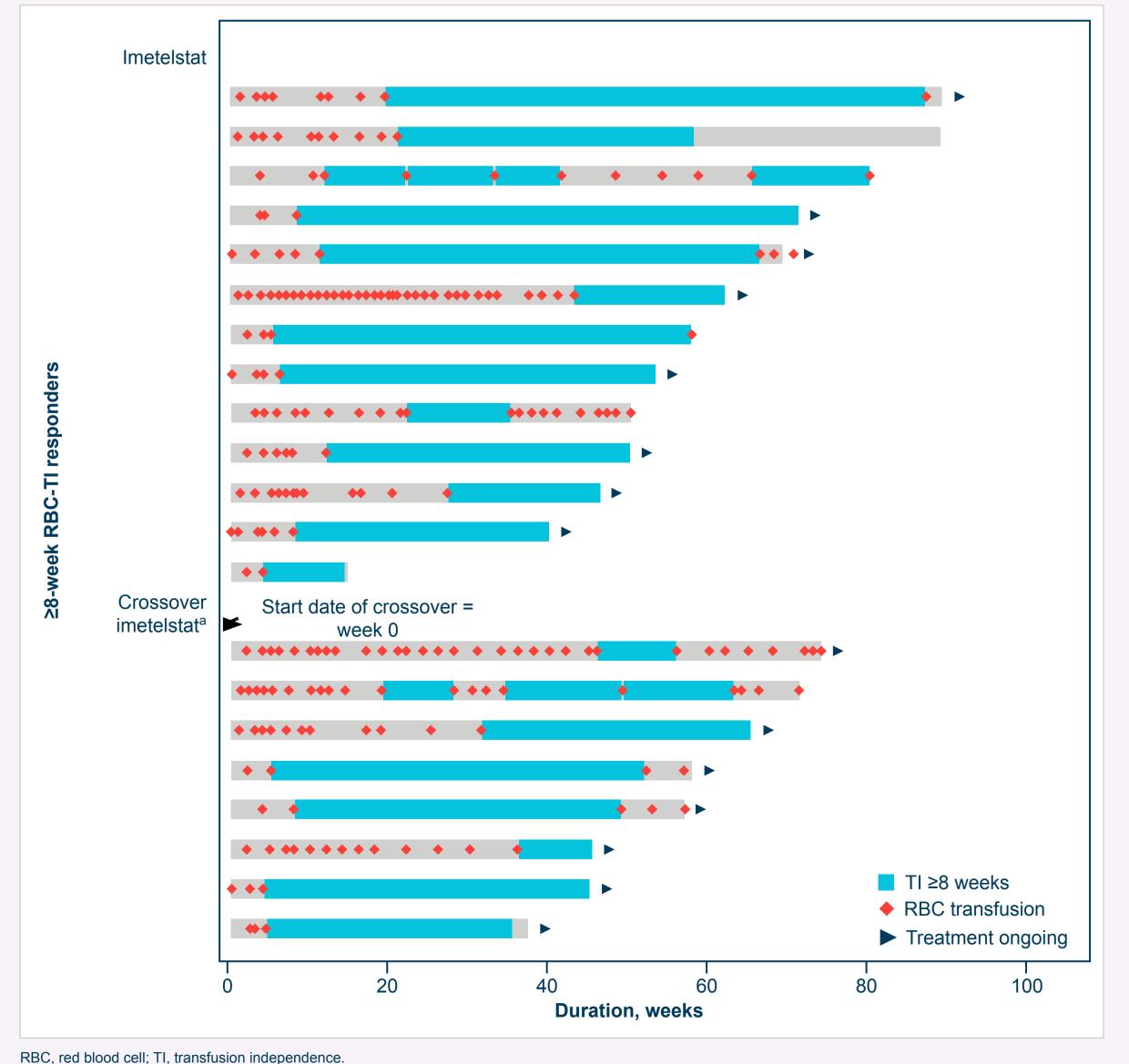

EPO, erythropoietin; ESA, erythropoiesis-stimulating agent; Hb, hemoglobin; HMA, hypomethylating agent; HTB, high transfusion burden; IPSS, International Prognostic Scoring System; IWG, International Working Group; LTB, low transfusion burden; RBC, red blood cell; RS, ring sideroblast; SD, standard deviation; TI, transfusion independence; WHO, World Health Organization.

Efficacy


- In the total imetelstat population, including crossover (n=51), 41% achieved ≥8-week RBC-TI (**Figure 2**)
- By subgroup is shown in **Figure 3**
- Median duration of RBC-TI among responders (n=21) was 52.6 weeks (95% CI, 40.9-not estimable; **Figure 4**)
- Proportion of patients who achieved \geq 8-week and \geq 24-week RBC-TI by prior therapy subgroup is shown in Figure 5

• Progression to AML was 0 imetelstat versus 1 placebo (before crossover)

Figure 2. Efficacy in the Total Imetelstat Population (n=51)



^aPer International Working Group 2006 criteria.

HTB, high transfusion burden; IPSS, International Prognostic Scoring System; IWG, International Working Group; LTB, low transfusion burden; RBC, red blood cell; RS, ing sideroblast: TI, transfusion independence: WHO, World Health Organization

Figure 4. Swimmer Plot of ≥8-Week RBC-TI Responders

Crossover imetelstat arm only includes data after crossover from placebo (patients had the option to cross over from placebo to imetelstat after 2 cycles at the investigator's discretion), and the duration of treatment starts from the start date of crossover imetelstat.

- with placebo
- No new safety signals emerged in the total imetelstat-treated population
- Grade 3/4 neutropenia and thrombocytopenia by laboratory evaluation occurred in 65% (33/51) and 49% (25/51) of patients, respectively
- Most cases resolved to grade ≤2 within 4 weeks
- Incidences were similar to the overall phase 3 imetelstat-treated population¹

Conclusions

- In this QTc substudy, imetelstat was associated with an absence of proarrhythmic risk, durable RBC-TI, transfusion reduction, clinically meaningful increases in hemoglobin, and safety profile comparable to the overall population of the pivotal phase 3 IMerge trial¹
- RBC-TI was attained in imetelstat-treated patients who received prior therapies with HMA, luspatercept, and lenalidomide
- Overall, the results of this IMerge QTc substudy support the use of imetelstat in patients with relapsed or refractory LR-MDS, regardless of prior therapies

References

- Platzbecker U and Santini V, et al. *Lancet*. 2024;403(10423):249-260.
- . RYTELO (imetelstat) for injection, for intravenous use. Package insert. Geron Corporation; 2024.
- 3. United States Food and Drug Administration, Health and Human Services. Fed Regist. 2005;70(202):61133-4.
- 4. United States Food and Drug Administration, Health and Human Services. Fed Regist. 2005;70(202):61134-5.
- United States Food and Drug Administration, Health and Human Services. *Fed Regist*. 2022;85(190):61753-5.

Acknowledgments

- The authors thank all the patients and caregivers for their participation in this study and acknowledge the collaboration and commitment of all investigators and their research support staff
- This study was funded by the Geron Corporation
- All authors contributed to and approved the presentation; writing and editorial support were provided by Meredith Rogers, MS, CMPP, of The Lockwood Group (Stamford, CT, USA), funded by the Geron Corporation