

Updated efficacy and safety of botensilimab plus balstilimab in patients with refractory metastatic sarcoma from an expanded phase 1 study

Breelyn A. Wilky, MD¹, Jonathan C. Trent, MD, PhD², Apostolia M. Tsimberidou, MD, PhD¹⁰ Michael S. Gordon, MD⁴, Anthony B. El-Khoueiry, MD⁵, Andrea J. Bullock, MD⁶, Brian Henick, MD⁷, Mark Agulnik, MD⁸, Daruka Mahadevan, MD, PhD⁹, Arun Singh, MD¹⁰ Wei Wu, MS¹¹ Manushak Avagyan, MD¹¹, Jaymin M. Patel, MD¹¹, Benny Johnson, DO¹¹, Joseph E. Grossman, MD¹¹, Steven J. O'Day, MD¹¹, Gary Schwartz, MD⁷, Robin L Jones¹²

¹University of Colorado Cancer Center, Aurora, CO, USA; ²Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA; ³The University of Texas MD Anderson Cancer Center, Houston, TX, USA. ⁴HonorHealth Research and Innovation Institute, Scottsdale, AZ, USA; ⁵University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA; ⁶Beth Israel Deaconess Medical Center, Boston, MA, USA; ⁷Herbert Irving Comprehensive Cancer Center at Columbia University School of Medicine, New York, NY, USA; ⁸City of Hope Comprehensive Cancer Center, Duarte, CA, USA; ⁹UT Health San Antonio, San Antonio, TX, USA; ¹⁰University of California-Los Angeles, Los Angeles, CA, USA; ¹¹Agenus Inc., Lexington, MA, USA; ¹²Royal Marsden and Institute of Cancer Research, London, United Kingdom

13 September 2024

Declaration of Interests

Breelyn A. Wilky

- Consulting or advisory role for Aadi Bioscience, Adcendo, Boehringer Ingelheim, Deciphera, Epizyme, Polaris and SpringWorks
- Research funding from Exelixis
- Travel, accommodations or expenses support from Agenus Inc.

Botensilimab Mechanism of Action

- SOC chemotherapy in 3L setting is limited with response rates between 6–12% and currently available ICIs are ineffective for the majority of sarcoma patients¹⁻⁴
- Botensilimab is a multifunctional Fc-enhanced CTLA-4 inhibitor with potential to expand current reach of immunotherapy⁵
- Botensilimab has proven activity in multiple cold / I-O refractory solid tumors via enhanced innate and adaptive antitumor functionalities⁵⁻⁷

Breelyn A. Wilky, MD

• Balstilimab is a highly active and clinically validated PD-1 inhibitor^{8,9}

Botensilimab

Multifunctional Fc-enhanced Anti-CTLA-4 Antibody

- Enhanced T cell priming, expansion, memory
- Enhanced frequency of activated APCs
- Enhanced Treg depletion
- **Reduced** complement binding thereby potentially reducing complement-mediated toxicities

Patel SR, et al. J Clin Oncol. 2001;19:3483-3489.
 Van der Graaf W, et al. Lancet. 2012;379:1879-1886.
 Demetri GD, et al. J Clin Oncol; 2016; 34:786-793.
 Petitprez F, et al. Nature. 2020;577:556-560.
 Bullock A. et al. Nature Medicine. 2024: doi:10.1038/s41591-024-03083-7

- Waight, et al. Cancer Cell. 2018;33(6): 1033-1047.
 Chand D, et al. Cancer Discov. 2024;doi: 10.1158/2159-8290.CD-24-0190.
 CitAdius et al. Cancer Discov. 2024;doi: 10.1158/2159-8290.CD-24-0190.
- 8. O'Malley, et al. *Gynecol Oncol*. 2021; 163:274-280.
- 9. O'Malley, et al. J Clin Oncol. 2022; 40(7):762-771.

Baseline Characteristics

	N=64	
Age, median (range)	61 (30—81)	
Sex, n (%)		
Male	22 (34%)	
Female	42 (66%)	
ECOG PS at baseline, n (%)		
0	26 (41%)	
1	38 (59%)	
Prior lines of therapy, n(%)		
Median (range)	3 (0-10)	
≥3	34 (53%)	
Prior PD-(L)1 or CTLA-4 therapy, n/N (%)	10/60 (17%)	
Botensilimab dose, n (%)		
1 mg/kg	47 (73%)	
2 mg/kg	15 (23%)	
Crossover ^b	2 (3%)	

Sarcoma subtype, n (%)	
Angiosarcoma	25 (39%)
Cutaneous	14 (22%)
Visceral	11 (17%)
Leiomyosarcoma	22 (34%)
Soft tissue	16 (25%)
Uterine	6 (9%)
High grade undifferentiated	8 (13%)
Dedifferentiated liposarcoma	6 (9%)
Other ^a	3 (5%)

^a'Other' subgroup consists of one patient with myxoid liposarcoma, one patient with osteosarcoma/spindle cell sarcoma, and another patient with synovial sarcoma. ^bTwo rescue patients received 2 mg/kg bot alone and then transitioned to the combination of 2 mg/kg bot + bal.

Broad Activity in Heterogenous Sarcoma Population

	Efficacy Evaluable n=52
ORR ^a , % (95% CI)	23% (13–37)
BOR, n (%)	
CR	1 (2%)
PR	11 (21%)
SD	23 (44%)
PD	17 (33%)
Median DOR, months (95% CI)	21.7 (3.4–NR)
CBR (CR + PR + SD at 24 weeks), % (95% Cl)	35% (22–49)

^aData include an uCR in a cutaneous angiosarcoma patient who had a visible skin lesion that disappeared on exam (images on file) with subsequent clinical progression and a PR in a visceral angiosarcoma patient with minor early progression at 6 weeks followed by a deep response in a target lesion that is durable beyond 3 years.

Data cutoff: 25-Jul-2024. Median f/u was 9.1 months.

Broad Activity in Heterogenous Sarcoma Population

^aData include an uCR in a cutaneous angiosarcoma patient who had a visible skin lesion that disappeared on exam (images on file) with subsequent clinical progression and a PR in a visceral angiosarcoma patient with minor early progression at 6 weeks followed by a deep response in a target lesion that is durable beyond 3 years.

Data cutoff: 25-Jul-2024. Median f/u was 9.1 months.

Significant Activity in Cutaneous and Visceral Angiosarcoma

	Angiosarcoma n=18
ORRª, % (95% CI)	39% (17–64)
Cutaneous (n=9)	33%
Visceral (n=9)	44%
BOR, n (%)	
CR	1 (6%)
PR	6 (33%)
SD	8 (44%)
PD	3 (17%)
Median DOR, months (95% CI)	21.7 (1.9–NR)
CBR (CR + PR + SD at 24 weeks), % (95% Cl)	44% (22-69)

^aData include an uCR in a cutaneous angiosarcoma patient who had a visible skin lesion that disappeared on exam (images on file) with subsequent clinical progression and a PR in a visceral angiosarcoma patient with minor early progression at 6 weeks followed by a deep response in a target lesion that is durable beyond 3 years.

Data cutoff: 25-Jul-2024. Median f/u was 6.9 months.

Significant Activity in Cutaneous and Visceral Angiosarcoma

Weeks on Study

^aData include an uCR in a cutaneous angiosarcoma patient who had a visible skin lesion that disappeared on exam (images on file) with subsequent clinical progression and a PR in a visceral angiosarcoma patient with minor early progression at 6 weeks followed by a deep response in a target lesion that is durable beyond 3 years.

Data cutoff: 25-Jul-2024. Median f/u was 6.9 months.

Overall Survival

Time From Start of Therapy (Months)

Deep Response in a Visceral Angiosarcoma Patient

I. Baseline Scan

II. Pseudoprogression at 6 Weeks

III. Best Response

This patient is included in efficacy and safety analyses.

Safety

TRAEs in ≥10% of All Treated Sarcoma Patients (N=64)

	All Grades	Grade 3	Grade 4
Any, n (%)	53 (83)	11 (17)	0
Gastrointestinal			
Diarrhea/colitis	23 (36)	4 (6)	0
Nausea	8 (13)	1 (2)	0
Vomiting	7 (11)	1 (2)	0
Skin			
Rash	19 (30)	1 (2)	0
Constitutional			
Fatigue	17 (27)	1 (2)	0
Pyrexia	14 (22)	0	0
Chills	11 (17)	0	0
Endocrine			
Hypothyroidism	7 (11)	0	0
Musculoskeletal			
Myalgia	7 (11)	1 (2)	0

- Sarcoma safety similar to other tumor types in the trial with no new safety signals
- No cases of related hypophysitis, pneumonitis, or myocarditis
- 13% discontinued bot due to a bot-related TRAE
- No grade 4 or 5 TRAEs

Conclusions & Future Directions

- Deep, durable responses resulting in extended survival were observed in a broad range of sarcoma subtypes
- The angiosarcoma cohort is particularly promising given the high percentage of colder visceral angiosarcomas
 - ORR in visceral angiosarcoma was 44%
- The adverse event profile is manageable and reversible with no new safety signals identified
 - Diarrhea/colitis most frequent TRAE (**36%** of patients; **6%** grade 3)
- The phase 1 study (C-800-01) continues to enroll patients in the angiosarcoma cohort (NCT03860272) at the University of Colorado (USA) and the Royal Marsden (UK)
- A phase 2 study is currently under consideration

Abbreviations

AE, adverse event APC, antigen presenting cell bal, balstilimab BOR, best overall response bot, botensilimab CI, confidence interval CBR, clinical benefit rate at 24 weeks CR, complete response CTLA-4, cytotoxic T-lymphocyte antigen-4 DCR, disease control rate at 6 weeks DOR, duration of response EE, efficacy evaluable ECOG, Eastern Cooperative Oncology Group

Fc, fragment crystallizable F/U, follow-up ICI, immune checkpoint inhibitors I-O, immunotherapy ITT, intention-to-treat NR, not reached ORR, objective response rate OS, overall survival PD, progressive disease PD-1, programmed death receptor-1 PD-1, programmed death-ligand 1 PFS, progression-free survival PR, partial response PS, performance status QXW, every X weeks RECIST, Response Evaluation Criteria In Solid Tumors R/R, relapsed/refractory SD, stable disease TRAE, treatment-related adverse event Treg, regulatory T cell uCR, unconfirmed complete response

View Agenus Publications

Acknowledgements

C-800-01 is sponsored (and funded) by Agenus Inc.

The authors would like to thank the patients and their families for participating in the C-800-01 study, as well as the trial coordinators and investigators for their contributions.

European Society for Medical Oncology (ESMO) Via Ginevra 4, CH-6900 Lugano T. +41 (0)91 973 19 00 esmo@esmo.org

esmo.org