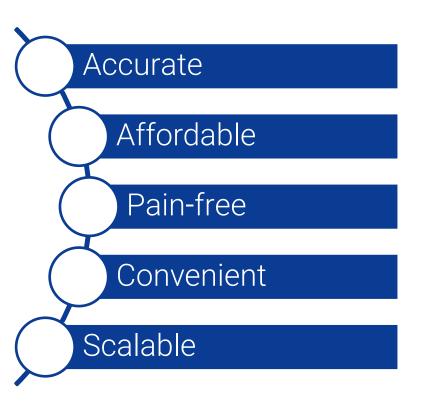
KNOW LABS


TRANSFORMING NON-INVASIVE MEDICAL DIAGNOSTICS

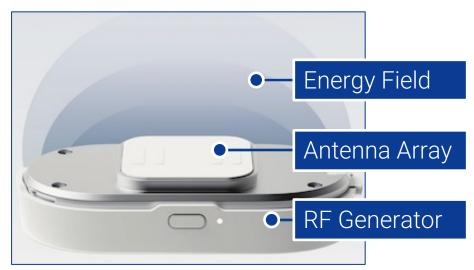
ATTD Tech Fair

March 7, 2024

Know Labs

We are building a non-invasive continuous glucose monitoring device.

KnowU™


- Dimensions (w x d x h)

- Weight.

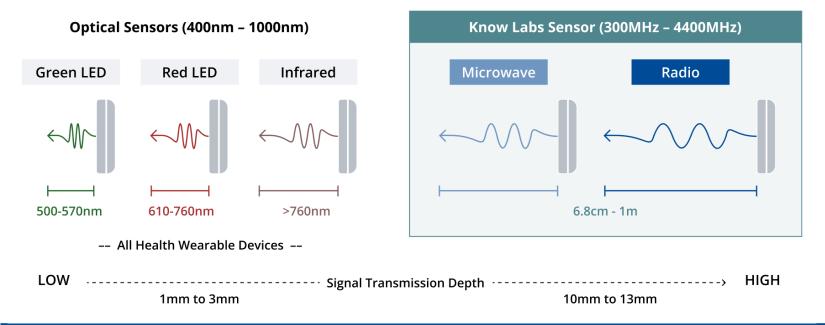
47 x 76 x 20 mm 100 g RF Dielectric Spectroscopy 100% Non-invasive No Needles Real-time Data Continuous Monitoring Rechargeable No-Consumables Adhesive or Strap Wearable AI/ML-Powered Algorithms 100+ Potential Applications

RF Dielectric Sensor

IP-PROTECTED | INCLUDED IN THE KNOWU

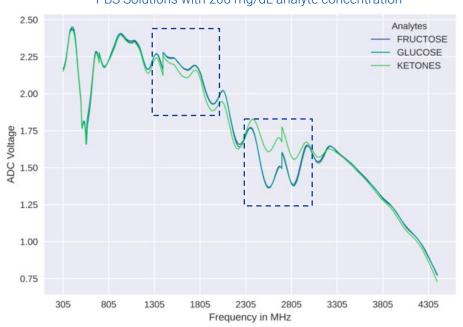
Energy Field Dimensions at 2,500 MHz

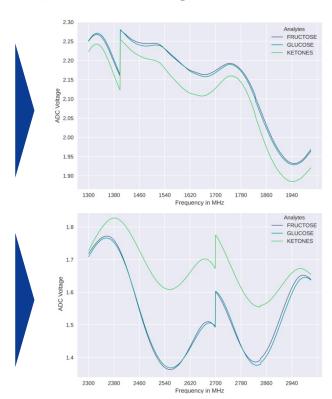
- w x d x h: 2.54 x 2.00 x 1.27 cm
- 5.4 cm³ of volumetric data


Antenna Array that emits and captures radio wave signals in the microwave spectrum and generates an "Energy Field", collecting "volumetric data"

RF Generator enables frequency sweeps from 300 to 4,400 MHz, at various intervals, 1.5M data points collected per hour = >400 per second

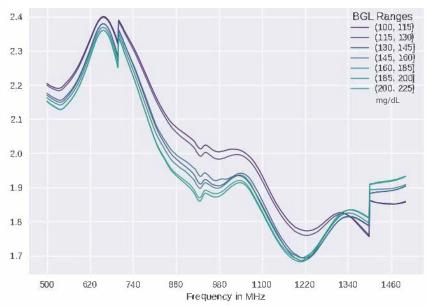
6 Key Parameters, customizable with each sweep: power, frequency range, frequency step, dwell time, and antenna permutations = >30,000 combinations


Overcoming Limitations


Our RF Dielectric Sensor sweeps the spectrum to collect **volumetric high-resolution data at high speed**, overcoming a limitation faced by fixed wavelength optical sensors.

High-Resolution Data for Multiple Analytes...




.. and for In Vitro and In Vivo Applications

In Vitro Glucose Solutions Readings

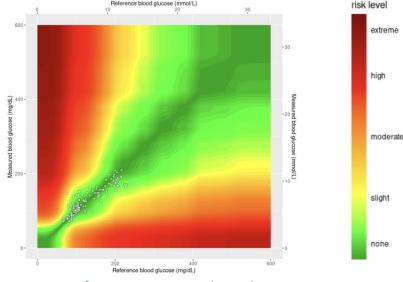
IN VITRO: ADC Voltage (y-axis) measuring voltage variance based on alucose concentration and frequency sweeps

In Vivo Glucose Readings Over 3 Hour Test

IN VIVO: ADC Voltage (y-axis) measuring voltage variance based on dielectric permittivities of blood glucose and frequency sweeps

Validation: Stability, Repeatability and Accuracy

2021	•	202	222 202	3	•	
Manuscript	Proof of Principle with Mayo Clinic	Exploratory Clinical Study	Proof of Concept Clinical Study	Technical Feasibility Study	New Algorithm Refinement Study	Data Preprocessing Techniques Study
Description	Demonstrated the accuracy of Bio-RFID sensor in quantifying different analytes in vitro (liquid solution).	First indication that Bio-RFID could be an accurate alternative to FDA-cleared glucose devices.	Proof of concept ability to quantify blood glucose non- invasively using RF.	Demonstrates Bio- RFID can deliver stable, repeatable results in measuring blood glucose levels.	Algorithm refinement in the non-invasive detection of blood glucose using Bio- RFID technology.	Improvement in machine learning model accuracy on an expanded mixed cohort dataset.
Accuracy	100% in vitro accuracy	MARD 5.3%-6.7%	MARD 19.3%	MARD 20.6%	MARD 12.9%	MARD 11.3%
# Participants	na	2	1	5	5	13
# Datasets	na	3	22	106	106	366
# Bio-RFID datapoints	na	<u>1.5M</u>	~183M	~430M	~430M	<u>~1.7B</u>
# Reference Observations	na	75	~383	~1,555	~1,555	~3,311

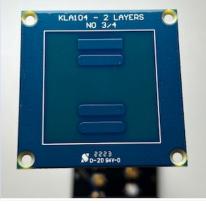

ATTD 2024 Poster: ~11% MARD in Normal & Hyper

Non-Invasive Blood Glucose Monitoring in People with Diabetes Using an RF Sensor and Venous Blood Comparator

D. Klyve, J. Anderson, K. Currie, C. Ward, K. Pandya, V. Somers

- 30 participants with <u>prediabetes and Type 2 diabetes</u>
- Venous blood as a comparative reference
- 3-hour <u>Glucose Tolerance Test</u> (GTT)

Glucose Range (mg/dL)	n	MARD (%)	±15%	±20%
Hypoglycemic (<70)	4	9.5 ± 8.3	75.0 ± 4.2	100.0 ± 0.0
Normoglycemic (70-180)	99	11.0 ± 2.7	$75.8~\pm~0.8$	83.8 ± 0.7
Hyperglycemic (>180)	27	11.5 ± 3.1	66.7 ± 1.8	85.2 ± 1.3
Total	130	11.1 ± 2.1	73.8 ± 0.8	84.6 ± 0.6


100% of estimations in Risk Grades A and B (82.3% in A, 17.7% in B)

KnowU Development Roadmap

Proof-of-Concept

STORE WHITE PARTY AND STANDARD STANDARD

Generation 0

Generation 1

KnowU

- Exploratory design
- Multiple components wired to each other
- Signal testing purpose
- 2 x 3 ft board

- Miniaturized format
- Wired connection to power source and data capture
- Restricted to laboratory controlled environment

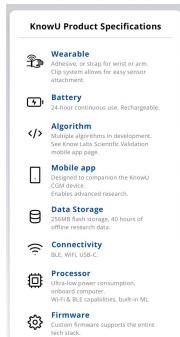
- On-the-go form factor
- Place your palm or arm for an on-demand, non-invasive blood glucose level
- Computer mouse size

- · Wearable form factor
- Continuous monitoring
- 86% smaller and 68% lighter than previous Generation

Generation 1 Details: Research Form Factor

Gen 1

- Computer mouse size
- Research Lab in your pocket to accelerate data collection


Using Gen 1 Prototype on Forearm

Using Gen 1 Prototype on Hand

KnowU Details: Wearable Form Factor



KnowU vs. Gen 1 86% smaller 68% lighter

KnowU Real-life Application

Mobile App

2024 & Beyond

Clinical Data Collection

More participants with diverse backgrounds, including people with <u>T1D</u>, <u>T2D</u>, and pre-diabetes.

Algorithm Refinement

<u>More data</u> equals better accuracy – potential to accelerate time to market with **calibration**.

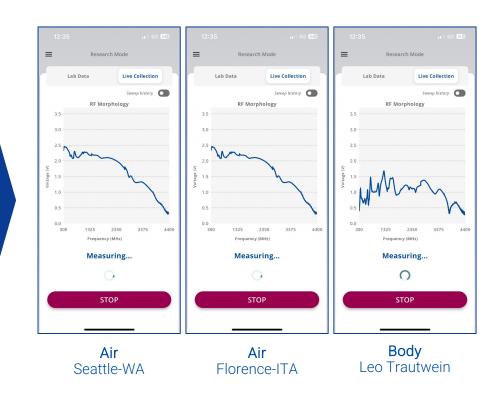
Hardware Development

Device <u>adjustments</u> and/or further miniaturization

Scientific Validation

<u>External research</u> institutes to further validate our technology and support FDA application.

Intellectual Property


#1 worldwide in non-invasive blood glucose monitoring (>300 patents filled and pending)

Increase the generalizability of the Bio-RFID

Must be safe and deliver required level of accuracy under any condition and regardless of the patient, as determined by its intended use

Visit us at Booth #30

Try the KnowU and Scan your RF Signature

