A Whole-Body Quantitative System Pharmacology Physiologically Based Pharmacokinetic Model That a Priori Predicts Pharmacokinetics of ADG20: an Extended Half-Life Monoclonal Antibody Being Developed for the Treatment and Prevention of COVID-19

Dr Scott A. Van Wart Enhanced Pharmacodynamics, LLC 701 Ellicott Street Buffalo, NY, 14203 Email: svanwart@epd-llc.com Phone: (888) 714-6624

Scott A. Van Wart,¹ Evan D. Tarbell,¹ Donald E. Mager,¹,² Dhavalkumar K. Shah,² Lynn E. Connolly,³ Paul G. Ambrose³,⁴

¹Enhanced Pharmacodynamics, LLC, Buffalo, NY, USA; ²University at Buffalo School of Pharmacy and Pharmacy and Pharmaceutics, Inc., Waltham, MA, USA; ⁴Institute for Clinical Pharmacodynamics, Inc., Schenectady, NY, USA

INTRODUCTION

- ADG20 is a fully human IgG1 monoclonal antibody (mAb) engineered to have high potency and broad neutralization against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other SARS-like CoVs with pandemic potential by binding to a highly conserved epitope in the receptor-binding domain of the spike protein¹
- The Fc region of ADG20 has been modified to provide an extended half-life¹
- Innovative approaches are needed to support early dose regimen decisions in the face of limited experimental data
- One way to increase certainty around dose and reduce risk is by utilizing a quantitative systems pharmacology (QSP) whole-body physiologically based pharmacokinetic (PBPK) modeling and simulation strategy
- · Here, we describe modification of an existing QSP whole-body PBPK model constructed to a priori predict and subsequently confirm non-human primate (NHP) and human ADG20 pharmacokinetics (PK)

METHODS

Objectives

- To construct a QSP whole-body PBPK model and forecast ADG20 concentration-time profiles for NHPs and humans prior to the availability of measured ADG20 concentrations from any species
- Compare forecasted and observed ADG20 concentration-time profiles from NHPs, recalibrate the QSP whole-body PBPK, and update initial human forecasts
- Compare updated forecasted and observed human ADG20 data from a first-in-human, Phase 1, single ascending-dose study in healthy adults²

QSP whole-body PBPK model

- QSP modeling involved reconstructing a platform whole-body PBPK model developed for wild-type IgG1 and engineered mAbs³
- The model comprised 15 specific tissues and one representing the rest of the body (Figure 1A); each tissue was connected through blood and lymph flow to the systemic circulation
- In the endothelial space of each tissue, mAbs enter by pinocytosis (CL___) where they can interact with neonatal Fc receptor (FcRn). The FcRn-bound mAb is recycled and the unbound antibody is eliminated (k_{dea}; **Figure 1B**)

QSP whole-body PBPK model modifications

- The platform whole-body PBPK model³ was primarily modified in two ways
- NHP and human apparent dissociation rate-constant (K_D) for mAb to FcRn $(K_{D,FcRn})$ was replaced by values estimated for up to 7 other extended half-life mAbs
- Each selected mAb displayed no inherent target-mediated drug
- Patches of positive charge (PPC) was used as a covariate on the rate of pinocytosis into the endosomal space (CL_{up})

Initial QSP whole-body PBPK model projections

 The modified QSP whole-body PBPK model, estimated NHP and human apparent-K_{D EcRn} distributions, and a reference US Centers for Disease Control body weight distribution⁴ were used to provide initial simulation (1000 iterations) forecasts of NHP and human ADG20 serum concentration-time profiles

• When measured NHP ADG20 serum concentrations became available, the raw data were later overlaid on the initial median and 90% prediction interval (PI) forecast for NHPs⁵

Figure 1. QSP whole-body PBPK model at the tissue level (A) and cellular level (B)

← Plasma/blood flov

 σ^{v} , vascular reflection coefficient; σ^{ls} , interstitial fluid reflection coefficient; CL_{im} , rate of pinocytosis of antibody entry and exit from the epithelial space; FR, fraction of FcRn bound antibody that recycles to the vascular space; k_{deq} , degradation rate constant; $k_{off,FcRn}$, first-order dissociation rate constant of antibody from FcRn; $k_{on,FcRn}$, secondorder association rate constant for binding of antibody to FcRn; L, lymphatic flow rate; Q, blood flow rate.

Optimized QSP whole-body model projections

- The modified QSP whole-body PBPK model was optimized by estimating NHP intramuscular (IM) bioavailability and ADG20 K_{DECRD} and applying an NHP:human K_{DECRn} ratio to the NHP K_{DECRn} values estimated for ADG20 to better forecast human ADG20 concentration-time profiles
- When measured human ADG20 serum concentrations became available, the raw data were overlaid on the forecasted median and 90% PI forecast for humans²
- The QSP whole-body PBPK model was then optimized by estimating K_{D EcPn} and IM bioavailability using the interim human PK data, along with estimating inter-individual variability for some key parameters to better reflect observed variability

REFERENCES

- Rappazzo CG, et al. Science. 2021;371: 823-829.
- Paguntalan H, et al. Presentation at IDWeek; September 29-October 3, 2021; Virtual. Poster 633.
- Shah DK, et al. J Pharmacokinet Pharmacodyn. 1. Fryar CD, et al. *Natl Health Stat Report*. 2018;122:1-16.
- . ADG-DOF-001; Waltham, MA: Adagio Therapeutics, Inc.; 11. Gaudinski MR, et al. PLoS Med. 2018;24;e1002493.
- . Robbie GJ, et al. *Antimicrob Agents Chemother*.
- Yu XQ, et al. Antimicrob Agents Chemother. 2017; 61:e01020-16.
- 8. Griffin MP, et al. Antimicrob Agents Chemother. 2017:61:e14-e16.
- 9. Peffault de Latour RP, et al. Br J Haematol. 2020;191:476-485.
- 10. Sager, et al. Presentation at IDWeek; October 21-25. 2020; Virtual. Poster 910813.
- 12. Dall'Acqua WF, et al. J Biological Chem. 2006;281:23514-23524.
- 13. Zhu Q, et al. *Sci Transl Med*. 2017;9:pii:eaaj1928 14. Grant KA, et. al. International Publication. 2018;
- 15. Ko SY, et al. *Nature*. 2014;514:642-645.

DISCLOSURES

LEC and PGA are employees of Adagio Therapeutics, Inc. EDT, SAVW, DEM, and DKS received funding from Adagio Therapeutics, Inc. for the conduct of this work.

Acknowledgments

This study was funded by Adagio Therapeutics, Inc. Editorial assistance was provided by Russell Craddock, PhD, of Parexel, and was funded by Adagio Therapeutics, Inc.

RESULTS

QSP whole-body **PBPK** model modifications

- Mean NHP and human serum PK data for 7 mAbs were extracted from the literature and digitized, and the apparent-K_{D FCRn} was estimated for each drug while keeping all other parameters and the CL_{up}-PPC relationship constant during development of the modified QSP whole-body PBPK model
- Human data: MEDI524,6 MEDI4893,7 MEDI8897,8 ravulizumab,9 VIR2482,10 and VRC01-LS¹¹
- NHP data: MEDI524,¹² MEDI8897,¹³ mepolizumab,¹⁴ and VRC01-LS¹⁵
- Histograms of simulated human body weight and K_{DECRn} distributions in humans and NHPs are shown in **Figure 2**
- Figure 3 shows the initial QSP/PBPK model—forecasted NHP median (90% PI) serum ADG20 concentration-time profile with measured concentration data overlaid
- Figure 4 shows the optimized QSP/PBPK model—forecasted NHP median (90% PI) serum ADG20 concentration-time profile with measured concentration data overlaid
- The QSP whole-body PBPK model was optimized by estimating K_{DECPn} (4.27 nM) and IM bioavailability (92.2%) using the interim human PK data, along with estimating inter-individual variability for some key parameters to better reflect observed variability
- Figure 5 shows the observed and optimized QSP/PBPK model-forecasted human median (90% PI) serum ADG20 concentration-time profile with measured concentration data overlaid

Figure 3. Observed (blue dots) and model-forecasted NHP median (90% PI) serum ADG20 PK profiles based on distribution of NHP K_{DECPn} values for other extended half-life mAbs following intravenous (IV; A) and IM (B) administration

Figure 5. Observed data (dots) versus QSP model-predicted median (90% PI) serum ADG20 PK profiles in healthy adult participants predicted a priori based on distribution of human K_{D EcPn} values for other extended half-life mAbs (A, C) and after optimization (B, D)

IDWeek; September 29-October 3, 2021; Virtual

Figure 2. Simulated human body weight (A) and distribution of

Figure 4. Observed (blue dots) versus optimized QSP modelpredicted NHP median (90% PI) serum ADG20 concentration-time profiles in NHPs following IV (A) and IM (B) administration

This innovative modeling approach was a key element in the rapid advancement of the ADG20 program into clinical development during the **COVID-19** pandemic

can the QR code to download an electronic version of the poster. eference. The PDF should not be altered or reproduced in any way.

- This novel QSP whole-body PBPK model, which was designed to forecast serum concentration-time profiles for extended half-life mAbs, predicted systemic drug exposure with high fidelity
- into clinical development, this model platform can be used to discriminate among competing candidates based on forecasted PK differences
- This QSP model platform can be used to support the rapid advancement of potential new mAb medicines

PBPK model accounted for altered binding affinity to FcRn,

adequately a priori predicted the observed ADG20 PK in NHPs and humans, and was used to support

dose selection

KEY FINDINGS

The modified QSP whole-body

The modeling strategy involved the modification of a platform whole-body PBPK model designed for wild-type IgG1 mAbs to forecast the PK of an extended half-life mAb

binding affinity to FcRn and adequately a priori predicted the observed ADG20 PK in NHPs and humans, thus supporting the selected dose

The modified QSP whole-body

PBPK model accounted for altered

