Exploring Novel Modalities: Disabling the NLRP3 Inflammasome with a NEK7 Molecular Glue Degrader Alison Paterson, Vice President | Discovery Biology | Monte Rosa Therapeutics 11th September 2024

Forward-looking Statements

This communication includes express and implied "forward-looking statements," including forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Forward-looking statements include all statements that are not historical facts and, in some cases, can be identified by terms such as "may," "might," "will," "could," "would," "should," "expect," "intend," "plan," "objective," "anticipate," "believe," "estimate," "predict," "potential," "continue," "ongoing," or the negative of these terms, or other comparable terminology intended to identify statements about the future. Forward-looking statements contained herein include, but are not limited to, statements about the ongoing development of our NEK7-directed MGD, referred to as MRT-8102, and our expectations around its potential across neurologic indications amongst others, as well as potential use in gout, pericarditis, and other peripheral inflammatory conditions, including our expectations to submit an IND to the FDA in the first guarter of 2025, and our statements around multiple anticipated clinical readouts, including results from proof-of-concept patient studies for MRT-8102, statements around the advancement and application of our platform, statements concerning our expectations regarding our ability to nominate and the timing of our nominations of additional targets, product candidates, and development candidates, statements regarding regulatory filings for our development programs, including the planned timing of such regulatory filings, such as IND applications, and potential review by regulatory authorities, our use of capital, expenses and other financial results in the future, availability of funding for existing programs, ability to fund operations into the first half of 2027, as well as our expectations of success for our programs, strength of collaboration relationships and the strength of our financial position, among others. By their nature, these statements are subject to numerous risks and uncertainties, including those risks and uncertainties set forth in our most recent Annual Report on Form 10-K for the year ended December 31, 2023, filed with the U.S. Securities and Exchange Commission on March 14, 2024, and any subsequent filings, that could cause actual results, performance or achievement to differ materially and adversely from those anticipated or implied in the statements. You should not rely upon forward-looking statements as predictions of future events. Although our management believes that the expectations reflected in our statements are reasonable, we cannot guarantee that the future results, performance, or events and circumstances described in the forward-looking statements will be achieved or occur. Recipients are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date such statements are made and should not be construed as statements of fact. We undertake no obligation to publicly update any forward-looking statements, whether as a result of new information, any future presentations, or otherwise, except as required by applicable law. Certain information contained in these materials and any statements made orally during any presentation of these materials that relate to the materials or are based on studies, publications, surveys and other data obtained from third-party sources and our own internal estimates and research. While we believe these third-party studies, publications, surveys and other data to be reliable as of the date of these materials, we have not independently verified, and make no representations as to the adequacy, fairness, accuracy or completeness of, any information obtained from third-party sources. In addition, no independent source has evaluated the reasonableness or accuracy of our internal estimates or research and no reliance should be made on any information or statements made in these materials relating to or based on such internal estimates and research.

These materials remain the proprietary intellectual property of Monte Rosa Therapeutics and should not be distributed or reproduced in whole or in part without the prior written consent of Monte Rosa Therapeutics.

An Introduction to Molecular Glue Degraders at Monte Rosa Therapeutics

Molecular Glue Degraders (MGDs) – A Highly Differentiated Modality Advantages of large molecule modalities with orally dosed small molecules

Our Molecular Glue Degraders (MGDs) Edit the Proteome

Monte Rosa's rationally designed MGDs have potential applications in Oncology, Immunology, Neuroscience and other therapeutic areas

Monte Rosa Pipeline and Upcoming Milestones

Target	Compound	Indication(s)	Discovery	IND-Enabling	Clinical	Next Anticipated Milestone	Ownership
GSPT1	MRT-2359	NSCLC, SCLC and other MYC-driven Malignancies				RP2D and Phase 1 data in H2 2024	
VAV1	MRT-6160	Autoimmune Disease – Systemic and CNS				Phase 1 data in Q1 2025	
NEK7	MRT-8102	IL-1β/NLRP3-driven Inflammatory Diseases				IND submission in H1 2025	
	LO (2 nd generation)					Development candidate	
CDK2	LO	Breast Cancer				Development candidate in 2024	
CCNE1 (Cyclin	E1) LO	CCNE1 amplified tumors				Development candidate	
Discovery Targo	ets -	Multiple				Lead optimization	
Discovery Targo	ets -	Oncology and Neurological Diseases				Undisclosed	Roche
		Oncology	Immunology	Inflammation	Various	As presente disclosures, Au	d in company qust 19, 2024

NEK7 as a Critical Component of NLRP3 Inflammasome

Connecting NEK7 to the NLRP3 Inflammasome – The History

NEK7 is required for activation of the NLRP3 inflammasome *in vivo*

Structural licensing of NLRP3 by NEK7 binding

He et al., Nature 2016

Andreeva et al., Cell 2021

NEK7 is a Key Regulator of NLRP3 Inflammasomes, IL-1 and IL-18

Therapeutic Hypothesis:

Activation of the NLRP3 inflammasome critically depends on NEK7

- NEK7 licenses NLRP3 assembly in a kinaseindependent manner
- NEK7-deficient macrophages are severely impaired in IL-1β and IL-18 secretion

Consequently, NEK7 degradation has the potential to become an important treatment modality for a variety of inflammatory diseases

Clinical Opportunity:

Diseases driven by IL-1 and the NLRP3 inflammasome including gout, pericarditis and other cardiovascular disease, neurodegenerative disease, and obesity

NEK7 is a Key Regulator of NLRP3 Inflammasomes, IL-1 and IL-18

Therapeutic Hypothesis:

Activation of the NLRP3 inflammasome critically depends on NEK7

- NEK7 licenses NLRP3 assembly in a kinaseindependent manner
- NEK7-deficient macrophages are severely impaired in IL-1β and IL-18 secretion

Consequently, NEK7 degradation has the potential to become an important treatment modality for a variety of inflammatory diseases

Clinical Opportunity:

Diseases driven by IL-1 and the NLRP3 inflammasome including gout, pericarditis and other cardiovascular disease, neurodegenerative disease, and obesity

The Evolving NLRP3 Modulator Landscape

NEK7 MGD – MRT-8102

MRT-8102 is a Potent, Selective NEK7-Directed MGD With a Favorable Drug-like Profile

MGD Activity Profile							
CRBN Binding (HTRF, IC ₅₀)	0.2 μM						
NEK7 Degradation (CAL51, DC ₅₀ /Dmax)	10 nM / 89%						
Selectivity (TMT proteomics)	Excellent selectivity profile in different cell lines						
Species activity	Active in human and non-human primates Not active in rodents						
Physicochemical Properties							
LogD	1.47						
MW	<450						
Thermodynamic Solubility	166 µM						
ADMET Profile							
Oral Bioavailability	Yes						
Metabolite Profile (<i>in vitro</i>)	No unique human metabolites or GSH adducts (mics)						
Safety Pharmacology							
Mini-Ames	Negative						
hERG (patch clamp)	No inhibition (EC50> 30 μ M)						
Counterscreens (panel with 44 proteins)	No inhibition						

NEK7 MGD as a Differentiated Approach to Targeting NLRP3 Inflammasome

cyno = cynomolgus monkey

MRT-8102 is Highly Selectivity Across a Broad Array of Cells

6h post treatment in MM.1S, Kelly (SALL4), or Raji (p63-a) 2uM MLN-4924, 30 min pre-treatment

MRT-8102 at 10 µM in each cell line, 24h

MRT-8102 Leads to Potent Inhibition of NLRP3 Inflammasome in Human and Cynomolgus Monkey Cells *In Vitro*

$\begin{array}{c} \mbox{Reduced IL-1}\beta \mbox{ in human and cynomolgus monkey} \\ \mbox{ whole blood} \end{array}$

16

Reduced ASC speck formation in human whole blood

Gating strategy: Single cells_CD45+_CD66b-_CD14+

MRT-8102 Degrades NEK7 in Single-Dose *in vivo* Studies MRT-8102 does not degrade NEK7 in rodent species; PK/PD models in xenograft and cyno

MRT-8102 shows deep degradation in U937 xenograft PK/PD model

MRT-8102 shows dose-dependent degradation in cynomolgus monkey

U937 s.c. xenograft n=3 CB17.SCID mice per timepoint hNEK7 levels in U937 tumor

 $n{=}2$ cynomolgus monkey (one male and one female) per dose cNEK7 levels in PBMC

In Vivo Proof-of-mechanism for NEK7 MGD MRT-8102

MRT-8102 induces degradation of NEK7 *in vivo* over several days

In vivo NEK7 degradation leads to inhibition of NLRP3 inflammasome in *ex vivo* stimulation assay

IL-1β post ex vivo stimulation

150 percent relative to predose in vivo dosing Average NEK7/β-actin, 120 (5 mg/kg, QDx5)100 100-50 44 50-15 0 Predose D1 D5 D10 D15 (24h) (24h)

NEK7 in cyno PBMC

150-Average IL-1 β , percent relative to predose in vivo dosing (5 mg/kg, QDx5)100 92 100-78 45 50-0 0 D15 Predose D1 D5 D10 (24h) (24h)

• IL-1 β in plasma after *ex vivo* stimulation with LPS + nigericin; n = 2

• Follow-up study with 1 mg/kg MRT-8102, *i.v.* at 4 hr showed similar results

n = 2

18

Gout as a Clinical Opportunity

NEK7 MGDs Inhibit NLRP3 Activation by Monosodium Urate

Human monocyte-derived macrophages LPS + MSU stimulation Pretreatment with molecular glue degrader (MGD) or NLRP3 inhibitor (NLRP3i)

NEK7 MGD Reduces MSU-Driven Effects In Rabbit Gout Model MRT-8046 is rabbit-active NEK7 MGD

Reduced area correlates with improved response

Pericarditis as a Clinical Opportunity

The IL-1 Pathway is Clinically Validated in Pericarditis

MRT-8102 inhibits release of both IL-1β and IL-1α in pyroptosis assay

• IL-1β, downstream of NLRP3 activation, amplifies inflammatory cycle

• Colchicine is first line therapy

23

Rilonacept approved; oral alternatives required

Human monocyte-derived macrophages LPS + Nigericin stimulation Pretreatment with molecular glue degrader (MGD) or NLRP3 inhibitor (NLRP3i)

NEK7 MGD Has Potential to Resolve Inflammation by Inhibiting Pyroptosis

Future Opportunities

MRT-8102 Displays Blood-brain Barrier Penetration in Cynomolgus Monkey

MRT-8102 displays CNS-penetrance in cynomolgus monkey

- 30mpk Plasma

Significant NEK7 degradation in various cyno brain regions 24h post treatment

PBMCs

Brain

Single dose p.o.

10000-

26

Single-dose MRT-8102 p.o. n=2 cynomolgus monkey (one male and one female)

Daily dose of 30 mg/kg MRT-8102 for 7 days Analysis on day 8 (24 hr post-final dose) by JESS Simple Western

NLRP3/NEK7 Involvement in a Broad Range of Inflammatory Diseases Potential for groundbreaking approaches to intractable medical problems

Immuno-cardiology

Treatment + prevention of recurrent pericarditis Treatment + prevention of acute myocardial infarction Treatment of myocarditis Prevention of heart failure

Neuro-immunology

Treatment of Parkinson's disease Treatment of Alzheimer's disease

Metabolism

Treatment + prevention of acute gouty arthritis

Treatment + prevention of obesity

Degradation of NEK7 Using an MGD is a Novel Approach to Targeting IL-1 Through the NLRP3 Inflammasome

- Monte Rosa Therapeutics molecular glue degrader MRT-8102 is a selective, potent and durable NEK7 degrader
- NEK7 MGD leads to inhibition of NLRP3 inflammasome *in vitro* and *in vivo;* therapeutic activity in rabbit gout model
- Potential for broad application in inflammatory disorders; NEK7 MGDs with different tissue distribution could address central as well as peripheral inflammatory disorders

Thank You to a Global Team

