Exhibit 99.1

FCGHORN® THERAPEUTICS

Unique biology

Precision therapeutics

Broad impact

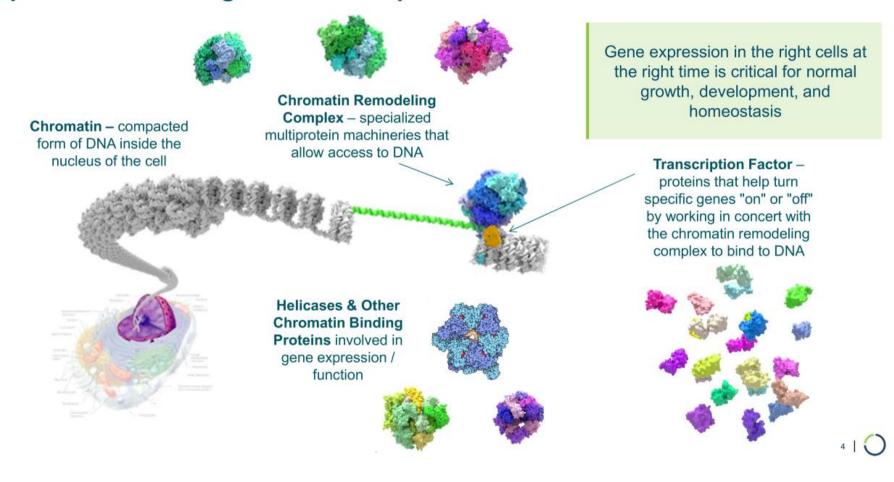
October 2024

Forward Looking Statements

This presentation contains forward-looking statements that are based on management's beliefs and assumptions and on information currently available to management. All statements other than statements of historical facts contained in this presentation are forwardlooking statements. In some cases, you can identify forward-looking statements by terms such as "could," "may," "might," "will," "likely," "anticipates," "intends," "plans," "seeks," "believes," "estimates," "expects," "continues," "projects" or the negative of these terms or other similar expressions, although not all forward-looking statements contain these words. Forward-looking statements include, but are not limited to, statements concerning: the potential outcomes from our collaboration agreement with Lilly; the initiation, timing, progress and results of our research and development programs and pre-clinical studies and clinical trials, including with respect to our Phase 1 trial of FHD-286 in combination with decitabine in relapsed and/or refractory AML patients and anticipated timing of release of clinical data, and the planned Phase 1 dose escalation trial of FHD-909 with Lilly; our ability to advance product candidates that we may develop and to successfully complete preclinical and clinical studies; our ability to leverage our initial programs to develop additional product candidates using our Gene Traffic Control Platform®; the impact of exogeneous factors, including macroeconomic and geopolitical circumstances, on our and our collaborators' business operations, including our research and development programs and pre-clinical studies; developments related to our competitors and our industry; our ability to expand the target populations of our programs and the availability of patients for clinical testing; our ability to obtain regulatory approval for FHD-286 and any future product candidates from the FDA and other regulatory authorities; our ability to identify and enter into future license agreements and collaborations; our ability to continue to rely on our CDMOs and CROs for our manufacturing and research needs; regulatory developments in the United States and foreign countries; our ability to attract and retain key scientific and management personnel; the scope of protection we are able to establish, maintain and enforce for intellectual property rights covering FHD-286, our future products and our Gene Traffic Control Platform; and our use of proceeds from capital-raising transactions, estimates of our expenses, capital requirements, and needs for additional financing. You should, therefore, not rely on these forward-looking statements as representing our views as of any date subsequent to the date of this presentation. Additional important factors to be considered in connection with forward-looking statements are described in the Company's filings with the Securities and Exchange Commission, including withing the section entitled "Risk Factors" in the Company's Annual Report on Form 10-K for the fiscal year ended December 31, 2023. Any forward-looking statements represent the Company's views only as of the date of this presentation and should not be relied upon as representing its views as of any subsequent date. The Company explicitly disclaims any obligation to update any forwardlooking statements. The Company's business is subject to substantial risks and uncertainties.

Foghorn is the Pioneer in Chromatin Biology, an Untapped Area for Therapeutics

What if ... It were possible to develop a therapeutic


approach to treat half of all cancers?

Chromatin biology is implicated in up to 50% of tumors

~2.5 million cancer patients

Potential for therapeutic area expansion (e.g., I&I)

Chromatin Regulatory System Orchestrates Gene Expression; Multiple Opportunities for Targets and Therapeutics

Foghorn has Progressed Multiple Programs Against Challenging Targets

SMARCA2 / SMARCA4: Implicated across solid and hematologic malignancies Challenge: Can dual inhibition yield clinical benefit?

SMARCA2: Potential in up to 5% of all solid tumors

Challenge: Industry has failed to develop a selective inhibitor

CBP: Role in bladder, colorectal, breast, gastric, lung cancers

Challenge: Toxicities with dual inhibition, difficulty engineering selectivity

EP300: Role in both solid and heme malignancies

Challenge: Toxicities with dual inhibition, difficulty engineering selectivity

ARID1B: Role in ovarian, endometrial, colorectal cancer

Challenge: Industry has had no success with selective target engagement

FHD-286

dual inhibitor in the clinic Data H2 '24

FHD-909

first selective inhibitor in the clinic

Selective CBP Degrader

IND enabling studies anticipated by end of year

Selective EP300 Degrader

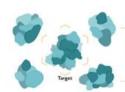
IND enabling studies anticipated in 2025


Selective ARID1B binder identified. Critical step towards degradation

SMARCA2 = BRM SMARCA4 = BRG1

... and more.

Foghorn's Gene Traffic Control® Platform Designed to Deliver Precision, First-in-Class Therapeutics: Integrated, Scalable, Efficient, Repeatable



2. Assays & Biochemistry Capabilities

Engineering selectivity via unique assays and protein capabilities

- Protein purification, production & interrogation
- High fidelity, difficult to make proteins
- In silico modeling and computational chemistry

"Where to Drug"

1. Chromatin Biology

Deep mechanistic understanding of chromatin regulatory system

- **Bioinformatics**
- Genomics
- **Epigenomics**

Identify **Dependencies**

"What to Drug"

3. Chemistry & Drugging

Biology first, small molecule modality agnostic

- Selective, small molecules (inhibitors, protein degraders, TF disruptors)
- Protein degradation platform
- Formulation & long-acting delivery

"How to Drug"

Legend: Patents | Know How / Trade Secret

Foghorn's Unique Platform Capabilities Evolved from Drugging a Specific Chromatin Remodeling Complex (BAF)*

Challenge: produce, manipulate, study, and drug a 1.5 megadalton multi-protein complex

Assays and Biochemistry Capabilities

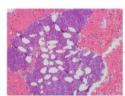
- Purification & recombinant production of large proteins and protein complexes
- Biochemistry & biophysics of intrinsically disordered proteins
- High throughput screening for binders and inhibitors

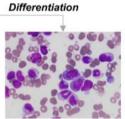
BAF Chromatin Remodeling Complex

Challenge: drug highly similar proteins that have no enzymatic function

Protein Degrader Platform

- Proprietary linker library
- Suite of assays specific to degradation (i.e., synthesis kinetics, degradation kinetics)
- Optimal E3 ligase pairing
- · Ternary complex modeling
- · Long-acting formulation technology


Current and Future Applications


- Selectively drugging highly similar proteins / hard to drug proteins
- Disease area expansion
- Going beyond chromatin novel biology with complex proteins
- Payloads for ADCs*

The Next Foghorn Chapter: Delivering Multiple Potential Blockbusters into the Clinic

Pioneering BAF and Chromatin Biology (2016 – 2020) POC, Platform & Pipeline Expansion (2021 – 2023) Progress Multiple High Value Assets into the Clinic (2024 – 2027)


- Built platform and developed deep understanding of biology
- Producing BAF and transcription factors at scale
- Demonstrated druggability of chromatin regulatory system

- ✓ Lilly strategic collaboration
- FHD-286 demonstrated mutation-agnostic differentiation effect in acute myeloid leukemia (AML)
- ✓ Initiated efforts on CBP and EP300
- Expansion of protein degrader platform

- Proof of concept data for SMARCA2 Selective Inhibition (FHD-909) in NSCLC*
- Registrational trials for FHD-286 in AML
- Potential for 5 additional INDs
- Pipeline, platform, disease area expansion

*Non-small cell lung cancer (NSCLC)

Foghorn Is Advancing a Pipeline of First-in-Class Precision Therapeutics with Potential for Broad Application in Oncology ...

*LY4050784 SMARCA2 = BRM SMARCA4 = BRG1

... with Multiple Near-Term Value Inflection Points through 2026

FHD-286	AML Combination Dose Escalation Data	Q4 2024
FHD-909 (Selective SMARCA2 Inhibitor)	Phase 1: First Patient Dosed	October 2024
	Phase 1 Dose Escalation Data	Confidential
Selective SMARCA2 Degrader	IND Filing / Phase 1 Initiation	Confidential
Selective CBP Degrader	Initiate IND-Enabling Studies	Year End 2024
Lilly Target #2	Target Disclosure and IND Filing	Confidential
Selective EP300 Degrader	Initiate IND-Enabling Studies	2025
Selective ARID1B Degrader	Development Candidate	H1 2026

Potential Multi-Billion Dollar Opportunities in Oncology

\$500M to \$2B Market Opportunities Each

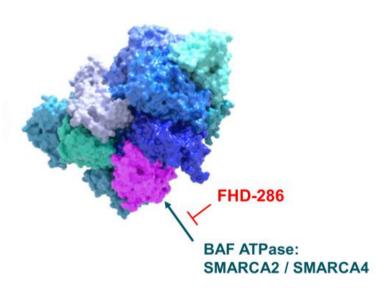
Greater than \$2B Market Opportunities Each

Foghorn Owned

Partnered w Lilly

Potential for therapeutic area expansion (e.g., immunology and inflammation)

Clinical & Pre-Clinical Programs


- FHD-286 Dual SMARCA2 / SMARCA4 Inhibitor
- FHD-909 (LY4050784) Selective SMARCA2 Inhibitor
- Selective CBP Degrader
- Selective EP300 Degrader
- Selective ARID1B Program

FHD-286: Dual SMARCA2 / SMARCA4 Inhibition

Targeting BAF Dependency in Cancer

SMARCA2 = BRM SMARCA4 = BRG

Exploring BAF Dependency in Cancer with FHD-286 – Potent, First-in-Class, Oral Dual Inhibitor of SMARCA2 and SMARCA4

FHD-286:

- Allosteric modulation inhibiting the activity of both SMARCA2 and SMARCA4
- Oral, daily, potent, first-in-class, small molecule inhibitor

Current and Potential Future Opportunity Pre-clinical data support ability to address BAF Mutations mutations Clinical and pre-clinical data demonstrated broad-Differentiation based differentiation across AML and multiple solid tumors Pre-clinical data support ability to overcome drug **Overcoming Drug** resistance (i.e., EGFR NSCLC, enzalutamide-Resistance resistant CRPC, PD-1 refractory) **Immune** Clinical data demonstrated an increase of CD8+ T-cells and a reduction of T-regulatory cells Modulation

Significant Opportunity for Novel, Effective Therapy in Patients with R/R AML

Most cases of AML are not curable

- >50% of patients relapse
- Intensive chemo still standard of care

40% of AML cases have no actionable mutations

- No meaningful developments for broad AML patient population since Venetoclax
- Recent developments focused on actionable mutations (e.g., FLT3, IDH1/2, MLL**)

Initial FHD-286 Opportunity

~17,000 Drug Treatable R/R Patients*

- · Post Ven/Aza:
 - No standard of care
 - o CRc rates 15-17%

· High unmet need

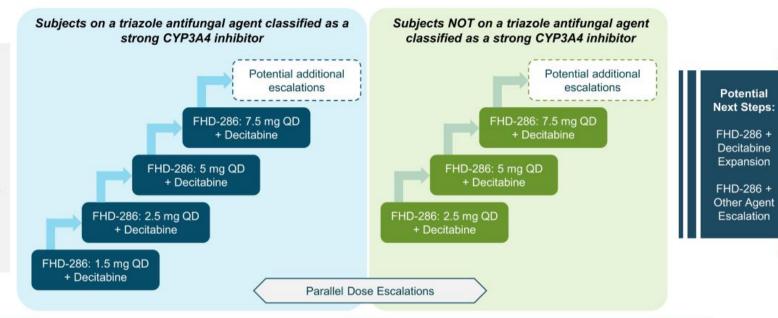
FHD-286 Opportunity: R/R Patients and Potentially Newly Diagnosed Patients

FHD-286 Demonstrated Promising Mutation-Agnostic Differentiation Effects in Single Agent Phase 1 Trial

Dose Level	Mutations	Cytogenetics Risk	Starting CD11b%	Max CD11b%	CD11b+ Fold Change	Starting CD34%	Min CD34%	CD34+ % Decrease
10ma	N/A	Adverse	7	62	9.2x	94	27	(71%)
10mg	N/A	Auverse	,	62	9.2X	94	21	(7170)
7.5mg	CBFB (locus at 16q22)		2	94	59.4x	70	2	(97%)
7.5mg	KMT2A rearrangement	Adverse	3	58	21.4x	85	9	(90%)
7.5mg	RUNX1, KRAS, ASXL1, JAK2, TET2, EZH2, ETNK	Adverse	5	73	15x	95	18	(81%)
7.5mg	N/A	Adverse	8	52	6.3x	94	33	(65%)
7.5mg	ASXL1, TP53, U2AF1	Adverse	19	63	3.3x	92	51	(45%)
5mg	RUNX1, NRAS, KRAS, SF3B1, ASXL2, CSF3R, GATA2	Adverse	3	74	29x	94	19	(80%)
5mg	RUNX1, NRAS, ASLX1	Adverse	4	97	22.8x	98	7	(93%)
5mg	N/A	Adverse	6	79	13x	93	11	(88%)
5mg	TET2, WT1 GATA2 PLCG2 ARHGEF28, BRD4, CDK12, DDX41, KMT20, PARP1, ZRSR2		3	24	8.1x	86	62	(27%)
5mg	N/A	Adverse	4	28	6.5x	93	66	(29%)
5mg	DNMT3a, TET2		21	88	4.1x	30	4	(88%)
2.5mg	NRAS, WT1	Adverse	3	13	4.8x	93	89	(4%)

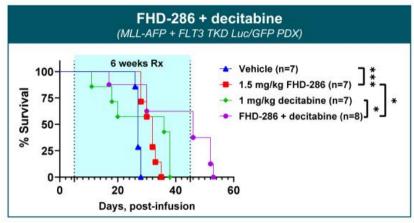
CD34 (leukemic stem cell marker) decreases

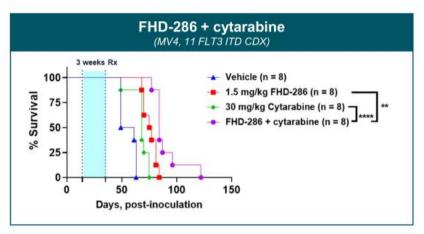
CD11b (marker of differentiation) increases

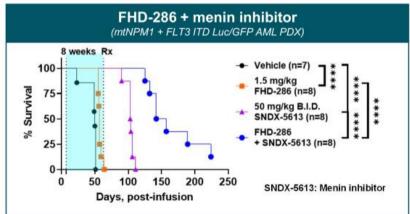

Dose Escalation Trial Design in Combination with Decitabine in AML

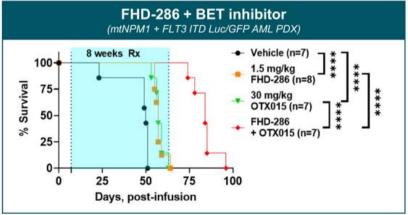
Target Indication:

· R/R AML


Treatment Plan & Dose Escalation:


- 3+3 escalation design
- Oral FHD-286, QD, 28-day cycles
- Standard decitabine dose schedule




Key Objectives	
Primary	 Safety/Tolerability Maximum Tolerated Dose (MTD) and/or Recommended Phase 2 Dose (RP2D) determinations
Secondary	 Preliminary clinical activity PK parameters of FHD-286 in combination with Decitabine in subjects on/off triazole antifungal agents classified as strong CYP3A4 inhibitors
Exploratory	 PD effects of FHD-286 in combination with Decitabine MRD

Pre-Clinical Data Demonstrated Combination Potential with Multiple Agents in AML

FHD-286 Has Potential in Multiple High-Value Oncology Indications

R/R AML combinations
(e.g., decitabine, menin inhibitors, others)

TKI Combination

Other Hematologic and Solid Tumors

Selective SMARCA2 Modulators

For SMARCA4 Mutated Cancers

SMARCA2 = BRM SMARCA4 = BRG1

FHD-909, SMARCA2 Selective Inhibitor in Phase 1 Trial; Selective SMARCA2 Degrader Continues Late-Stage Pre-Clinical Development

SMARCA2 Selective Inhibitor (FHD-909*)

SMARCA2 Selective Degrader

Bio	logy
-----	------

Exploit the synthetic lethal relationship between SMARCA2 and mutated SMARCA4

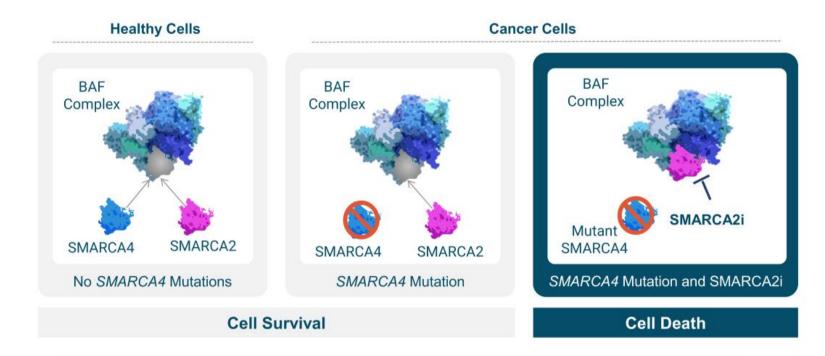
Stage

Phase 1 dose escalation trial

Advancing in parallel through late preclinical development

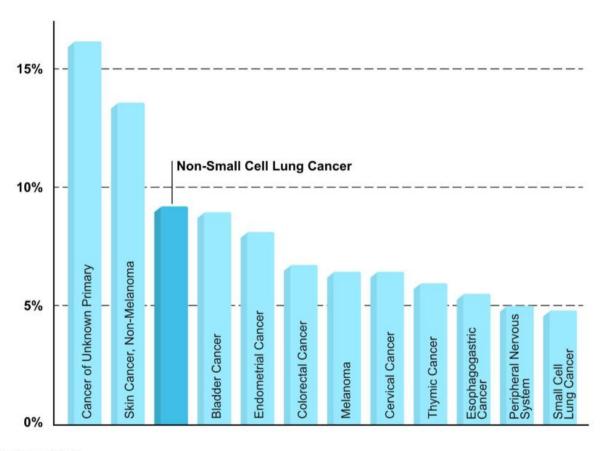
Opportunity

SMARCA4 mutated cancer including ~10% of NSCLC and up to 5% of all solid tumors


Lilly Partnership

50/50 global R&D cost share | 50/50 U.S. economics | tiered ex-U.S. royalties starting in the low double-digit range and escalating into the twenties

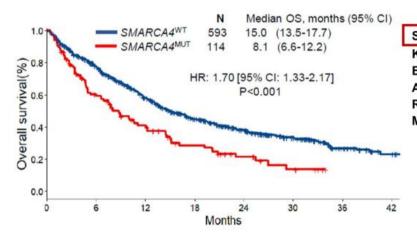
*LY4050784

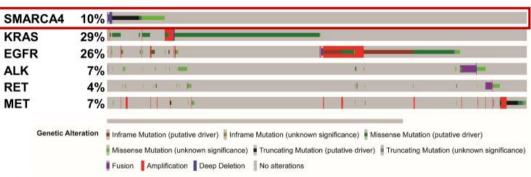

21 |

Selective SMARCA2 Inhibition: Promising Strategy to Exploit Synthetic Lethal Relationship Between SMARCA2 and Mutant SMARCA4

Precision medicine targeting synthetic lethal relationships is a proven clinical approach now used in multiple cancers (e.g., PARP inhibitors)

SMARCA4 is Mutated in Up to 10% of NSCLC; Up to 5% of Solid Tumors

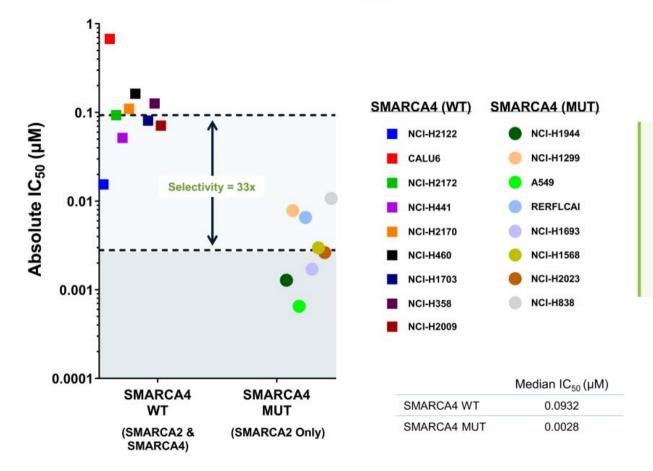

SMARCA4 mutated across a broad range of tumors


Accounts for ~5% of solid tumors

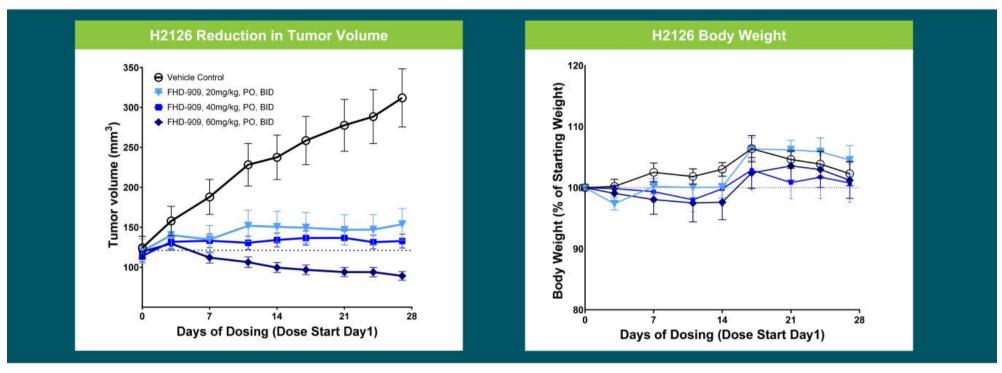
Patients with NSCLC Harboring SMARCA4 Mutations Have Significantly Worse Clinical Outcomes and Define a High Unmet Need Patient Population

Overall Survival for SMARCA4wt vs SMARCA4mut1

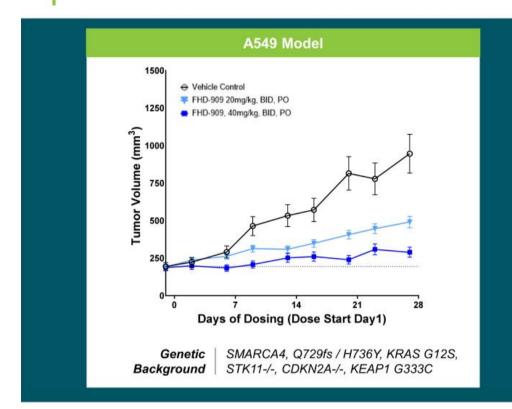
SMARCA4 mutated in up to 10% of NSCLC tumors, minimal overlap with other mutations²

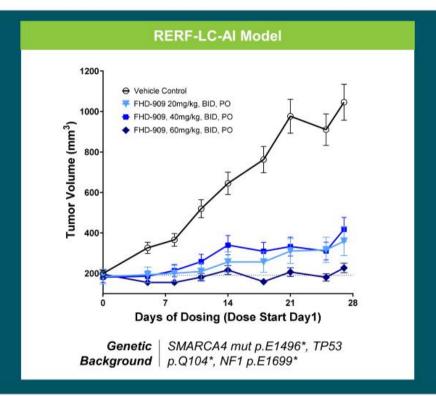


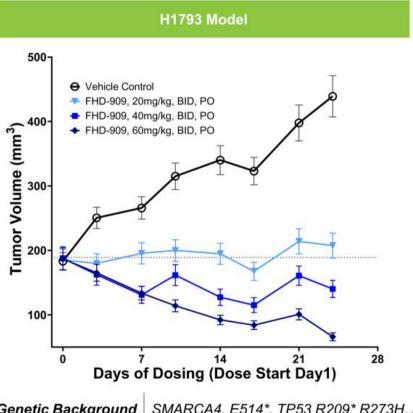
1. Alessi JV, et al., 2021; 2. TCGA via cBioPortal


FHD-909 Demonstrated Approximately 33-fold Selectivity Across 17 SMARCA4 Mutant and Wild-Type Cell Lines *In Vivo*

Spread in potency for wild type versus mutant cell lines indicates


33-fold selectivity observed


FHD-909 Monotherapy Demonstrated Regression *In Vivo* in H2126 SMARCA4 Mutant NSCLC Model and Was Well Tolerated


Genetic Background: SMARCA4 W764R, TP53 E62*, STK11-/-, CDKN2A-/-, KEAP1 R272C

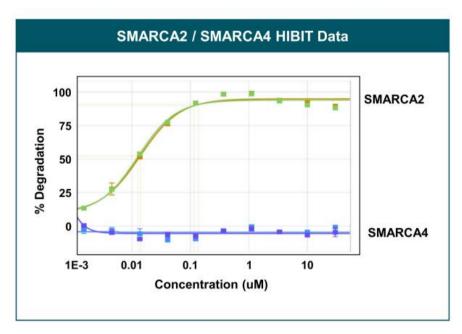
FHD-909 Monotherapy Demonstrated 96% TGI in A549 and Tumor Stasis in RERF-LC-Al Mutant NSCLC Models

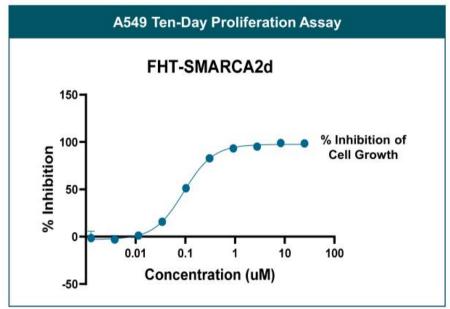
FHD-909 Monotherapy Demonstrated Regression in H1793 SMARCA4 **Mutant NSCLC Model**

- FHD-909 delivered across range of SMARCA4 mut xenograft models
- Results ranging from impressive TGI to regression as monotherapy
- All doses across all four models were well tolerated

Genetic Background SMARCA4, E514*, TP53 R209* R273H, ARID1A C884*

FHD-909 Trial Design

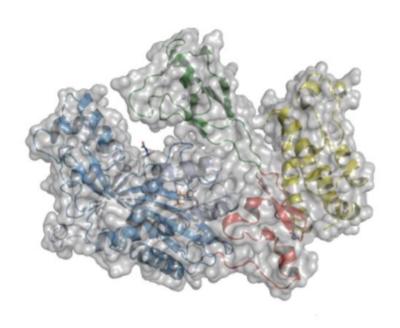

Dose Escalation


- Restricted to SMARCA4 mutated tumors
- SMARCA4 mutant status confirmed by standard NGS panel
- Further enrichment for NSCLC patients as trial progresses
- · Tumor histology agnostic

Dose Expansion

- Arm 1: SMARCA4 mutant NSCLC
- Arm 2: Other SMARCA4 mutant tumors (e.g., bladder, endometrial, colorectal)
- Potential for combination arm(s)

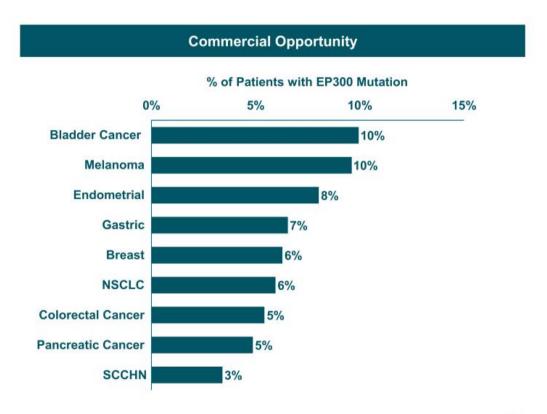
SMARCA2 Selective Degrader Achieved Complete SMARCA2 Degradation and Cell Growth Inhibition *In Vitro*



Degraders Caused Time- and Dose-Dependent SMARCA2 Degradation Antiproliferative Effects in A549 Mutant NSCLC Model

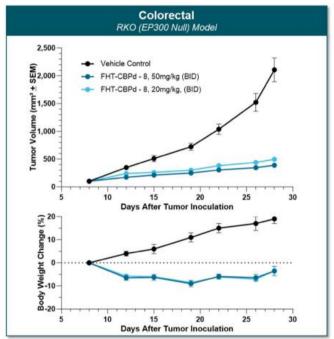
30 |

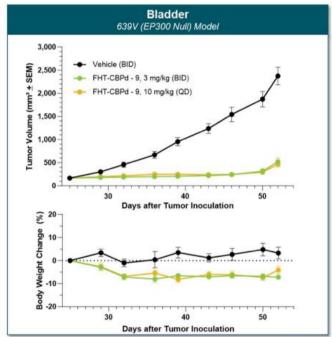
CBP and EP300 Proteins – A Decades Long Challenge in Selectivity

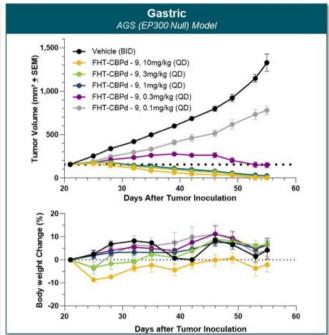

- CBP and EP300 are chromatin regulators and histone acetyltransferases
- CBP and EP300 are virtually identical, thus achieving selectivity is a significant challenge
 - Dual targeting has revealed tolerability and safety issues

Foghorn is working on two separate programs, each with their own defined dependencies and patient populations

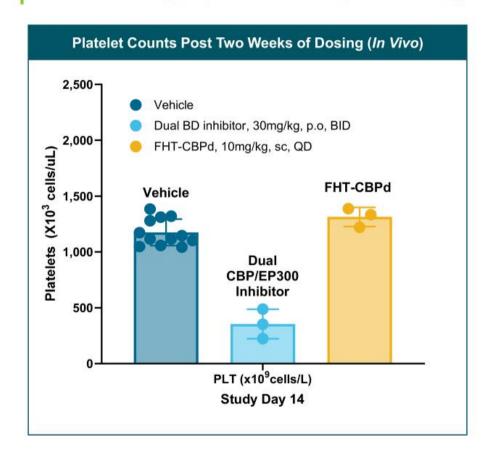
Selective CBP Protein Degrader For EP300 Mutated Cancers

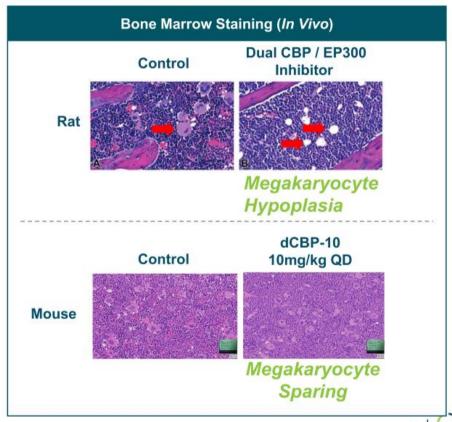

Summary: Selective CBP Protein Degrader for EP300 Mutated Cancers

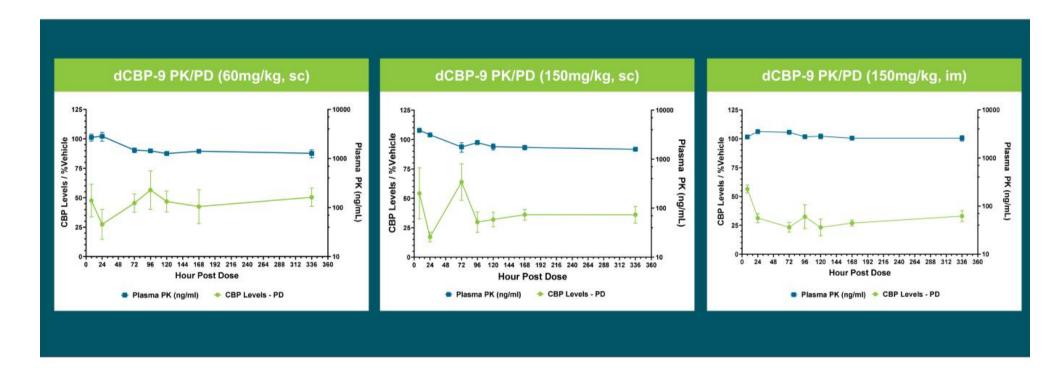

Target / Approach	CREB binding protein (CBP)Targeted protein degrader
Initial Indication	 EP300 mutated cancers (e.g., subsets of bladder, colorectal, breast, gastric and lung cancers)
Mutation / Aberration	EP300 mutated cancers
Stage	· Pre-clinical
New Patients Impacted / Year*	• Over 100,000



^{*} Per year incidence in the U.S., EU5, Japan . Source: Clarivate DRG Mature Markets Data.

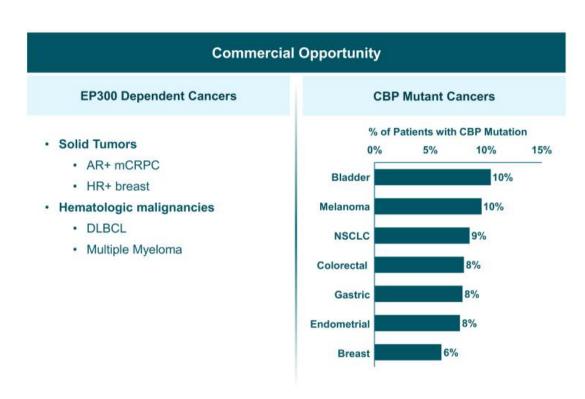

Selective CBP Degradation Resulted in Significant Tumor Growth Inhibition in Colorectal & Bladder and Regression in Gastric EP300 Null Models





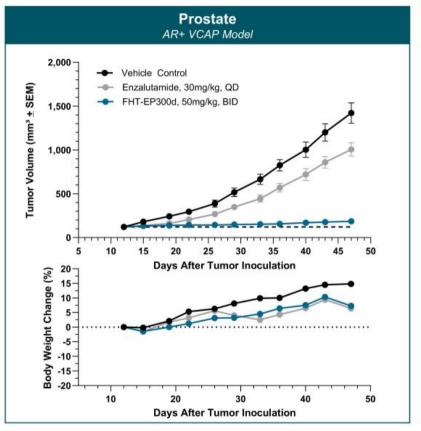
Pre-Clinical Studies Indicate Selective CBP Degradation Did Not Show Thrombocytopenia and Spares Megakaryocytes *In Vivo*

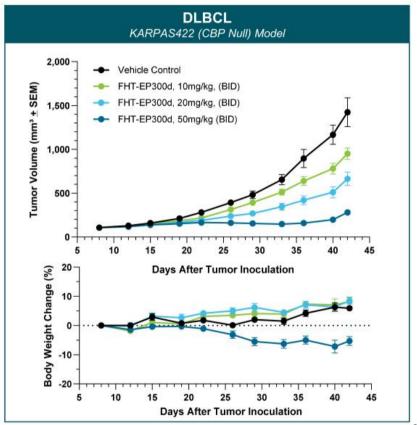
Pre-Clinical Studies Indicate Long-Acting Injectable Formulations of CBP Degrader Could Enable At Least Once Every 2 Weeks Dosing

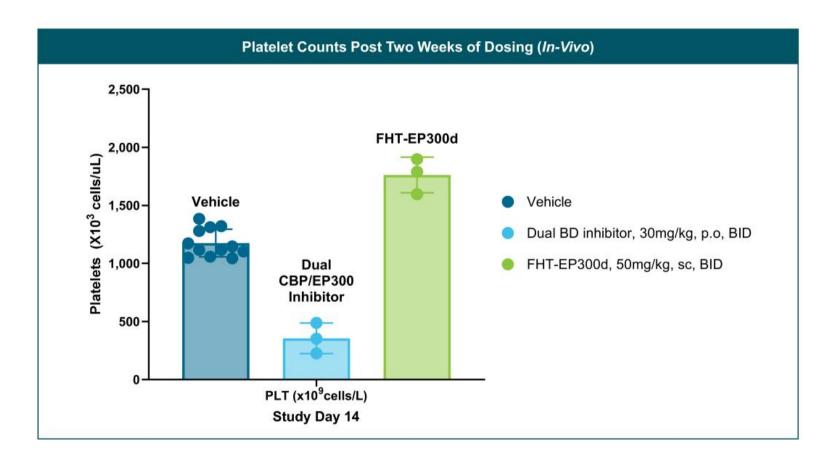


Selective EP300 Protein Degrader

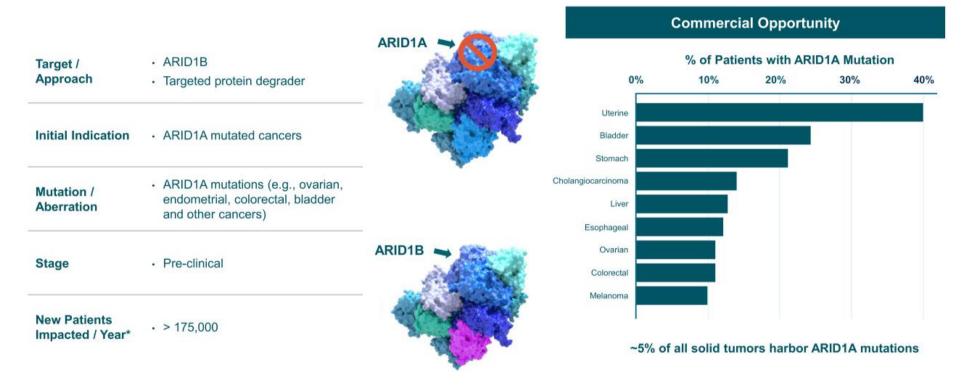
For CBP Mutated and EP300 Dependent Cancers


Summary: Selective EP300 Protein Degrader for CBP Mutant & EP300 Dependent Cancers


Target /	• E1A binding protein p300 (EP300)					
Approach	 Targeted protein degrader 					
	AR+ Prostate					
Initial Indications	- DLBCL					
muications	Bladder, melanoma, others					
Mutation /	· EP300 dependent cancers					
Aberration	CBP mutant cancers					
Stage	· Pre-clinical					
New Patients Impacted / Year*	• Over 100,000					


^{*} Per year incidence in the U.S., EU5, Japan. Source: Clarivate DRG Mature Markets Data.

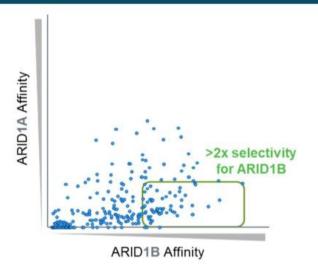
EP300 Degradation Results in Significant Tumor Growth Inhibition in AR+ VCAP Prostate and KARPAS422 DLBCL Models



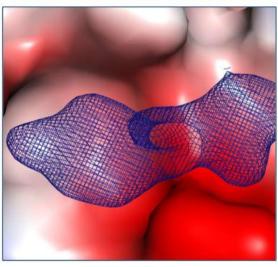
Selective EP300 Degradation Does Not Show Thrombocytopenia In Vivo

Selective ARID1B Protein Degrader For ARID1A Mutated Cancers

ARID1B is a Major Synthetic Lethal Target Implicated in Up To 5% of All **Solid Tumors**

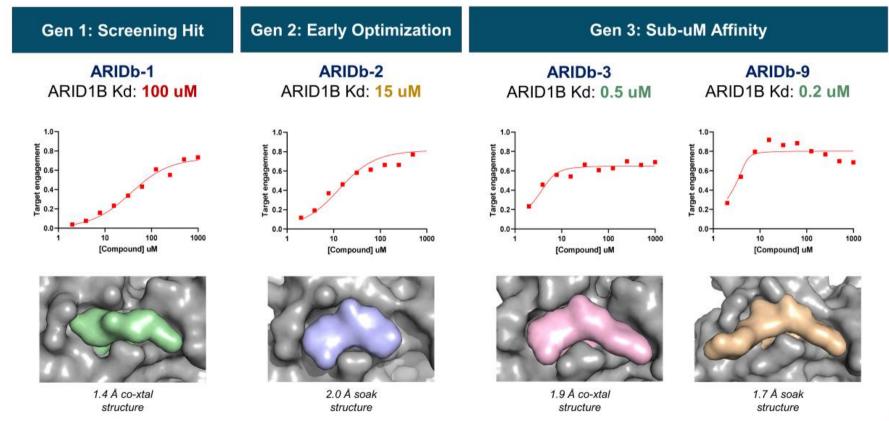


^{*} Per year incidence in the U.S., EU5, Japan. Source: Clarivate DRG Mature Markets Data.


Compound Screening and Structure-Based Optimization Yielded Selective ARID1B Binders

Identification of Selective ARID1B Binders

X-Ray Crystal Structures Detail Selective **ARID1B Binding**



- · Mapped and purified several potential ligandable regions of ARID, which were then screened against various compound libraries
- · Characterized binding using multiple biochemical and biophysical techniques: e.g., DSF, ASMS, NMR, and SPR

- · Determined X-ray crystal structure of ARID ligandable domains with specific binders
- · Leveraged these structures to drive binding affinities and expand binding chemotypes

Structure-Based Optimization Drove Improved ARID1B Binding Affinity from 100 uM to less than 200 nM

... with Multiple Near-Term Value Inflection Points through 2026

FHD-286	AML Combination Dose Escalation Data	Q4 2024			
FHD-909	Phase 1: First Patient Dosed	October 2024			
(Selective SMARCA2 Inhibitor)	Phase 1 Dose Escalation Data	Confidential			
Selective SMARCA2 Degrader	IND Filing / Phase 1 Initiation	Confidential			
Selective CBP Degrader	Initiate IND-Enabling Studies	Year End 2024			
Lilly Target #2	Target Disclosure and IND Filing	Confidential			
Selective EP300 Degrader	Initiate IND-Enabling Studies	2025			
Selective ARID1B Degrader	Development Candidate	H1 2026			

Developing First-In-Class Precision Medicines Targeting Major Unmet Needs in Cancer

Leader in Unique Area of Cancer Biology

Foghorn is a leader in targeting chromatin biology, which has the potential to address underlying dependencies of many genetically defined cancers

Platform with initial focus in oncology, therapeutic area expansion potential

Large Market Potential

Chromatin biology is implicated in up to 50% of tumors, potentially impacting ~2.5 million patients

Foghorn's current pipeline potentially addresses more than 500,000 of these patients

Broad pipeline across a range of targets and small molecule modalities

Well-Funded

\$285.2 million in cash and equivalents (as of 6/30/2024)

Shares outstanding: approximately 62.5M*

Cash runway into 2027

Value Drivers

Anticipate data from the Phase 1 trial of FHD-286 in combination with decitabine in Q4'24

SMARCA2 Selective Inhibitor (FHD-909), partnered with Lilly, in **Phase 1 trial**

Advancement of preclinical assets (SMARCA2 Selective Degrader, CBP, EP300, ARID1B) towards INDs

Major Strategic Collaboration

Strategic collaboration with Lilly; \$380 million upfront; 50/50 U.S. economic split on two lead programs

^{*}Includes common shares outstanding as of 6/30/2024 as well as common stock and pre-funded warrants issued as part of May 2024 financing

FCGHORN® THERAPEUTICS

Unique biology

Precision therapeutics

Broad impact

October 2024

Lilly Collaboration Validates Foghorn Approach: Significant Upfront and Deal Economics

\$380 Million Up-front

\$300 million cash

\$80 million in Foghorn common stock at a price of \$20 per share

50/50 U.S. Economics on Two Programs

50/50 U.S. economic split on SMARCA2-Selective and another undisclosed program

Tiered ex-U.S. royalties starting in the low double-digit range and escalating into the twenties based on revenue levels

Three Undisclosed Discovery Programs

Option to participate in a percentage of the U.S. economics

Tiered ex-U.S. royalties from the mid-single digit to lowdouble digit range

\$1.3 billion in potential milestones

FHD-286: Dual SMARCA2 / SMARCA4 Inhibition

Targeting BAF Dependency in Cancer

Additional Information

Potential First-in-Class Mutation-Agnostic Differentiation Agent With Significant Combination Potential in AML

Completed Phase I Monotherapy Safety and Efficacy Results

Efficacy

- Differentiation observed in heavily pre-treated patients, regardless of mutational status
- Multiple patients with bone marrow and peripheral blast improvements and associated ANC recovery

Safety

- Adverse data observed to be profile consistent with lateline AML population
 - Most frequent ≥ grade 3 TRAEs: increased blood bilirubin, hypocalcemia, differentiation syndrome (DS), stomatitis, increased ALT
- Adjudicated Differentiation Syndrome rate of 15%

Ongoing Phase I Combination Trial

- Phase I dose escalation trial evaluating oral daily dosing of FHD-286 with fixed dose decitabine or cytarabine
- Standard 3+3 dose escalation design
- Data anticipated in H2'2024

Peripheral Blood and Bone Marrow Blast Count Reduction Led to ANC Recovery in a Subset of Patients

Diagnosis	Dose Level	Mutations	Cytogenetic Risk	Cycles on Study	ANC Recovery	Peripheral Starting Blast %	Peripheral Min Blast %	Peripheral Blast % Change	BMA Starting Blast %	BMA Min Blast %	BMA Blast % Change
AML	10mg	N/A	Adverse	2.2	YES	15	0	(100)	40	6	(85)
AML		DNMT3A, U2AF1, DDX41, CUX1, TP53	Adverse	0.5	N	20	0	(100)	13	2	(85)
AML	10mg	NRAS, SF3B1	Intermediate	7.3	N	2	0	(100)	12	5	(58)
AML	10mg	NRAS, BRCA1, MEN1, CDKN1Ap	Adverse	0.3	N	80	11	(86)	52	12	-
AML	10mg	D17Z1, TP53	Intermediate	0.6	N	9	1	(89)	9		-
AML	10mg	GATA2, ETV6, KDR	Intermediate	1.4	N	2	2	0	5		-
AML	7.5mg	RUNX1, KRAS, ASXL1, JAK2, TET2, EZH2, ETNK1	Intermediate	2.9	N	83	1	(99)	83	2	(98)
AML	7.5mg	ASXL1, TP53, U2AF1	Adverse	1.3	N	-	5	-	36	14	(61)
AML	7.5mg	KMT2A rearrangement	Adverse	2.8	YES	97	5	(95)	89	48	(46)
AML	7.5mg	N/A	Adverse	4.1	YES	28	4	(86)	25	15	(40)
* MDS	7.5mg	DNMT3A, TP53	Adverse	1.4	N	-	0	12	8	5	(38)
AML	7.5mg	DNMT3A, KRAS, NRAS	Adverse	1.8	N	32	2	(94)	47	49	4
AML	7.5mg	CBFB (locus at 16q22)	Favorable	1.7	YES	32	0	(100)	27	29	7
AML	7.5mg	N/A	Adverse	0.1	N	35	19	(46)	72	-	-
AML	7.5mg	ASXL1, BCOR, FLT3ITD, NF1, CBL, H1-B, NFE2	Adverse	0.7	N	8	7	(13)	25	17	855
AML	7.5mg	N/A	-	0.5	N	0	0	0	8	-	-
AML	7.5mg	NRAS, ASXL2, SRSF2	Adverse	0.1	N	93	-	-	17	19-	
AML	7.5mg	ASXL1, DNMT3A, TET2, TP53	Adverse	0.5	N		4	7.	-	-	-
AML	7.5mg	FLT3ITD	Favorable	0.8	N	0	39	20	12	19	(34)

* MDS Patient

Peripheral Blood and Bone Marrow Blast Count Reduction Leading to ANC Recovery in a Subset of Patients

Diagnosis	Dose Level	Mutations	Cytogenetic Risk	Cycles on Study	ANC Recovery	Peripheral Starting Blast %	Peripheral Min Blast %	Peripheral Blast % Change	BMA Starting Blast %	BMA Min Blast %	BMA Blast % Change
ANAL	F	DUNIVA NIDAC ACLVA	A d	2.1	YES	29		(100)	35	12	(66)
AML	5mg	RUNX1, NRAS, ASLX1	Adverse	3.1			0	(100)			(66)
AML	5mg	N/A	Adverse	8.0	N YES	-	2	(100)	11	7	(36)
AML	5mg	N/A	Adverse	1.8		6	0	(100)	24	16	(33)
AML	5mg	ASXL1, DNMT3A, KRAS, PTPN11, WT1, GRIN2AWT1	Adverse	2.0	N	32	38	19	49	52	6
* MDS	5mg	RUNX1, NRAS, KRAS, SF3B1, ASXL2, CSF3R, GATA2	Adverse	1.0	YES	5	13	160	11	14	27
* MDS	5mg	DNMT3a, TET2	Intermediate	1.9	YES	0	0	0	1	2	100
AML	5mg	TET2, WT1, GATA2, PLCG2, ARHGEF28, BRD4, CDK12, DDX41, KMT20, PARP1, ZRSR2	Intermediate	1.7	YES	9	0	(100)	18	46	156
AML	5mg	KRAS, PTNP11, IRF8, MSH6, RUNX1	2	1.3	N	17	7	(59)	2.7	80	-
AML	5mg	TP53	Adverse	0.7	N	41	20	(51)	18	-	
AML	5mg	TP53	Adverse	0.5	N	44	35	(20)	55		-
AML	5mg	PPM1D, TP53	Adverse	0.5	N	15	12	(20)	18	-	-
AML	5mg	KRAS, TET2	Adverse	0.6	N	37	32	(14)	56	-	
* MDS	5mg	ASXL1, DNMT3A, IDH1, SRSF2, SF3B1, TET2	2	0.4	N	0	0	0	0	-	
AML	5mg	N/A	Adverse	0.5	N	10	11	13	7.	172	7.7
AML	5mg	ASXL1, NRAS, EP300, STAG2, RUNX1, TET2	Adverse	0.1	N	25	32	25	11	(4)	-
AML	5mg	CEBPA, KMT2C, NCOR1, CBL	-	0.3	N	48	75	56	64	150	-
AML	2.5mg	NRAS, WT1	Adverse	1.4	N	36	62	72	45	74	64
AML	2.5mg	BCR/ABL, PMLRARA, RUNX1, TET2	-	2.4	N	68	28	(59)	30	140	
AML	2.5mg	N/A	Adverse	0.8	N	7	0	(100)	22		-
AML		DNMT3A, KRAS, TP53	Adverse	0.8	N	28	40	46	45	-	
AML	2.5mg	DNMT3A, TP53	Adverse	1.0	N	4	-		25	-	

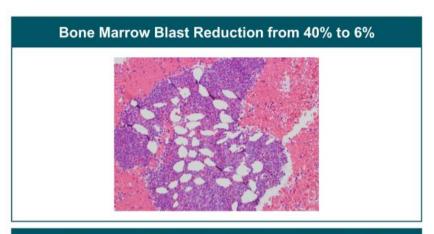
* MDS Patient

Signs of Differentiation in Heavily Pre-Treated, Secondary AML Patient with Abnormal Karyotype in Phase 1 Dose Escalation Trial

Patient Background:

- · 47-year-old male, secondary AML
- Abnormal karyotype: Del (7Q), Inv (3), Der (7;12), -8, ADD(1)

Prior AML Treatment:


 Progressive disease: 4 lines prior treatment and 2 bone marrow transplants

Prior non-AML treatment:

MDS with inv(3) and der(7;12) and ASXL1 mut. Received AZA x 4.

Initiation of FHD-286 at 10 MG Dose:

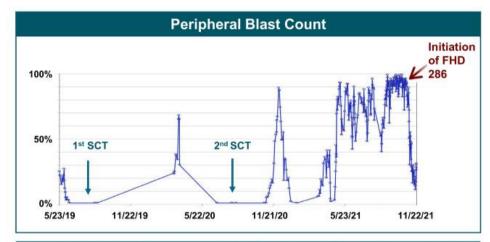
 Bone marrow blast from 40% to 6% with clear evidence of differentiation with persistence of cytogenetics abnormalities. ANC recovery.

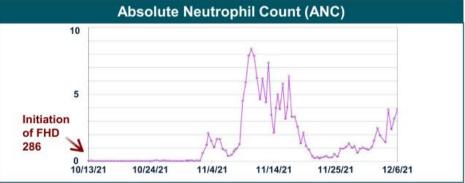
Clinical Benefit in Heavily Pre-Treated Patient in Phase 1 Dose Escalation Trial

Patient Background:

- · 25-year-old male, treatment-related AML
- · KMT2A rearrangement

Prior AML Treatment:


 Progressive disease with CNS Leukemia: 7 lines prior treatment and 2 bone marrow transplants


Prior non-AML treatment:

 Ewing's sarcoma: Treated with Chemo/RT/Surgery (VCR, doxo, cyclophos, ifos, etoposide)

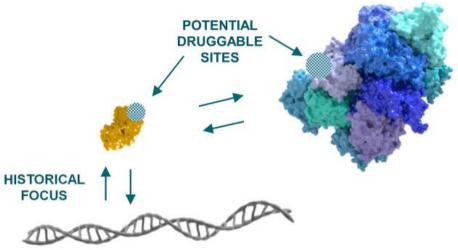
Initiation of FHD-286 at 10 MG Dose:

- · Drop in peripheral blast, 97% to 5%
- · Bone marrow reduction from 89% to 48%, with ANC recovery

Foghorn's Novel Approach to Drugging Transcription Factors Enabled by Its Protein Production and Discovery Capabilities

Transcription Factors are Compelling Drug Targets...

- · Highly involved in gene expression
- · Implicated in range of cancers and other diseases


...But Historically Difficult to Target...

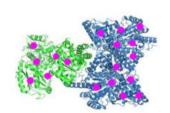
- · Featureless surface: no druggable binding pocket
- · Tight interactions with DNA: undruggable affinities

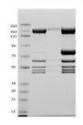
Foghorn Has a New Approach Focusing on Interaction with BAF

- · Druggable binding pockets
- · Druggable affinities

FOGHORN'S FOCUS

Transcription Factors Bind to BAF Directly with Specificity; Unique Insights into Where and How Transcription Factors Bind

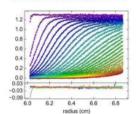




Mapping the TF-BAF Interaction

Mass spec. foot-printing

Pull-down assays

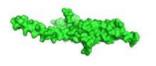


Foghorn's collection of BAF sub-complexes and domains

Validating the TF-BAF Interaction

Biophysical

AUC / SPR / ITC


Biochemical

TR-FRET / FP

Structural

Crystal / NMR

FCGHORN® THERAPEUTICS

Unique biology

Precision therapeutics

Broad impact