## Application of Continuous Monitoring to Landfill SEM

October 29th, 2024





## Introduction: Continuous monitoring (CM) systems typically consist of three elements



Q

## Introduction: How do we deploy continuous monitoring (CM) for landfill applications?



## High-level view: How does CM fit into the evolving landscape of landfill emissions measurement?

CM **already offers tangible advantages** for reducing landfill emissions relative to current SEM approaches

Internal perspective

### **External perspective**

CM is a **rapidly-evolving technology** with **longterm promise** for managing landfill emissions

## **Comparison to Method 21: Advantages of CM technology**



#### Time to detection

24/7 monitoring **alerts operators instantly** when leaks are detected, rather than **waiting for quarterly SEM** 



#### Surface coverage

Monitor the entire landfill surface, including the active face and dangerous areas



#### **Environmental resiliency**

Devices can last over 7 days without sun and **operate from** -40°F to +140°F



#### Odor management

Additional sensors (e.g,  $H_2S$ ,  $SO_2$ , etc.) and device-level wind data assists with odor detection and mitigation



#### Volume-based data

Physics-based models go beyond sensor-level ppm, using wind and atmospheric conditions to estimate flow rates and total volume



#### **Operational insights**

Utilize real-time and rollingaverage data to **assess impact of operational practices** (e.g., cover type, effect of repairs and extra collection wells, etc.)

Device connectivity also enables over-the-air updates as advancements in modelling and functionality are made

## **Case study: Correlation with Ops activities and repairs**

Three-day rolling average of daily emissions volume from section of landfill



## **Comparison to Method 21: Challenges for CM technology**

## Complex topography

## Simultaneous emissions

#### Description

- Typical dispersion models assume flat ground
- Slopes and undulations shape local wind and methane dispersion

- Typical models focus on identifying the single most likely emission source at a given time
- Landfills often have multiple emission sources occurring simultaneously

## Distance from source

- CM devices in other industries have typically been deployed around site perimeters
- Perimeter deployment would leave devices too far away from potential sources at large landfills

#### Mitigation

- Each device has its own anemometer to capture local wind effects
- Delineate "sub-sites" for each major slope, creating more consistent dispersion patterns for the model
- **Short term:** sub-site approach reduces the likelihood of simultaneous emissions, while operators "find and fix" one source at a time
- Medium term: release multi-source model (under development)
- New stands designed for landfills allow CM devices to be deployed on steep and uneven terrain

### **Technology performance: Emission rate**



0

Strategic Partner gas detection of the measurement

Source: "A Controlled Release Experiment for Investigating Methane Measurement Performance at Landfills", FluxLab and Environmental Research & Education Foundation

## **Technology comparison:** What is the annual cost of each?



\*Annual cost for intermittent technologies based on quarterly usage. Daily cost estimates from EREF/FluxLab report



Source: "A Controlled Release Experiment for Investigating Methane Measurement Performance at Landfills", FluxLab and Environmental Research & Education Foundation

## For discussion: Where do we go from here?

#### What do we still need to learn?

- Alternative compliance protocol what requirements and guardrails should this include (e.g., emission alert levels, response times, reporting exceedances)?
  - Critical to ensure that the protocol does not punish more frequent monitoring and data collection
- **Coverage density –** what is the minimum number of devices required to provide adequate coverage for a given landfill size?

#### How do we get there?

- Academic studies test key questions in landfill settings (e.g., FluxLab SIMFLEX site)
- **Real-world pilots –** gather data and learnings from partnering with on-site operators
- **Regulatory pathways for alt-tech –** approval pathway for products that demonstrate equivalent or superior results to traditional SEM
  - Example of regulator-led program: EPA OOOOb Alternative Test Method (ATM)
  - Example of operator-led program: Alberta Alternative Fugitive Emission Management Program (alt-FEMP)

## Thank you for listening!

## **Contact info**

Jarett.Henry@qubeiot.com 639-571-8664 www.qubeiot.com

# Appendix



## Additional seed questions/topics for discussion

| Question                                                                                                                      | Response                                                                                                                                                                                                                          |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| How do you manage variable winds and other complex environmental conditions?                                                  | <ul> <li>Each device has its own anemometer to continuously record wind speed and direction is<br/>addition to recording temperature, humidity, and pressure</li> </ul>                                                           |  |  |
|                                                                                                                               | <ul> <li>Air-dispersion model factors in these varying environmental conditions to estimate<br/>source location and emission rate</li> </ul>                                                                                      |  |  |
| Is your resolution sufficient to distinguish<br>between allowable emissions (working face) and<br>those that are not allowed? | <ul> <li>Ground-based sensors localize to specific source locations, easily differentiating<br/>between sources within the working face and covered areas</li> </ul>                                                              |  |  |
| Has the technology been tested for any potential chemical interferences from other species                                    | Metal-oxide sensors undergo in-house calibration for each combination of temperature     and humidity                                                                                                                             |  |  |
| present in emissions from landfills, and if so,<br>what were the results?                                                     | <ul> <li>Methane sensors are not affected by other components of landfill gas. Each device can<br/>add sensors to measure up to four other gases directly (e.g., H<sub>2</sub>S, SO<sub>2</sub>, NO<sub>2</sub>, etc.)</li> </ul> |  |  |
| What are the required environmental conditions (wind conditions, topography etc.) for your technology to be useful?           | Operating range of -40°F to +140°F, relative humidity of 10-100%                                                                                                                                                                  |  |  |
|                                                                                                                               | Air-dispersion model requires non-zero wind speed                                                                                                                                                                                 |  |  |
| What are the results of uncertainty analysis of the technology?                                                               | <ul> <li>Qube participated in controlled release testing at WM's Petrolia landfill (conducted by<br/>FluxLab). Results of quantification accuracy had a slope of 1.3959 and an R<sup>2</sup> of 0.7885</li> </ul>                 |  |  |

## **Qube** at a glance



3,000,477,831 concentration values

22,975,155,009 wind values

### **Detailed specifications: CH<sub>4</sub> detection and sensor resolutions**

| PERFORMANCE SPEC                                               | RANGE                                      | SENSOR               | UNIT (OUTPUT) | RANGE                | RESOLUTION      | LIFESPAN<br>(YEARS) |
|----------------------------------------------------------------|--------------------------------------------|----------------------|---------------|----------------------|-----------------|---------------------|
| CH <sub>4</sub> detection temperature range <sup>1</sup>       | -40 to 60°C                                | CH <sub>4</sub>      | ppm           | 0 – 100, 101 – 1,000 | ≤1 ppm, >10 ppm | >5                  |
| CH <sub>4</sub> detection relative humidity range <sup>2</sup> | 10 – 100%                                  | СО                   | ppm           | 0 –1,000             | 0.1 ppm         | >5                  |
| CH <sub>4</sub> minimum detection limit <sup>3</sup>           | 0.1 kg/hr                                  |                      |               | 0 10 000             | 40              | . 10                |
| CH <sub>4</sub> 90% probability of detection <sup>3</sup>      | 1.5 kg/hr                                  |                      | ppm           | 0 – 40,000           | 40 ppm          | >10                 |
| Measurement frequency                                          | 3-5 seconds                                | SO2                  | ppb           | 0 – 20,000           | 50 ppb          | >5                  |
| Transmission frequency <sup>4</sup>                            | 1-20 minutes                               | H2S                  | ppb           | 0 - 10,000           | 10 ppb          | >5                  |
| Quantification frequency                                       | 1 minute                                   | NO2                  | ppb           | 0 – 5,000            | 20 ppb          | >5                  |
| Connectivity                                                   | LTE Cat M1: bands: 2,<br>4, 5, 12, 13      | VOC                  | ppm (COe)     | 0 – 400              | 100 ppb         | >5                  |
| Solar panel                                                    | 30-45W                                     | PM* 1, 2.5, 4 and 10 | µg/m3         | 1 to 1000 µg/m3      | 1 µg/m3         | 8                   |
| Battery⁵                                                       | Lithium titanate with<br>8 days of reserve |                      |               |                      |                 |                     |

#### Note:

1. Temperature range varies on the version of CH<sub>4</sub> sensor deployed. Standard range is -40C to +50C, High temp range is -10 to 60C.

2. Relative humidity range varies on ambient temperature and the version of CH<sub>4</sub> sensor deployed. Standard range is 10-90%, High temp range is 10-100%. Range decreases linearly at upper temperature ranges.

3. Minimum detection limit and 90% probability of detection (PoD) verified through blinded 3<sup>rd</sup> party testing at METEC. Qube's own testing indicated a 90% PoD of 1kg/hr

4. Transmission frequency varies depending on compression at device level (e.g., if no detection the transmission frequency lowers).

5. Battery is capable of discharge at -40 but solar recharge limited at <-20C which is why a reserve of 8 days at 100% is included.



### Technology performance: Considerations for assessing quantification accuracy



0

## **Technology performance: Cumulative emissions**



0

Source: Internal analysis of 2022 METEC ADED controlled release testing results