Landfill Emissions Measurement Industry & Research Panel

Amy Banister, Sr. Director of Air Programs (WM)

Dr. Dave Risk, Research Chair in Climate Science & Policy (St. Francis Xavier Univ. FluxLab) Mike Thomson, Environmental Innovation Program Manager (GFL) Niki Wuestenberg, Sr. Manager of Air Compliance (Republic Services)

Moderator: Dr. Bryan Staley, CEO (Environmental Research & Education Foundation)

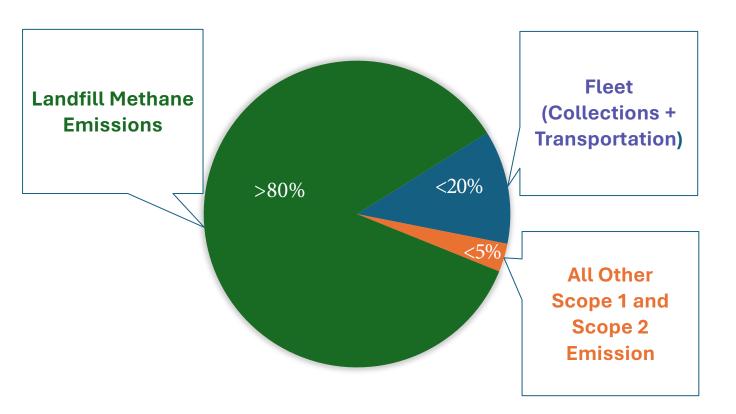
Background & Current Targets

Corporate Sustainability Targets

WM

- 1) Reduce absolute scope 1 and 2 GHG emissions 42% by 2031
- 2) Increase beneficial use to 65% by 2026
- 3) Have a methane measurement system by 2025

Republic Services


- 1) Reduce absolute scope 1 and 2 GHG emissions 35% by 2030
- 2) Increase recovery and circularity of key materials by 40% on a combined basis by 2030
- 3) Increase biogas sent to beneficial reuse by 50%

GFL

- 1) Increase beneficial use of biogas from landfills 2x by 2030
- 2) Decrease scope 1 and 2 emissions 15% by 2030

Waste Management Sector Emissions

- Landfill methane emissions account for >80
- Fleet accounts for < 20%
- All other Scope 1 and Scope 2 emission <5%

Industry Research and Experiences with New Technologies

GFL's Sustainability Value Initiatives (SVIs)

Focus Areas for Next Generation and Incubator SVIs

Fugitive Emissions and Energy resource Management

- Next generation surface emission monitoring using satellite aircraft, drones and fix sensors
- Data Management and analytics for optimalization of gas collection and control systems
- Support research, policy development and sector advocacy into landfill gas measurement and monitoring techniques and technologies by industry associations

Customer Sustainability Pilots

- Tailored services to improved collection of data and understanding of scope 3 emissions
- Service specific performance monitoring and reporting (such as vehicle distance travelled, emissions avoided)

Advance Wastewater Management

- Leverage expertise to manage leachate and deliver best in class services
- Pilot leachate treatment technologies for emerging contaminants

Advance Material Recovery

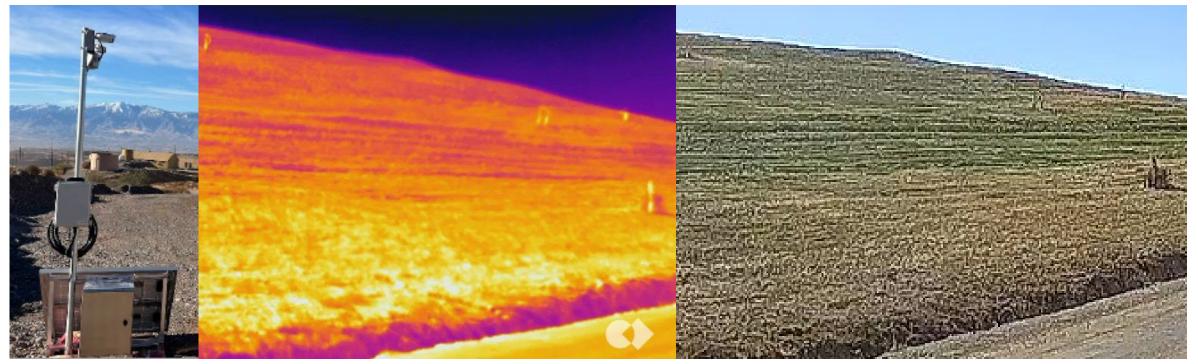
- Develop emerging, high volun industrial material recycling
- Continue investments in advanced MRFs and organics recycling

Zero emissions Vehicles

- Continue to pilot latest advancements in electric and hydrogen powered vehicles
- Develop roadmap to zero emission fleet

Fugitive Emissions and Energy Resource Management

- Next generation surface emissions monitoring using satellites, aircraft, drones and fixed sensors
- Data management and analytics for optimization of gas collection and contrail systems
- Support research, policy development and sector advocacy into landfill gas measurement and monitoring techniques and technologies by industry associations



Supporting Technology Development

- Provided landfill access and operator expertise (e.g. SnifferDRONE[™], as well as Andium)
- Incorporated fixed fence-line sensors for methane into odour management
- Supporting FluxLab Remote Mobile Sensor Emission Assessment (RMSEA) at Canadian landfills, and controlled releases
- Ongoing collaboration with South Wake County Landfill to work with US EPA Office of Research and Development field work Next Generation Emission Measurements (NGEM)
- GFL's Greenlight Innovation Workshop brought together technical and operations personnel to develop solutions

Andium OGI Video Solution

- Proprietary Optical Gas Imaging (OGI) to detect and visualize methane
- Machine learning algorithm to identify methane leaks, and notify operations
- Continuous monitoring
- Solar powered skid with telemetry for remote operation

Challenges and Opportunities

- Standard methods and clarity of deliverables
- Cost effective deployment at scale
- Organizing Next Generation data with conventional information
- Converting data to actionable information
- Building a track record to show progress

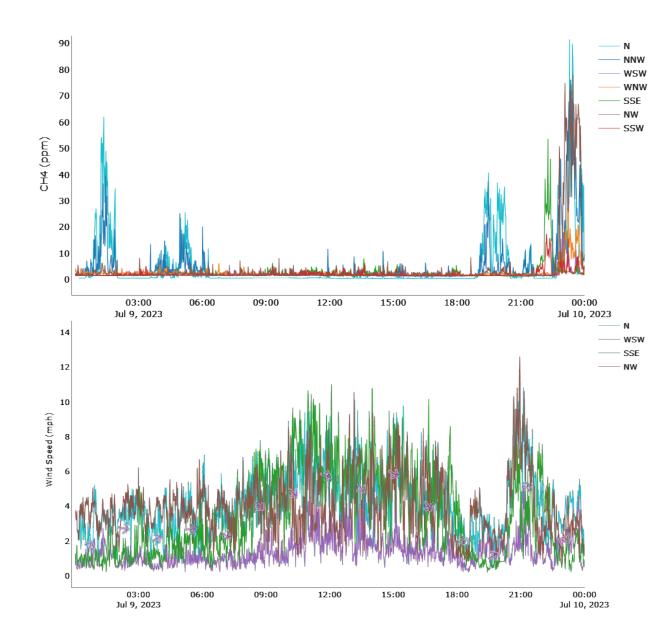
Emissions Measurement & Analytics

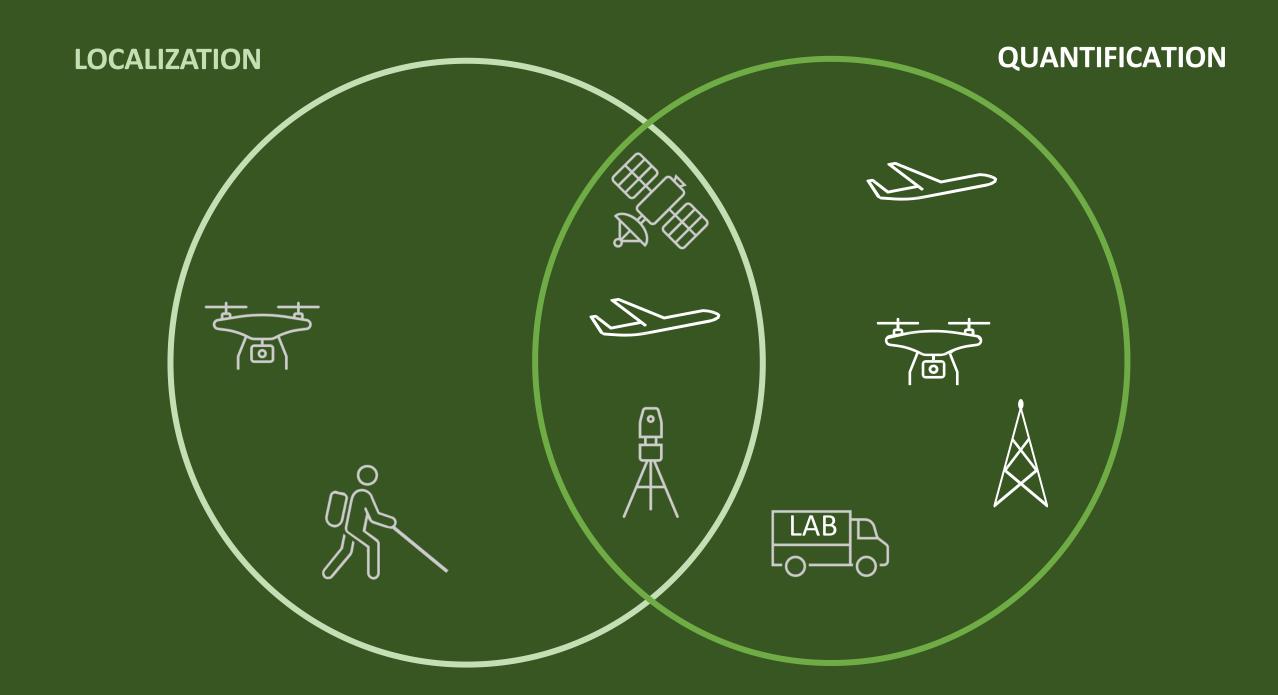
Find Fix and Manage

- Collect more gas
- Reduce GHG emissions
- Minimize Observations

Amy Banister, Sr. Dir Air Programs, WM

What are we trying to achieve with landfill emissions measurements?


Localize – identify the physical location of emission sources to facilitate remediation and understand root causes.


Quantify – determine the mass emission rate to compare to model and inventory values and gauge emissions mitigation actions.

Evaluate and Deploy – compare methods with whole landfill measurements to understand what combination of approaches is accurate and scalable. Develop and assess best practices to operationalize information for mitigation.

Emissions Vary in Space and Time (concentration values shown)

Measurement and Technology Evaluation Approach

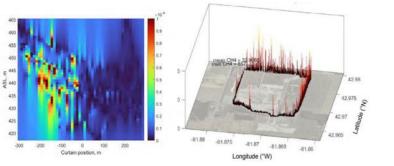
Continuous

fixed sensors

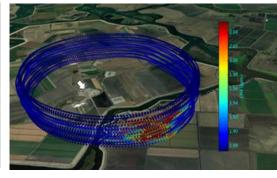
Monthly

satellite observations

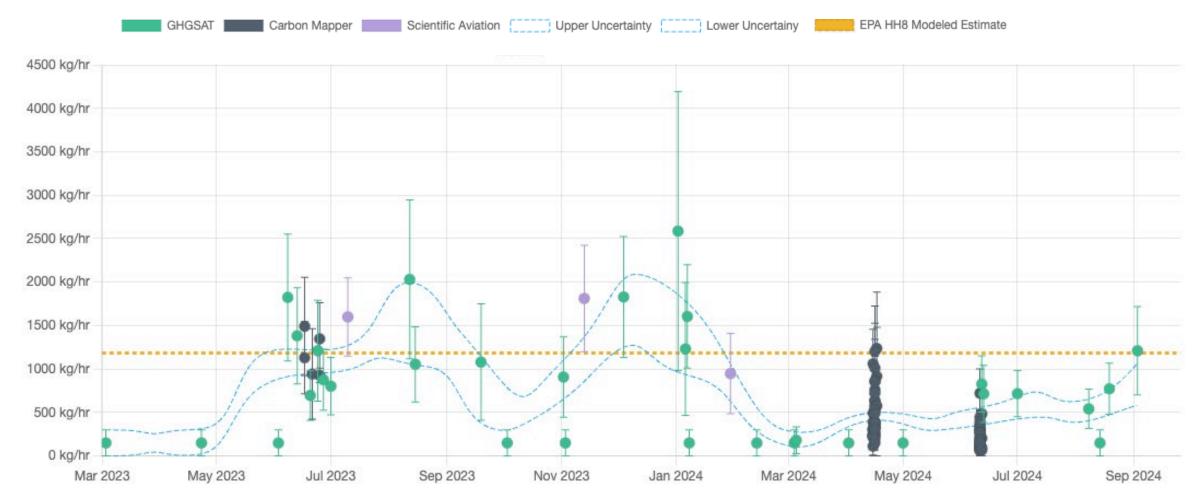
Source: Champion X/Scientific Aviation



Source: GHGSat, Inc.


Quarterly

SEM and flux measurements (mobile, drone, aircraft)


tracer correlation measurements (WM-FSU)

Source: Champion X/Scientific Aviation

Example West Coast Landfill Emission Rates Over Time

EMISSIONS MEASUREMENT AND MITIGATION

"Find it - Fix It"

Three distinct sources observed by satellites and aircraft.

Source A (Active fill area)

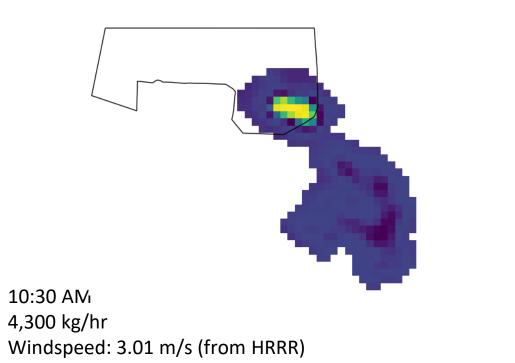
- 14 observations June 2023-January 2024
- Ongoing GCCS expansion, wells damaged due to filling operations, and anomalous heavy rains.

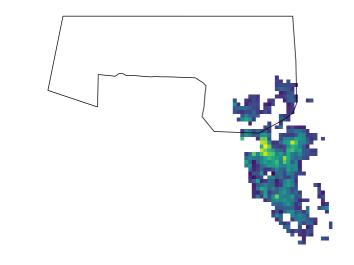
Source B (GCCS construction)

Observed in June 2023.

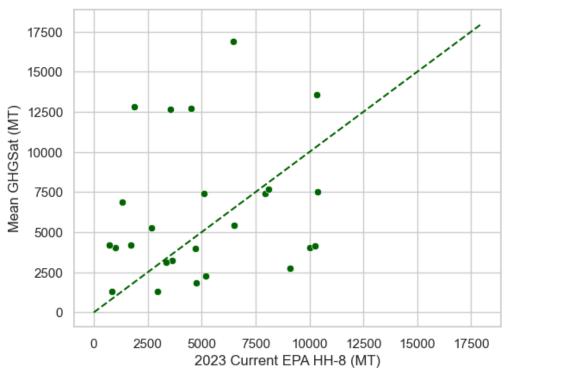
 Installation of trench collectors during satellite observations. Satellite detects ceased once trenching completed.

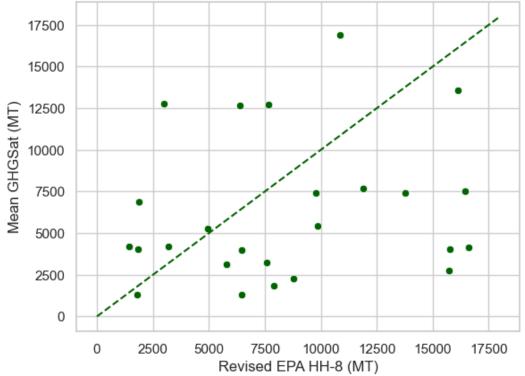
Source C (Flare downtime)


Observed Jan 2 and 6, 2024 – correlated to a flare downtime


2024 observations indicate emissions were significantly lower

Need to standardize emission rates from satellites


Large variance in emission rate from different providers


11:45 AM 560 kg/hr Windspeed: 2.3 m/s (from GEOS-FP)

Satellite Measurements Versus GHGRP Subpart HH Model

EPA GHGRP 2023

EPA GHGRP 2024 Changes*

Satellite measurements were tasked monthly from Feb 2023 to April 2024 Need many measurements over time to be able to estimate emission rate of a site.

* Fed Reg@31802, April 25, 2024

Lessons Learned

WM Landfill Methane Measurement Study

There is no silver bullet, onesize-fits-all approach. Some combination of measurement approaches that capture temporal variability in emissions and provide reasonably accurate quantitation will be needed.

.dl

Technologies developed and used for the oil and gas sector are not directly transferrable to landfills.

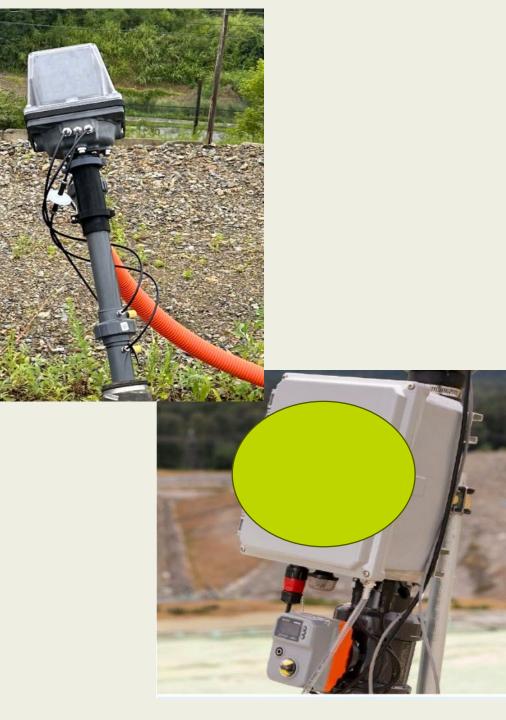
Fixed sensors and drone flux approaches show promise. However, quantitation and localization needs additional development and study.

Understanding the status of the landfill is key to understanding the potential sources of emissions

- LF Gas System status & Construction activity
- Cover type and distribution (optical imagery can be very useful in this context)
- Local MET data (wind speed, direction, atmospheric pressure)

N

2023 EPA Reported emissions compared to measured emissions at 25 sites are highly variable.


賹

Executing studies combining multiple measurements is complex, expensive and challenging.

We need to find more ways to collaborate and leverage expertise and reduce the cost of this work.

Automated Wellheads Lessons Learned

- Over 700 wells from two vendors installed across 11 WM sites
- Found to increase flows and sustain LFG composition
- Cost effective for sites with current and planned RNG plants
- Not all wells are good candidates

Thank You!

WM Contacts:

- Amy Banister (<u>abaniste@wm.com</u>)
- Roger Green (<u>rgreen2@wm.com</u>)
- Halley Brantley (<u>hbrantle@wm.com</u>)

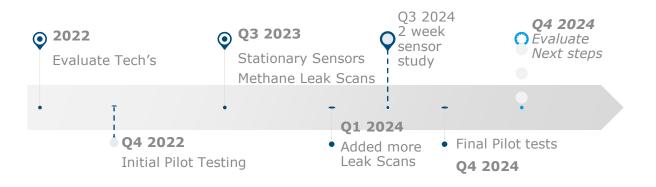
Emission Quantification & Identification Evaluation

Niki Wuestenberg; Sr. Air Programs Manager

USEPA Technical Workshop - October 2024

Executive Summary

Framework


- Measure and quantify emissions
 - Transparency measure with data
 - Identification allows ability to mitigate
 - Actionable measurement provides ability to remediate
- Finding cost effective technology options
 - Deployable
 - Non-proprietary
- Trust
 - Measurement builds confidence in the data for regulators, investors, stakeholders

Executive LFG Methane Technology Pilot Summary

Pilot Project – Midwest & South

- Evaluating Quantification Emission and Leak Technologies
- Two-week study evaluation of methane drone sensor testing capabilities of drone to determine threshold and emission rates for data integrity.

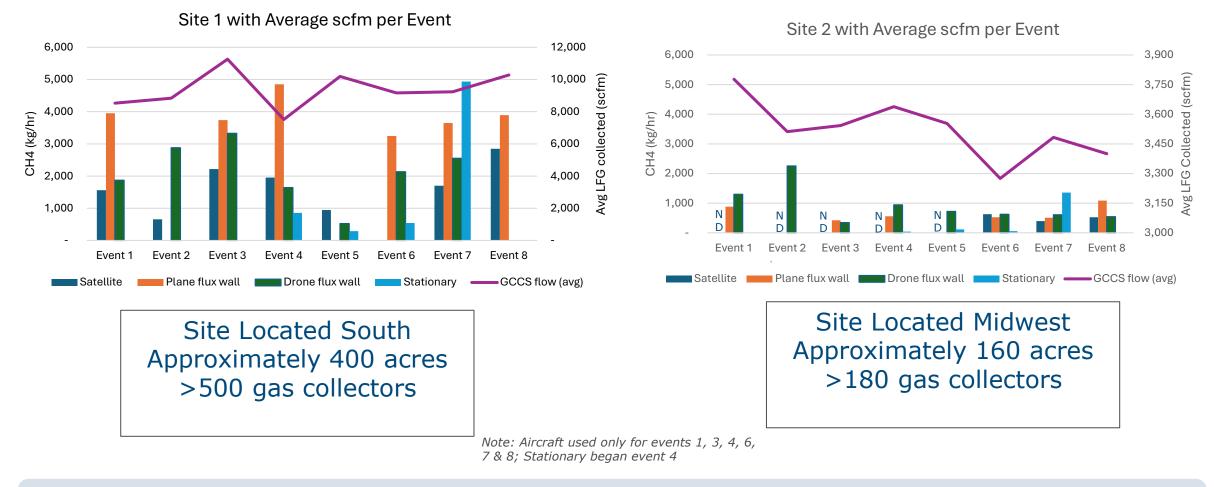
Satellite

- Insights:
- Diffuse emissions not detected
- Provides snapshot in time emissions
- Detects larger point sources
- High altitude imaging to provide broad measurement on atmospheric columns

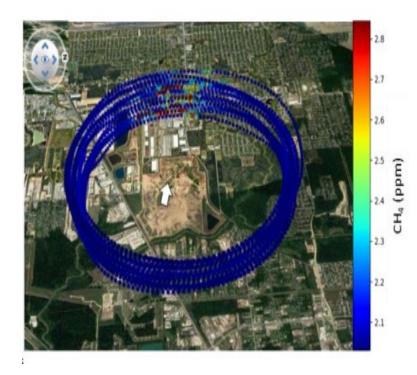
Plane

- Insights:
- 360° flux emission curtain
- Provides snapshot in time
 emissions
- EPA is developing test method OTM-58

Drone

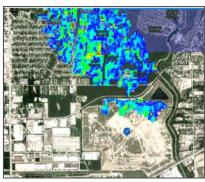

- Insights:
- Lower deployment complexity
- Create a flux emission curtain for snapshot in time emissions
- Deployable for "leak" detection
- Identifies large & small emissions sources with greater degree of nuance and precision

- Insights:
- 24/7 monitoring frequency
- Quadrant emissions focus
- Fixed metal oxide sensors


Preliminary Results- Pilot Emissions

Only in 2 cases did the emissions findings correlate to reduced GCCS flow; Aircraft in Round 4 at Site 1, and Drone in Round 2 at Site 2

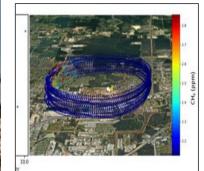
Flux Wall Technologies


Aircraft includes potential emissions beyond the landfill

Quantification Challenges

Methane Emissions Quantification Comparisons

- Competing technologies providing inconsistent results for same site conditions
 - Unique algorithms for processing atmospheric data (e.g., wind)
- Detection limits vary by technology
- No approved standard methods developed


Satellite

Satellite emissions plume

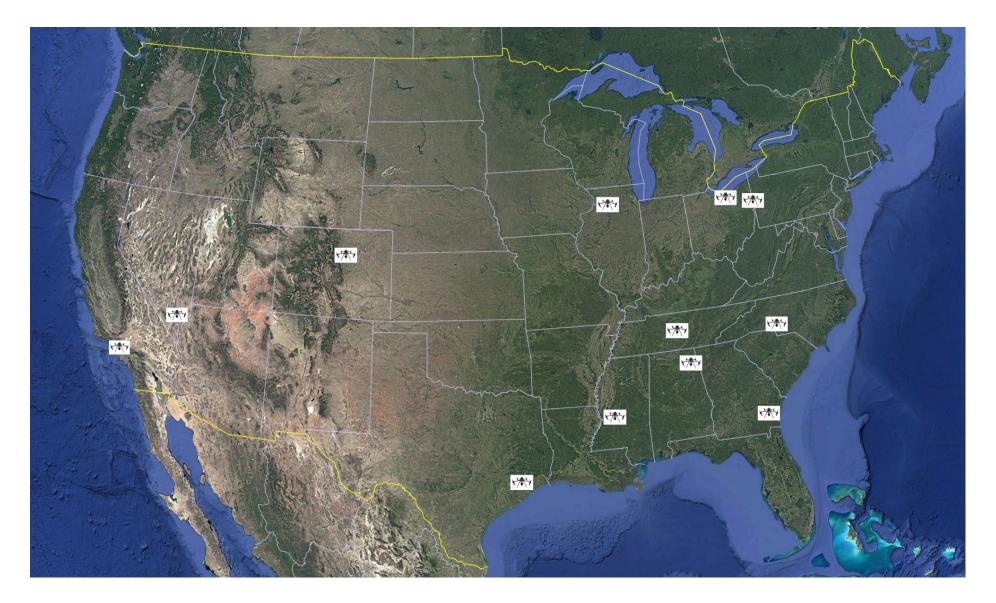
Drone

Drone emission flux

Airplane

Fixed Sensor

Flux Wall Concentrations at Continuous various altitudes


Key Takeaways

- Weather patterns (wind, clouds, rain, snow) limits
- Topography complex
- Difficult to assume yearly emissions with snap shots
 - Construction on-going
 - Diurnal Impacts
- Landfill topography/emission source location can impact
- Difficult to stack technologies on same day

Variability between quantification technology pilot; continued data analysis required

Drone Leak Detection – 2023 Pilot Locations

2023 Sites: 12 Flights: 21

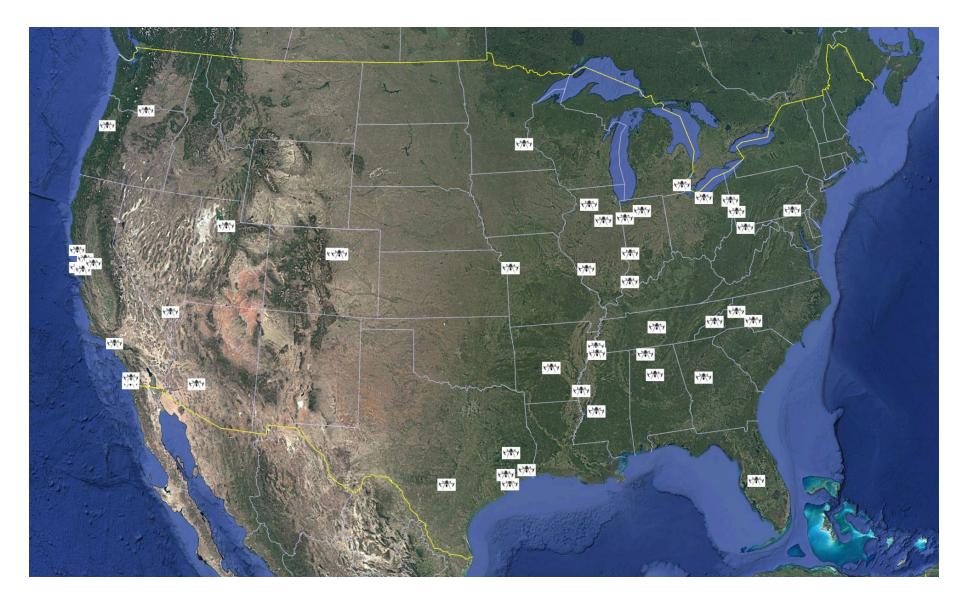
Focus Areas

Gas Expansion

78

Localization Opportunities

Capping Events



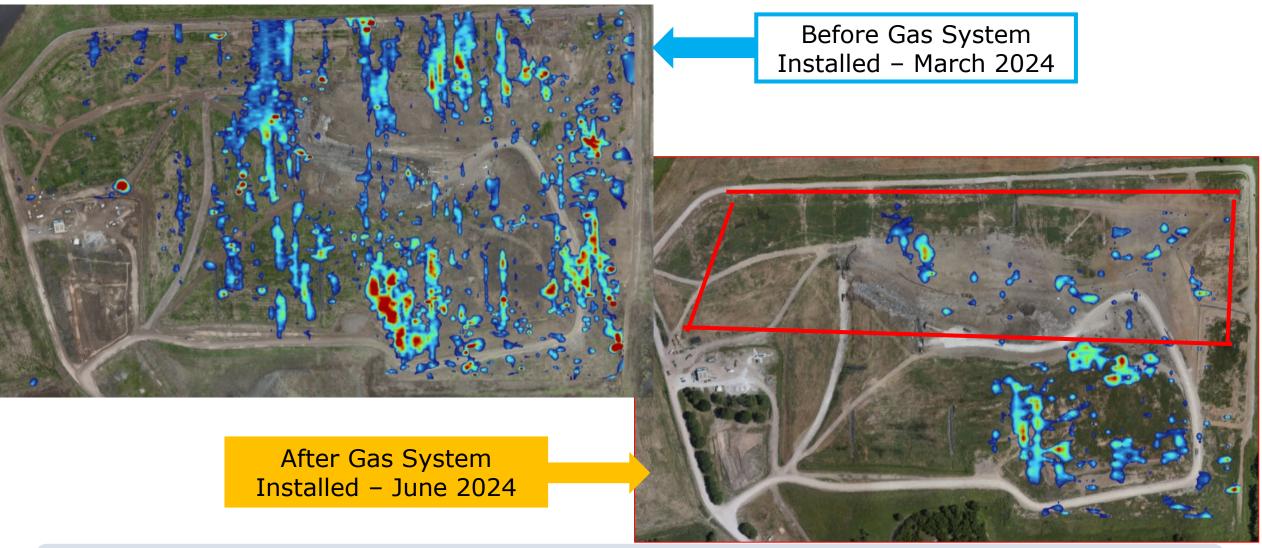
New Gas System Install

Drone Leak Detection – 2024 Pilot Locations

Focus Areas

GCCS Before and After

After Gas System Installed – August 2024


Before Gas System Installed – April 2024

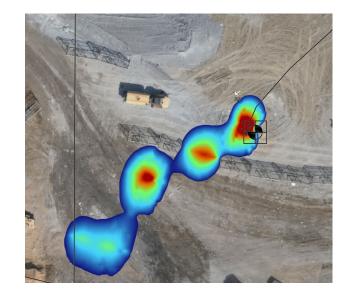
Utilizing imaging to affect gas design for future expansion in 2025

Impacts of Gas Collection System Installation

Opportunity to identify areas to remediate & expand the GCCS

Localization Detection

Area identified with drone saved time & money



Localization/Leak Detection

- Provides actionable data
 - Value for GCCS installation/expansion
 - Identifies areas to remediate

More to come....

- Two Week Study (Purway sensor)
 - Consistency
 - Repeatability
- Active area
- Whole site emissions
 - Wind measurements

Need to determine when scan data for localization becomes actionable?

Next Steps to Support Technology

- Leverage Republic data collected into other similar studies
- Conduct another drone methane sensor study to verify capabilities
 - Repeatability/precision
 - Wind correction factor
 - Correlations to 500 ppmv (Method 21)
- More stacking of technologies at landfills
- Continue collaboration with industry group on EREF Canada project

Additional Data Supports Understanding Landfill Emissions

Thank you!

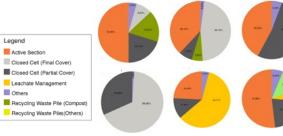
Republic Contacts: Niki Wuestenberg David Penoyer

Applied University Research with New Technologies

- Dave Risk PhD
- St. Francis Xavier University
- Antigonish, Nova Scotia
- ~30 team members at FluxLab
- Specialize in detection + measurement of methane
- Conduct large national-scale programs for government and industry
- Extensive contract work for tech companies. Spinouts.

Methane emission rate estimates of offshore oil platforms in Newfoundland and Labrador, Canada 👌

scientific reports Methane emissions from upstream oil and gas production in Canada are underestimated


Methane emissions were measured at 6650 sites across six major oil and gas producing regions in Canada to examine regional emission trends, and to derive an inventory estimate

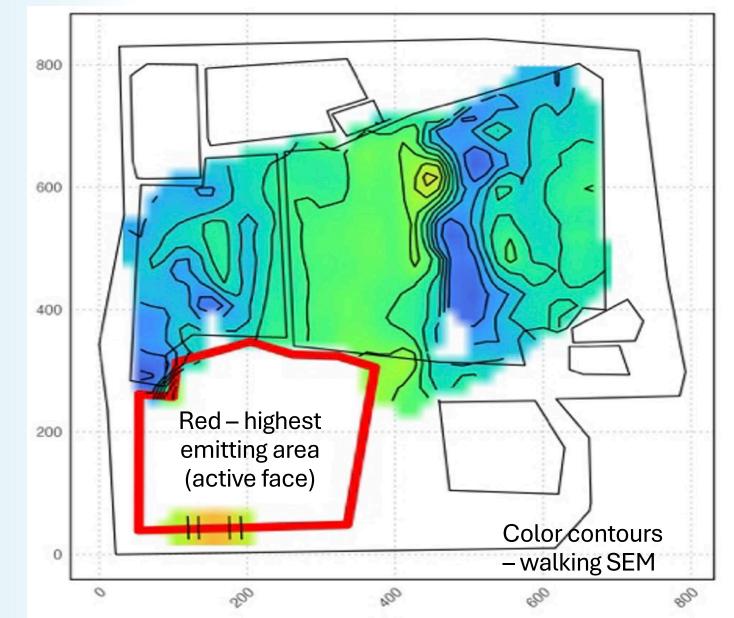
communications earth & environment Hybrid bottom-up and top-down framework resolves discrepancies in Canada's oil and gas methane inventories

Waste

- ~100-site inventory examination
- **Source-apportionment** study, 12 landfills

- Regulatory development, standard methods
- Simulation Facility for Landfill Emission Experiments (SIMFLEX)
 - "Landfill METEC"
 - CR1 Nov 2023

FLUX

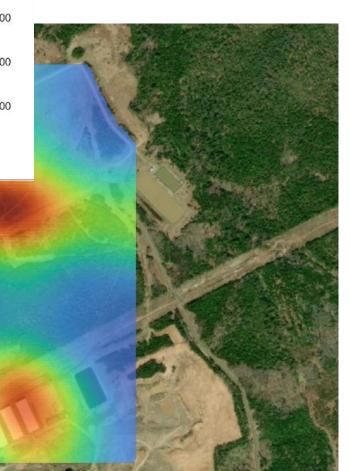

LAB

• Tarek Abichou co-Pl

Regulated Foot SEM – Status Quo...or Go?

- Easy, but coverage is fractional
- Canadian studies show rate % coverage 10-50% for active sites
- Puts little of the emissions are under measurement-informed management
 - Canadian OG methane rules erred on this initially - US benefitted – vent vs fugitive problem
- Indirect. Concentration ≠ Severity
 - (Concentration * wind * area)
- Repeatability? MDL unknown.
- If kept, could be followed by source quantification (like OG)
 - OG methods for points
 - CR-validated methods for areas

Quantification Opportunities – "Rate Based"

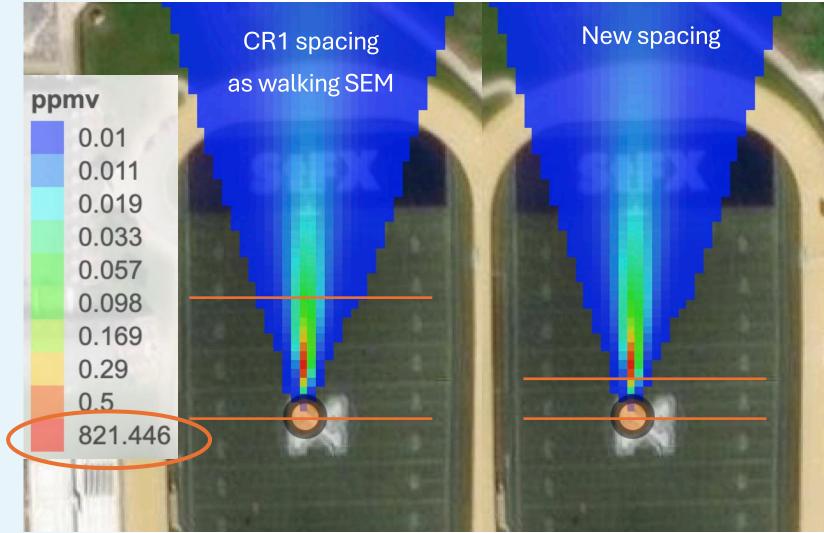

• Whole site quantification – CR1

- Tracer Correlation <5% bias
- Low bias -LiDAR, drone flux plane
- Virtually all within +-40%
 - Not bad when compared to models, or temporal variation
- Not all methods work at every site, or all the time. For annual inventory assessments, methods need to be combined by site.
- Source-based quantification
 - Trucks and some continuous sensors, LiDAR, drone flux plane, Tracer Correlation can work for point or area-based source quantification
 - Many SEM tools have potential
 - We haven't asked for it!

FLUX

• What size emission is important to manage?

SEM Alternatives – CR1 and Other


CR1 Tested

FLUX

- LiDAR excellent performer
- CTDLAS drones weak in CR1
 - Workpractice issue in part? —

Not CR1 Tested but Options


- OTM51 tube drone
 - Foot SEM equivalence
- Aerial and satellite imagers
 - Not yet area source validated
- Some already quantify sources, all have near-term potential for this. Move to rate-based.
- But what size source matters?
 - 1 kg/hr? 10 kg/hr? 100 kg/hr?

80 kg/hr Gaussian, 0 m agl source, 1 m agl detect, 20 km/h wind, Pasquill D Rate-based tuning: Detection success and MDL are related to spacing.

Understanding Error

- Variability Repeat more
- Bias True rates
- Regardless of claims, every methodology has BOTH
- Bias Types: Quantification and Source. Even a low ratebiasing method will miss some source types or sizes.
- Error is workable for simple outcomes like over/under
 - O&G regulation sets out different program roles for methodologies across a wide 30x range (matrix)

Working with Error for Different Purposes

Purpose	Involves	Used For	Difficulty	Tolerable error	Who
Over/under Threshold	A measurement with reasonable error for the outcome	Management	Easy	100% fine IF the range is large. 0 kg/hr? 1 kg/hr? 10 kg/hr? 100 kg/hr?	Typically used by regulators to define corrective action thresholds
Reconciliation	A process with several types of measurements as input	Understanding how to make better decisions in measurement design	Hard	Varying, because multiple measurement methods used	Typically used by expert operators , in market - based community developed standards that go beyond regulation , for some ROI . e.g. GTI Veritas, EO, MiQ, etc.
Measurement- Based Annual Inventory	A process involving several types of measurement, EFs, statistics.	Commitments to Transparency, and/or Market Access or Competitiveness. Not a management tool.	Hardest	Varying because multiple measurement methods and EFs are used to be comprehensive	Typically used by expert operators , in market - based community developed standards that go beyond regulation , for some ROI . e.g. GTI Veritas, EO, MiQ, etc.

Working with Error for Different Purposes

Purpose	Involves	Used For	Difficulty	Tolerable error	Who	
Over/under Threshold	A measurement with reasonable error for the outcome	Management	Easy	100% fine IF the range is large. 0 kg/hr? 1 kg/hr? 10 kg/hr? 100 kg/hr?	Typically used by regulators to define corrective action thresholds	
Reconciliation	A process with several types of measurements as input	Understanding how to make better decisions in measurement design	Hard	Varying, because multiple measurement methods used	Typically used by expert operators, in market-based community developed standards	
Measurement- Based Annual Inventory	A process involving several types of measurement, EFs, statistics.	Commitments to Transparency, and/or Market Access or Competitiveness. Not a management tool.	Hardest	Varying because multiple measurement methods and EFs are used to be comprehensive	that go beyond regulation , for some ROI . e.g. GTI Veritas, EO, MiQ, etc.	

Regulatory Considerations - Measurement

My comments informed by measurements and regulatory experience in OG, and waste

- Regulate where measurements contribute under a flexible rate-based system
 - Understand rate contribution of sources, and allocate resources to the biggest problems
 - Consider flexible rate-based performance approaches as in O&G
 - Errors are workable if we build simple management and response frameworks that minimize their impact
- Consider Rewards for
 - Implementing annual inventory measurements (would benefit GHGRP) or developing advanced collection processes
 - Encourage industry to develop its own community standards can SWICS remodel as Veritas equivalent?
- Hybrid Measurement-Informed Inventories by Gov
 - Should be done by experts / national or state orgs, to inform policy, and not to police sites
 - Takes more than just measuring with one tech in Canada we do it for OG nationally took years to develop
 - Need to get inventories right. Gov owns the inventory error from the process but industry gets the black eye.
- Tech Agnostic Rules
 - Avoid a restrictive system that picks winners amongst the many techs that will arrive
 - Define performance-based criteria (rate-based), establish pathways for approval

LANDFILL CONTROLLED METHANE RELEASE STUDY

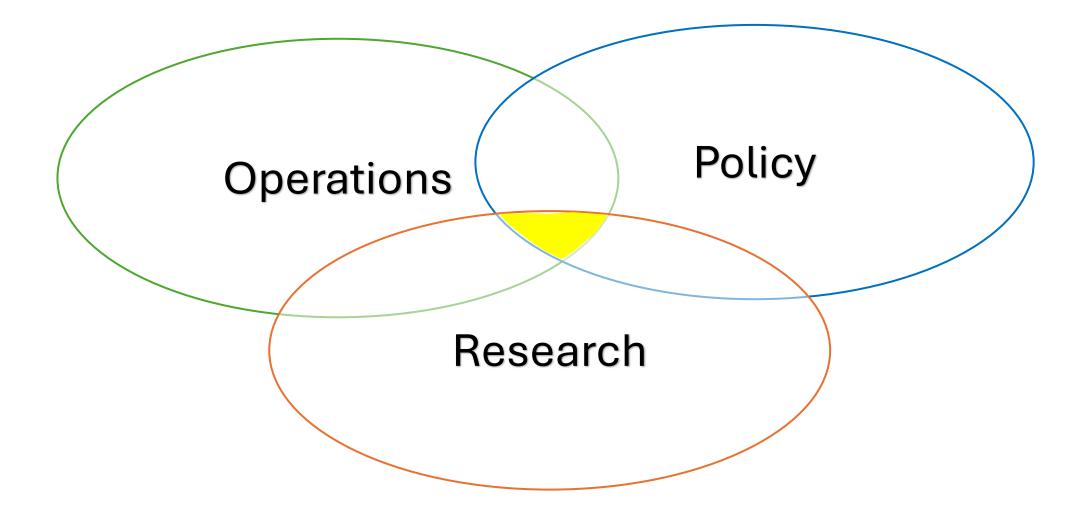
• Final report published

- Evaluated 16 commercial and R&D technologies for the ability to detect and quantify emissions from point and non-point releases.
- First round conducted by St. Francis Xavier University (FluxLab) in November 2023 at the 60acre closed WM Petrolia Landfill in Ontario.
- Sponsored by the Environmental Research and Education Foundation (EREF).
- Second round of testing planned for Q4 2024 with work in progress for a more permanent setup.

Landfill Controlled Release: Localization Results Summary

Technology	Method Identifier	False Positive Fraction	False Negative Fraction	True Negative Rate	Localization Accuracy	Survey Time (mins)
Aerial – Drone (UPSEA-TDLAS)	С	1	1	0.70	0	40
Aerial – Helicopter (LIDAR)	G	0	0	1	1	20
Satellite (Spectrometer)	н	-	-	-	-	0.3
Aerial – Drone1 (UCSEA-TDLAS/Laser)	L	0.83	0.63	0.28	0.17	50
Aerial – Drone2 (UCSEA-TDLAS/Laser)	Μ	0.79	0.50	0.52	0.21	60
Ground – Truck (MGPA-LGR)	Ν	0.79	0.85	0.54	0.1-0.5	15

Landfill Controlled Release: Localization Results Summary


Technology	Method Identifier	False Positive Fraction	False Negative Fraction	True Negative Rate	Localization Accuracy	Survey Time (mins)	
Aerial – Drone (UPSEA- TDLAS)	С	1	1	0.70	0	40	
Aerial – Helicopter (LIDAR)	G	0	0	1	1	20	
Satellite (Spectrometer)	н	-	-	-	-	0.3	
Aerial – Drone 1 (UCSEA – TDLAS/Laser)	L	0.83	0.63	0.28	0.17	50	
Aerial – Drone 2 (UCSEA – TDLAS/Laser)	М	0.79	0.50	0.52	0.21	60	
Ground – Truck (MGPA – LGR)	N	0.79	0.85	0.54	0.1-0.5	15]

Controlled Release: Quantification Results Summary

Technology Identifier	Technology	% Deviation from True Value (Range)	Average % Deviation from True Value	Std Dev.	<u>Top 3 Performers</u>
Н	Satellite (Spectrometer)	No Detection	-	N/A	
F	Aerial – Airplane (APSEA)	-77 – -1 %	-40%	24 %	← 3
G-1	Aerial – Helicopter (LIDAR)	-11 – 128 %	44%	45 %	
G-2	Aerial – Mass Balance	-12 – 130 %	36%	43 %	
С	Aerial – Drone (UPSEA-TDLAS)	-33 – 66 %	14%	35 %	← 2
D	Aerial – Drone (UPSEA- IR LDS)	-74 – 96 %	3%	62 %	
E	Ground – Truck (MTCA "Tracer Corr.")	-44 – 31%	-11%	20 %	
В	Ground – Truck (MGPA-LICOR)	-88 – 68 %	-34%	40%	
А	Ground – Truck (MGPA-LGR)	-74 – 160 %	-33%	48%	
Ν	Ground – Truck (MGPA-LGR)	-70 – 215 %	62%	88 %	
К	Ground – Fixed (RPSEA-Metal Oxide)	-96 – 70 %	-58%	39 %	
J	Ground – Fixed (RPSEA-Metal Oxide)	-35 – 306 %	78%	96 %	
I	Ground – Fixed (RPSEA-EM27)	1 – 3597 %	743%	975 %	48

The Path Forward

Path Forward

To inform emission estimates:

and

To support methods development:

How to address emissions variation throughout the day/night as most measurements are taken during clear daytime conditions?

How to weight episodic (construction, maintenance) events?

How to reconcile differences in measurements of emissions using same technologies (e.g., satellite vendors) and then different technologies (drones v portable analyzers)?

Can a 'one size fit's all' approach work for landfills?

How to modernize equivalency demonstration for alternative monitoring/measurement technologies?

How to determine what is actionable versus observable?