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A direct sensitivity analysis technique is extended to
calculate higher-order sensitivity coefficients in three-
dimensional air quality models. The time evolution of sensitivity
coefficients of different order is followed alongside that
of the concentrations. Calculation of higher-order sensitivity
coefficients requires few modifications to the original (first-
order) sensitivity modules and is carried out efficiently
and with minimal computational overhead. The modeling
results (first-, second-, and third-order sensitivity coefficients)
for an ozone episode in central California are shown
and discussed. Second-order sensitivity coefficients of
ozone concentration with respect to domain-wide NO
emissions show reasonable agreement with brute-force
results and exhibit less noisy behavior. By using second-
order sensitivity coefficients the nonlinear responses are
better captured and described. For a Taylor series
projection from the base case, including the second-order
term improves the accuracy. In general, higher-order
sensitivity analysis shows a noticeable improvement in
terms of accuracy over the conventional first-order analysis.
Of particular interest, second-order sensitivity analysis is
better equipped to address the nonlinear behavior around
the peak ozone in NOx-rich plumes.

Introduction
Air Quality Models (AQMs) are an indispensable part of air
quality management and planning, as they are the only viable
tools for evaluating the atmospheric response to different
control measures. These responses can be predicted through
different sensitivity analysis techniques, where sensitivity
coefficients (derivatives) to various model input parameters
(e.g., emission rates, initial or boundary conditions, and rate
constants) are calculated. Numerous methods for sensitivity
analysis have been developed and investigated. The brute-
force (finite difference) method is the most widely used
technique (1-4), where the sensitivities are calculated by
one-at-a-time perturbation of model inputs or parameters.
The implementation of the brute-force method is easy and
straightforward but becomes prohibitively cumbersome as
the number of sensitivity parameters increases. Brute-force
sensitivity for a small perturbation is prone to numerical
noise, and it is not apparent to how large a perturbation the
calculated sensitivity applies.

A number of methods have been developed for local
sensitivity analysis, i.e., to calculate partial derivatives about
the nominal value of the sensitivity parameter. Green’s
Function Method (GFM) (5, 6) and its variations (7, 8) have

been applied to chemical kinetic systems and atmospheric
chemistry. GFM is computationally costly but becomes
efficient as the number of sensitivity parameters approaches
the number of chemical species. Automatic DIfferentiation
in FORtran (ADIFOR) (9) is another technique that has been
applied to subsystems of AQMs (10, 11). To calculate the
sensitivity coefficients, ADIFOR follows the sequence of
elementary operations in the computer code automatically,
but it does not take advantage of the existing program
structure.

Another group of sensitivity analysis techniques rely on
direct solution to the sensitivity equations. In the Direct
Method (DM) (12), sensitivity equations are derived from,
and solved together with, the main governing equations of
the model. The Decoupled Direct Method (DDM) (13, 14)
provides more stability and computational efficiency than
the DM by integrating the sensitivity equations decoupled
from the original model equations. DDM equations follow
the same structure as the model equations, making its
implementation straightforward. DDM is efficient for large
numbers of sensitivity parameters and is not subject to
numerical noise for small ranges. DDM has been applied to
different chemical kinetic systems, including zero-dimen-
sional atmospheric models (15-17). Due to its computational
efficiency, DDM remains the only local sensitivity analysis
technique that has been extensively used in three-dimen-
sional AQMs (18-23).

DDM is typically used for calculation of the first-order
sensitivity coefficients, while its application for calculating
second-order coefficients has been suggested and explored
(14, 24, 25). In the context of air quality modeling, sensitivity
analysis has been mainly limited to calculation of the first-
order sensitivity coefficients. Second-order sensitivity analysis
has been applied to box models (26, 27), mainly with the use
of computationally expensive GFM (28). Atmospheric models,
due to the chemistry, may exhibit a nonlinear response that
cannot be captured by first-order sensitivity analysis. In this
paper, a High-order, Decoupled Direct Method (HDDM) for
sensitivity analysis is developed to efficiently calculate the
second- (and higher) order local sensitivity coefficients in
multidimensional AQMs. Calculation of these additional
coefficients allows for higher-order sensitivity analysis, hence
capturing nonlinearities in atmospheric responses. The
method is derived from the more conventional DDM-3D
(18), is computationally efficient, and calculates the higher-
order coefficients with minimal additional overhead. HDDM
can be efficiently applied to different sensitivity parameters,
e.g., emission rates, initial and boundary conditions, dry
deposition velocities, etc. It is also capable of calculating
cross sensitivities, i.e., higher-order sensitivity coefficients
with respect to more than one independent variable. The
method is implemented in the Multiscale Air Quality SImu-
lation Platform [MAQSIP (29)] and applied to the SARMAP
(30) domain during August 2-6, 1990 episode. While HDDM
is developed for general calculation of higher-order sensitivity
coefficients, the results here are mainly for the second-order
results with less emphasis on third-order coefficients.

Methodology
Atmospheric transport and chemistry in AQMs are described
by the Atmospheric Diffusion Equation (ADE) (31):
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∂Ci

∂t
) -∇(uCi) + ∇(K∇Ci) + Ri + Ei (1)

(i ) 1,2,...,N)
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where u is the three-dimensional wind field, K is the turbulent
diffusivity tensor, and N is the total number of chemical
species. Ci, Ei, and Ri are the grid cell average concentration,
emission rate, and chemical reaction rate of species i,
respectively. Integration of the ADE is carried out numerically
using the method of operator splitting and subject to specific
initial and boundary conditions (31):

where Cbi, C0i, vgi, and E0i are the boundary and initial
concentrations, dry deposition velocity, and surface level
emission rate of species i, respectively.

The first-order (linear) local sensitivity coefficient is
defined as sij

(1) ) ∂Ci/∂pj, where sij
(1) is the first-order sensitivity

coefficient of species i, with respect to sensitivity parameter
pj. These local sensitivities depend on the magnitude of the
sensitivity parameter and offer little comparative basis.
Therefore, the seminormalized local first-order sensitivity
coefficient, Sij

(1), is defined as

where p̃j is the unperturbed field (the nominal value of pj,
i.e., the values used in the simulation), and εj is a scaling
variable (pj ) εjp̃j) with a nominal value of 1. Differentiating
eq 1 results in the following DDM equation for the first-
order sensitivity coefficients (18):

Sensitivity boundary conditions can be written as (18)

Ji is the ith row vector in the Jacobian matrix, J (Jik )
∂Ri/∂Ck,k ) 1,2,...,N), of the reaction rates. Sj

(1) is the vector
of the first-order coefficients for sensitivity parameter pj, and
δij is the Kronecker delta function. Subscript j1 denotes the
type of the sensitivity parameter pj, with indices 0-6 referring
to initial condition, emission rate, boundary condition, wind
field, diffusivity, rate constant, and dry deposition sensitivity
parameters, respectively. Subscript j2, on the other hand,
refers to the species with respect to which a dry deposition,
initial or boundary condition, or emissions sensitivity is

calculated. For example, if ozone is the first species in the
chemical mechanism (i.e., it is given the order number 1),
and the sensitivities are calculated with respect to its initial
condition, then j1 and j2 are 0 and 1, respectively. For
sensitivity of ozone to the emissions of NO (e.g. with the
species rank of 5), j1 and j2 are 1 and 5, respectively. Therefore,
only delta functions δ1j1 and δ5j2 are nonzero. Again, C̃bi, C̃0i,
ṽgi, Ẽ0i, ũ, and K̃ are nominal values of the corresponding
parameters and, therefore, are treated as constants.

Equation 4 has a very similar structure to eq 1 (ADE), and
for the most part can be integrated by the same numerical
routines. Therefore, the DDM implementation can be
achieved with minimal effort and without substantial changes
in the AQM structure. Unlike the ADE, sensitivity equations,
when decoupled from concentrations are linear with respect
to sensitivity coefficients. At each time step, sensitivity
integration is carried out separately from, and only after,
concentrations are integrated.

The main computational burden of sensitivity calculations
lies in the integration of chemical sensitivity rates. In the
operator splitting scheme, these rates are described by the
following set of ordinary differential equations (18)

where R is the vector of chemical reaction rates. Chemical
sensitivity ODEs in DDM-3D are discretized (for time step
n+1 in terms of the solution at time step n) as

where Ch ) (Cn+1 + Cn)/2. Solving this linear system results
in

The Jacobian matrix is independent of sensitivities, and
the required matrix factorization (the main computational
cost) is carried out only once for all sensitivity parameters
at each time step and grid. This feature enables DDM-3D to
calculate sensitivity coefficients for a large number of
sensitivity parameters in an efficient manner.

Equations for the second-order sensitivity coefficients can
be derived using a similar procedure. Differentiating eq 4

IC: Ci ) C0i
(2a)

BCs: uCi - K∇Ci ) uCbi
(2b)

-∇Ci ) 0 (2c)

vgi
Ci - Kzz

∂Ci

∂z
) E0i

(2d)

Sij
(1) ) p̃j

∂Ci

∂pj
) p̃j

∂Ci

∂(εjp̃j)
)

∂Ci

∂εj
(3)

∂Sij
(1)

∂t
) -∇(uSij

(1)) + ∇(K∇Sij
(1)) + JiSj

(1) +
∂Ri

∂εj
δ5j1

+

Ẽiδ1j1
δij2

-∇(ũCi)δ3j1
+ ∇(K̃∇Ci)δ4j1

(4)

IC: Sij
(1) ) C̃0i

δ0j1
δij2

(5a)

BCs: uSij
(1) - K∇Sij

(1) ) uC̃bi
δ2j1

δij2
+

ũCbiδ3j1
- ũCiδ3j1

+ K̃∇Ciδ4j1
(5b)

- ∇Sij
(1) ) 0 (5c)

vgi
Sij

(1) - Kzz

∂Sij
(1)

∂z
) - ṽgi

Ciδ6j1
δij2

+

K̃zz

∂Ci

∂z
δ4j1

+ Ẽ0i
δ1j1

δij2
(5d)

FIGURE 1. Average ozone concentration at the time of episode’s
peak ozone, 3-4 p.m. local time, August 2nd.

∂Sj
(1)

∂t
) JSj

(1) + ∂R
∂εj

(6)

Sj
(1)n+1

- Sj
(1)n

∆t
) JCh(Sj

(1)n+1
+ Sj

(1)n

2 ) +
∂RCh

∂εj
δ5j1

(7)

Sj
(1)n+1

) (I - ∆t
2

JCh)-1{(I + ∆t
2

JCh)Sj
(1)n

+ ∆t
∂RCh

∂εj
δ5j1} (8)
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with respect to sensitivity parameter pj (the same parameter
as for first-order calculations) gives

with the following initial and boundary conditions:

where Sj
(2) is the vector of second-order coefficients, Sij

(2). JS(1)
/ ,

a square matrix, is the augmented chemical rate Jacobian,
and Ji,S(1)

/ refers to the ith row vector of JS(1)
/ . Since the

maximum effective order of the atmospheric reactions is
generally two, JS(1)

/ will have the same structure as JCh with all
entries for first-order and effective first-order reactions
excluded. Subscript S(1) indicates that instead of concentra-
tions, first-order sensitivity coefficients are used to evaluate
the augmented Jacobian matrix. For consistency, all aug-
mented Jacobians (as well as lower-order coefficients) are
evaluated using the average of the sensitivity coefficients at
the new and old time steps. Note that second-order coef-
ficients are decoupled from the temporal evolution of the
concentrations and first-order coefficients. Also, first-order
terms/processes such as initial and boundary conditions and
emissions do not appear directly in the second-order
sensitivity equations but indirectly affect the calculations
through the concentrations and first-order sensitivity coef-
ficients.

In the above derivation, for the purpose of simplicity, the
second-order sensitivity coefficient is calculated with respect
to the same parameter (pj) as the first-order one, leading to
the second-order derivative with respect to only one inde-
pendent parameter. Cross sensitivities (i.e., second-order
derivatives with respect to two different sensitivity param-

eters) can be formulated in the same fashion. Calculation of
the cross-sensitivities can be implemented in the model
similarly, but additional information must be stored. Chem-
istry discretization corresponding to eq 9 is written as

where Sh ) (Sn+1 + Sn)/2. The required matrix factorization
is again independent of any sensitivity coefficient and needs
to be carried out only once for first- and second-order
coefficients of all sensitivity parameters. This ensures a highly
efficient calculation of the second-order sensitivity coef-
ficients. The method explained above can be generalized to
calculate higher-order sensitivity coefficients. For instance,
for the sensitivity to emission rates (the most usual case),
higher-order sensitivity coefficients (of order m, m g2) can
be calculated as

here Sj
(m) is the vector of mth order sensitivity coefficients,

and (m
k ) is the kth binomial coefficient of order m. Chem-

istry discretization may be formulated as

Similar to the case of the second-order calculations,
higher-order sensitivity coefficients are solved decoupled
from concentrations and all lower coefficients.

Results and Discussion
Here, HDDM is applied in MAQSIP (29) using the CB-IV (32)
chemical mechanism. The modeling is conducted over the

FIGURE 2. Comparison of (H)DDM (right) vs brute-force (left) ozone sensitivity coefficients: (a) first-order to domain-wide NO emissions,
(b) second-order to domain-wide NO emissions, (c) first-order to domain-wide VOC emissions, and (d) second-order to domain-wide VOC
emissions. All the plots show average values for the hour of peak ozone concentration (2-3 p.m.) on August 4th. Brute-force coefficients
are calculated using a central difference approximation and 10% perturbation (() in domain-wide emissions.

Sj
(2)n+1

) (I - ∆t
2

JCh)-1[(I + ∆t
2

JCh)Sj
(2)n

+

∆tJS(1)
/ Shj

(1) + 2∆t
∂

∂εj
(JChShj

(1))δ5j1] (11)

∂Sj
(m)

∂t
) - ∇(uSj

(m)) + ∇(K∇Sj
(m)) + JSj

(m) +

∑
k)1

m-1(m-1
k )JS(k)

/ Sj
(m-k) (12)

Sj
(m)n+1

) (I -
∆t

2
JCh)-1[(I +

∆t

2
JCh)Sj

(m)n
+

∆t∑
k)1

m-1(m-1
k )JS(k)

/ Shj
(m-k)] (13)

∂Sij
(2)

∂t
) - ∇(uSij

(2)) + ∇(K∇Sij
(2)) + JiSj

(2) + Ji,S(1)
/ Sj

(1) +

2
∂

∂εj
(Ji,ChSj

(1))δ5j1
- 2∇(ũSij

(1))δ3j1
+ 2∇(K̃∇Sij

(1))δ4j1
(9)

IC: Sij
(2) ) 0 (10a)

BCs: uSij
(2) - K∇Sij

(2) ) - 2ũSij
(1)δ3j1

+ 2K̃∇Sij
(1)δ4j1

(10b)

- ∇ Sij
(2) ) 0 (10c)

vgi
Sij

(2) - Kzz

∂Sij
(2)

∂z
) - 2ṽgi

Sij
(1)δ6j1

δij2
+ 2K̃zz

∂Sij
(1)

∂z
δ4j1

(10d)
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SARMAP domain, consisting of uniform 12-km horizontal
grids (32 columns and 39 rows) and 15 vertical layers, and
for the August 2-6, 1990 episode (30). In this version of
MAQSIP, the Bott advection scheme (33) was used for
horizontal transport, with proper adjustments for sensitivity
calculations (23). MAQSIP originally used modified versions
of the hybrid (34) and QSSA (35) solvers for the integration
of chemical rates. Those versions were found to be inaccurate
for brute-force estimations and were replaced by RODAS
from the family of Rosenbrock solvers (36). RODAS is shown
to perform very efficiently for high accuracy applications
(37). For lower degree of accuracy but faster computation,
the hybrid solver from California/Carnegie Institute of
Technology (CIT) model (38) was imported into MAQSIP
and was found to provide suitable accuracy.

Figure 1 shows the domain and spatial ozone distribution
at the time of the episode’s peak ozone concentration. The
episode’s peak ozone occurs in the plume from the San
Francisco Bay area during the late afternoon hours of August
2nd. Daily peak ozone concentrations for August 4-6 occur
downwind of Fresno. Figure 2a compares the peak-time first-
order sensitivity coefficient of ozone to domain-wide NO
emissions for the brute-force and DDM-3D calculations on
August 4th. Sensitivity of ozone to NO is chosen as a
benchmark for higher-order sensitivity analysis because it
exhibits one of the most dynamic and nonlinear atmospheric
responses. In this case, the brute-force sensitivities are
calculated as central difference approximations using a 10%
perturbation (∆ε ) 0.1, or ∆p ) 0.1ENO) in emissions:

DDM-3D calculations follow the brute-force sensitivities
closely. Note that in Figure 2a, NO-inhibited photochemical
regime around major urban areas is characterized by negative
sensitivity coefficient of ozone to NO emissions and that for
the time shown, most of the domain (with the exception of
the NOx-rich plumes of the Bay area and Sacramento) are in
NOx-limited regime.

Figure 2b shows the distribution of the HDDM second-
order sensitivity coefficients of ozone concentration with
respect to domain-wide NO emissions as well as the field
calculated using the brute-force approach:

Second-order derivatives are shown for the same time as
the first-order coefficients in Figure 2a, again with very good
agreement between brute-force and HDDM. Figure 2c,d
shows the same comparison (at the same time) for first- and
second-order coefficients with respect to domain-wide VOC
emissions. The agreement for this sensitivity parameter is
very good as well. As expected, first-order sensitivity to VOC
emissions is positive at most of the locations in the domain,
and second-order coefficients indicate a predominantly
concave ozone response. Comparing Figure 2b,d confirms
that ozone behaves more linearly in response to changes in
VOC emissions than NOx, as shown by the lower magnitude
of the second-order coefficients for VOC emissions. However,
the similar spatial distribution in both cases suggests that
the same parameter (chemical regime with regard to NOx

availability) controls the nonlinear behavior.
Another type of comparison between HDDM and brute-

force coefficients is shown in Figure 3. The plots show the
agreement for all grid cells at the time of episode’s peak
ozone concentration and for first- and second-order sen-
sitivity coefficients to domain-wide NO and VOC emissions.
The agreement for all cases is very good, and the slopes are
close to one. The accuracy of the results is comparable to a
recent regional DDM application (23). Note that DDM-3D

(and therefore, HDDM as implemented here) is inherently
less accurate than the conventional DDM, as in a tradeoff of
accuracy for computational efficiency, it integrates the
sensitivities in longer time steps than concentration calcula-
tions require. Our results in this study show that for most

S(1) ) [C(+ ∆ε) - C(- ∆ε)]/2∆ε (14)

S(2) ) [C(+∆ε) - 2C(0) + C(-∆ε)]/(∆ε)2 (15)

FIGURE 3. Comparison of (H)DDM vs brute-force ozone sensitivity
coefficients: (a) first-order to domain-wide NO emissions, (b)
second-order to domain-wide NO emissions, (c) first-order to
domain-wide VOC emissions, and (d) second-order to domain-wide
VOC emissions. All the plots are made for the time of episode’s
peak ozone concentration (3-4 p.m. on August 2nd). Brute-force
coefficients are calculated using a central difference approxi-
mation and 10% perturbation (() in domain-wide NO or VOC
emissions.
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cases and applications the loss of accuracy in this tradeoff
is minimal.

All the brute-force sensitivity coefficients shown in the
results are calculated from (() 10% perturbation in sensi-
tivity parameter. Using larger perturbation results in slightly
worse agreement, as higher-order nonlinearities in trun-
cated terms of eqs 14 and 15 become more significant for
larger ∆ε. Using smaller (than 10%) perturbation does not
improve the agreement with DDM results (as also found
in 23), as numerical noise increases for smaller pertur-
bations.

Figure 4a shows the peak-time (H)DDM first- and second-
order sensitivity coefficients, where a concentrated nonlinear
behavior in atmospheric response in the polluted plumes
(in particular from the Bay area) is clearly observed. These
nonlinear areas (indicated by nonzero second-order coef-
ficients) are located at the front of the advected urban air
masses, where NOx-inhibited mixture is making its way into
the NOx-limited environment. The transition between the
two chemical regimes is responsible for the highly nonlinear
response. The distinction between different chemical regimes
is evident in terms of steep negative to positive gradient of
the first-order sensitivity coefficients, at the front of the
advected air mass. The same behavior is seen in Figure 4b
during the night, where the nonlinearity in front of the
advected air mass marks the transition from NO-inhibited

(negative first derivative) to NO-limited (positive first deriva-
tive) chemical regime.

Chemistry is the main source of nonlinearity in the
atmospheric response, and NOx availability is considered
the most significant parameter responsible for nonlinear
behavior in ozone photochemistry. The effect of NOx

availability on nonlinear behavior is illustrated in Figure 5
for two locations with differing predominant chemical
regimes. Figure 5a shows the time series for ozone concen-
trations and the first- and second-order derivatives with
respect to domain-wide NO emissions for a mostly VOC-
limited urban area. Negative first-order sensitivity coefficients
indicate that the location is almost always NO-inhibited.
Ozone response to NO emission is usually concave (i.e.,
negative second-order sensitivity coefficient), but at the tails
of the response curve with low ozone concentration and at
very high or very low NOx environment a convex response
is expected. Such convex nonlinearity can be seen on a daily
basis for the NO-inhibited (VOC-limited) case of Figure 5a,
during the morning hours of low ozone concentration with
high NOx availability (resulting from the morning rush hour
emissions). The afternoon rush hour emissions produce a
much smaller convex nonlinearity as the ozone concentra-
tions are much higher. The concave nonlinearity peaks about
the same time as the concentration and immediately after
the environment begins to become less NOx-inhibited (i.e.

FIGURE 4. A comparison between spatial distributions of first- (left) and second- (right) order sensitivity coefficients of ozone to domain-
wide NO emissions: (a) at the time of episode’s peak ozone concentration and (b) nighttime (9-10 p.m. local time, August 3rd). The most
nonlinear response is seen in areas where a change in chemical regime occurs, i.e., where there is sharp negative to positive gradient
in the first-order coefficient. The location of peak ozone is marked in Figure 4a.
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when the first-order coefficient becomes less negative very
early in the afternoon). Figure 5b shows the same time series
plots for a location that is mostly NO-limited during the
afternoon and early evening but has negative first-order
sensitivity to NO emissions during late night and early
morning hours. This periodic change in chemical regime
results in two distinct daily peaks in the concave nonlinearity.
Unlike the case in Figure 5a, the peak nonlinearity does not
occur at the same time as the peak concentration but usually
happens when the chemical regime changes from NO-
inhibited to NO-limited or vice versa, i.e., at the time of sign
change in first-order coefficient.

Figure 6 shows spatial distribution of some other higher-
order sensitivity coefficients. All the plots are at the time of
the daily peak ozone concentration on the second day of the
episode. Figure 6a-c shows (H)DDM first-, second-, and
third-order sensitivity coefficients of ozone to domain-wide
NO emissions. These plots illustrate a general trend where
higher-order sensitivity coefficients increase in magnitude
(usually with a change in sign) and become more localized.
Figure 6d-f shows HDDM second-order sensitivity coef-
ficients to domain-wide VOC emissions, ozone boundary
condition, and ozone initial condition, respectively. As
expected, the magnitude of nonlinear behavior resulting from
VOC emissions is much smaller than that induced by NO

emissions (Figure 6b) but both follow a very similar spatial
pattern, where nonlinearity is observed at the time and/or
location of a change in predominant chemical regime (as
shown by sign change in Figure 6a). The boundary condition
sensitivity shows the direction of the predominant wind
(westerly) and can induce some nonlinearity deep inside the
domain. Initial condition sensitivities are gradually dissipated
and advected out of the domain, as the simulation progresses.
These plots confirm the expectation that, for ozone photo-
chemistry, NOx emissions trigger the highest magnitude of
and most dynamic nonlinear behavior among different
sensitivity parameters tested.

One way to test the usefulness of second-order sensitivity
coefficients is through Taylor series expansion for a rather
large increment:

Rn+1 is the remainder term of the nth order Taylor series.
It should be noted that more accurate methods for parametric
extrapolation of physically bounded variables (e.g., concen-

FIGURE 5. Time series of ozone concentration and sensitivity coefficients for a typical (a) VOC-limited urban area and (b) mainly NOx-limited
location.

C(+ ∆ε) ) C(0) + ∆εS(1)(0) + ∆ε
2

2
S(2)(0) + ...

+ ∆ε
n

n!
S(n)(0) + Rn+1 (16)
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trations) have been developed (39), but Taylor expansion is
used here for its simplicity. Figure 7 shows a comparison of
the time series of such extrapolation for 50% domain-wide
reduction in NO emissions (i.e., ∆p ) -0.5ENO, or ∆ε ) -0.5),
at the location of episode’s peak ozone concentration.
Simulated results are compared with reconstructed values
from first- and second-order Taylor expansion around the

base case emission rates. At the time of high ozone
concentrations (daily peaks for the first 2 days), second-
order prediction is significantly more accurate than linear
approximation using the first-order coefficient. At other times,
the first-order analysis is accurate in predicting the response.
Figure 8 shows the same comparison (as well as the impact
of including the third-order coefficient in the Taylor expan-

FIGURE 6. HDDM sensitivity coefficients of ozone at the time of daily peak (4 p.m.) on August 3rd: (a) first-order, (b) second-order, and
(c) third-order to domain-wide NO emissions; (d) second-order to domain-wide VOC emissions, (e) second-order to ozone boundary
condition, and (f) second-order to ozone initial condition.

VOL. 37, NO. 11, 2003 / ENVIRONMENTAL SCIENCE & TECHNOLOGY 9 2449



sion) but for all the grid cells and at the time of peak ozone
concentration on August 3rd. For most cells in the domain,
including higher-order terms in the expansion improves the
accuracy. Once again, the improvement is more significant
for cells with high ozone concentrations. Figure 9 shows the
time series of domain-wide Root Mean Square Error (RMSE)
for cells with high ozone concentrations. The accuracy of
the ozone prediction is significantly improved by higher-
order analysis. It is also important to note that the bulk of
the improvement can be achieved by just using the second-
order term. In other words, second-order analysis is efficient
in capturing most of the nonlinearity in the response.

As mentioned earlier, the computational cost of calculat-
ing a higher-order sensitivity coefficient is very close to first-
order calculation, and, therefore, the computational efficiency
is comparable to first-order sensitivity analysis (18, 19). The
main difference is that in eq 11 (or 13) there are more terms
to be evaluated on the right-hand side. This difference is
small compared to the computational cost associated with
the matrix factorization and transport-related computations.
Table 1 shows a summary of the relative computational times

for different numbers and types of sensitivity parameters.
Similar to the case of first-order analysis, calculating a larger
number of sensitivity coefficients, all at the same time,
reduces the computational overhead, as matrix factorization
is shared for all parameters. The Rosenbrock solver is
computationally more expensive than the hybrid solver and,
therefore, has a smaller relative computational time for
sensitivity analysis. This exemplifies two benefits of using
DDM-3D. First, changing chemical solvers (e.g., to the more
accurate Rosenbrock solver) does not require recoding.
Second, implementation of a more expensive (and presum-
ably more accurate) solver does not increase computational
overhead for sensitivity calculations.

It should be noted that there is an indirect cost associated
with calculation of a higher-order coefficient, as all the lower-
order derivatives should also be calculated. On the other
hand, calculation of those coefficients using a brute-force
method needs more than one simulation (the exact number
of which depends on the order as well as combination of the
coefficients to be calculated). As the number of sensitivity
coefficients (including cross-sensitivities) rapidly increases

FIGURE 7. Time series of the directly simulated vs Taylor series expanded (predicted from sensitivity coefficients) ozone concentration
for a domain-wide 50% reduction in NO emissions at the location of the episode’s peak ozone concentration.

FIGURE 8. Simulated vs predicted (using Taylor expansion) ozone concentration for a domain-wide 50% reduction in NO emissions. Each
point represents the concentration at one grid cell at the time of the base case peak ozone on August 3rd. The solid line shows the
one-on-one correspondence. Incorporating the higher-order terms in Taylor expansion reduces the prediction error for higher ozone
concentrations.
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with the order, calculating the coefficients of a large order
and/or for many sensitivity parameters can prove to be
computationally challenging. HDDM provides a promising
approach for higher-order sensitivity analysis as it calculates
higher-order coefficients with similar computational ef-
ficiency as the first-order coefficients. In addition, second-
order analysis appears to be sufficiently effective in describing
the nonlinearities encountered in air quality modeling.

Calculation of second- (and/or higher) order sensitivity
coefficients can have numerous practical applications. One
such application is a higher-order Taylor expansion, similar
to the exercise shown in this paper. Taylor series reconstruc-
tion of scenario-based modeling cases is a strong policy
analysis tool. One particularly useful example is the time
and location dependent reconstruction of ozone isopleths
for a modeling domain. Another application of higher-order
sensitivity calculations is to efficiently quantify uncertainties
associated with the first-order derivatives. Uncertainties in
the first-order derivative can be of importance because
control strategies are devised based on these uncertain values.
Uncertainty analysis of organic reactivities is another par-
ticularly important example of this application. Second-order
sensitivity coefficients may also be used for iterative opti-
mization procedures of nonlinear systems, where direct
calculation of sensitivity coefficients is performed, for
example, when assessing emission inventory accuracy (11).
With the use of second-order coefficients, the calculations

can be carried out with fewer iterations, and the global
optimum can be found more readily.
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