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BACKGROUND: Hazardous air pollutants, or air toxics, are pollutants known to cause cancer or other serious health effects. Nationwide cancer risk
from these pollutants is estimated by the U.S. EPA National Air Toxics Assessment. However, these model estimates are limited to the totality of the
emissions inventory used as inputs, and further, they cannot be used to examine spatial and temporal trends in cancer risk from hazardous air
pollutants.

OBJECTIVES: To complement model estimates of nationwide cancer risk, we examined trends in cancer risk using monitoring data from 2013 to 2017
across the 27 U.S. National Air Toxics Trends Stations.

METHODS: For each monitoring site, we estimated cancer risk by multiplying the annual concentration for each monitored pollutant by its correspond-
ing unit risk estimate. We examined the 5-y average (2013–2017) cancer risk across sites and the population levels and demographics within 1-mi of
the monitors, as well as changes in estimated cancer risk over time. Finally, we examined changes in individual pollutant concentrations and their pat-
terns of covariance.
RESULTS:We found that the total estimated cancer risk is higher for urban vs. rural sites, with the risk at seven urban sites (of 21) above 75 in 1 mil-
lion. Furthermore, while most pollutant concentrations have not changed over the time period explored, we found 38 site-pollutant combinations that
significantly declined and 12 that significantly increased between 2013 and 2017. We also identified a positive correlation between estimated cancer
risk and percent of the population within 1-mi of a monitor that is low income.
DISCUSSION: Long-term trends show that annual mean concentrations of most measured air toxics have declined. Our evaluation of a more recent
snapshot in time finds that most pollutant concentrations have not changed from 2013 to 2017. This analysis of cancer risk based on monitored values
provides an important complement to modeled nationwide cancer risk estimates and can further inform future approaches to mitigate risk from expo-
sure to hazardous air pollutants. https://doi.org/10.1289/EHP8044

Introduction
Hazardous air pollutants (HAPs), also referred to as air toxics,
are air pollutants known or suspected to cause cancer or other se-
rious health effects (U.S. EPA 2020e). There are currently 187
HAPs listed under Section 112 of the Clean Air Act. These pollu-
tants comprise four classes based on the method by which they
are measured: carbonyls, volatile organic compounds (VOCs),
polycyclic aromatic hydrocarbons (PAHs), and inorganic metals
and metalloids [speciated from particulate matter (PM)] (U.S.
EPA 2016). Anthropogenic sources of HAPs include mobile
sources (e.g., vehicles), relatively large stationary sources (e.g.,
factories, refineries, power plants), and small area sources (e.g.,
gas stations, dry cleaners). HAPs also arise from natural sources,
such as wildfires or biogenic VOC emissions (U.S. EPA 2018d).

Estimates for nationwide cancer risk from HAPs are reported
in the U.S. EPA National Air Toxics Assessment (NATA), typi-
cally released in a 3–4 y cycle (U.S. EPA 2018e). These estima-
tions start with the compilation of a national emissions inventory
of outdoor air toxics sources for a particular year. Air quality

models then estimate average ambient concentrations across the
United States, which are used in an exposure model based on
time–activity patterns to estimate potential cancer and chronic
noncancer public health risks at the census tract level (U.S. EPA
2018e). For the calculation of cancer risk, the estimated exposure
concentration is multiplied by the inhalation unit risk estimate for
that carcinogen, an upper-bound estimate of an individual’s prob-
ability of contracting cancer over a lifetime of exposure to
1 lg=m3 HAPs in air. Assuming additivity of risk, estimated total
cancer risk is equal to the sum of the individual cancer risks from
all HAPs to which a person is exposed (U.S. EPA 2018e).
Results at the census tract level can be aggregated up to the
county, state, or national level. NATA, therefore, provides a
snapshot in time of cancer (as well as chronic noncancer) risk
from HAPs on a variety of spatial scales.

There are important limitations, however, to consider when
interpreting NATA results. For example, as with any exposure
model, the accuracy of the risk estimates is highly dependent on
the quality and totality of the emissions used as model inputs, and
this emissions completeness can vary regionally (Stewart et al.
2019). Given that emissions estimates can vary according to where
and when they were produced, NATA documentation explicitly
states that the assessments should not be used to compare risks
between states, nor to examine trends between years (U.S. EPA
2018e).

To further inform public health risk, some HAP concentra-
tions are routinely monitored throughout the United States, with
several hundred monitors that are managed by states, local agen-
cies, and tribes (Strum and Scheffe 2016; U.S. EPA 2018f).
However, given that monitoring is typically used to measure am-
bient concentrations of HAPs associated with a local source (e.g.,
emissions associated with a pulp and paper mill), the specific
HAPs measured at these sites varies (Strum and Scheffe 2016).
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Thus, the number of monitored HAPs, the monitoring frequency,
and the sampling methodology employed often vary across sites.
This limits the ability to directly compare concentrations across
monitors. In addition to the locally run monitors, the U.S. EPA
monitors ambient levels of HAPs at National Air Toxics Trends
Stations (NATTS). These stations use standardized methods and
analyses to monitor a core group of 19 HAPs, with a total of 60
HAPs that are suggested to be monitored when possible (U.S.
EPA 2016, 2019b). Until 2018, there were 21 urban and 6 rural
NATTS (U.S. EPA 2016). Most monitors are located in or near
residential areas. A calculation of cancer risk based on monitored
HAP concentrations is informative, because in many cases, it
allows for a comparison of spatial and temporal trends in cancer
risk. Estimating cancer risk based on these ambiently monitored
carcinogenic HAP concentrations is not routine; thus this analysis
offers a novel complement to the public health information that
NATA provides when estimating cancer risk based on modeled
concentrations of HAPs for a single year.

Using monitored HAPs data, the 2020 U.S. EPA report “Our
Nation’s Air” shows generally declining trends for HAP ambient
concentrations from 2003 to 2017 (U.S. EPA 2020c). However,
trends in cancer risk from HAP concentrations have not been
recently examined. Analysis based on cancer risk weights the
chemicals driving potential cancer risk and can point to priority
pollutants for which a reduction in emissions would have the
greatest impact. Here, expanding on previous studies of cancer
risk trends from HAPs across years (McCarthy et al. 2009; Strum
and Scheffe 2016), we apply novel analyses to examine NATTS
monitoring data from 2013 to 2017 across the 27 U.S. sites.
Using the 5-y annual average, we estimate total cancer risk from
monitored HAPs at each site and assess the relative contribution
from VOCs, PAHs, and PM-speciated metals and metalloids.
Further, we conduct an analysis of population levels and demo-
graphics associated with estimated cancer risk. Next, we examine
spatial and temporal trends across sites and HAPs, as well as
HAP patterns of covariance. Finally, we directly compare NATA

census tract modeled cancer risk estimates to those at NATTS
monitors located in the same census tract and for the same year.

Methods

Quality Filtering and Data Preparation
Analyses and figures were generated using R (version 3.4.3; R
Development Core Team). R scripts used to process data and
generate figures are available on GitHub (https://github.com/
USEPA/NATTS-HAP).

For HAP, annual average ambient monitoring data for 2013
to 2017 were obtained from the most recent version of the U.S.
EPA Phase XIII Ambient Monitoring Archive (U.S. EPA
2020b). Updates to the archive occur every 1–2 y. Before release
of the archived data, the U.S. EPA conducts quality assurance
and reduction to ensure standardization and completeness of
the reported data (U.S. EPA 2020a). Annual means within the
archive were computed from daily averages using two different
approaches: a) averaging the daily averages, treating nondetects
as zeroes and b) treating the nondetects as censored values, and
using the regression on order statistics (ROS) approach via the
nondetects and data analysis (NADA) package in R to compute
the means. We compared these means as a criterion for data
inclusion and quality assurance. If the ratio of the means
(approach 2:approach 1) was greater than 1.3 for a site–pollu-
tant–year concentration, it was assumed that the nondetects (ND)
data affect the annual average, and therefore we removed that
site–pollutant–year combination (see Table 1 for percent
included). This approach is the same one that was used for the
2014 NATA model validation (U.S. EPA 2018e), identified as
allowing the greatest number of monitors to be used while avoid-
ing values that may be overly influenced by ND data. Finally, if
more than 80% of the values used to compute an annual mean
were ND, we used 0 as the annual mean. Following the filtering
methodology just described, means used in further analyses were

Table 1. For all national air toxics trends stations from 2013 to 2017, the total number of hazardous air pollutants (HAPs) monitored with unit risk estimates
and the percent of those that met our data inclusion criterion.

NATTS

Total number of HAPs monitored with unit risk estimates % satisfying data inclusion criterion

2013 2014 2015 2016 2017 2013 2014 2015 2016 2017

Atlanta, GA 19 35 35 35 37 100% 94% 91% 86% 92%
Bountiful, UT 40 40 39 40 40 98% 90% 97% 90% 85%
Bronx, NY 39 39 39 39 39 97% 95% 92% 95% 97%
Chesterfield, SC 36 33 33 29 33 94% 100% 97% 90% 91%
Chicago, IL 40 40 39 40 40 90% 88% 97% 98% 90%
Detroit, MI 40 40 39 40 40 98% 98% 97% 100% 100%
Grand Junction, CO 40 40 39 40 40 98% 95% 97% 93% 93%
Grayson Lake, KY 40 40 39 40 40 90% 90% 90% 93% 98%
Horicon, WI 35 35 35 35 35 94% 89% 97% 91% 91%
Houston, TX 32 32 32 32 32 100% 94% 100% 94% 97%
Karnack, TX 32 32 32 32 32 94% 84% 94% 94% 94%
La Grande, OR 37 36 36 36 36 97% 100% 94% 83% 86%
Los Angeles, CA 35 35 34 32 35 97% 100% 100% 100% 97%
Phoenix, AZ 40 40 39 40 40 93% 93% 97% 90% 95%
Pinellas County, FL 38 38 38 38 38 97% 100% 100% 100% 100%
Portland, OR 37 37 37 NA 35 97% 95% 89% NA 94%
Providence, RI 37 37 37 39 39 97% 92% 100% 97% 92%
Richmond, VA 41 41 41 40 40 98% 98% 98% 100% 98%
Rochester, NY 39 39 39 39 39 92% 92% 90% 100% 90%
Roxbury, MA 37 37 37 39 39 95% 92% 97% 92% 95%
Rubidoux, CA 35 35 34 32 35 100% 97% 100% 97% 100%
San Jose, CA 34 34 34 34 35 100% 100% 97% 100% 97%
Seattle, WA 40 40 39 40 40 100% 100% 100% 100% 100%
St. Louis, MO 41 40 39 40 40 95% 90% 95% 98% 95%
Tampa, FL 38 38 38 38 38 100% 97% 97% 100% 97%
Underhill, VT 40 39 39 39 40 95% 90% 82% 87% 95%
Washington, DC 39 39 39 39 39 95% 100% 95% 95% 92%
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from the ROS approach. For concentrations of specific HAP met-
als, we used the annual means from speciated particulate matter
with aerodynamic diameter less than or equal to 10 μm (PM10) in
our analysis, because PM10 measurements include fine particulate
matter with aerodynamic diameter less than or equal to 2.5 μm
(PM2:5) and had a smaller percent of data reported as below the
method detection limit (MDL) or ND compared with PM2:5 alone
(data included after filtering are shown in Excel Table S1).

To promote standardization of monitoring methods and to
explore a set of sites across representative areas of the country
and a set of well-defined pollutants, we used only monitoring
data from NATTS locations and included only chemicals for
which there was a unit risk estimate (URE; Table 2). Note that
due to an identified discordance in concentrations of ethylene
dibromide at co-located monitors, as well as general high rates of
erroneous measurements, we excluded this HAP from our analy-
ses. In addition, ethylene oxide monitoring at NATTS sites
started in 2019; thus measurements were not available in our data
set. Although NATTS monitors aim to measure a common core
group of chemicals, the number of chemicals they measure varies
across sites and years (see Table 1).

In each of the following cases, data were combined for analy-
sis. The two sites at Grand Junction, Colorado, measured differ-
ent HAPs and were co-located (∼ 200 ft apart). In addition, there
were several location changes for NATTS between 2013 and
2017. In 2017, the site at La Grande, Oregon (latitude 45.338972,
longitude −118:094497), moved approximately 1.3 mi to La
Grande Hall (latitude 45.3235, longitude −118:0778). The site is
simply referred to as La Grande in this analysis. In 2016, the site
at Portland, Oregon, moved approximately 0.3 mi (latitude
45.56137, longitude −122:6679 to latitude 45.558081, longitude
−122:670985).

To calculate cancer risk from individual HAPs, we multiplied
the unit risk estimate by the annual mean concentration from the
monitoring data described above. UREs were obtained from
the set of acute and chronic dose–response values compiled by
the U.S. EPA Office of Air Quality and Planning Standards and
used in the U.S. EPA Human Exposure Model (Table 2) (U.S.
EPA 2018a). UREs are derived by the U.S. EPA from the slope
of the cancer dose–response curve, which is estimated using a lin-
earized multistage statistical model based on the low-dose region
of the curve (U.S. EPA 2018e). These estimates represent a plau-
sible upper limit to the true value and are intended to be health
protective. Note, cancer is a collection of diseases that develop
through changes in cells and tissues over time (U.S. EPA 2005).
Cancer dose–response assessments can be based on tumor inci-
dence data, as well as measures of key precursor events that are
part of the carcinogenic process (U.S. EPA 2005). Thus, though
cancer is not a single disease, it is treated as such for the purpose
of deriving dose–response values.

Trends at NATTS
We used the most recent 5-y averages at the time of analysis
(2013–2017) of HAP concentrations to estimate cancer risk. For
each site, we calculated the 5-y average cancer risk from moni-
tored HAP by summing the 5-y means of cancer risk for individ-
ual HAP. Note, there were missing data for some HAP-site-year
combinations. Some HAP were either removed at the filtering
stage described above or not reported in the ambient monitoring
archive (see Excel Table S2 for a breakdown of HAP included by
site and year). For this analysis, we used all available data,
including if data meeting our inclusion criteria were available for
fewer than 5 y [e.g., if annual average data were available for a
given HAP for only two of the 5 y with cancer risks of x and y,
the 5-y average was taken as ðx+ yÞ=2].

To visualize spatial trends in cancer risk associated with HAP
concentrations, geospatial analysis was done in Python 3.8.1
(Python Software Foundation) with libraries basemap and mat-
plotlib. Pie charts were created by grouping individual HAPs by
their classification (carbonyl, VOC, PAH, or PM-speciated
metal/metalloid) using the 5-y average data. The size of the pie
charts across sites varies in accordance with total cancer risk at
each site (5-y average). To further examine spatial trends across
sites, we created a stacked bar plot. For each site, the top ten
HAPs with the highest contribution to cancer risk at that site are
shown, as well as an “other” group that pooled all other HAPs.
To test whether total cancer risk differed between urban and rural
sites, we used a Welch two sample t-test (a≤ 0:05). The designa-
tion of a site as urban or rural was determined by the local air
quality agency that operates that site (U.S. EPA 2019a). Urban
sites are intended to allow an assessment of the range of popula-
tion exposures across urban areas. Rural sites are intended to
allow for the characterization of exposure of nonurban popula-
tions and background concentrations (U.S. EPA 2016). For
example, a rural site may be used to measure HAP concentrations
outside of a metropolitan statistical area.

To estimate the number of people exposed, we used ArcGIS
Pro (10.4, Esri) to examine population levels within a 0.25-, 0.5-,
and 1- mi radius from each NATTS monitor. Population values
were based on the U.S. Census Bureau 2010 data set (U.S. Census
Bureau 2010). Populations for census blocks within the specified
distances were joined to the monitor sites if the block centroid was
within the given distance of the monitor. The finest resolution of de-
mographic data availablewas at the census block group level, down-
loaded from U.S. EPA EJSCREEN. We used the 2019 EJSCREEN
data, based on the 5-y American Community Survey from the
Census Bureau, which was for years 2013–2017 (U.S. EPA 2019c).
For this demographic analysis, we included data for all persons liv-
ing in block groups where the block group’s population-weighted
center falls within the 1-mi radius of a NATTS monitor (QGIS
3.16). Three rural sites (Chesterfield, South Carolina; Grayson
Lake, Kentucky; and Karnack, Texas) did not have population-
weighted census block group centroids within 1-mi of the monitor
and therefore were not included in this analysis. Using an average
across block groups for each site, we conducted linear regression to
examine potential relationships between two demographic varia-
bles, percent of the population that is low income (where the house-
hold income is less than or equal to twice the federal “poverty
level”) and percent of the population that is minority status (racial
status as a race other than White alone and/or ethnicity as Hispanic
or Latino), and the 5-y average estimates of cancer risk in 1 million
from monitored HAPs (U.S. EPA 2019c). Because the American
Community Survey data represent a 5-y estimate (2013–2017), the
federal poverty thresholds correspond to the year of data input (U.S.
CensusBureau 2020a, 2020b).

To visually examine temporal trends, we created a time series
of total cancer risk change over time (relative to 2013 values),
which was calculated using only chemicals that were measured
and which met the data inclusion criterion outlined above for all
5 y within a given site (see Excel Table S3 for included chemi-
cals). To examine whether these changes over time were statisti-
cally significant, we calculated Spearman’s rank correlation
coefficients (R version 3.4.3). Finally, to determine whether there
were statistically significant changes in cancer risk from individ-
ual HAPs over the 5-y period, we calculated Spearman’s rank
correlation coefficients for individual HAPs at all sites. For this
analysis, we included only pollutants measured in at least 30% of
sites (8 sites), resulting in analysis for 32 HAPs. For Spearman’s
rank correlations, a significance level of 0.05, uncorrected for
Type I error, was used as the criterion of statistical significance.
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Table 2. Carcinogenic hazardous air pollutants monitored at national air toxics trends stations with their associated inhalation unit risk estimate (URE), class,
and the top three sources of cancer risk based on the source groups reported for pollutants modeled in the 2014 National Air Toxics Assessment (U.S. EPA
2018a, 2018b).

Hazardous air pollutant CAS number URE (1=ðlg=m3Þ) Class
Top three U.S. sources from 2014 NATA based on contribution to

national risk

1,1,2-trichloroethane** 79-00-5 1:6× 10−5 VOC Stationary point; oil and gas operations; waste disposal
1,1-dichloroethane 75-34-3 1:6× 10−6 VOC Waste disposal; stationary point; oil and gas operations
1,3-butadiene* 106-99-0 3:0× 10−5 VOC On-road light duty nondiesel vehicles (starts); on-road light-duty

nondiesel vehicles (running); residential wood combustion
2-chloro-1,3-butadiene 126-99-8 4:8× 10−4 VOC Stationary point; nonpoint industrial; nonpoint bulk terminals, petro-

leum, organic, and inorganic chemical storage and transport
9h-fluorene**,# 86-73-7 4:8× 10−5 PAH/POM Fires (sum of prescribed, wild and agricultural); residential wood

combustion; on-road light-duty nondiesel vehicles (running)
acenaphthene**,# 83-32-9 4:8× 10−5 PAH/POM Fires (sum of prescribed, wild and agricultural); residential wood

combustion; on-road light-duty nondiesel vehicles (running)
acenaphthylene**,# 208-96-8 4:8× 10−5 PAH/POM Fires (sum of prescribed, wild and agricultural); residential wood

combustion; on-road light-duty nondiesel vehicles (running)
acetaldehyde* 75-07-0 2:2× 10−6 Carbonyl Secondary; biogenics; on-road light duty nondiesel vehicles (starts)
acrylonitrile** 107-13-1 6:8× 10−5 VOC Stationary point; waste disposal; nonpoint industrial
alpha-chlorotoluene 100-44-7 4:9× 10−5 VOC Stationary point; nonpoint fuel combustion; waste disposal
arsenic* 7440-38-2 0.0043 metal/metalloid On-road light-duty nondiesel vehicles (running); nonpoint fuel com-

bustion; nonpoint industrial
benzene* 71-43-2 7:8× 10−6 VOC On-road light-duty nondiesel vehicles (starts); on-road light-duty

nondiesel vehicles (running); residential wood combustion;
benzo(a)anthracene**,# 56-55-3 9:6× 10−5 PAH/POM Fires (sum of prescribed, wild and agricultural); residential wood

combustion; on-road light-duty nondiesel vehicles (running)
benzo(a)pyrene*,# 50-32-8 0.00096 PAH/POM Fires (sum of prescribed, wild and agricultural); residential wood

combustion; on-road light-duty nondiesel vehicles (running)
benzo(b)fluoranthene**,# 205-99-2 9:6× 10−5 PAH/POM Fires (sum of prescribed, wild and agricultural); residential wood

combustion; on-road light duty nondiesel vehicles (running)
benzo(e)pyrene**,# 192-97-2 4:8× 10−5 PAH/POM Fires (sum of prescribed, wild and agricultural); residential wood

combustion; on-road light-duty nondiesel vehicles (running)
benzo[ghi]perylene# 191-24-2 4:8× 10−5 PAH/POM Fires (sum of prescribed, wild and agricultural); residential wood

combustion; on-road light-duty nondiesel vehicles (running)
benzo(k)fluoranthene**,# 207-08-9 9:6× 10−6 PAH/POM Fires (sum of prescribed, wild and agricultural); residential wood

combustion; on-road light-duty nondiesel vehicles (running)
beryllium* 7440-41-7 0.0024 metal/metalloid Nonpoint fuel combustion; stationary point; locomotives
cadmium* 7440-43-9 0.0018 metal/metalloid Nonpoint fuel combustion; stationary point; locomotives
carbon tetrachloride* 56-23-5 6:0× 10−6 VOC Background (global contribution), stationary point; waste disposal
chrysene**,# 218-01-9 9:6× 10−7 PAH/POM Fires (sum of prescribed, wild and agricultural); residential wood

combustion; on-road light-duty nondiesel vehicles (running)
cis-1,3,-dichloropropene** 10061-01-5 4:0× 10−6 VOC Solvents and coatings; stationary point; oil and gas operations
coronene# 191-07-1 4:8× 10−5 PAH/POM Fires (sum of prescribed, wild and agricultural); residential wood

combustion; on-road light-duty nondiesel vehicles (running)
dibenzo[a,h]anthracene**,# 53-70-3 0.00096 PAH/POM Fires (sum of prescribed, wild and agricultural); residential wood

combustion; on-road light-duty nondiesel vehicles (running)
ethylbenzene** 100-41-4 2:5× 10−6 VOC On-road light-duty nondiesel vehicles (starts); on-road light-duty

nondiesel vehicles (running); nonroad recreational including
pleasure craft

ethylene dichloride 107-06-2 2:65× 10−5 VOC Commercial cooking; stationary point; nonpoint industrial
fluoranthene**,# 206-44-0 4:8× 10−5 PAH/POM Fires (sum of prescribed, wild and agricultural); residential wood

combustion; on-road light-duty nondiesel vehicles (running)
formaldehyde* 50-00-0 1:3× 10−5 Carbonyl Secondary; biogenics; fires (sum of prescribed, wild and

agricultural)
hexachloro-1,3-butadiene** 87-68-3 2:2× 10−5 VOC Stationary point; waste disposal
hexavalent chromium** 18540-29-9 0.012 metal/metalloid Stationary point; nonpoint industrial; nonpoint fuel combustion
indeno[1,2,3-cd]pyrene**,# 193-39-5 9:6× 10−5 PAH/POM Fires (sum of prescribed, wild and agricultural); residential wood

combustion; on-road light-duty nondiesel vehicles (running)
methyl tert-butyl ether** 1634-04-4 2:6× 10−7 VOC Stationary point; waste disposal; nonpoint fuel combustion
methylene chloride** 75-09-2 1:6× 10−8 VOC Solvents and coatings; stationary point; waste disposal
naphthalene* 91-20-3 3:4× 10−5 PAH Solvents and coatings; fires (sum of prescribed, wild, and agricul-

tural); on-road light-duty nondiesel vehicles (starts)
nickel* 7440-02-0 0.00048 metal/metalloid Stationary point; on-road light-duty nondiesel vehicles (running);

fuel combustion
p-dichlorobenzene** 106-46-7 1:1× 10−5 VOC Solvents and coatings; stationary point; agricultural livestock
perylene# 198-55-0 4:8× 10−5 PAH/POM Fires (sum of prescribed, wild and agricultural); residential wood

combustion; on-road light-duty nondiesel vehicles (running)
tetrachloroethylene* 127-18-4 2:6× 10−7 VOC Solvents and coatings; stationary point; waste disposal
trans-1,3-dichloropropene** 10061-02-6 4:0× 10−6 VOC Solvents and coatings; stationary point; oil and gas operations
tribromomethane 75-25-2 1:1× 10−6 VOC Stationary point; fuel combustion
trichloroethylene* 79-01-6 4:8× 10−6 VOC Stationary point; solvents and coatings; waste disposal
vinyl chloride* 75-01-4 8:8× 10−6 VOC Stationary point; waste disposal; nonpoint industrial

Note: Many hazardous air pollutants have several synonyms; the names used here reflect those reported at NATTS. NATTS, National Air Toxics Trends Stations; PAH/POM, polycy-
clic aromatic hydrocarbon/polycyclic organic matter; VOC, volatile organic compound. *NATTS “core” analyte (Tier I). **NATTS principal analyte (Tier II).
#Sources based on risk reported for grouped PAHs/POMs.
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Covariance Patterns between HAP Concentrations
To examine whether patterns of covariance differ between rural
and urban sites, we created clustered correlation matrices using the
5-y average concentration data for HAPs. Only pollutants that
were measured at more than 75% of sites (i.e., fewer than 25%
missing values) were included in the analysis. Missing values were
imputed using the R package MICE: multivariate imputation by
chained equations. Pollutants with 80% or more ND (zeros at all
sites) were discarded. To generate heat maps, we used R packages
ggplot2 and pvclust. Data were clustered using the complete link-
agemethod and correlationwas used as the distancemetric.

Comparison with Modeled Cancer Risk Estimates at the
Census Tract
To compare the 2014 NATA census tract modeled cancer risk esti-
mates to those based on measured concentrations at NATTSmoni-
tors in 2014, we first obtained the NATA cancer risk at the census
tracts containing a NATTS monitor by entering the latitude and
longitude of the NATTS monitors into the NATA web map appli-
cation (U.S. EPA 2018b). (Formaldehyde concentrations at the
Atlanta, Georgia, NATTS monitor were not reported in the moni-
toring archive for 2014.) Because the cancer risk estimates pro-
duced by NATA are based on exposure concentrations, rather than
ambient concentrations, we sought to assess whether differences
between the monitored and modeled estimates may be reflective of
adjustments from the exposure model used in NATA. Given that
formaldehyde is a primary driver of cancer risk, as a case study we
examined differences between 2014 NATA exposure and ambient
concentrations at the census tract and 2014 NATTS concentrations
measured at the monitor. Exposure and ambient formaldehyde
concentrations estimated by NATAwere obtained bymatching the
NATTS census tract code (U.S. EPA 2018c).

Results

Spatial Trends
Figure 1 shows the spatial distribution of estimated cancer risk at
the 27 NATTS across the United States, apportioned across the

four classes of HAPs (classed based on monitoring method;
Table S1). The 2013–2017 average cancer risk estimated from
monitored HAP concentrations ranged from approximately 24 in
1 million to greater than 100 in 1 million at these sites.
(Estimated cancer risk results are rounded to whole numbers in
the text.) Estimated cancer risk was primarily driven by moni-
tored carbonyl concentrations (formaldehyde and acetaldehyde),
which represented 37%–82% of the cancer risk across these sites.
VOCs represented 12%–41%, PAHs represented 1%–11%, and
PM-speciated metals and metalloids represented 2%–15% of the
estimated cancer risk across NATTS sites.

To examine the relative contributions from individual carcino-
genic HAPs at NATTS sites, we created stacked bar plots showing
total estimated cancer risk and the top 10 contributing HAP for
each site (Figure 2; Excel Table S4). The total estimated cancer
risk (5-y annual average) for most sites exceeded 50 in 1 million
(n=18; Figure 2), and all sites had an estimated cancer risk greater
than 20 in 1 million. Seven urban sites exceeded 75 in 1 million
cancer risk. One urban site, Bountiful, Utah, had a 5-y annual aver-
age cancer risk estimate greater than 100 in 1 million (Figure 2).
When comparing urban and rural monitoring locations, estimated
cancer risk was significantly higher in urban sites (t=3:23,
p=0:011) with a mean of 67 in 1 million, compared with 42 in
1 million for rural sites. For urban locations, estimated cancer risk
ranged from 32 in 1 million to greater than 100 in 1 million,
whereas in rural locations, with the exception of Chesterfield,
South Carolina, cancer risk estimates were less than 50 in 1 million
(Figure 2). For HAPs that were monitored in at least half the sites,
the primary drivers of cancer risk at urban sites were formalde-
hyde, benzene, and acetaldehyde, whereas for rural sites the main
drivers were formaldehyde, benzene, and carbon tetrachloride.

To better characterize the potential for cancer risk, we exam-
ined population levels within a 0.25-, 0.5-, and 1-mi radius corre-
sponding to the location of the NATTSmonitors (Figure 3A; Table
S2). When compared across cancer risk ranges (0–25, 26–50,
51–75, 76–100, 101+ per 1 million), we found that a cancer risk of
51–75 in 1 million was associated with the highest population liv-
ing within a 1-mi radius (Figure 3B; Table S3). The cancer risk
group associatedwith the next largest group of people livingwithin

Carbonyl
Volatile organic compounds 
Polycyclic aromatic hydrocarbons
Metals/metalloids

Class

100 75 50 25

Estimated total cancer risk

Figure 1. Spatial distribution of National Air Toxics Trends Stations using 2013–2017 annual average data. Composition of pie charts at each site shows per-
cent risk contribution from carbonyls, VOCs, PAHs, and metals/metalloids. The size of each pie chart is continuous and corresponds to the estimated 5-y aver-
age total cancer risk in 1 million for that site. Summary data are shown in Table S1. Note: PAHs, polycyclic aromatic hydrocarbons; VOCs, volatile organic
compounds.
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a 1-mi radius was 76–100 in 1 million (Figure 3B; Table S3).
Finally, using linear regression, we found a positive correlation
between estimated cancer risk and percent of the population within
1 mi that was low income (R2 = 0:13, p=0:04; Figure 4) and no
relationship with percent of the populationwithin 1mi that wasmi-
nority status (R2 = 0:04, p=0:19; Figure 4; Table S4).

Temporal Trends
To identify trends in estimated cancer risk from 2013 to 2017, we
plotted cancer risk for these years at each NATTS. In general, there
was little variation in total cancer risk from 2013 to 2017 (Figure 5;
Table S5). In accordance, no sites showed statistically significant
(p<0:05) changes in total cancer risk. However, four sites showed
trends of decreasing risk, including Bountiful (q= − 0:9,
p=0:083), Grand Junction, Colorado (q= − 0:9, p=0:083),
Los Angeles, California (q= − 0:9, p=0:083), and Roxbury,
Massachusetts (q= − 0:9, p=0:083), where estimated cancer risk

decreased from 130 in 1million to 73 in 1million, 117 in 1million to
56 in 1 million, 94 in 1 million to 89 in 1 million, and 70 in 1 million
to 48 in 1million, respectively. In addition, there were notable peaks
in cancer risk at three sites, where the change from 2013 was more
than 1.5-fold. In Washington, DC, cancer risk peaked at 126 in
1 million in 2015; in Pinellas County, Florida, cancer risk peaked at
95 in 1 million in 2016; and in Chesterfield, cancer risk was 99 in
1million in 2015 and 83 in 1million in 2016 (Figure 5; Table S5).

We then examined individual pollutant concentrations over the
5-y period using Spearman’s rank correlation coefficients. Most
correlation coefficients were not significant (Figure 6; Excel Table
S5). Of the 50 site-chemical combinations, 12 had statistically sig-
nificant (p<0:05) increasing concentrations over time. In Atlanta,
7 PAHs significantly increased, including benzo(a)anthracene,
benzo(a)pyrene, benzo(b)fluoranthene, benzo(e)pyrene, benzo
[ghi]perylene, benzo(k)fluoranthene, and indeno[1,2,3-cd]pyrene.
The PAH perylene increased at both Richmond, Virginia, and
Seattle, Washington. Finally, arsenic in Phoenix, Arizona,
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Figure 2. Total estimated cancer risk in 1 million from monitored hazardous air pollutants for every National Air Toxics Trends Stations based on 2013–2017
annual average data. The stacked bar for each site shows the contribution from each of the top 10 pollutants at that site to total cancer risk. Summary data are
shown in Excel Table S4.
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Figure 3. Total estimated cancer risk in 1 million from monitored hazardous air pollutants at National Air Toxics Trends Stations (gray bars, right-hand y-axis)
and the population levels within a 0.25-, 0.5-, and 1-mi radius for (A) each monitored site and (B) grouped based on total cancer risk (bars are cumulative).
Summary data are shown in Tables S2 and S3.
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beryllium in Rochester, New York, and methylene chloride in
Providence, Rhode Island, also showed statistically significant
increases from 2013 to 2017 (Figure 6; Excel Table S5). Each of
these HAPs contributed less than 0.02% to the total 5-y cancer risk
estimate at the respective site, with the exception of arsenic in
Phoenix, which constituted 3.1% of the total estimated cancer risk.
In contrast, therewere 38 site–chemical combinations that had stat-
istically significant decreasing concentrations over time. The PAH
fluoranthene showed decreasing trends at the most sites (seven
sites), whereas acenaphthylene, benzo(b)fluoranthene, benzo[ghi]
perylene, naphthalene, and cadmium all decreased at three sites
each. The sites with the most HAPs showing statistically signifi-
cant decreasing trends were Grand Junction and Bountiful with 6
and 5HAPs, respectively (Figure 6; Excel Table S5).

Covariance Patterns between HAP Concentrations
Using the 5-y average estimated cancer risk, we used hierarchical
clustering to examine patterns of covariance between HAP at
urban and rural NATTS (Figure 7). For urban sites, we note two

primary clusters (Figure 7A; Excel Table S6) acenaphthene, 9h-
fluorene, fluoranthene, trichloroethylene, tetrachloroethylene, and
naphthalene were positively correlated among themselves (red;
Figure 7A; Excel Table S6). Similarly, certain PAHs, including
chrysene, benzo(b)fluoranthene, indeno[1,2,3-cd]pyrene, benzo
(a)pyrene, perylene, benzo(k)fluoranthene, benzo(e)pyrene, and
benzo(a)anthracene were high positively correlated among them-
selves, falling also within a large, less tightly associated cluster
(Figure 7A; Excel Table S6). For rural NATTS (limited to six
sites), we point to three large clusters (Figure 7B; Excel Table
S7). One cluster contained the PAHs chrysene, benzo(b)fluoran-
thene, benzo(a)anthracene, acenaphthylene, benzo(a)pyrene,
indeno[1,2,3-cd]pyrene, and benzo(e)pyrene, as well as the
VOCs ethylbenzene, methylene chloride, and tetrachloroethy-
lene (Figure 7B; Excel Table S7). A second cluster was com-
posed of the PAHs naphthalene, fluoranthene, acenaphthene, and
9H-fluorene, as well as the VOC benzene (Figure 7B; Excel
Table S7). Finally, an additional robust cluster included the VOC
p-dichlorobenzene and the PM-speciated metals nickel, beryl-
lium, and cadmium (Figure 7B; Excel Table S7).
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Comparison with Modeled Cancer Risk Estimates at the
Census Tract
We compared cancer risk estimates in 2014 based on NATTS
monitoring data with the modeled estimates of cancer risk at the
corresponding census tract from 2014 NATA (Figure 8A; Table
S6). For 24 of the 27 locations, the average cancer risk estimate
at the NATTS monitor exceeded that of the NATA estimate for
2014. On average, the monitored estimates of cancer risk were
40% higher than the modeled estimates presented in NATA.
Next, we compared 2014 NATA exposure and ambient concen-
trations of formaldehyde and found minimal difference between
the two NATA concentration estimates (<2%; Figure S1; Table
S7). In contrast, the NATTS measured concentrations of formal-
dehyde exceeded the NATA census tract exposure concentrations
for 24 out of 26 locations (Figure S1; Table S7). Note, an annual
average value for formaldehyde was not available in the ambient
monitoring archive for the Atlanta NATTS site in 2014.

Discussion
The U.S. EPA report “Our Nation’s Air” shows changes in con-
centrations of HAPs from 2003 to 2019 (U.S. EPA 2020c). This
long-term view of trends shows that levels of most air toxics
monitored at NATTS have been in decline, likely reflecting the
implementation of control strategies required by the 1990 amend-
ments to the Clean Air Act (U.S. EPA 2017). Here, we evaluated
a more recent snapshot in time (2013 to 2017) to examine spatial
and temporal trends in total cancer risk from concentrations of
HAPs measured at NATTS. This approach weights the chemicals
driving total estimated cancer risk based on their carcinogenic po-
tency (i.e., UREs) and can point to priority pollutants. We found
that no sites had statistically significant changes in total estimated
cancer risk over time, though four sites showed trends (p≤ 0:1)

of decreasing risk, including Bountiful, Grand Junction, Los
Angeles, and Roxbury. Although cancer risk at most other sites
remained relatively consistent, there were notable peaks in esti-
mated cancer risk for three NATTS sites, Washington, DC;
Pinellas County; and Chesterfield, primarily corresponding to
changes in formaldehyde concentrations and potentially related
to atmospheric variability (Lui et al. 2017). These fluctuations in
carcinogenic pollution further point to the utility of this analysis.
That is, if cancer risk is regularly estimated at monitors such as
these, the results can be used to investigate potentially new or
increasing levels of existing carcinogenic air pollution and if nec-
essary, to implement strategies to potentially lower the risk to the
nearby population.

For pollutant-specific trends, our analysis showed that 38 site-
HAP combinations decreased significantly, whereas 12 site-HAP
combinations increased from 2013 to 2017. Further reflecting
overall reductions in cancer risk, Grand Junction and Bountiful had
the greatest number of significantly decreasingHAPs. Across sites,
the PAH fluoranthene decreased at the most sites. Traffic-related
fuel combustion, primarily from diesel engines, is a major source
of fluoranthene and of many of the PAHs (Jia and Batterman 2010;
Schauer et al. 2003). The pattern of decreasing concentrations
across both urban and rural sites may reflect improvements in die-
sel engine technology (Liu et al. 2017). In contrast, we identified
12 HAPs with increasing concentrations, 7 of which were in
Atlanta. It is important to note that although increases in the con-
centration of these HAPs were statistically significant over the 5-y
period, the levels of each remain low and contribute a small frac-
tion to total estimated cancer risk at each site.

Formaldehyde and benzene were the top two drivers of esti-
mated cancer risk from monitored HAPs across the country,
followed by acetaldehyde at urban sites and carbon tetrachlor-
ide at rural sites. The carbonyl compounds formaldehyde and
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acetaldehyde are highly reactive, and their main source is sec-
ondary formation in the atmosphere, specifically atmospheric
oxidation of biogenic isoprene and oxidation of hydrocarbons,
respectively (Millet et al. 2010; Zhu et al. 2017). Based on the
national average from the 2014 NATA, the main contributors
to primary formaldehyde risks in the United States are biogen-
ics emitted from vegetation, fires (sum of wildfires, prescribed
and agricultural), and residential wood combustion. Primary
sources contribute approximately 19% of the total formalde-
hyde emissions, with secondary formation contributing approx-
imately 74% of the total (U.S. EPA 2018c). For benzene, which
is not secondarily formed, the main risk contributors are non-
diesel light-duty engines, residential wood combustion, and
nonroad recreational vehicles. The main contributors of pri-
mary acetaldehyde are biogenics, wild and prescribed fires, and
nondiesel light-duty vehicles (U.S. EPA 2018c). For carbon tet-
rachloride, a stable and long-range transport pollutant, nearly
100% of the risk is from background, which was simulated
from NATA modeling using remote monitored data as bound-
ary conditions. All the above HAPs meet the regulatory defini-
tion of VOC and react with oxides of nitrogen in the presence
of sunlight to produce ozone. Tropospheric ozone is a criteria
air pollutant and the main component in photochemical smog
(U.S. EPA 2020d). The health effects associated with ozone ex-
posure are well-established (U.S. EPA 2020d); thus public
health risks from elevated levels of these VOCs include not
only increased cancer risk estimated here, but also respiratory
and cardiovascular risks related to ambient exposure to ozone.

Although the U.S. EPA does not set a predefined threshold of
acceptable risk for HAPs, it is generally presumed that the upper
limit of acceptable risk is about 100 in 1 million lifetime cancer
risk (U.S. EPA 1999). Based on the 5-y average from 2013 to
2017 for included HAPs, only one site, Bountiful, exceeded this
benchmark. It is notable, however, that the annual average cancer
risk estimate we calculated for this site decreased from 130 in
1 million in 2013 to 73 in 1 million in 2017. In the 2014 NATA,

the census tract–level risk at this site was estimated as 20 in
1 million (U.S. EPA 2018c). The difference in these two risk esti-
mates illustrates the need for multiple tools and could arise for
multiple reasons (in addition to the general differences between
monitored and modeled estimates discussed below). For example,
the risk at Bountiful as calculated in our analysis of monitoring
data could potentially reflect the atmospheric inversion that
occurs in Utah, in which a layer of warm air traps the colder air
below it, allowing for air pollutants to accumulate (Utah DEQ
2020). This inversion may not be well captured at the 12-km grid
resolution used in NATA (U.S. EPA 2018e) and could, in part,
account for the 5-times lower cancer risk estimate in NATA.

An additional six sites had total cancer risk that ranged
between 75 in 1 million and 100 in 1 million, including Los
Angeles; Washington, DC; Phoenix; Grand Junction; Detroit,
Michigan; and Rubidoux, California. Based on an examination of
population levels near the monitors, we found that the highest
number of people reside near monitors with cancer risk between
50–75 in 1 million, followed by 75–100 in 1 million. For all sites,
formaldehyde had the greatest contribution to total estimated can-
cer risk. Acrylonitrile also substantially contributed to estimated
cancer risk at some sites, including Washington, DC; Grand
Junction; Pinellas County; and Tampa, Florida. Acrylonitrile is
most commonly emitted from stationary point sources, such as
chemical plants, and because it breaks down quickly it is typi-
cally only measured near the source (Zoroufchi Benis et al.
2016). Of note, it is possible that some measurements of acryloni-
trile can be artificially high due to potential contamination of the
collection system (U.S. EPA 2018f).

Urban areas, where HAP sources tend to be more concentrated,
have been reported to have poorer air quality in comparison with
rural areas (Strosnider et al. 2017). Indeed, we found that the aver-
age estimated cancer risk in urban sites fromHAPswas 67 in 1mil-
lion in comparison with 42 in 1million at rural NATTS. This result
is consistent with general overall higher cancer incidence in urban
compared with rural areas. However, the opposite pattern has
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Figure 7. Hierarchically clustered correlation matrices showing the covariance patterns between the 5-y average concentrations of select hazardous air pollu-
tants for (A) urban (n=21) and (B) rural (n=6) National Air Toxics Trends Stations. Only pollutants measured at more than 75% of sites were included.
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previously been observed for cancer mortality, whereby mortality
is higher in rural areas compared with urban areas (Henley et al.
2017). This discrepancy may be due in part to a higher prevalence
of lifestyle factors in rural areas that may modify cancer risk and
mortality due to HAP exposures (Henley et al. 2017). For example,
there is a higher prevalence of cigarette smoking, physical inactiv-
ity, and obesity in rural areas (Matthews et al. 2017), in addition to
lack of access to cancer screening and care (Meilleur et al. 2013).
Indicators of social vulnerability have been captured by tools such
as the Centers for Disease Control and Prevention’s Social
Vulnerability Index and the U.S. EPA’s EJSCREEN (ATSDR
2020). Here, we analyzed demographic indicators from
EJSCREEN, which provided the finest spatial resolution (i.e.,
block group level). We found no relationship with minority status
but a positive correlation between percent low income and the total
estimated cancer risk from HAPs, suggesting that communities
with higher concentrations of HAPs may be further disadvantaged
by being less well-equipped to cope with external stressors such as
air pollutants. That said, it is important to note that in this analysis
we are using the estimated cancer risk at a NATTSmonitor as a sur-
rogate for population exposure. Therefore, the potential cancer risk
of these groups from exposure to HAPsmay be higher or lower.

An exploratory comparison of hierarchically clustered correla-
tion matrices showing covariance patterns among HAPs suggests
potential differences in HAP sources between urban and rural sites.
We note a similar cluster within both urban and rural sites that con-
tained six shared PAHs. An interesting finding is that within the ru-
ral matrix only, the VOCs ethylbenzene, methylene chloride, and
tetrachloroethylene were also tightly associated with this cluster.
Based on NATA, methylene chloride and tetrachloroethylene share
the same primary sources of solvents and coatings, stationary points,
and waste disposal (U.S. EPA 2018c). Although the main source of
ethylbenzene is fromvehicles, these other sources are among the top
ten contributors. It may be that with greater distance to roads and
vehicles in the rural areas these other sources gain importance.
Notably, given that there are only 6 rural vs. 21 urban sites, there
was considerably less statistical robustness in the former.

Characterizing cancer risk from monitored concentrations of
HAPs is a valuable complement to the screening-level cancer risk
estimates derived by modeling approaches. To further illustrate
this point, we compared the cancer risk estimates from 2014

NATTS monitoring data to the 2014 NATA modeled cancer risk
estimates at the corresponding census tracts. We found that, on av-
erage, the monitored cancer risk estimates exceeded those of the
modeled by approximately 40%. Several factors may account for
this discrepancy. First, most NATTS-based estimates are at a sin-
gle geographic point in an urban area. If these monitors were
located among the higher sites of cancer risk within the entire cen-
sus tract, we would expect the aggregated modeled cancer risk
fromNATA for the entire tract to be lower. This effect would likely
be more pronounced in locations where the census tract is large but
contains only a few sources concentrated to a single geographic
area. More specifically, in NATA, ambient concentrations mod-
eled at the block level are population weighted to the census tract.
This results in an averaging of higher point concentrations. In addi-
tion, previous work that compared monitored formaldehyde con-
centrations to modeled concentrations using the hybrid approach
employed in NATA found that the model underpredicted formal-
dehyde by approximately 30% (Scheffe et al. 2016; U.S. EPA
2018e), consistent with our observations. Given that formaldehyde
is the primary driver of estimated cancer risk, an underprediction
of this HAP by the model may account for an appreciable portion
of the difference between the NATTS and NATA estimates. In
contrast, for three sites the modeled cancer risk was higher than the
monitored. This finding could be due to a variety of reasons,
including missing monitored pollutants (e.g., formaldehyde in
Atlanta) and/or the location of the NATTSmonitor relative to sour-
ces in the area. Another difference between modeled and moni-
tored cancer risk estimates is in the assumptions regarding
exposure. In our analysis of NATTS data, we used concentration at
the monitor as a surrogate for exposure. In contrast, NATA applies
an exposure model to concentrations at the tract before estimating
cancer risk (U.S. EPA 2018e). However, our results demonstrated
little difference between ambient and exposure concentrations for
formaldehyde; thus it is unlikely that differences between the
monitored and modeled cancer risk estimates are driven largely by
differences in exposure assumptions. Notably though, a more
detailed exposure analysis could show differences up to 25% for
highly reactive pollutants such as formaldehyde (e.g., U.S. EPA
2001). Taken together, this comparison suggests that NATA is a
valuable tool to estimate risk at large spatial scales but that standar-
dized monitoring approaches are also needed to characterize risk
within communities.

There are also several uncertainties that apply to characteriz-
ing cancer risk based on monitoring data. It is important to note
that our approach estimates cancer risk based on UREs, which
are designed to be associated with a lifetime (70 y) of exposure.
Applying these values to shorter durations may not accurately
reflect individual-level risk. Moreover, as mentioned above, we
used the levels of individual carcinogens measured at monitors as
a surrogate for human exposure and carcinogenic risk without
considering time activity patterns, most notably, time spent
indoors. Although indoor air levels of HAPs are typically reflec-
tive of outdoor levels, there can be variation in this based on sev-
eral factors, such as the class of HAP, the ventilation system and
building design, and proximity to roadways and other sources
(Turpin et al. 2007). In some cases, the indoor environment can
serve as a sink for air pollutants (Tong et al. 2016). Overall, this
assumption likely leads to an overestimate of carcinogenic health
risk in some locations. An additional uncertainty in our analyses
is the assumption of additivity of risk, rather than synergy or an-
tagonism. Last, there are a limited number of NATTS sites, par-
ticularly within the West North Central division of the Midwest,
thus representing an important data gap.

Several factors in our analyses may lead to an underestima-
tion of cancer risk in many locations. Notably, the approach used
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Figure 8. Comparison of 2014 NATA census tract modeled cancer risk esti-
mates to the corresponding cancer risk estimate at the NATTS monitor in
2014. Note: The 2014 annual average formaldehyde concentration was not
available for the Atlanta, Georgia NATTS monitor. Summary data are
shown in Tables S6 and S7. NATA, National Air Toxics Assessment;
NATTS, National Air Toxics Trends Stations.
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for estimating total cancer risk is completely dependent on the
number and potency of carcinogens monitored at each NATTS.
In our analyses, on average over 70 HAPs were measured across
sites, with 41 of these identified as carcinogenic. Of the 187
HAPs listed under the Clean Air Act, 71 currently have a URE,
and there may be additional HAP that are carcinogenic but do not
yet have a defined URE. Similarly, there may also be other carci-
nogenic air pollutants not listed as HAPs. Thus, our results are
not a full account of cancer risk from air pollutants. Furthermore,
not only does the number of HAPs measured at each site affect
risk, but cancer risk is also dependent on the carcinogenic po-
tency of the HAPs measured at each site. That is, any two or
more sites may measure the same number of HAPs, but one site
may have a lower estimated carcinogenic risk because it might
not measure carcinogens present with relatively higher URE val-
ues. An underestimation of risk at some sites may have also
occurred by our exclusion of carcinogenic HAPs when annual
means were significantly affected by NDs. In addition, if more
than 80% of values used to compute an annual mean were NDs,
we treated the annual mean as zero. Therefore, given the uncer-
tainties described above, when considering the results of individ-
ual sites and when making comparisons between sites, there
should be caution with regard to forming large-scale conclusions.

Overall, by examining a recent snapshot in time (2013–2017),
we found that total estimated cancer risk from HAPs mostly
remained unchanged, though four sites showed trends of decreasing
risk over the 5-y period examined.However, we still identified areas
that are at or near the U.S. EPA presumed upper limit of acceptabil-
ity, suggesting the need for further investigation at certain locations.
To gain further insight into the health effects from carcinogenic
HAPs and to aid in identifying priority locations and pollutants,
future studies could aim to overlay cancer incidence data with esti-
mated cancer risk from monitored HAPs. Furthermore, additional
analyses could be used to examine interactions between HAPs and
other environmental pollutants to determine whether there is
enhanced or reduced carcinogenicity frommixtures of pollutants, as
well as the role of atmospheric transformations. This multipronged
approach that includes separate analysis of cancer risk based on
both an emissions inventory and on monitored values, potentially
overlaid with incidence data, would provide insight into strategies
and actions to mitigate the cancer risk to public health from ambient
air toxics. Finally, it is important to note that although this manu-
script addresses the potential for carcinogenic risk, many HAPs are
also of concern because they can potentially contribute to noncancer
adverse outcomes. Thus, even at NATTS sites that may have rela-
tively low carcinogenic risk, the potential for appreciable adverse
noncancer outcomes exists.
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