Jagadeesan Sethuraman Air Advocacy & Sustainability Professional Marathon Oil Company 990 Town and Country Blvd. Houston, TX 77024 (832) 364-3368 jsethuraman@marathonoil.com

September 30, 2024

Ms. Claudia Smith Minor NSR Permitting Coordinator U.S. EPA, Region 8 1595 Wynkoop Street, 8P-AR Denver, Colorado 80202-1129

Dear Ms. Smith:

Marathon Oil Company (Marathon) requests withdrawal of the Title V application for the Oates well pad.

- A Title V permit application was submitted on July 13, 2021.
- Beginning March 19, 2022, facility-wide (non-fugitive) actual annual emissions of each criteria pollutant were less than 100 tons per year (tpy).
- Applicable emissions fees were paid for the period of March 19, 2022 to December 31, 2024.
- A Part 2 registration was submitted on June 1, 2023 indicating facility-wide potential annual emissions below 100 tpy for each criteria pollutant.

Wells producing into the facility are listed below.

API Number
33-061-04546
33-061-04545

Please do not hesitate to contact me at the email address or telephone number shown above if you have any questions or require additional information.

Sincerely, Jagadeesan Sethuraman

Attachment 1

Certificate of Truth, Accuracy, and Completeness

OMB No. 2060-0336, Expires 11/30/2022

Federal Operating Permit Program (40 CFR Part 71) CERTIFICATION OF TRUTH, ACCURACY, AND COMPLETENESS (CTAC)

This form must be completed, signed by the "Responsible Official" designated for the facility or emission unit, and sent with each submission of documents (i.e., application forms, updates to applications, reports, or any information required by a part 71 permit).

A Doon							
A. Resp		Darkar	(Firet)	loff			
Indine. (I		Fairei	-(11151)				
Title	Productio	on Manager					
Street or	P.O. Box	3172 Highway 22 N					
City	Dickinsor	ı	State	ND	ZIP	58601	
Telephor	e	(701) 456-7502	Facsimile	e	(701) 456	6-7545	
[
B. Certif	ication of	Truth, Accuracy and Compl	eteness (f	to be signe	d by the re	esponsible official)	
I certify u	nder pena	Ity of law, based on information	n and belie	ef formed a	fter reaso	nable inquiry, the	
statemen	ts and info	rmation contained in these do	cuments a	are true, ac	curate and	d complete.	
Nome (ai	anod)	11.111 Van 181	1				
Name (si	gnea)		1				
Nomo (tu	nod)	loff Parker		Data	9/26/20	24	
Ivanie (ty	peu)	JEILLAIVEL		Dale			

Attachment 2

Actual Annual Emissions and Fees

Federal Operating Permit Program (40 CFR Part 71) **FEE FILING FORM (FF)**

The purpose of this form is to ensure that fee payments made by check are credited to the proper facility and to the proper government account. Send this form, along with form FEE and the check, to the appropriate lockbox bank address listed on the following page. This form is required whenever you pay by check, including for initial fee payment and to pay annual fees. Part 71 fees may be paid by check or electronically, and further information on making payments by check or electronically is provided on the following page.

Source or Facility Name Oates						
Source L	ocation					
EPA Reg	ion where	Source Lo	cated	8	;	
Mailing Address: Street/P.O. Box			3172 Hwy	y 22 N		
	City	Dickinsor	1			
	State	ND		ZIP	58601	
Contact Person: Jagadeesan Se			an Sethur	raman		
Title	Air Advoc	acy & Sus	tainability	Professional	l	
Telephor	e	(832) 364	-3368		_	
Total Fee Payment Remitted		I:	\$8,227.41 \$3,237.08 \$2,792.76 \$2,197.58		(3/19/2022 - 3/18/2023) (3/19/2023 - 3/18/2024) (3/19/2024 - 12/31/2024)	

OMB No. 2060-0336, Expires 11/30/2022

Federal Operating Permit Program (40 CFR Part 71) FEE CALCUALTION WORKSHEET (FEE)

Use this form initially, or thereafter on an annual basis, to calculate part 71 fees.

A. General Information

Type of fee (Cl	heck one):	Initial	X	Annual
Deadline for su	Ibmitting fee calculation w	vorksheet	3/19/2023	
For initial fees,	emissions are based on	(Check one):		
X Actu	al emissions for the prece	eding calendar year. (Re	quired in mo	st circumstances.)
Estin com	nates of actual emissions menced during the preced	for the current calendar ling calendar year.)	year. (Requ	ired when operations
Date commend	ed operations	3/19/2022		
Estin was and	nates of actual emissions issued to replace a part 7 March 31; otherwise use	for the preceding calence 0 permit, but only if initia actual emissions for the	lar year. (Op I fee paymer preceding ca	otional after a part 71 permit nt is due between January 1 ilendar year.)
For annual fee	payment, you are require	ed to use actual emission	s for the pre	ceding calendar year.

B. Source Information: Complete this section only if you are paying fees but not applying for a permit.

Source or facility name							
Mailing address: Street or P.O. Box							
City	State	ZIP					
Contact person	_Title						
Telephone	_Part 71 permit no.						

C. Certification of Truth, Accuracy and Completeness: Only needed if not submitting a separate form CTAC.

I certify under penalty of law, based on information and belief formed after reasonable inquiry, t statements and information contained in this submittal (form and attachments) are true, accura complete.							
Name (signed)							
Name (typed)	Date						

D. Annual Emissions Report for Fee Calculation Purposes -- Non-HAP

You may use this to report actual emissions (tons per year) of regulated pollutants (for fee calculation) on a calendar-year basis for both initial and annual fee calculation purposes. Section E is designed to report HAP emissions. Quantify all actual emissions, including fugitives, but do not include insignificant emissions and certain regulated air pollutants that are not counted for fee purposes, such as CO and GHGs (see instructions). Sum the emissions in each column to calculate subtotals. Subtotals should be reported to the nearest tenth (0.1) of a ton at the bottom of the page. If any subtotal exceeds 4,000 tons, enter 4,000 for that column.

Emission Unit ID	NOx	VOC	SO2	PM10	Lead	Other
HT	0.86	0.05	0.01	0.07		
ENG						
FUG		4.27				
LOADING		4.05				
OT		Emissions	represent	ted at LP F	lare	
WT		Emissions	represent	ted at LP F	lare	
HP Flare	0.48	2.73	0			
LP Flare	3.29	31.51	0			
PNE		3.38				
Subtotals	4.63	46.00	0.01	0.07	0	0

This data is for 2022/2023 (year)

E. Annual Emissions Report for Fee Calculation Purposes -- HAP

HAP Identification. Identify individual HAP emitted at the facility, identify the CAS number, and assign a unique identifier for use in the second table in this section. Whenever assigning identifier codes, use "HAP1" for the first, "HAP2" for the second, and so on.

Name of HAP	CAS No	Identifier
Benzene	71-43-2	HAP1
Toluene	108-88-3	HAP2
Ethylbenzene	100-41-4	HAP3
Xylene	1330-20-7	HAP4
n-Hexane	110-54-3	HAP5
2,2,4-Trimethylepentane	540-87-1	HAP6

HAP Emissions. Report the actual emissions of individual HAP identified above. Use the identifiers assigned in the table above. Include all emissions, including fugitives, and do not include insignificant emissions. Sum the emissions in each column to calculate subtotals. Report subtotals to the nearest tenth (0.1) of a ton at the bottom of the page. If any subtotal exceeds 4,000 tons, enter 4,000.

This data is for _____2022/2023 (year)

Emission Unit ID	Actual Emissions (Tons/Year)						
	HAP1	HAP2	HAP3	HAP4	HAP5	HAP6	
HT	0.00	0.00					
ENG	0.00	0.00	0.00	0.00	0.00	0.00	
FUG	0.01	0.03	0.01	0.03	0.06	0.00	
LOADING	0.01	0.04	0.00	0.01	0.08	0.00	
OT	Emissions represented at LP Flare						
WT			Emissions rep	resented at	LP Flare		
HP Flare	0.01	0.03	0.00	0.01	0.05	0.00	
LP Flare	0.12	0.09	0.01	0.03	0.82	0.01	
PNE	0.00	0.00	0.00	0.00	0.00	0.00	
Subtotals	0.16	0.18	0.02	0.09	1.01	0.01	

F. Fee Calculation Worksheet

This worksheet is used to calculate the total fee owed (including the emissions-based fee and the GHG fee adjustment) for both initial and annual fee payment purposes. Reconciliation is only for cases where you are paying the annual fee and you used any type of estimate of actual emissions when you calculated the initial fee. If you do not need to reconcile fees, complete line 1-5 (emissions summary) and then skip down to line 21 (emission calculation). See instructions for more detailed explanation.

EMISSIONS SUMMARY

1. Sum the subtotals from section D of this form (non-HAP) and enter the	
total, rounded to the nearest tenth (0.1) of a ton.	50.70
2. Sum the subtotals from section E of this form (HAP) and enter the total,	
rounded to the nearest tenth (0.1) of a ton.	1.47
3. Sum lines 1 and 2.	52.17
4. Enter the emissions that were counted twice. If none, enter "0."	1.47
5. Subtract line 4 from line 3, round to the nearest ton, and enter the result	
here. This is the total emissions that count for fees purposes.	50.70

RECONCILIATION (WHEN INITIAL FEES WERE BASED ON ESTIMATES FOR THE "CURRENT" CALENDAR YEAR)

Only complete lines 6-10 if you are paying the first annual fee and initial fees were based on estimated actual emissions for the calendar year in which you paid initial fees; otherwise skip to line 11 or to line 21.

6. Enter the total estimated actual emissions for the year the initial fee was paid (previously reported on line 5 of the initial fee form).	
7. If line 5 is greater than line 6, subtract line 6 from line 5, and enter the result. Otherwise enter "0."	
8. If line 6 is greater than line 5, subtract line 5 from line 6, and enter the result. Otherwise enter "0."	
9. If line 7 is greater than 0, multiply line 7 by last year's fee rate (\$/ton) and enter the result here. This is the underpayment. Go to line 21.	
10. If line 8 is greater than 0, multiply line 8 by last year's fee rate (\$/ton) and enter the result here. This is the overpayment. Go to line 21.	

RECONCILIATION (WHEN INITIAL FEES WERE BASED ON ESTIMATES FOR THE "PRECEDING" CALENDAR YEAR)

Only complete lines 11-20 if you are paying the first annual fee and initial fees were based on estimated actual emissions for the calendar year preceding initial fee payment; otherwise skip to line 21. If completing this section, you will also need to complete sections D and E to report actual emissions for the calendar year preceding initial fee payment. 11. Sum the actual emissions from section D (non-HAP) for the calendar year preceding initial fee payment and enter the result here. 12. Sum the actual emissions from section E (HAP) for the calendar year preceding initial fee payment and enter the result here. 13. Add lines 11 and 12 and enter the total here. These are total actual emissions for the calendar year preceding initial fee payment. 14. Enter double counted emission from line 13 here. If none, enter "0." 15. Subtract line 14 from line 13, round to the nearest ton, and enter the result here. of the initial fee form. These are estimated actual emissions for the calendar year preceding initial fee payment. 17. If line 15 is greater than line 16, subtract line 16 from line 15, and enter the result here. Otherwise enter "0." 18. If line 16 is greater than line 15, subtract line 15 from line 16, and enter the result here. Otherwise enter "0." 19. If line 17 is greater than 0, multiply line 17 by last year's fee rate (\$/ton) and enter the result here. This is the underpayment. 20. If line 18 is greater than 0, multiply line 18 by last year's fee rate (\$/ton) and enter the result on this line. This is the overpayment. EMISSION FEE CALCULATION 21. Multiply line 5 (tons) by the current fee rate (\$/ton) and enter the result here. This is the unadjusted emissions fee. Continue on to line 23. 3237.08

GHG FEE ADJUSTMENT				
22. If you are submitting an initial permit application and this is the first time you are paying fees, enter \$2,236, otherwise enter "0". [Note that any updates to the initial application are covered under this one-time charge.]				
23. Enter the number of permit modifications (or related permit actions) you have submitted to the permitting authority since you last paid fees. If none, skip to line 25.				
24. Multiply the number in line 23 by \$365 and enter the result.				
25. If you have submitted a permit renewal application since the last time you paid fees enter \$520, otherwise enter "0"				
26. Sum line 22, 24, and 25 and enter the result. This is the GHG fee adjustment	0			
OTHER ADJUSTMENTS				
26. Add the total on line 21 and the total on line 26 and enter the result.	3237.08			
27. Enter any underpayment from line 9 or 19 here. Otherwise enter "0."				
28. Enter any overpayment from line 10 or 20 here. Otherwise enter "0."				
line 29 is greater than "0," subtract this from line 27 and enter the result here. Otherwise enter the amount on line 27 here. This is the fee adjusted for over/underpayment.				
30. Enter any credit for fee assessment error here. Otherwise, enter "0."				
31. Subtract line 31 from line 30 and enter the result here. Stop here. This is the TOTAL FEE (AFTER ADJUSTMENTS) that you must remit to EPA.	3237.08			

OMB No. 2060-0336, Expires 11/30/2022

Federal Operating Permit Program (40 CFR Part 71) FEE CALCUALTION WORKSHEET (FEE)

Use this form initially, or thereafter on an annual basis, to calculate part 71 fees.

A. General Information

Type of fee	(Check one):	Initial	X	Annual	
Deadline for	r submitting fee calculation w	orksheet	3/18/2024		
For initial fe	es, emissions are based on ((Check one):			
<u> </u>	ctual emissions for the prece	eding calendar year. (Re	quired in mo	st circumstances.)	
E:	stimates of actual emissions ommenced during the preced	for the current calendar ling calendar year.)	year. (Requ	ired when operations	
Date comme	enced operations	3/19/2023			
Estimates of actual emissions for the preceding calendar year. (Optional after a part 71 permit was issued to replace a part 70 permit, but only if initial fee payment is due between January 1 and March 31; otherwise use actual emissions for the preceding calendar year.)					
For annual fee payment, you are required to use actual emissions for the preceding calendar year.					

B. Source Information: Complete this section only if you are paying fees but not applying for a permit.

Source or facility name					
Mailing address: Street or P.O. Box					
City	State	ZIP			
Contact person	_Title				
Telephone	_Part 71 permit no.				

C. Certification of Truth, Accuracy and Completeness: Only needed if not submitting a separate form CTAC.

I certify under penal statements and info complete.	ty of law, based on information and belief formed after reasonable in rmation contained in this submittal (form and attachments) are true,	quiry, the accurate and
Name (signed)		
Name (typed)	Date	

D. Annual Emissions Report for Fee Calculation Purposes -- Non-HAP

You may use this to report actual emissions (tons per year) of regulated pollutants (for fee calculation) on a calendar-year basis for both initial and annual fee calculation purposes. Section E is designed to report HAP emissions. Quantify all actual emissions, including fugitives, but do not include insignificant emissions and certain regulated air pollutants that are not counted for fee purposes, such as CO and GHGs (see instructions). Sum the emissions in each column to calculate subtotals. Subtotals should be reported to the nearest tenth (0.1) of a ton at the bottom of the page. If any subtotal exceeds 4,000 tons, enter 4,000 for that column.

	-					
Emission Unit ID	NOx	VOC	SO2	PM10	Lead	Other
HT	0.86	0.05	0.01	0.07		
ENG						
FUG		4.29				
LOADING		0.00				
OT	Emissions represented at LP Flare					
WT	Emissions represented at LP Flare					
HP Flare	0.05	0.46	0			
LP Flare	3.25	31.33	0			
PNE		3.39				
Subtotals	4.16	39.51	0.01	0.07	0	0

This data is for 2023/2024 (year)

E. Annual Emissions Report for Fee Calculation Purposes -- HAP

HAP Identification. Identify individual HAP emitted at the facility, identify the CAS number, and assign a unique identifier for use in the second table in this section. Whenever assigning identifier codes, use "HAP1" for the first, "HAP2" for the second, and so on.

Name of HAP	CAS No	Identifier
Benzene	71-43-2	HAP1
Toluene	108-88-3	HAP2
Ethylbenzene	100-41-4	HAP3
Xylene	1330-20-7	HAP4
n-Hexane	110-54-3	HAP5
2,2,4-Trimethylepentane	540-87-1	HAP6

HAP Emissions. Report the actual emissions of individual HAP identified above. Use the identifiers assigned in the table above. Include all emissions, including fugitives, and do not include insignificant emissions. Sum the emissions in each column to calculate subtotals. Report subtotals to the nearest tenth (0.1) of a ton at the bottom of the page. If any subtotal exceeds 4,000 tons, enter 4,000.

This data is for 2023/2024 (year)

Emission Unit ID	Actual Emissions (Tons/Year)						
	HAP1	HAP2	HAP3	HAP4	HAP5	HAP6	
HT	0.00	0.00					
ENG	0.00	0.00	0.00	0.00	0.00	0.00	
FUG	0.01	0.03	0.01	0.03	0.06	0.00	
LOADING	0.00	0.00	0.00	0.00	0.00	0.00	
OT			Emissions rep	resented at	LP Flare		
WT	Emissions represented		resented at	LP Flare			
HP Flare	0.00	0.00	0.00	0.00	0.00	0.00	
LP Flare	0.12	0.08	0.01	0.03	0.82	0.01	
PNE	0.00	0.00	0.00	0.00	0.00	0.00	
Subtotals	0.13	0.12	0.02	0.07	0.88	0.01	

F. Fee Calculation Worksheet

This worksheet is used to calculate the total fee owed (including the emissions-based fee and the GHG fee adjustment) for both initial and annual fee payment purposes. Reconciliation is only for cases where you are paying the annual fee and you used any type of estimate of actual emissions when you calculated the initial fee. If you do not need to reconcile fees, complete line 1-5 (emissions summary) and then skip down to line 21 (emission calculation). See instructions for more detailed explanation.

EMISSIONS SUMMARY

1. Sum the subtotals from section D of this form (non-HAP) and enter the	
total, rounded to the nearest tenth (0.1) of a ton.	43.74
2. Sum the subtotals from section E of this form (HAP) and enter the total,	
rounded to the nearest tenth (0.1) of a ton.	1.23
3. Sum lines 1 and 2.	44.97
4. Enter the emissions that were counted twice. If none, enter "0."	1.23
5. Subtract line 4 from line 3, round to the nearest ton, and enter the result	
here. This is the total emissions that count for fees purposes.	43.74

RECONCILIATION (WHEN INITIAL FEES WERE BASED ON ESTIMATES FOR THE "CURRENT" CALENDAR YEAR)

Only complete lines 6-10 if you are paying the first annual fee and initial fees were based on estimated actual emissions for the calendar year in which you paid initial fees; otherwise skip to line 11 or to line 21.

6. Enter the total estimated actual emissions for the year the initial fee was paid (previously reported on line 5 of the initial fee form).	
7. If line 5 is greater than line 6, subtract line 6 from line 5, and enter the result. Otherwise enter "0."	
8. If line 6 is greater than line 5, subtract line 5 from line 6, and enter the result. Otherwise enter "0."	
9. If line 7 is greater than 0, multiply line 7 by last year's fee rate (\$/ton) and enter the result here. This is the underpayment. Go to line 21.	
10. If line 8 is greater than 0, multiply line 8 by last year's fee rate (\$/ton) and enter the result here. This is the overpayment. Go to line 21.	

RECONCILIATION (WHEN INITIAL FEES WERE BASED ON ESTIMATES FOR THE "PRECEDING" CALENDAR YEAR)

Only complete lines 11-20 if you are paying the first annual fee and initial fees were based on estimated actual emissions for the calendar year preceding initial fee payment; otherwise skip to line 21. If completing this section, you will also need to complete sections D and E to report actual emissions for the calendar year preceding initial fee payment. 11. Sum the actual emissions from section D (non-HAP) for the calendar year preceding initial fee payment and enter the result here. 12. Sum the actual emissions from section E (HAP) for the calendar year preceding initial fee payment and enter the result here. 13. Add lines 11 and 12 and enter the total here. These are total actual emissions for the calendar year preceding initial fee payment. 14. Enter double counted emission from line 13 here. If none, enter "0." 15. Subtract line 14 from line 13, round to the nearest ton, and enter the result here. of the initial fee form. These are estimated actual emissions for the calendar year preceding initial fee payment. 17. If line 15 is greater than line 16, subtract line 16 from line 15, and enter the result here. Otherwise enter "0." 18. If line 16 is greater than line 15, subtract line 15 from line 16, and enter the result here. Otherwise enter "0." 19. If line 17 is greater than 0, multiply line 17 by last year's fee rate (\$/ton) and enter the result here. This is the underpayment. 20. If line 18 is greater than 0, multiply line 18 by last year's fee rate (\$/ton) and enter the result on this line. This is the overpayment. EMISSION FEE CALCULATION 21. Multiply line 5 (tons) by the current fee rate (\$/ton) and enter the result here. This is the unadjusted emissions fee. Continue on to line 23. 2792.76

GHG FEE ADJUSTMENT			
22. If you are submitting an initial permit application and this is the first time you are paying fees, enter \$2,236, otherwise enter "0". [Note that any updates to the initial application are covered under this one-time charge.]			
23. Enter the number of permit modifications (or related permit actions) you have submitted to the permitting authority since you last paid fees. If none, skip to line 25.			
24. Multiply the number in line 23 by \$365 and enter the result.			
25. If you have submitted a permit renewal application since the last time you paid fees enter \$520, otherwise enter "0"			
26. Sum line 22, 24, and 25 and enter the result. This is the GHG fee adjustment	0		
OTHER ADJUSTMENTS	•		
26. Add the total on line 21 and the total on line 26 and enter the result.	2792.76		
27. Enter any underpayment from line 9 or 19 here. Otherwise enter "0."			
28. Enter any overpayment from line 10 or 20 here. Otherwise enter "0."			
line 29 is greater than "0," subtract this from line 27 and enter the result here. Otherwise enter the amount on line 27 here. This is the fee adjusted for over/underpayment.			
30. Enter any credit for fee assessment error here. Otherwise, enter "0."			
31. Subtract line 31 from line 30 and enter the result here. Stop here. This is the TOTAL FEE (AFTER ADJUSTMENTS) that you must remit to EPA.	2792.76		

OMB No. 2060-0336, Expires 11/30/2022

Federal Operating Permit Program (40 CFR Part 71) FEE CALCUALTION WORKSHEET (FEE)

Use this form initially, or thereafter on an annual basis, to calculate part 71 fees.

A. General Information

Type of fee (Check one): Initial	<u> </u>			
Deadline for submitting fee calculation worksheet 3/19/2025				
For initial fees, emissions are based on (Check one):				
X Actual emissions for the preceding calendar	year. (Required in most circumstances.)			
Estimates of actual emissions for the current calendar year. (Required when operations commenced during the preceding calendar year.)				
Date commenced operations 3/19/2024				
Estimates of actual emissions for the preceding calendar year. (Optional after a part 71 permit was issued to replace a part 70 permit, but only if initial fee payment is due between January 1 and March 31; otherwise use actual emissions for the preceding calendar year.) For annual fee payment, you are required to use actual emissions for the preceding calendar year.				

(032) 304-3300

B. Source Information: Complete this section only if you are paying fees but not applying for a permit.

Source or facility name					
Mailing address: Street or P.O. Box					
City	State	ZIP			
Contact person					
Telephone	Part 71 permit no.				

C. Certification of Truth, Accuracy and Completeness: Only needed if not submitting a separate form CTAC.

I certify under penal statements and info complete.	ty of law, based on information and belief formed after reasonable inc rmation contained in this submittal (form and attachments) are true, a	quiry, the locurate and
Name (signed)		
Name (typed)	Date	1 1

D. Annual Emissions Report for Fee Calculation Purposes -- Non-HAP

You may use this to report actual emissions (tons per year) of regulated pollutants (for fee calculation) on a calendar-year basis for both initial and annual fee calculation purposes. Section E is designed to report HAP emissions. Quantify all actual emissions, including fugitives, but do not include insignificant emissions and certain regulated air pollutants that are not counted for fee purposes, such as CO and GHGs (see instructions). Sum the emissions in each column to calculate subtotals. Subtotals should be reported to the nearest tenth (0.1) of a ton at the bottom of the page. If any subtotal exceeds 4,000 tons, enter 4,000 for that column.

This data is for 2024	(year)					
Emission Unit ID	NOx	VOC	SO2	PM10	Lead	Other
HT	0.68	0.04	0.00	0.05	0.00	0.00
ENG	0.00	0.00	0.00	0.00	0.00	0.00
FUG	0.00	3.37	0.00	0.00	0.00	0.00
LOADING	0.00	0.00	0.00	0.00	0.00	0.00
OT	Emissions represented at LP Flare		lare			
WT	Emissions represented at LP Flare					
HP Flare	0.04	0.36	0.00	0.00	0.00	0.00
LP Flare	2.56	24.65	0.00	0.00	0.00	0.00
PNE	0.00	2.67	0.00	0.00	0.00	0.00
Subtotals	3.27	31.09	0.00	0.05	0	0

E. Annual Emissions Report for Fee Calculation Purposes -- HAP

HAP Identification. Identify individual HAP emitted at the facility, identify the CAS number, and assign a unique identifier for use in the second table in this section. Whenever assigning identifier codes, use "HAP1" for the first, "HAP2" for the second, and so on.

Name of HAP	CAS No	Identifier
Benzene	71-43-2	HAP1
Toluene	108-88-3	HAP2
Ethylbenzene	100-41-4	HAP3
Xylene	1330-20-7	HAP4
n-Hexane	110-54-3	HAP5
2,2,4-Trimethylepentane	540-87-1	HAP6

HAP Emissions. Report the actual emissions of individual HAP identified above. Use the identifiers assigned in the table above. Include all emissions, including fugitives, and do not include insignificant emissions. Sum the emissions in each column to calculate subtotals. Report subtotals to the nearest tenth (0.1) of a ton at the bottom of the page. If any subtotal exceeds 4,000 tons, enter 4,000.

This data is for 2024 (year)

Emission Unit ID	Actual Emissions (Tons/Year)						
	HAP1	HAP2	HAP3	HAP4	HAP5	HAP6	
HT	0.00	0.00	0.00	0.00	0.00	0.00	
ENG	0.00	0.00	0.00	0.00	0.00	0.00	
FUG	0.01	0.03	0.01	0.03	0.05	0.00	
LOADING	0.00	0.00	0.00	0.00	0.00	0.00	
OT	Emissions represented at LP Flare						
WT	Emissions represented at LP Flare						
HP Flare	0.00	0.00	0.00	0.00	0.00	0.00	
LP Flare	0.10	0.07	0.01	0.02	0.64	0.01	
PNE	0.00	0.00	0.00	0.00	0.00	0.00	
Subtotals	0.10	0.09	0.01	0.05	0.70	0.01	

F. Fee Calculation Worksheet

This worksheet is used to calculate the total fee owed (including the emissions-based fee and the GHG fee adjustment) for both initial and annual fee payment purposes. Reconciliation is only for cases where you are paying the annual fee and you used any type of estimate of actual emissions when you calculated the initial fee. If you do not need to reconcile fees, complete line 1-5 (emissions summary) and then skip down to line 21 (emission calculation). See instructions for more detailed explanation.

EMISSIONS SUMMARY

1. Sum the subtotals from section D of this form (non-HAP) and enter the	
total, rounded to the nearest tenth (0.1) of a ton.	34.42
2. Sum the subtotals from section E of this form (HAP) and enter the total,	
rounded to the nearest tenth (0.1) of a ton.	0.97
3. Sum lines 1 and 2.	35.38
4. Enter the emissions that were counted twice. If none, enter "0."	0.97
5. Subtract line 4 from line 3, round to the nearest ton, and enter the result	
here. This is the total emissions that count for fees purposes.	34.42

RECONCILIATION (WHEN INITIAL FEES WERE BASED ON ESTIMATES FOR THE "CURRENT" CALENDAR YEAR)

Only complete lines 6-10 if you are paying the first annual fee and initial fees were based on estimated actual emissions for the calendar year in which you paid initial fees; otherwise skip to line 11 or to line 21.

6. Enter the total estimated actual emissions for the year the initial fee was paid (previously reported on line 5 of the initial fee form).	
7. If line 5 is greater than line 6, subtract line 6 from line 5, and enter the result. Otherwise enter "0."	
8. If line 6 is greater than line 5, subtract line 5 from line 6, and enter the result. Otherwise enter "0."	
9. If line 7 is greater than 0, multiply line 7 by last year's fee rate (\$/ton) and enter the result here. This is the underpayment. Go to line 21.	
10. If line 8 is greater than 0, multiply line 8 by last year's fee rate (\$/ton) and enter the result here. This is the overpayment. Go to line 21.	

RECONCILIATION (WHEN INITIAL FEES WERE BASED ON ESTIMATES FOR THE "PRECEDING" CALENDAR YEAR)

Only complete lines 11-20 if you are paying the first annual fee and initial fees were based on estimated actual emissions for the calendar year preceding initial fee payment; otherwise skip to line 21. If completing this section, you will also need to complete sections D and E to report actual emissions for the calendar year preceding initial fee payment. 11. Sum the actual emissions from section D (non-HAP) for the calendar year preceding initial fee payment and enter the result here. 12. Sum the actual emissions from section E (HAP) for the calendar year preceding initial fee payment and enter the result here. 13. Add lines 11 and 12 and enter the total here. These are total actual emissions for the calendar year preceding initial fee payment. 14. Enter double counted emission from line 13 here. If none, enter "0." 15. Subtract line 14 from line 13, round to the nearest ton, and enter the result here. of the initial fee form. These are estimated actual emissions for the calendar year preceding initial fee payment. 17. If line 15 is greater than line 16, subtract line 16 from line 15, and enter the result here. Otherwise enter "0." 18. If line 16 is greater than line 15, subtract line 15 from line 16, and enter the result here. Otherwise enter "0." 19. If line 17 is greater than 0, multiply line 17 by last year's fee rate (\$/ton) and enter the result here. This is the underpayment. 20. If line 18 is greater than 0, multiply line 18 by last year's fee rate (\$/ton) and enter the result on this line. This is the overpayment. EMISSION FEE CALCULATION 21. Multiply line 5 (tons) by the current fee rate (\$/ton) and enter the result here. This is the unadjusted emissions fee. Continue on to line 23. 2197.58

GHG FEE ADJUSTMENT			
22. If you are submitting an initial permit application and this is the first time you are paying fees, enter \$2,236, otherwise enter "0". [Note that any updates to the initial application are covered under this one-time charge.]			
23. Enter the number of permit modifications (or related permit actions) you have submitted to the permitting authority since you last paid fees. If none, skip to line 25.			
24. Multiply the number in line 23 by \$365 and enter the result.			
25. If you have submitted a permit renewal application since the last time you paid fees enter \$520, otherwise enter "0"			
26. Sum line 22, 24, and 25 and enter the result. This is the GHG fee adjustment	0		
OTHER ADJUSTMENTS			
26. Add the total on line 21 and the total on line 26 and enter the result.	2197.58		
27. Enter any underpayment from line 9 or 19 here. Otherwise enter "0."			
28. Enter any overpayment from line 10 or 20 here. Otherwise enter "0."			
line 29 is greater than "0," subtract this from line 27 and enter the result here. Otherwise enter the amount on line 27 here. This is the fee adjusted for over/underpayment.			
30. Enter any credit for fee assessment error here. Otherwise, enter "0."			
31. Subtract line 31 from line 30 and enter the result here. Stop here. This is the TOTAL FEE (AFTER ADJUSTMENTS) that you must remit to EPA.	2197.58		

Marathon Oil Company 990 Town & Country Boulevard Houston, TX 77001-669

Remittance Advice

То

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION II 290 BROADWAY 17TH FLOOR NEW YORK NY 10007-1866

Attn: Accounts Receivable

Remittance Address

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION II 290 BROADWAY 17TH FLOOR NEW YORK NY 10007-1866

 Vendor No.:
 5005415

 Deposit Date:
 09/18/2024

Remittance Advice The Payment for the following invoices will be deposited on the above **deposit date** to your bank account **XXXXXX9008**, **US ENVIRONMENTAL PROTECTION AGENCY**, through the Automated Clearing House (ACH). If you have questions, please contact the AP Supplier Hotline 866-323-1836 or for Joint Venture contact 866-925-6093. You can also email OpenInvoiceSupport@marathonoil.com.

1 of 1

Invoice Number	Inv Date	Document Number/Text	Gross Amount	Disc/WHTax	Net Amount
0924 UN822741	09/13/2024	1900004375 <i>Oates</i>	8,227.41	0.00	8,227.41
		Total		U	SD 8,227.41

Attachment 3

Potential Annual Emissions

Michelle McCracken HES Professional

Marathon Oil Company 990 Town and Country Blvd. Houston, TX 77024 (713) 296-3272 mmccracken@marathonoil.com

June 2, 2023

Ms. Claudia Smith Minor NSR Permitting Coordinator U.S. EPA, Region 8 1595 Wynkoop Street, 8P-AR Denver, Colorado 80202-1129

Dear Ms. Smith:

Enclosed please find an updated Part 2 registration form for the Oates well pad. This submittal addresses the removal of some high-pressure separators. Wells producing into the facility are listed below.

Facility Name	API Number
Oates 21-27H	33-061-04546
Senness 11-27TFH	33-061-04545

Please do not hesitate to contact me if you have any questions regarding this registration.

Sincerely,

Michelle McCracken

Michelle McCracken Enclosures

EPA Form No. 5900-391 EPA ICR No. 1230.27 OMB Control No. 2060-0003 Approval expires 10/31/2020

United States Environmental Protection Agency <u>https://www.epa.gov/tribal-air/tribal-minor-new-source-review</u> April 29, 2019

Part 2: Submit Within 60 Days After Startup of Production -- Emission and Production Information

FEDERAL IMPLEMENTATION PLAN FOR TRUE MINOR SOURCES IN INDIAN COUNTRY IN THE OIL AND NATURAL GAS PRODUCTION AND NATURAL GAS PROCESSING SEGMENTS OF THE OIL AND NATURAL GAS SECTOR Registration for New True Minor Oil and Natural Gas Sources and Minor Modifications at Existing True Minor Oil and Natural Gas Sources

Please submit information to:

[Reviewing Authority Address Phone]	Claudia Smith Minor NSR Permitting Coordinator U.S. EPA, Region 8 1595 Wynkoop Street, 8P-AR Denver, CO 80202-1129
---	--

A. GENERAL SOURCE INFORMATION (See Instructions Below)

	- (····,			
1. Company Name		2. Source Name			
Marathon Oil Company		Oates well pad			
3. Type of Oil and Natural Gas Operation		4. New Minor Source?	4. New Minor Source? Yes No		
oil and das well-s	site				
		5. True Source Modificat	5. True Source Modification? 🔳 Yes 🗌 No		
6. NAICS Code		7. SIC Code			
211111		1311	1311		
8. U.S. Well ID(s) or API Numb	er(s) [if applicable]				
33-061-04546, 33-061-0454	.5				
9. Area of Indian Country	10. County	11a. Latitude	11b. Longitude		
Fort Berthold	Mountrail	47.8755109 N	-102.5730261 W		

B. CONTACT INFORMATION (See Instructions Below)

1. Owner Name	Title			
leff Parker	Production Manager			
Mailing Address				
3172 Hwy 22N Dickinso	on, ND 58601			
Email Address				
jrparker@marathonoil.c	om			
Telephone Number	Facsimile Number			
701.456.7502	701.456.7525			
2. Operator Name (if different from owner) Same	Title			
Mailing Address	Mailing Address			
Email Address				
Telephone Number	Facsimile Number			
3. Source Contact	Title			
Michelle McCracken	HES Professional			
Mailing Address				
990 Town & Country Blvd, Houston, TX 77024				
Email Address				
mmccracken@marathonoil.com				
Telephone Number	Facsimile Number			
713.296.3272	701.456.7525			

4. Compliance Contact	Title	
Jeff Parker	Production Manager	
Mailing Address		
3172 Hwy 22N Dickinson, ND 58601		
Email Address		
jrparker@marathonoil.c	om	
Telephone Number	Facsimile Number	
701.456.7502	701.456.7525	

C. EMISSIONS AND OTHER SOURCE INFORMATION

Include all of the following information in the table below and as attachments to this form:

Note: The emission estimates can be based upon actual test data or, in the absence of such data, upon procedures acceptable to the Reviewing Authority. The following procedures are generally acceptable for estimating emissions from air pollution sources: (1) unit-specific emission tests; (2) mass balance calculations; (3) published, verifiable emission factors that are applicable to the unit (i.e., manufacturer specifications); (4) other engineering calculations; or (5) other procedures to estimate emissions specifically approved by the Reviewing Authority. Guidance for estimating emissions can be found at https://www.epa.gov/chief.

Narrative description of the operations.

- Identification and description of any air pollution control equipment and compliance monitoring devices or activities.
- Type and actual amount (annually) of each fuel that will be used.
- Type of raw materials used (e.g., water for hydraulic fracturing).
- Actual, annual production rates.
- Actual operating schedules.
- Any existing limitations on source operations affecting emissions or any work practice standards, where applicable, for all regulated New Source Review (NSR) pollutants at your source. Indicate all requirements referenced in the Federal Implementation Plan (FIP) for True Minor Sources in Indian Country in the Oil and Natural Gas Production and Natural Gas Processing Segments of the Oil and Natural Gas Sector that apply to emissions units and air pollution generating activities at the source or proposed. Include statements indicating each emissions unit that is an emissions unit potentially subject to the requirements referenced in the FIP, but does not meet the definition of an affected facility under the referenced requirement, and therefore, is not subject to those requirements.
- For each emissions unit comprising the new source or modification, estimates of the total allowable (potential to emit) annual emissions at startup of production from the air pollution source for the following air pollutants: particulate matter, PM₁₀, PM_{2.5}, sulfur oxides (), nitrogen oxides (NO_x), carbon monoxide (CO), volatile organic compound (VOC), lead (Pb) and lead compounds, fluorides (gaseous and particulate), sulfuric acid mist (H₂SO₄), hydrogen sulfide (H₂S), total reduced sulfur (TRS) and reduced sulfur compounds, including all calculations for the estimates. Allowable annual emissions are defined as: emissions rate of an emissions unit calculated using the maximum capacity of a stationary source to emit a pollutant under its physical and operational design. Any physical

or operational limitation on the capacity of the source to emit a pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored, or processed, shall be treated as part of its design if the limitation, or the effect it would have on emissions, is legally and practically enforceable. You must determine the potential for emissions within 30 days from the startup of production.

For each emissions unit comprising the new source or modification, estimates of the total actual annual emissions during the upcoming, consecutive 12 months from the air pollution source for the following air pollutants: particulate matter (PM, PM₁₀, PM_{2.5}), sulfur oxides (SO_x), nitrogen oxides (NOx), carbon monoxide (CO), volatile organic compound (VOC), lead (Pb) and lead compounds, ammonia (NH₃), fluorides (gaseous and particulate), sulfuric acid mist (H₂SO₄), hydrogen sulfide (H₂S), total reduced sulfur (TRS) and reduced sulfur compounds, including all calculations for the estimates. Estimates of actual emissions must take into account equipment, operating conditions, and air pollution control measures. You should calculate an estimate of the actual annual emissions using estimated operating hours, production rates, in-place control equipment, and types of materials processed, stored, or combusted.

D. TABLE OF ESTIMATED EMISSIONS

Provide in the table below estimates of the total allowable annual emissions in tons per year (tpy) and total actual annual emissions (tpy) for the following pollutants for all emissions units comprising the new source or modification.

POLLUTANT	TOTAL ALLOWABLE ANNUAL	TOTAL ACTUAL ANNUAL
	EMISSIONS (TPY)	EMISSIONS (TPY)
РМ	0.07	0.07
PM ₁₀	0.07	0.07
PM _{2.5}	0.07	0.07
SO _x	0.02	0.02
NO _x	3.64	3.64
СО	12.34	12.34
VOC	31.44	31.44
Pb	0.00	0.00

POLLUTANT	TOTAL ALLOWABLE ANNUAL	TOTAL ACTUAL ANNUAL
	EMISSIONS (TPY)	EMISSIONS (TPY)
NH3	0.00	0.00
Fluorides	0.00	0.00
H ₂ SO ₄	0.00	0.00
H ₂ S	0.00	0.00
TRS	0.00	0.00

ATTACHMENT 1

NARRATIVE AND PROCESS FLOW DIAGRAM

Narrative description of the operations:

The Oates well pad includes the following wells: Oates 21-27H and Senness 11-27TFH. The Oates well pad is owned and operated by Marathon Oil Company (Marathon) and located on the Ft. Berthold Indian Reservation in Mountrail County, North Dakota. This oil and gas production facility consists of

Produced fluid from the formation, initially an emulsion comprised of produced oil, natural gas, and produced water flows or is pumped from the wells to heater treaters. Oil is separated from produced water and gas. Oil and produced water are routed to above ground storage tanks. Gas is routed to sales or is combusted by a control device with a 98% minimum destruction efficiency.

Produced water may be loaded into tanker trucks for off-site disposal or sent to disposal via pipeline. The oil will be loaded onto trucks or pass through a Lease Automated Custody Transfer (LACT) unit prior to shipment via pipeline. Finally, storage tanks will utilize a control device with a 98% minimum destruction efficiency to reduce emissions from these tanks.

Identification and Description of All Emission Units and Air Pollution Generating Activities; Including Portable Equipment:

The following is a narrative of potential emission equipment that may be used at this facility. Sitespecific equipment for Marathon facilities may vary depending on gas sales and equipment placement. Please refer to Table 1 (see below) and Attachment 2 for equipment specific to the location.

- Electrically-operated pumping units extract produced fluid from the formation. The fluid leaves the production well casing head via an underground flowline and enters a heater treater for separation. The heater treater is equipped with a 500,000 to 2,000,000 Btu/hr burner fueled by natural gas from the well or liquefied petroleum gas (LPG) from a pressurize storage tank. Production from locations where wells share common ownership may be commingled. Under this scenario, multiple heater treaters may be used to determine production rates of individual wells for accounting purposes.
- 2. Natural gas produced from the heater treater is routed to the heater treater burner to provide its fuel, routed to sales, or routed to control devices with a 98% destruction efficiency equipped with a continuous automatic igniter and pilot flame with a thermocouple. This device is monitored visually (when personnel are on site) or via the Supervisory Control and Data Acquisition (SCADA) network. If the temperature of the sales gas is too high, the site may require the use of one or more natural gas-driven coolers to meet sales temperature specification.
- 3. Produced oil from the heater treater is routed to multiple vertical above ground fixed-roof storage tanks, where it is stored prior to shipment offsite via pipeline or tanker truck loading via submerged fill lines. Emissions of regulated air pollutants (i.e., Volatile Organic Compounds (VOCs) and Hazardous Air Pollutants (HAPs)) from working/breathing/flash losses are routed to a control device with a 98% minimum destruction efficiency equipped with a continuous automatic igniter and pilot flame with a thermocouple. This device is monitored visually (when

personnel are on site) or via SCADA. Individual produced oil storage tanks may be subject to 40 CFR 60, subpart OOOOa (NSPS OOOOa) because VOC emissions from these tanks exceed the six tons per year (TPY) per tank threshold.

- 4. Produced water is routed from the heater treater to vertical above ground fixed-roof storage tanks, where it is stored prior to tanker truck loading. Emissions from produced water tanks are routed to the same control device with a 98% minimum destruction efficiency equipped with a continuous automatic igniter and pilot flame with a thermocouple. This device is monitored visually (when personnel are on site) or via SCADA. Produced water storage tanks are not subject to NSPS OOOOa because emissions from these tanks do not exceed the six TPY of VOC per tank threshold; however, water tanks share the same vent collection system as the oil tanks and therefore may be subject to the rule.
- 5. Emissions from oil tanker truck loading are evaluated in the attached calculation spreadsheet. Produced water loading emissions are assumed to be negligible.
- 6. If additional separation is necessary to meet buyer specifications, a recirculation pump is used to recirculate produced oil from storage tanks to the heater treater. This pump is powered by onsite electrical power or a gasoline-powered spark ignition (SI) reciprocating internal combustion engines (RICE) producing eight horsepower (hp). Each SI RICE used is manufactured after July 1, 2008 and certified in accordance with the requirements for new non-road SI engines (40 CFR Part 90) and is operated in accordance with the manufacturer's instructions (40 CFR 60.4243(a)(1)). Additionally, each SI RICE is subject to the maintenance and recordkeeping requirements for SI RICE in 40 CFR 63, subpart ZZZZ effective October 19, 2013.
- 7. This facility design may include multiple pneumatic controllers on-site. Marathon uses intermittent bleed pneumatic devices powered by pressurized natural gas for flow control devices and for maintaining process conditions such as liquid level, pressure, delta-pressure, and temperature. These devices are snap-acting that discharge the full volume of the actuator intermittently when control action is necessary but do not bleed continuously. If throttling devices are used, they vent less than six scf/h and are not subject to NSPS OOOOa.
- 8. The well pad sites may have one or more generators onsite to provide power to facility equipment. For the purpose of this application, calculations were prepared assuming generators operate for 8,760 hours per year. Once the site is connected to electrical power, generators are removed from the site. Generator engines may be fueled by natural gas or propane and are SI RICE, manufactured after July 1, 2008, certified in accordance with the requirements for new non-road SI engines (40 CFR Part 90), operated in accordance with the manufacturer's instructions (40 CFR 60.4243(a) (1)), and subject to the maintenance and recordkeeping requirements for SI RICE in 40 CFR 63, subpart ZZZZ effective October 19, 2013.

Identification and Description of Any Existing Air Pollution Control Equipment and Compliance Monitoring Devices or Activities

Emission Source	Emission Controls	Control Efficiency	Monitoring Type
Produced Oil/Produced Water Storage Tanks	Destruction efficiency control device(s) See Footnote 1 below.	98%	Visually by operator (when on site) or via SCADA
Heater Treater Produced Natural Gas	Destruction efficiency control device	98%	Visually by operator (when on site) or via SCADA
Heater Treater Fuel Gas	See Footnote 2 below	0% (uncontrolled)	See Footnote 3
RICE Engine	See Footnote 3 below	0% (uncontrolled)	See Footnote 3
Truck Loadout (Produced oil and produced water)	Submerged Fill	40%	Viewpoint Program oil production rates See attached calculations
Well Pad Site Generator	See Footnote 3 below	See Footnote 3	See Footnote 3
Pneumatic Controllers	None (uncontrolled)	N/A	

Footnote 1: The 98% control device usage is noted here, so that use of either a combustor or utility flare to control tank emissions is acceptable on any location.

Footnote 2: The heater treater burner is controlled by a Burner Management System which regulates the flow of fuel gas to the burner to achieve a temperature in the vessel within the desired operational parameters.

Footnote 3: EPA certified engines, Catalytic Converter or Oxidizers if required by NSPS JJJJ.

Type and Amount of Fuels Used

Field gas (produced natural gas) is used at this location to fuel the heater treater burner. Field gas not utilized in the burner is routed to control devices with a 98% minimum destruction efficiency. The contents of the field gas are included in the calculation spreadsheets provided in Part 2. The volume of gas utilized in the burner varies depending on well flow rate, wellhead temperature, and the desired operating temperature range.

Type of Raw Materials Used

The produced fluid is initially an emulsion comprised of produced oil, natural gas, and produced water. Please see the narrative above for a further description of the process.

Production Rates

Production rates vary depending on the facility. The initial production rates are normally higher and decline over time. Production from thirty days is utilized with no decline for existing wells.

Operating Schedules

The well pad is anticipated to operate 24-hours per day, 7-days per week, and 52-weeks per year for a total of 8,760 hours per year. Exceptions to this operating schedule may include but are not limited to, shutdowns associated with extreme weather conditions, scheduled maintenance, operation updates, and temporary shut-in (if required).

Any Existing Limitations on Source Operation Affecting Emissions or Any Work Practice Standards, Where Applicable, for All Regulated NSR Pollutants at Your Source

Some emissions for this facility may be regulated under 40 CFR part 60, subpart OOOOa. Marathon will comply with the applicable requirements. In accordance with this rule, controls to reduce VOC emissions by 95% for storage tanks emitting six tons or more per year of VOC may be required. This reduction requirement applies to tanks used in oil and gas production, natural gas processing, and transmission and storage. The calculations for this facility indicate that with controls, the emissions from tanks may exceed the six-ton per year per tank threshold. Additionally, the New Source Performance Standards will require a Leak Detection and Repair Program to reduce emissions from fugitive emission sources.

MARATHON OIL COMPANY OATES WELL PAD PROCESS FLOW DIAGRAM

ATTACHMENT 2 EMISSIONS CALCULATIONS

Calculation Basis

Background

The Oates well pad has two existing wells. This submittal addresses the removal of some high-pressure separators.

General Emission Calculations

Throughput

Throughput is based on 30 days of actual production data with no decline. Any days of no production are replaced with an average production from the day prior and the day after the day or days with no production or with forecasted production.

Equipment

This site has the following separation equipment in order of highest operating pressure to lowest operating pressure:

• Heater treater(s)

The site also has:

- Oil tanks
- Water tanks
- High pressure flare(s) to control gas from the from the heater treater(s)
- Low pressure flare(s) to control flash and working & breathing emissions from the oil and water tanks
- Truck loading point(s) as a backup to the pipeline LACT(s) for both oil and water
- Pneumatic device(s) (only at some locations)

Model

Pressurized oil sample(s) and a gas sample(s) are collected from the highest pressure separation equipment for analysis to model the emissions from the facility. The analyses are used in a process simulation, Promax, along with normal operating temperatures and pressures through the separation equipment to model emissions. If the analyses do not meet QA/QC criteria, another set of samples are collected, or representative analyses or sales gas analysis are used. Samples are good if:

- Pressure on the sample vessel is within 15% of the pressure on the vessel sampled (from SCADA, account for pressure loss across sample valve),
- Passes lab QA/QC, and
- Methane is within 3 mole % of gas sales analysis.

Because the gas sample is collected off the highest pressure vessel and it may contain liquids, a flare scrubber (which is actually present in the field) is included in the model. If the sales gas analysis is used, the scrubber will be removed from the model.

User defined inputs into modelling software:

- Oil sample composition
- Gas sample composition
- Separation equipment operating temperatures and pressures
- Site ambient conditions (for tank emissions)
- Production throughputs for crude oil, produced water, and volume of gas flared from the highest pressure separation equipment.

The oil and gas sample compositions are used to estimate fugitive emissions using a count of major equipment at the site and default component counts are used based on the approach provided in EPA's Mandatory Reporting Rule for Greenhouse Gases (GHG MRR), 40 CFR Part 98, Subpart W, Table W-1B.

The gas sample composition is used to estimate emissions from the highest pressure separation equipment that is not sold. The majority of the gas is sold but a small amount of flared gas is included for times when some or all gas cannot be sold. Only the gas from the highest pressure separation equipment can be sold unless there is a VRU.

The heater treater temperature and pressure used in the model are the expected average over the course of the year. The heater treater was modelled as adiabatic.

Flash from the oil and water tanks is also modelled and working and breathing losses are estimated using the most current method from EPA AP-42. The total oil production is divided among the number of tanks in service to estimate the emissions from a single tank. Those emissions are then multiplied by the number of tanks in service. Tanks are modelled as adiabatic with no quench. Water tank emissions are assumed to contain 1% VOC for the purposes of estimating emissions. All emissions from storage tanks are controlled by the low pressure flare with a 98% destruction efficiency.

Emissions from truck loading are calculated using the most current method from AP-42. Water loading emissions are de-minimus.

AIR PERMITTING ANALYSIS								
				0.1.0				
Company Name:			Marathon	Oll Compa	iny			
Facility Name:			Oat	es CTB				
Field:		F	ort Bertho	ld Reserva	ition			
-		Date Prepare Prepared By:	d:	Mara	6/3/2023 athon Oil Co	ompany		
]	Annual	Averaged	Annu	al Total	1			
Produced Gas	455	mscfd	166,080	mscf/yr				
Well Gas Flared			13,620	mscf/yr	_			
Oil Production	169	bbls/day	61,682	bbls/yr	-			
Produced Water Production	182	deg E	50 50	bbis/yr	_			
HP Elare Control Efficiency	110		3%	psig				
LP Flare Control Efficiency		98%						
Operating Period	365	days	8760	hours				
Emission Sources	;	NOx	со	voc	HAPs	n-Hexane	PM ₁₀	SO ₂
Boilers and/	or Heaters	0.86	0.72	0.05			0.07	0.01
Engines and/o	r Turbines	-	-	-	0.00	0.00	-	-
Equipment	Fugitives			2.18	0.13	0.08		
Oil Truc	k Loading			7.72	0.43	0.31		
			Emission	s represented	at LP Flare			
V	0.70	0.10	Emission	s represented	at LP Flare	0.00	1	
High Pres	sure Flare	0.76	3.16	4.44	0.21	0.15	0.00	
Low Pres	sure Flare	2.03	<u> </u>	13.04	0.00	0.49	0.00	
			4 0/	0.20	0.20			

6. 2023-05-26 Oates Part 2 PTE Heater Burners

Heater ID:	Treater 1	Treater 2	Treater 3	Treater 4
Heater Rating (MMBtu/hr)	1.00	1.00		
Heater Fuel Source	High Pressure Gas	High Pressure Gas		
Fuel Heat Value (Btu/scf)	1,020	1,020		
Operating Hours	8,760	8,760		
Fuel Usage (Mscf/year) ⁽¹⁾	8,588	8,588		

(1) Fuel Usage = (Heater Treater Rating, MMBtu/hr) x (8760 hours/year) / (Fuel Heat Value, Btu/scf) x (1,000 Mscf/MMscf)

Emissions Factors (lb/MMscf) - From AP42, Ch.1.4, Tables 1.4-1 & 1.4-2 dated July 1998							
NOx	со	PM	SO ₂				
100	84	5.5	7.6	0.6			

Note: If the actual maximum fuel usage is provided, the above emission factors are adjusted by the ratio of the actual fuel heat value to 1020 Btu/scf.

Heater/Boiler Emissions (Tons/year) ⁽²⁾									
Heater ID:	Fuel Usage (Mscf/yr)	NOx	со	voc	РМ	SO2			
Treater 1	8,588	0.43	0.36	0.02	0.03	2.58E-03			
Treater 2	8,588	0.43	0.36	0.02	0.03	2.58E-03			
Total		0.86	0.72	0.05	0.07	0.01			

(2) Emissions in TPY = (Fuel Usage Mscf/year) x (Emission Factor lb/MMscf) / (2000 lb/ton) x (1000 Mscf/MMscf)
 (3) All PM emissions were assumed to be PM10 based on footnote (c) to Table 1.4-2 of AP-42 (dated 7/98).

Calculation Basis:

Natural gas-fired single-burner heater treaters will be used to heat the oil/water/gas mixture to help promote three phase separation. External combustion emissions were calculated in accordance with AP-42 Section 1.4 (July 1998), Natural Gas Combustion, Tables 1.4-1, 1.4-2, and 1.4-3., using emission factors for Small Boilers (less than 100 MMBtu/hr rating).

All heaters are assumed to run 8760 hours per year.

Emissions of HAPs are assumed to be deminimis.

Default Component Counts - Light Oil Service (per major piece of equipment) ⁽¹⁾								
Equipment	Valves	Flanges	Connectors	Other Components				
Wellhead	2	10	4	1				
Separators	0	12	10	0				
Heater Treater	2	12	20	0				
Header	0	10	4	0				

(1) From MRR Subpart W Table W-1C.

Default Component Counts - Gas Service (per major piece of equipment) ⁽¹⁾								
Equipment	Valves Connectors Open-Ended Lines Pressure Relief V							
Wellhead	11	36	1	0				
Separators	34	106	6	2				
Meters/Piping	14	51	1	1				
Compressors	73	179	3	4				
In-Line heaters	14	65	2	1				

(1) From MRR Subpart W Table W-1C.

Total Fugitive Emissions (Tons/year)						
VOC HAPs n-Hexane						
2.18	0.13	0.08				
Operating Period	8.760	hours				

ent Counts ⁽²⁾
2
0
0
2
1
0
0
8

(2) Actual count of major equipment at facility

Component Type	Number of Components in Gas Service ⁽³⁾	Gas Emission Factor (Ib/hr per Component) ⁽⁴⁾	VOC Emissions (TPY) from Gas Components ⁽⁵⁾	HAP Emissions (TPY) from Gas Components ⁽⁵⁾	n-Hexane Emissions (TPY) from Gas Components ⁽⁵⁾	Number of Components in Oil Service ⁽³⁾	Oil Emission Factor (Ib/hr per Component) ⁽⁴⁾	VOC Emissions (TPY) from Oil Components ⁽⁵⁾	HAP Emissions (TPY) from Oil Components ⁽⁵⁾	n-Hexane Emissions (TPY) from Oil Components ⁽⁵⁾	
Valves	36	0.010	0.57	0.03	0.03	8	0.006	0.19	0.01	0.01	
Pumps	0	0.01	0.00E+00	0.00E+00	0.00E+00	8	0.029	9.93E-01	6.63E-02	2.78E-02	
Flanges	0	8.60E-04	0.00E+00	0.00E+00	0.00E+00	44	2.43E-04	0.05	3.09E-03	1.30E-03	
Compressors	0	0.019	0.00E+00	0.00E+00	0.00E+00	0	0.017	0.00E+00	0.00E+00	0.00E+00	
Relief Valves	1	0.019	0.03	1.56E-03	1.56E-03	0	0.017	0.00E+00	0.00E+00	0.00E+00	
Open-ended Lines	3	4.41E-03	0.02	1.06E-03	1.06E-03	0	0.003	0.00E+00	0.00E+00	0.00E+00	
Connectors	123	4.40E-04	0.09	4.34E-03	4.34E-03	48	4.63E-04	0.10	0.01	2.70E-03	
Other	0	0.019	0.00E+00	0.00E+00	0.00E+00	2	0.017	0.14	0.01	0.00	
(3) The number of components for a particular type of equipment were calculated as follows: (Number of Components) = (Equipment Count) x (Components per Equipment for service)											
(4) Factors taken from	(4) Factors taken from EPA document EPA-453/R-95-017; November, 1995; pp. 2-15.										

(5) Per Service Type and Per Component Type: (VOC or HAP Emissions, TPY) = (Component Count) x (Emission Factor, lb/hr/component) x (8760 hours per year) x (wts%VOC or HAP) x (1 ton per 2000 lb)

Calculation Basis:

Site specific component counts are not available so default component counts are used based on the approach provided in EPA's Mandatory Reporting Rule for Greenhouse Gases (GHG MMR), 40 CFR Part 98, Subpart W, Table W-1B. Actual counts were compiled for major equipment (i.e. wellheads, separators, in-line heaters, etc.), and default component counts were applied to each equipment type. Oil produced at the site will have an API gravity of greater than 20* API; therefore, all hydrocarbon liquids are considered "light oil". There are no "heavy oil" components at this site.

Pneumatic Devices								
Туре	Count	Bleed Rate (scf/hr/component)	VOC (TPY)	HAP (TPY)	n-Hexane			
Valves	6	6	4.02	0.20	0.20			
Pumps	0	0	0.00E+00	0.00E+00	0.00E+00			

Total Fugitive Emissions (Tons/year)								
VOC	HAPs	n-Hexane						
4.02	0.20	0.20						

Calculation Basis: Emissions are estimated using the estimated controller count (for those that vent to atmosphere), an emission factor for pneumatics that is the same as what would be considered a covered continuous venting pneumatic device, and a gas composition. Note: devices used are snap acting versus throttling. The gas composition used is that of the high pressure separator gas composition.

Where pneumatic pumps are used, the manufacturer specified bleed rate will be used.

Emissions (TPY) = Count of devices * Bleed Rate (scf/hr/controller) * Gas Molecular Weight (lb/lbmole) * Weight Percent VOC or HAP * 1/molar volume conversion (379.3 scf/lbmole) * 8760 hr/yr * 1 ton/2000 lb

Gas Composition							
(High Pressure Se	parator Gas)						
Date of Analysis:	9/1/2020						
Component	wt%						
Water	0.00E+00						
H2S	0.00E+00						
Nitrogen	2.74%						
Carbon Dioxide	1.33%						
Methane	33.81%						
Ethane	25.39%						
Propane	20.07%						
Isobutane	2.60%						
n-Butane	8.25%						
Isopentane	1.63%						
n-Pentane	2.34%						
2-Methylpentane	0.00E+00						
3-Methylpentane	0.00E+00						
n-Hexane	1.83%						
Cyclohexane	0.00%						
Heptane	0.00%						
Methylcyclohexane	0.00%						
Benzene	0.00%						
Toluene	0.00%						
Ethylbenzene	0.00E+00						
o-Xylene	0.00E+00						
2,2,4-Trimethylpentane	0.00E+00						
Octane	0.00%						
Nonane	0.00%						
Decane	0.00E+00						
Decanes+	0.00E+00						
Gas wt %VOC	36.72%						
Gas wt %HAPs	1.83%						

Flowsheet Information								
Tank Losses Stencil Name	Oil Tank Losses							
Tank Losses Stencil Reference Strea	ım	Oil Tank Feed						
Separator Name		Oil Tank						
Separator Inlet Stream		Oil Tank Feed						
Separator Pressure [psia]	Inlet Outlet	72.7 13.7						
Separator Temperature [°F]	Inlet Outlet	110.0	89.8					

Loading Loss Parameters							
[%]							
[bbl/h]							
	Loading Loss						

Tank Characteristics								
Tank Type Vertical Cylinder								
Time Frame		Year						
Material Category		Light Organics						
Number of Tanks		3.0						
Shell Height	[ft]	25.000						
Diameter [ft]	[ft]	13.500						
Maximum Liquid Height	[%] [ft]	90.000	22.500					
Average Liquid Height	[%] [ft]	50.000	12.500					
Minimum Liquid Height	[%] [ft]	10.000	2.500					
Sum of Increases in Liquid Level	[ft/yr]	-						
Tank Volume	[gal] [bbl]	26768.817	637.353					
Insulation		Uninsulated						
Bolted or Riveted Construction		FALSE						
Vapor Balance Tank		FALSE						
	Paint Ch	aracteristics						
Shell Color		Tan						
Shell Paint Condition		Average						
Roof Color		Tan						
Roof Paint Condition		Average						
	Roof Ch	aracteristics						
Туре		Cone						
Diameter	[ft]	-						
Slope	[ft/ft]	0.063						
	Breather	Vent Settings						
Breather Vacuum Pressure	[psig]	-0.030						
Breather Vent Pressure	[psig]	0.030						

Meteorological Data								
Location		Williston, ND						
Average Atmospheric Pressure	[psia]	13.720						
Maximum Average Temperature	[°F]	53.200						
Minimum Average Temperature	[°F]	29.900						
Solar Insolation [BTU	/ft^2*day]	1193.000						
Average Wind Speed	[mph]	8.900						
Tank Conditions								
Flashing Temperature	[°F]	89.814						
Maximum Liquid Surface Temperature	[°F]	89.814						
Average Liquid Surface Temperature	[°F]	82.563						
Set Bulk Temperature to Stream Temperature?		TRUE						
Bulk Liquid Temperature	[°F]	110.000						
Net Throughput [bbl/day]	[bbl/yr]	170.739	62319.670					
Net Throughput Per Tank [bbl/day]	[bbl/yr]	56.913	20773.223					
Turnovers Per Tank	[per day]	40.737						
Residual Liquid	[bbl/day]	168.190						
Residual Liquid Per Tank	[bbl/day]	56.063						
Raoult's Law Used for Vapor Pressure Calc?		FALSE						
VP @ Minimum Liquid Surface Temperature	[psia]	11.646						
VP @ Maximum Liquid Surface Temperature	[psia]	13.720						
True Vapor Pressure	[psia]	12.649						

6. 2023-05-26 Oates Part 2 PTE Water Tanks

Produced Water Production	182	BWPD
Oil Production	169	BOPD
Percent Oil in Produced Water	1%	Percent
Number of Water Tanks	1	
Number of Oil Tanks	3	

_	Un	controlled Water Flas	sh	Un	controlled Water W&S	
Component	Oil Flash Mass Flow (Ib/hr)	Ratioed Water Flash Mass Flow (Ib/hr)	Water Flash Mass Flow 99% Reduction (Ib/hr)	Oil W&B Mass Flow (lb/hr)	Ratioed Water W&S Mass Flow (lb/hr)	Water W&B Mass Flow 99% Reduction (Ib/hr)
Water	0.26	0.28	0.00	0.04	0.01	1.23E-04
H2S	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Nitrogen	0.09	0.09	9.17E-04	0.00	0.00	4.44E-06
Carbon Dioxide	0.23	0.25	2.53E-03	0.03	0.01	9.09E-05
Methane	2.76	2.97	0.03	0.12	0.04	0.00
Ethane	8.32	8.96	0.09	1.19	0.40	0.00
Propane	13.14	14.15	0.14	1.83	0.61	0.01
Isobutane	2.29	2.47	0.02	0.31	0.10	0.00
n-Butane	7.61	8.20	0.08	1.04	0.35	0.00
Isopentane	1.74	1.88	0.02	0.23	0.08	7.75E-04
n-Pentane	2.30	2.48	0.02	0.30	0.10	0.00
2-Methylpentane	0.45	0.49	0.00	0.06	0.02	1.96E-04
3-Methylpentane	0.51	0.55	5.48E-03	0.07	0.02	2.20E-04
n-Hexane	1.40	1.51	0.02	0.18	0.06	6.03E-04
Cyclohexane	0.20	0.21	2.13E-03	0.03	0.01	8.51E-05
Heptane	2.00	2.15	0.02	0.25	0.08	8.38E-04
Methylcyclohexane	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Benzene	0.17	0.18	1.79E-03	0.02	0.01	7.22E-05
Toluene	0.28	0.31	3.06E-03	0.04	0.01	1.20E-04
Ethylbenzene	0.04	0.04	4.24E-04	4.86E-03	1.62E-03	1.62E-05
o-Xylene	0.05	0.05	5.03E-04	0.01	1.92E-03	1.92E-05
2,2,4-Trimethylpentane	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Octane	0.60	0.65	6.51E-03	0.07	0.02	2.47E-04
Nonane	0.03	0.03	3.30E-04	0.00	0.00	1.22E-05
Decane	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Oil 10+	1.71E-04	1.84E-04	1.84E-06	1.67E-05	5.56E-06	5.56E-08
Total	44.48	47.91	0.48	5.83	1.94	0.02
Total VOC	32.82	35.35	0.35	4.45	1.48	0.01
Total HAPs	1.94	2.09	0.02	0.25	0.08	8.31E-04

Maximum Annual Emission Rates and Composition to LP Flare								Criteria Poll	utant Emissions fro	n Flare ^a			
ProMax Stream:	Pilot Gas	Propane Pilot	Oil Flash	Oil W&B	Water Flash	Water Tank W&B	Sweep Blanket Gas	Total to Flare	Destruction Efficiency	Flare Exhaust (controlled)	Component	Emission Factor	Emission Facto Units
Component	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(%)	(tpy)			
Water	0.13	0.00E+00	1.15	0.16	0.01	5.38E-04	13.38	14.83	0%	14.83	NOx	0.068	lb/MMBtu
H2S	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	98%	0.00E+00	CO	0.31	lb/MMBtu
Nitrogen	0.28	0.00E+00	0.37	0.01	4.02E-03	1.95E-05	28.76	29.43	0%	29.43	SO ₂		
Carbon Dioxide	0.13	0.00E+00	1.03	0.12	0.01	3.98E-04	13.79	15.08	0%	15.08	PM ₁₀	0.00	lb/MMscf
Methane	3.46	0.00E+00	12.08	0.54	0.13	0.00	355.45	371.66	98%	7.43	PM _{2.5}	0.00	lb/MMscf
Ethane	2.63	0.00E+00	36.45	5.23	0.39	0.02	270.16	314.88	98%	6.30	H ₃ S		
Propane	2.12	17.93	57.55	8.03	0.62	0.03	217.82	304.08	98%	6.08	2.		
Isobutane	0.30	0.00F+00	10.04	1.37	0.11	0.00	30.36	42.18	98%	0.84			
n-Butane	0.93	0.00E+00	33.35	4.54	0.36	0.02	95.40	134.59	98%	2.69	Constants		
Isopentane	0.20	0.00E+00	7.64	1.02	0.08	0.00	20.61	29.56	98%	0.59	H ₂ S Molecular Weight		34.08
n-Pentane	0.26	0.00E+00	10.08	1.33	0.11	0.00	27.19	38.99	98%	0.78	SO ₂ Molecular Weight		64.06
2-Methylpentane	0.05	0.00E+00	1.98	0.26	0.02	8.58E-04	5.39	7.70	98%	0.15	Gas Constant (scf/lb-mol)		379.30
3-Methylpentane	0.06	0.00E+00	2.23	0.29	0.02	9.64E-04	6.10	8.70	98%	0.17	·		
n-Hexane	0.17	0.00E+00	6.15	0.79	0.07	0.00	17.19	24.37	98%	0.49		Variables	
Cyclohexane	0.02	0.00E+00	0.87	0.11	0.01	3.73E-04	2.41	3.42	98%	0.07	Flare Destruct	on Efficiency	98%
Heptane	0.25	0.00E+00	8.76	1.10	0.09	0.00	26.20	36.41	98%	0.73	Number	of Pilots	2
Methylcyclohexane	0.00E+00	0.00E+00	0.00	0.00	0.00E+00	0.00E+00	0.00	0.00	98%	0.00	Volume of Ga	s/Tip (scf/hr)	35.20
Benzene	0.02	0.00E+00	0.73	0.09	0.01	3.16E-04	1.96	2.81	98%	0.06	Operatin	g Hours	8,760
Toluene	0.04	0.00E+00	1.24	0.16	1.34E-02	5.26E-04	3.60	5.05	98%	0.10	-		
Ethylbenzene	5.28E-03	0.00E+00	0.17	0.02	1.86E-03	7.09E-05	0.54	0.74	98%	0.01			
o-Xylene	0.01	0.00E+00	0.20	0.03	2.21E-03	8.40E-05	0.65	0.89	98%	0.02			
2,2,4-Trimethylpentane	0.00	0.00E+00	0.00	0.00	0.00E+00	0.00E+00	0.00	0.00	98%	0.00			
Octane	0.08	0.00E+00	2.65	0.32	0.03	1.08E-03	8.60	11.69	98%	0.23			
Nonane	0.00	0.00E+00	0.13	0.02	1.44E-03	5.33E-05	0.47	0.63	98%	0.01			
Oil 10+	5.12E-05	0.00E+00	7.47E-04	7.31E-05	8.04E-06	2.44E-07	0.01	0.01	98%	1.23E-04			
Total	11.15	17.93	194.84	25.55	2.10	0.09	1146.04	1,397.69		86.10			
Total VOC	4.52	17.93	143.77	19.48	1.55	0.06	464.50	651.81		13.04			
Total HAP	0.23	0.00E+00	8.50	1.09	0.09	0.00	23.94	33.86		0.68			
Annual Hours (Hrs)	8,760	8,760	8,760	8,760	8,760	8,760	8,760						
Heating Value HHV (Btu/scf)	1,542	2,557	2,370	2,518	2,370	2,518	1,542	1,644					
Heating Value LHV (Btu/scf)	1,407	2,557	2,179	2,318	2,179	2,318	1,407	1,504					
Molecular Weight	27.44	44.10	42.07	44.79	42.07	44.79	27.44		-				
Volumetric Flow (scf/hr)	35.20	35.20	401	49.42	4.32	0.16	3618.75	4,144	4				
Volumetric Flow (MMscf/yr)	0.31	0.31	3.51	0.43	0.04	1.44E-03	31.70	35.69	4				
H2S PPM	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00]				

Oil Tank Flash GOR (scf/bbl) Tank Total GOR (scf/bbl) 56.98 64.64

Combustion Emissions from Flare									
	(tpy)								
Total NOx	0.02	0.03	0.28	0.04	3.05E-03	1.23E-04	1.66	2.03	
Total CO	0.07	0.12	1.19	0.16	0.01	5.18E-04	6.92	8.46	
Total SO2	0.00E+00								
Total PM ₁₀	0.00E+00								
Total PM _{2.5}	0.00E+00								

Footnotes:

^a Flare CO and NOx emission factors from AP-42, Table 13.5-1 & 13.5-2, February 2018. PM₁₀ and PM_{2.5} emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO₂ emissions assume 100% conversion of H₂S to SO₂.

HP Flare Annual Emissions

Maximum Annual Emission Rates and Composition to HP Flare								Criteria Poll	utant Emission	s from Flare ^a
ProMax Stream:	Pilot Gas	Propane Pilot	HP Flared Gas	Heater Treater Gas	Total to Flare	Destruction Efficiency	Flare Exhaust (controlled)	Component	Emission	Emission Factor
Component	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(%)	(tpy)		Factor	Units
Water	0.13	0.00E+00	0.00	5.75	5.88	0%	5.88	NOx	0.068	lb/MMBtu
H2S	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	98%	0.00E+00	CO	0.31	lb/MMBtu
Nitrogen	0.28	0.00E+00	0.00	12.36	12.64	0%	12.64	SO ₂		
Carbon Dioxide	0.13	0.00E+00	0.00	5.92	6.06	0%	6.06	PM ₁₀	0.00	lb/MMscf
Methane	3.46	0.00E+00	0.00	152.72	156.18	98%	3.12	PM _{2.5}	0.00	lb/MMscf
Ethane	2.63	0.00E+00	0.00	116.07	118.70	98%	2.37	H ₃ S		
Propane	2.12	17.93	0.00	93.59	113.63	98%	2.27	Σ		
Isobutane	0.30	0.00E+00	0.00	13.04	13.34	98%	0.27	8		•
n-Butane	0.93	0.00E+00	0.00	40.99	41.92	98%	0.84		Constants	
Isopentane	0.20	0.00E+00	0.00	8.86	9.06	98%	0.18	H ₂ S Molecul	ar Weight	34.08
n-Pentane	0.26	0.00E+00	0.00	11.68	11.95	98%	0.24	SO ₂ Molecul	ar Weight	64.06
2-Methylpentane	0.05	0.00E+00	0.00	2.32	2.37	98%	0.05	Gas Constant	(scf/lb-mol)	379.30
3-Methylpentane	0.06	0.00E+00	0.00	2.62	2.68	98%	0.05	8		
n-Hexane	0.17	0.00E+00	0.00	7.39	7.55	98%	0.15		Variables	
Cyclohexane	0.02	0.00E+00	0.00	1.03	1.06	98%	0.02	Flare Destructi	on Efficiency	98%
Heptane	0.25	0.00E+00	0.00	11.26	11.51	98%	0.23	Number o	of Pilots	2
Methylcyclohexane	0.00E+00	0.00E+00	0.00	0.00	0.00	98%	0.00E+00	Volume of Gas	/Tip (scf/hr)	35.20
Benzene	0.02	0.00E+00	0.00	0.84	0.86	98%	0.02	HT Gas O	o hours	720
Toluene	0.04	0.00E+00	0.00	1.55	1.58	98%	0.03	HP Sep Opera	nting Hours	0
Ethylbenzene	5.28E-03	0.00E+00	0.00	0.23	0.24	98%	0.00	-		
o-Xylene	0.01	0.00E+00	0.00	0.28	0.29	98%	0.01			
2,2,4-Trimethylpentane	0.00	0.00E+00	0.00E+00	0.00	0.00	98%	0.00			
Octane	0.08	0.00E+00	0.00	3.70	3.78	98%	0.08			
Nonane	0.00	0.00E+00	0.00	0.20	0.21	98%	0.00			
Decane	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	98%	0.00E+00			
Oil 10+	5.12E-05	0.00E+00	0.00	0.00	0.00	98%	4.62E-05			
Total	11.15	17.93	0.00	492.40	521.47		34.51			
Total VOC	4.52	17.93	0.00	199.57	222.02		4.44			
Total HAP	0.23	0.00E+00	0.00	10.29	10.52		0.21			
Annual Hours (Hrs)	8,760	8,760	0	720						
Heating Value HHV (Btu/scf)	1,542	2,557		1,542	1,544					
Heating Value LHV (Btu/scf)	1,407	2,557		1,407	1,410					
Molecular Weight	27.44	44.10		27.44						
Volumetric Flow (scf/hr)	35.20	35.20	0	18,917	18,987					
Volumetric Flow (MMscf/yr)	0.31	0.31	0.00	13.62	14.24					
H2S PPM	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
					-					

Combustion Emissions from Flare										
	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)					
Total NOx	0.02	0.03		0.71	0.76					
Total CO	0.07	0.12		2.97	3.16					
Total SO2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
Total PM ₁₀	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00					
Total PM _{2.5}	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00					

Footnotes:

^a Flare CO and NOx emission factors from AP-42, Table 13.5-1 & 13.5-2, February 2018. PM₁₀ and PM_{2.5} emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO₂ emissions assume 100% conversion of H₂S to SO₂.

Truck Loading Losses Calculations

Promax Stream Speciation 32 - Oil Tool W&B					
Controlled/Uncontrolled	UNCON	TROLLED			
Oil Loaded	61,685	bbls / yr			

Promax Report Results										
LL= 12.46 * SPM/T * (1-EFF/100)										
Saturation Factor (S) =	0.6									
Average True Vapor Pressure of Liquid Loaded (P)=	12.65	psi								
Average Surface Temperature of Liquid Loaded (T) ^a =	542.23	Rankin								
Molecular Weight (M) ^a =	44.79	lb/lb-mole								
Control Efficiency * Collection Efficiency (EFF) ^e =	0	%								
Hydrocarbon Content ^a =	100.00	Weight %								
VOC Content ^a =	76.27	Weight %								
HAP Conent ^a =	4.27	Weight %								
Average Uncontrolled LL ^b =	7.8111	lb/1000 gallon								
Average Uncontrolled LL ^b =	0.3281	lb/bbl								
Average Uncontrolled LL ^b =	0.2502	lb VOC/bbl								
Estimated Throughput=	61,685	bbl/Year								

	TPY
Total Emissions	10.12
	TPY
Total VOC Emissions	7.72
	ТРҮ
Total HAP Emissions	0.43

Component	Total Speciated Vapors Emitted During Loading (Fugitives)						
	Mass Fraction	ton / yr ^d					
Water	0.63	0.06					
H2S	0.00E+00	0.00E+00					
Nitrogen	0.02	2.31E-03					
Carbon Dioxide	0.47	0.05					
Methane	2.13	0.22					
Ethane	20.48	2.07					
Propane	31.43	3.18					
Isobutane	5.38	0.54					
n-Butane	17.75	1.80					
Isopentane	3.99	0.40					
n-Pentane	5.22	0.53					
2-Methylpentane	1.01	0.10					
3-Methylpentane	1.13	0.11					
n-Hexane	3.10	0.31					
Cyclohexane	0.44	0.04					
Heptane	4.31	0.44					
Methylcyclohexane	0.00	0.00E+00					
Benzene	0.37	0.04					
Toluene	0.62	6.25E-02					
Ethylbenzene	0.08	8.43E-03					
o-Xylene	0.10	9.99E-03					
2,2,4-Trimethylpentane	0.00	0.00E+00					
Octane	1.27	0.13					
Nonane	0.06	6.33E-03					
Decane	0.00E+00	0.00E+00					
Oil 10+	2.86E-04	2.90E-05					
Total	100.00	10.12					
Total VOC	76.27	7.72					
Total HAP	4.27	0.43					

Footnotes:

^aValues were obtained from Promax.

^bLoading emissions include total hydrocarbons as calculated using AP-42, Section 5.2.

^cOil tanks are only trucked out when transfer to pipeline is unavailable.

^dThe component speciation was obtained from Promax Stream 'Oil Tool Loading' and multiplied by the total hydrocarbon emissions.

^eLoading emissions are uncontrolled.

Composition Phase Total	Status: From Block:	Bolyed Heater Treater	Solved SPLT-104	Selved Selved SPLT-105 -	School	Solved HP Separator	Solved Solved - Ol Tan	Solved k Oli Tank	Solved MIX-102 S	Solved So SPLT-102 SPL	ived Bok T-102 MCC-	red Baived 101 Inlet Mixer	Belved SPLT-102	Solved S MIX-108 SP	iched Solv PLT-103 SPLT-	ed Solved -103 Water Tank	Solved Water Tank	Solved Se MIX-100 SP1	lived Solved T-104 SPLT-105	Selved Heater Treater	Solved MIX-103	Solved Solve VRU -	d Gole Heater 1	red Solve Treater SPLT-1	d Solved 01 SPLT-101	Selved Sel VRT V	lord Solved RT	Solved SPLT-100
Std Vapor Volumetric Flow	To Block:	SPLT-105 MMSCFD	- MMSCFD	MIX-101 Inlet Mixed MMSCFD MMSCFD	Inlet Mixer MMSCFD	SPLT-104 MMSCPD	Inlet Mixer -	- MMSCFD	Oll Tank MMSCFD		SPLT SCFD MMS	CFD MMSCFD		N MMSCFD M	IX-108 MIX-1 MSCFD MMSC	103 - CFD MMSCFD		Water Tank ML MMSCFD MM	K-101 MIX-103 SCFD MMSCFD	MIX-100 MMSCFD	VRU MMSC/FD	MIX-101 - MMSCFD MMSC	SPLT D MMS	CFD MIX-10	2 VRT	MIX-102 SPL MMSCFD MMS	T-103 SCFD MMSCFD	HP Separator
Water		0.00809222	0	0.00807420 0	* 0*	0	1.35046* 0.000132	206 2.51763E-05	0.000157382 7.5	51221E-06 0.00	654012 0.0080	09222 1.3504	0.00154459	0	0	0 5.51094E-06	1.34220	1.34221	0 1.80216E-05	1.34221	1.80216E-05 1.8	80216E-05 6.533718	05* 0.0001	0.000157	382 0	0	0 6.53371E-06*	0
NZ		0.0111855	0	0.0111606 0.0111811	* 3.42749E-05*	0	0* 2.769068	-05 5.85064E-07	2.82757E-05 1.0	03837E-05 0.00	904008 0.01:	11855 0.011215	0.00213501	0	ō	0 1.43901E-06	1.79777E-07	1.61879E-06	0 2.49104E-05	1.61879E-06	2.49104E-05 2.4	49104E-05 1.518358	07* 2.8279	57E-05 2.827571	E-05 C	0	0 1.51835E-07*	0
C1		0.241376	0	0.240838 0.240536	* 0.00257062*	0	0* 4.856146 0* 0.00156	-05 7.62532E-06 547 9.52462E-05	0.00166072 0.0	16824E-06 0.00. 000224075 0.:	275826 0.0034 195079 0.24	41286 0.0034859 41376 0.24310	0.000651424	0	0	0 2.90143E-06 0 5.58398E-05	1.40335E-05 1.43149E-05	1.69350E-05 7.01547E-05	0 0.000537552	7.01547E-05	0.000537552 0.0	00537552 2.471828	-05* 0.001	6/E-05 5.6186/I 166072 0.00166	ios (0 0	0 1.97891E-06* 0 2.47182E-05*	0
а в		0.0978773 0.0538125	0	0.0976593 0.0963570 0.0536927 0.0519326	* 0.00494793* * 0.00796412*	0	0* 0.00252 0* 0.00271	0.000871083 0.00335719	0.00339178 9.0 0.00607085 4.5	08619E-05 0.0 99555E-05 0.0-	791042 0.093 434912 0.053	78773 0.10130 38125 0.059896	6 0.0186822 8 0.0102714	0	0	0 2.63971E-05 0 1.06830E-05	9.48990E-06 2.68393E-06	3.58870E-05 1.33669E-05	0 0.000217976 0 0.000119842	3.58870E-05 1.33669E-05	0.000217976 0.0 0.000119842 0.0	100217976 0.000509 100119842 0.00297	270* 0.003 858* 0.006	39178 0.00339 507085 0.00607	178 0 085 0	0 0	0 0.000126806* 0 0.000132692*	0
iC4 nC4		0.00569076 0.0178809	0	0.00567808 0.00511069 0.0178411 0.0161973	* 0.00194133* * 0.00754459*	0	0* 0.000359 0* 0.00119	018 0.00100144 0.00 0.00466390	0.00136046 5.2 0.00585695 1.6	28287E-06 0.00- 65993E-05 0.0	459926 0.0058 144513 0.013	69076 0.0070520 78809 0.023741	0.00108621	0	0	0 6.92726E-07 0 3.27075E-06	1.11805E-07 7.56689E-07	8.04530E-07 4.02744E-06	0 1.26735E-05 0 3.98213E-05	8.04530E-07 4.02744E-06	1.26735E-05 1.3 3.98213E-05 3.9	26735E-05 0.000952 98213E-05 0.00450	265* 0.001 164* 0.005	136046 0.00136 585695 0.00585	046 0 695 0	0 0	0 1.72346E-05* 0 5.68672E-05*	0
iCS		0.00311238	0	0.00310545 0.00258395	* 0.00289280*	0	0* 0.000220	228 0.00214372	0.00236395 2.8	88930E-06 0.00	251542 0.003	11238 0.0054767	0.000594072	0	0	0 3.67947E-07 0 2.76332E-07	5.67611E-08 1.92037E-08	4.24708E-07 2.95536E-07	0 6.93138E-06	4.24708E-07	6.93138E-06 6.9	93138E-06 0.00211	436* 0.002	236395 0.00236	395 C	0	0 1.02900E-05* 0 1.34797E-05*	0
2-Methylpentane		0.000581752	0 0	0.000580234 0	* 0.00209077*	0	0* 4.767288	05 0.00136129	0.00140896 6.3	32887E-07 0.000	550991 0.00068	81752 0.0020907	0.000130128	0	0	0 5.24696E-08	4.70118E-09	5.71707E-08	0 1.51828E-06	5.71707E-08	1.51828E-06 1.5	51828E-06 0.00135	508* 0.001	40896 0.00140	896 0	0	0 2.17583E-06*	0
nC6		0.00217298	0	0.00216814 0.00242400	0.00252285	0	0* 0.000148	424 0.00585246	0.00600088 2.0	D1723E-06 0.00	175620 0.002	17298 0.0081739	0.000414754	0	0	0 9.24454E-08	4.23729E-09	9.66827E-08	0 4.83930E-06	9.66827E-08	4.83930E-06 4.1	83930E-06 0.00583	334* 0.005	500088 0.00600	088 0	0	0 6.70174E-06*	0
Cyclohexane C7		0.000311417 0.00284846	0 0	0.000310724 0	* 0.00141350* * 0.0244846*	0	0* 2.14326E 0* 0.000181	05 0.00108044 712 0.0214544	0.00110187 2.8 0.0216361 2.6	89096E-07 0.0003 64430E-06 0.003	251687 0.0003: 230212 0.0028	11417 0.0014135 84846 0.024484	0 5.94413E-05 6 0.000543696	0	0	0 1.14688E-07 0 7.85532E-08	9.06663E-08 2.51844E-09	2.05354E-07 8.10716E-08	0 6.93536E-07 0 6.34362E-06	2.05354E-07 8.10716E-08	6.93536E-07 6.9 6.34362E-06 6.3	93536E-07 0.00107 34362E-06 0.0214	768* 0.001 315* 0.02	110187 0.00110 216361 0.0216	187 0 361 0	0 0	0 9.68683E-07* 0 8.00880E-06*	0
Methylcyclohexane Benzene		0.000272815	0	0 0	1* 0* 1* 0.000851389*	0	0* 0* 1.936258	0 0	0.000572436 2.5	0 53261E-07 0.000	0 220489 0.00023	0 0	0 5.20732E-05	0	0	0 0 0 2.08229E-07	0 5.92932E-06	0 6.13755E-06	0 0 0 6.07568E-07	0 6.13755E-06	0 6.07568E-07 6.0	0 07568E-07 0.000550	0* 547* 0.0005	0 572436 0.000572	0 0 436 0	0 0	0 0* 0 8.85567E-07*	0
Toluene Ethylheozene		0.000426020	0 0	0.000425071 0 5.56193E-05 0	0.00343572* 0.00118317*	0	0* 2.807698 0* 3.376138	05 0.00297441	0.00300248 3.5	95485E-07 0.000	344309 0.0004	26020 0.0034357	8.13159E-05	0	0	0 3.18955E-07 0 3.78540E-08	6.89421E-06	7.21316E-06 7.32593E-07	0 9.48760E-07 0 1.24142E-07	7.21316E-06 7.32593E-07	9.48760E-07 9.4	48760E-07 0.00297 24142E-07 0.00112	0.003	800248 0.00300	248 0	0	0 1.24731E-06* 0 1.46063E-07*	0
o-Xylene		6.67537E-05	0	6.66051E-05	* 0.00166987*	0	0* 4.01073E	-06 0.00159778	0.00160179 6.1	19691E-08 5.395	03E-05 6.6753	7E-05 0.0016698	1.27415E-05	0	0	0 4.65343E-08	1.28205E-06	1.32859E-06	0 1.48663E-07	1.32859E-06	1.48663E-07 1.4	48563E-07 0.00159	729* 0.001	160179 0.00160	179 0	0	0 1.73069E-07*	0
2,2,4-Trimeonyipencane C8		0.000820206	0 0	0.000818379	* 0.0184221*	0	0* 4.82305E	05 0.0175536	0.0176019 7.6	61417E-07 0.000	662889 0.0008	20206 0.018422	0.000156556	0	0	0 1.08255E-08	1.55463E-10	1.09810E-08	0 1.82663E-06	1.09810E-08	1.82663E-06 1.8	82663E-06 0.0175	477* 0.01	176019 0.0176	019 0	0	0 2.07203E-06*	0
C10		4.02028E-05	0	4.01133E-05 U	1* 0.00248013* 1* 0*	0	0* 2.1/3116	0 0.00243776	0.00243993 3.7	/3213E-08 3.249 0	0	0 0	0 0	0	0	0 3.46159E-10	4.22070E-12 0	3.50380E-10 0	0 8.95330E-08	3.50380E-10 0	8.95330E-08 8.9 0	95330E-08 0.00243 0	0* 0.002	0 0	0 (0 0	0 9.086785-08*	0
C10+ Note Fraction		2.39193E-07	0	2.38660E-07 0	* 0.0404554*	0	0* 6.478768	09 0.0404551	0.0404551 2.2	22049E-10 1.933	15E-07 2.3919	3E-07 0.040455-	4.56556E-08	0	0	0 2.09750E-14	3.40559E-18	2.09784E-14	0 5.32690E-10	2.09784E-14	5.32690E-10 5.3	32690E-10 0.0404	551* 0.04	04551 0.0404	551 (0	0 2.22274E-10*	0
Water H2S		0.0177846		0.0177846 0	* 0* * 0*		1* 0.0137 0*	293 0.000220799	0.00127277 0	0.0177846 0.0:	177846 0.013 0	77846 0.70298 0 I	0.0177846 0 0			0.0508115	0.999958	0.999881	0.0177846	0.999881	0.0177846 0	0.0177846 5.79038	05* 0.001 0*	0.00127	277 0.00127277		0.0157186*	0.702985
N2		0.0245827		0.0245827 0.025794	* 0.00025*		0* 0.00287	562 5.13109E-06	0.000228670 0	0.0245827 0.02	245827 0.024	45827 0.0058381	0.0245827			0.0132678	1.33936E-07	1.20592E-06	0.0245827	1.20592E-06	0.0245827	0.0245827 1.345618	06* 0.0002	228670 0.000228	670 0.000228670		0.000365280*	0.00583819
C1		0.530481		0.530481 0.5549	* 0.01875*		0* 0.00504	500 8.88751E-05 571 0.000835322	0.0134305	0.530481 0.5	530481 0.5	30481 0.12655	0.530481			0.514849	1.06647E-05	5.22618E-05	0.530481	5.22618E-05	0.530481	0.530481 0.000219	050* 0.0004	134305 0.0134	305 0.0134305		0.0594661*	0.126550
а в		0.215109 0.118266		0.215109 0.222289 0.118266 0.119809	* 0.03609* * 0.05809*		0* 0.261 0* 0.281	770 0.00763952 309 0.0294430	0.0274299 0.0490960	0.215109 0.3	215109 0.2: 118266 0.1:	15109 0.052734 18266 0.031179	6 0.215109 4 0.118266			0.243384 0.0984984	7.07009E-06 1.99956E-06	2.67341E-05 9.95771E-06	0.215109 0.118266	2.67341E-05 9.95771E-06	0.215109 0.118266	0.215109 0.00451 0.118266 0.0263	332* 0.02 971* 0.04	274299 0.0274 190960 0.0490	299 0.0274295 960 0.0490960		0.305064*	0.0527346 0.0311794
iC4 nC4		0.0125068 0.0392975		0.0125068 0.01175 0.0392975 0.037366	* 0.01416* * 0.05503*		0* 0.0372 0* 0.123	333 0.00878276 396 0.0409030	0.0110022 0	0.0125068 0.0: 0.0392975 0.0:	125068 0.012 392975 0.039	25068 0.0036709 92975 0.012358	0.0125068 0.0392975			0.00638700 0.0301567	8.32958E-08 5.63743E-07	5.99336E-07 3.00025E-06	0.0125068 0.0392975	5.99336E-07 3.00025E-06	0.0125068 0	0.0125068 0.00843 0.0392975 0.0398	927* 0.01 950* 0.04	110022 0.0110 73661 0.0473	022 0.0110022 661 0.0473661		0.0414624* 0.136809*	0.00367095 0.0123589
iCS nCS		0.00584020 0.00902251		0.00584020 0.005961	* 0.0211* * 0.0321*		0* 0.0228	0.0188007	0.0191176 0.	00684020 0.00	684020 0.0068 902251 0.0090	84020 0.0028509	0.00584020			0.00339251 0.00254781	4.22877E-08 1.43070E-08	3.16387E-07 2.20160E-07	0.00684020	3.16387E-07 2.20160E-07	0.00684020 0.	00684020 0.0187	381* 0.01 928* 0.03	191176 0.0191 324036 0.0374	176 0.0191176 036 0.0324036		0.0247554*	0.00285094
2-Methylpentane 3-Methylpentane		0.00149831		0.00149831 0	0.01525*		0* 0.00495	0.0119387	0.0113945 0.	00149831 0.00	149831 0.0014	49831 0.0010883	0.00149831			0.000483775	3.50243E-09	4.25894E-08	0.00149831	4.25894E-08	0.00149831 0.	00149831 0.0120	0.01	113945 0.0113	945 0.0113945		0.00523453*	0.00108836
nC6		0.00477564		0.00477564 0.005592	* 0.04194*		0* 0.0154	136 0.0513268	0.0485301 0.	.00477564 0.00	477564 0.004	77564 0.0042549	0.00477564			0.000852356	3.15683E-09	7.20239E-08	0.00477564	7.20239E-08	0.00477564 0.	.00477564 0.0516	969* 0.04	185301 0.0485	301 0.0485301		0.0161228*	0.00425498
Cyclonexane C7		0.00526018	0	0.000526018 0	0.01031* 0.17859*		0* 0.00222 0* 0.0188	0.188158 0.188158	0.00891104 0.0 0.174974 0.	00626018 0.000	626018 0.0006	6++13 U.00073580 26018 0.012745	0.000584413			0.00105743	6.75475E-08 1.87627E-09	1.5.2979E-07 6.03944E-08	0.00626018	1.52979E-07 6.03944E-08	0.000626018 0.	00626018 0.189	933* 0.1	0.00891 174974 0.174	.104 0.00891104 974 0.174974		0.0192673*	0.0127455
Methylcyclohexane Benzene		0		0 0 0.000599576 0	0* 0* 0* 0.00621*		0* 0* 0.00201	0 0	0 0.00462938 0.0	0	0 599576 0.00059	0 0 99576 0.00044319	0 0.000599576			0 0.00191989	0 4.41741E-06	0 4.57218E-06	0.000599576	0 4.57218E-06	0	0 100599576 0.00487	0* 912* 0.004	0 462938 0.00462	0 0 938 0.00462938	1	0* 0.00213047* (0 0.000443193
Toluene Ethylbenzene		0.000936280	0	0.000936280 0	0.02506* 0.00863*		0* 0.00291 0* 0.000350	573 0.0260859 505 0.00985165	0.0242816 0.0	00936280 0.000	936280 0.0009 122509 0.0001	36280 0.0017884 22509 0.00061590	0.000936280			0.00294080	5.13626E-06 5.17589E-07	5.37346E-06 5.45746E-07	0.000936280	5.37346E-06	0.000936280 0.0	00936280 0.0263	286* 0.02 150* 0.009	42816 0.0242 011175 0.00911	816 0.0242816 175 0.00911175		0.00300073*	0.00178847
o-Xylene		0.000146707	ć	0.000146707 0	* 0.01218*		0* 0.000416	507 0.0140127	0.0129539 0.0	00146707 0.000	146707 0.00014	46707 0.00086925	0.000146707			0.000429051	9.55144E-07	9.89733E-07	0.000146707	9.89733E-07	0.000146707 0.0	00146707 0.0141	557* 0.01	129539 0.0129	539 0.0129539		0.000416364* 0	0.000869257
C8		0.00180260		0.00180260	* 0.13437*		0* 0.00500	364 0.153948	0.142349 0.	.00180260 0.00	180260 0.0011	80260 0.0095896	0.00180260			9.98125E-05	1.15822E-10	8.18031E-09	0.00180260	8.18031E-09	0.00180260 0.	.00180260 0.155	513* 0.1	142349 0.142	349 0.142349		0.00498482*	0.00958966
C10		8.83553E-05		0 C	1* 0.01809* 1* 0*		0* 0.000225	0 0	0.0197321 8.8	0	0 0	0 00012910	8.83553E-05 0 0			3.19163E-06 0	3.1444/E-12 0	2.61016E-10	8.83553E-05 0	2.61016E-10 0	8.83553E-U5 8.1 0	0 0.0216	0.01	0 0.019/	0 0		0.00021850/*	0.00129104
C10+ Mass Fraction		5.25683E-07		5.25683E-07 0	* 0.29508*		0* 6.728078	07 0.354797	0.327167 5.2	25683E-07 5.256	83E-07 5.2568	3E-07 0.021059	5.25683E-07			1.93391E-10	2.53721E-18	1.56279E-14	5.25683E-07	1.56279E-14	5.25683E-07 5.	25683E-07 0.358	526* 0.3	327167 0.327	167 0.327167		5.34738E-07*	0.0210591
Water H2S		0.0116768		0.0116768 0	* 0*		1* 0.00587 0*	866 2.73916E-05	0.000167141 0	0.0116768 0.0	0.01:	0.45361	0.0116768			0.0354464	0.999891	0.999780	0.0116768	0.999780	0.0116768 0	0.0116768 7.13151	E-06 0.0001	167141 0.000167 0	141 0.000167141		0.00632226	0.453610
N2		0.0250977		0.0250977 0.0274463	* 5.36612E-05*		0* 0.00191	463 9.89815E-07	4.66945E-05 0	0.0250977 0.0	250977 0.02	50977 0.0058578	0.0250977			0.0143925	2.08254E-07	1.87499E-06	0.0250977	1.87499E-06	0.0250977	0.0250977 2.5770	E-07 4.6694	45E-05 4.66945I	E-05 4.66945E-05		0.000228460	0.00585787
C1		0.310155		0.310155 0.338131	* 0.00230477*		0* 0.0619	373 9.22791E-05	0.00157055	0.310155 0.3	310155 0.3	10155 0.072715	0.310155			0.319831	9.49624E-06	4.65340E-05	0.310155	4.65340E-05	0.310155	0.310155 2.40252	E-05 0.001	157055 0.00157	055 0.00157055		0.0212990	0.0727157
а в		0.235731 0.190061		0.235731 0.253885 0.190061 0.200664	* 0.00831498* * 0.0196269*		0* 0.187 0* 0.295	0.00158184 352 0.00894037	0.00601221 0.0157809	0.235731 0.3	235731 0.23 190061 0.19	35731 0.056795 90051 0.049244	0 0.235731 5 0.190061			0.283388 0.168188	1.17998E-05 4.89395E-06	4.46169E-05 2.43708E-05	0.235731 0.190061	4.46169E-05 2.43708E-05	0.235731 0.190061	0.235731 0.00092 0.190061 0.0079	7787 0.006 5765 0.01	501221 0.00601 L57809 0.0157	221 0.00601221 809 0.0157805		0.204800 0.314275	0.0567950 0.0492446
iC4 nC4		0.0264927 0.0832426		0.0264927 0.0260288 0.0832426 0.0824931	* 0.00630609* * 0.0245073*		0* 0.0515 0* 0.171	0.00351521 154 0.0163710	0.00466137 0	0.0264927 0.03 0.0832426 0.00	264927 0.028 832426 0.08	64927 0.0076421 32426 0.025728	0.0264927 0.0832426			0.0143750 0.0678726	2.68717E-07 1.81867E-06	1.93342E-06 9.67863E-06	0.0264927 0.0832426	1.93342E-06 9.67863E-06	0.0264927 0	0.0264927 0.0033 0.0832426 0.015	5336 0.004 8523 0.02	66137 0.00466 00678 0.0200	137 0.00466137 678 0.0200678	1	0.0538040 0.177531	0.00764215 0.0257287
iC5		0.0179861		0.0179861 0.0163361	* 0.0116645*		0* 0.0392	183 0.00934075 582 0.0161922	0.0100543 0	0.0179861 0.0	179861 0.01	79861 0.0073673	0.0179861			0.00947806	1.69345E-07 5.72938E-08	1.26696E-06 8.81622E-07	0.0179861	1.26696E-06 8.81672E-07	0.0179861	0.0179861 0.0092	4247 0.01	0.0100	543 0.0100543		0.0398766	0.00736737
2-Methylpentane		0.00470570		0.00470570 0	0.0100695*		0* 0.0101	401 0.00708464	0.00715761 0.	00470570 0.00	470570 0.004	70570 0.0033593	0.00470570			0.00161434	1.67526E-08	2.03704E-07	0.00470570	2.03704E-07	0.00470570 0.	00470570 0.0070	7503 0.007	15761 0.00715	761 0.00715761		0.0100711	0.00335930
nC6		0.0149987		0.0149987 0.0183041	* 0.0276928*		0* 0.0315	0.0304583	0.0304849 0	0.0149987 0.0	149987 0.014	49987 0.013133	0.0149987			0.00284429	1.50996E-08	3.44488E-07	0.0149987	3.44488E-07	0.0149987	0.0149987 0.030	4565 0.03	0.0304	849 0.0304849		0.0310200	0.0131334
Cyclonesane C7		0.0228613		0.0228613 0	1* 0.00664839* 1* 0.137116*		0* 0.00445 0* 0.0449	415 0.129830	0.127803 0	0.0228613 0.00	209923 0.0020 228613 0.022	28613 0.045743	0.00209923			0.00281025	3.15531E-07 1.04352E-08	7.14577E-07 3.35883E-07	0.00209923	3.35883E-07	0.00209923 0.	0.0228613 0.13	9506 0.005 0110 0.1	46666 0.00546 127803 0.127	803 0.127803	1	0.0043/881 0.0431037	0.00221798
Methylcyclohexane Benzene		0.00170687		0 0	1* 0.00371675*		0* 0* 0.00373	0 0	0 0.00263591 0.	0.001	0 170587 0.0013	0 0	0 0.00170687			0.00580715	0 1.91520E-05	0 1.98223E-05	0.00170687	0 1.98223E-05	0.00170687 0.	0.00170687 0.0026	0 0550 0.002	0 163591 0.00263	0 0 591 0.00263591		0 0.00371543	0.00123995
Toluene Ethylbenzene		0.00314402 0.000474012		0.00314402 0	* 0.0176920* * 0.00702016*		0* 0.00538 0* 0.000884	523 0.0165511 583 0.00720226	0.0163083 0.	00314402 0.00	314402 0.003: 474012 0.0004	14402 0.0059022 74012 0.0023420	0.00314402 0.000474012			0.0104924 0.00143482	2.62675E-05 3.04997E-06	2.74795E-05 3.21579E-06	0.00314402	2.74795E-05 3.21579E-06	0.00314402 0.	00314402 0.016	5845 0.01 2276 0.007	163083 0.0163 05137 0.00705	083 0.0163083		0.00617284	0.00590226
o-Xylene 2.2.4-Trimethyloentane		0.000567638	(0.000567638	0.00990794*		0* 0.00105 0*	0.0102443	0.0100248 0.0	00567638 0.000	567638 0.00056 0	67638 0.0033054	0.000567638			0.00176384	5.62834E-06	5.83196E-06	0.000567638	5.83196E-06 0	0.000567638 0.0	000567638 0.010	2741 0.01	0.0100	248 0.0100248		0.000985899	0.00330541
C8		0.00750433		0.00750433 0	* 0.117607*		0* 0.0135	0.121095	0.118528 0.	.00750433 0.00	750433 0.007	50433 0.039235	0.00750433			0.000441498	7.34337E-10	5.18632E-08	0.00750433	5.18632E-08	0.00750433 0.	.00750433 0.12	1444 0.1	118528 0.118	528 0.118528		0.0127128	0.0392350
C10		0.000412996		0 0	° 0.01////4		0* 0.00088/	0 0	0.0184475 0.0	0	0.0004	0 00033507	0.000412996			1.585102-05	0	1.858052-09	0.000412358	1.658052-09	0.000412998 0.0	0 00412596 0.018	0	0	0 0		0.000825974	0.00393073
C10+ Mass Flow		4.59230E-06	lbh	4.59230E-06 U	P 0.541954*	lbh	0* 3.833088 Ibih Ibih	406 0.585634 Ibh	0.5/164/ 4.5	59Z30E-06 4.59Z	30E-06 4.5923	bilio 0.18080. bilio 1.18080.	4.59230E-06	ibh	lbh lbh	1.79504E-09	3.3/56/E-1/	2.07914E-13	4.59Z30E-06	2.0/914E-13	4.59230E-06 4.5	59230E-06 0.58	/519 0.5	5/164/ U.S/1 In Ibh	647 U.57164) Ibh	ibh li	2.861/2E-06	0.180802
Water H2S		16.0068 0	0	15.9711 0 0 0	0* 0* 1* 0*	0	2671.27* 0.261 0*	0.0497998 0 0	0.311309 0	0.0148595 1	2.9366 16 0	0 0068 2671.2	7 3.05527 0 0	0	0	0 0.0109009 0 0	2654.94 0	2654.95 0	0 0.0356476	2654.95 0	0.0356476 0	0.0356476 0.0129	240* 0.3 0*	0 0.311 0	309 C	0 0	0 0.0129240* 0 0*	0
N 2 CO2		34.4045 16.4915	0	34.3279 34.3910 16.4547 16.6858	0.105423* 0.158997*	0	0* 0.0851 0* 0.734	714 0.00179955 556 0.0368468	0.0869710 0	0.0319385 2	7.8057 34 3.3284 16	.4045 34.496 .4915 16.844	6.56691 3.14779	0	0	0 0.00442614 0 0.0140202	0.000552963 0.0678124	0.00497910 0.0818326	0 0.0766200	0.00497910 0.0818326	0.0766200 0	0.0766200 0.000467	0.08* 0.08 243* 0.7	869710 0.0869 271503 0.271	710 0 503 0	0 0	0 0.000467018* 0 0.00956243*	0
C1		425.167	0	424.220 423.688	4.52797*	0	0* 2.75	0.167770	2.92524	0.394693 3	43.619 42	15.167 428.21	81.1532	0	0	0 0.0983581	0.0252147	0.123573	0 0.946862	0.123573	0.946862	0.946862 0.0435	394* 2	92524 2.92	524 0	0	0 0.0435394*	0
G		260.540	0	259.960 251.438	* 38.5592*	0	0* 13.1	386 16.2542	29.3928	0.241865 2	10.568 26	0.540 289.99	49.7302	0	0	0 0.0517230	0.0129946	0.0647176	0 0.580231	0.0547176	0.580231	0.580231 14.4	211* 25	9.3928 29.3	928 0	0	0 0.642442*	0
nC4		36.3168 114.111	0	30.2359 32.6149 113.857 103.366	* 12.5890* * 48.1474*	0	0* 2.29	415 6.39090 370 29.7637	8.68205 (37.3774	0.105932 9	12.2241 36	45.004	21.7807	0	0	0 0.0208730	0.000/13506 0.00482897	0.00513428	0 0.254128	0.00513428	0.254128	0.254128 28.7	706* 8. 282* 37	.062U5 8.68 7.3774 37.3	205 (774 (0 0	0 0.362910*	0
iCS nCS		24.6557 32.5219	0	24.6008 20.4696 32.4495 29.3153	* 22.9162* * 34.9499*	0	0* 1.74 0* 2.30	460 16.9821 243 29.4386	18.7267 0 31.7410 0	0.0228885 1 0.0301909 2	9.9267 24 6.2841 32	1.6557 43.385 1.5219 64.265	8 4.70612 8 6.20757	0	0	0 0.00291480 0 0.00218905	0.000449650 0.000152128	0.00336445 0.00234118	0 0.0549090 0 0.0724273	0.00336445 0.00234118	0.0549090 0	0.0549090 16.7 0.0724273 29.1	495* 18 339* 31	8.7267 18.7 1.7410 31.7	267 0 410 0	0 0	0 0.0815158* 0 0.106784*	0
2-Methylpentane 3-Methylpentane		6.45067 7.29655	0	6.43630 0 7.28030 0	1* 19.7827* 1* 23.8689*	0	0* 0.451 0* 0.508	12.8804 134 16.0676	13.3314 0. 16.5710 0	.00598831 5	.21342 6.4	45067 19.782 29655 23.868	1.23126	0	0	0 0.000496462 0 0.00112284	4.44820E-05 0.000235181	0.000540944 0.00135802	0 0.0143658 0 0.0162497	0.000540944 0.0013580?	0.0143658 0	0.0143658 12.8	216* 13 965* 14	3.3314 13.3 6.5710 16.5	314 0 710 r	0 0	0 0.0205875* 0 0.0231502*	0
nC6 Cyclohexane		20.5605	0	20.5147 22.9356	* 54.4055* * 13.0615*	0	0* 1.40 0* 0.100	438 55.3754 149 9.98390	56.7797 0	0.0190868 1	6.6170 20	1.5605 77.341 87767 13.041	3.92446	0	0	0 0.000874709	4.00928E-05 0.00083780P	0.000914802	0 0.0457889	0.000914802	0.0457889	0.0457889 55.1	944* 56 835* 1/	6.7797 56.7	797 0	0 0	0 0.0634112*	0
C7		31.3388	0	31.2690	* 269.380*	0	0* 1.99	920 236.041	238.040	0.0290926 2	15.3279 31	.3388 269.38	5.98174	0	0	0 0.000854241	2.77079E-05	0.000891949	0 0.0697925	0.000891949	0.0697925	0.0697925 235.	789* 23	38.040 238	040 0	0	0 0.0881127*	0
Benzene		2.33981	0	2.33460 0	* 7.30197*	0	0* 0.166	163 4.74346	4.90952 0.	.00217210 1	.89103 2.3	33981 7.3019	0.446607	0	0	0 0.00178588	0.0508530	0.0526389	0 0.00521083	0.0526389	0.00521083 0.	.00521083 4.72	179* 4.	.90952 4.90	952 0	0	0 0.00759510*	0
I oluene Ethylbenzene		4.30989 0.649786	0	4.30029 0 0.648339 0	* 34.7579* * 13.7919*	0	0* 0.284 0* 0.0393	14.5 30.0910 546 13.0942	30.3750 0. 13.1336 0.0	.00400097 3 000603212 0.5	1.48324 4.3 525156 0.64	suss9 34.757 49786 13.791	0.822643	0	0	0 0.00322675 0 0.000441254	0.0697461 0.00809838	0.0729729 0.00853964	u 0.00959826 0 0.00144709	0.0729729 0.00853964	0.00144709 0.	.00959826 30.0 .00144709 13.0	550* 30 893* 13	u.3750 30.3 3.1336 13.1	336 C	0	0 0.0126185* 0 0.00170261*	0
o-Xylene 2,2,4-Trimethylpentane		0.778130	0	0.776397 0	19.4653* 1* 0*	0	0* 0.0467 0*	520 18.6249 0 0	18.6716 0.0 0	00722357 0.0	628883 0.7 0	78130 19.465 0 0	8 0.148524 0 0	0	0	0 0.000542438	0.0149445	0.0154870	0 0.00173292	0.0154870 0	0.00173292 0.	.00173292 18.6 0	191* 18 0*	8.6716 18.6 0	716 0 0 0	0 0	0 0.00201742* 0 0*	0
C8 C9		10.2871	0	10.2642 0	* 231.051* * 34.9257*	0	0* 0.604 0* 0.0306	911 220.159 021 34.3789	220.764 0. 34.3595 0.0	.00954976 8 00525565 0.4	1.31401 10 457556 0 S	0.2871 231.05 66144 34.925	1.96353 0.108062	0	0	0 0.000135775	1.94983E-06 5.94366E-08	0.000137725 4.93411E-06	0 0.0229097	0.000137725 4.93411E-05	0.0229097	0.0229097 220.	085* 22 253* 34	20.764 220	764 0 595 r	0	0 0.0259876*	0
C10		0 00520522	0	0 00528121	1* 0* 1* 1054 72*	0	0* 0.000170	0 0	0	0	0	0 1	0 0013050	0	0	0 0	0	0	0 0	0	0	0 401975-05	0*	0	0 0	0	0 0*	0
		0.00023323	<u> </u>		. 1004.73		0 0.000170	4004.72	1007.72 3.8			1004.7.	. 0.00110155		· ·	5 5.56552010	3.70.700-14	3.344442-80	- 1.4013/2105			105		105				
Process Streams	Parlan	Heater Treater Gas HF	Flared Gas HT	Flared Gas Inlet Gas	Inlet Oil	Inlet Separator Gas	Inlet Water Oil Flas	h Oil Loadout	Oil Tank Feed F	Pilot Gas Sa	ales Sales	Gas Sat. Gas	Sweep Blanket Gas	To Flare VRT	to Flare VRT to	Sales Water Flash	Water Loadout	Water Tank feed	1 2	3	6	8 9	1	0 11	12	14 1	15 18	21
Phase Total	From Block:	Heater Treater	SPLT-104	SPLT-105 -	inter Miran	HP Separator	- Ol Tan	e Oli Tank	MIX-102 S	SPLT-102 SPL	T-102 MOK-	101 Inlet Mixer	SPLT-102	MIX-108 55	LT-103 SPLT-	-103 Water Tank	Water Tank	MIX-100 SPI	T-104 SPLT-105	Heater Treater	MIX-103	VRU -	Heater	Treater SPLT-1	01 SPLT-101	VRT V	RT	SPLT-100
Property Temperature	Units	110*	89	110 110	* 110*	89*	110* 89.81	36* 89.8136	110	110.129 1	10.129 11	0.129 104.11	8 110.129			89.8136*	89.8136	110	89 110	110	110	167.686 89.	8136	110	110 110)	89.8136	
Pressure Molecular Weight	psig Ib/Ibmol	59* 27.4386	102	59 59 59 27.4386 26.27	1* 59* 10 130.510	102*	59* 18.0153 /2 0	0* 0	59 137 186	59	59	59 5	59	8	8	8 0* 25.82#4	18 0165	59 18 0171	102 59	59 18 0171	59 27,4386	102* -3.8 27.4386 ***	4495	59 37.186 127	59 59	8	8* 0.862829 44 7901	59 27 9102
Mass Flow	lb/h	1370.82	0	1367.77 1253.0	13 1964.61	0	2671.27 44.4	344 1818.07	1862.55	1.27257 1	107.89 13	70.82 5888.9	261.653	0	0	0 0.307532	2655.23	2655.54	0 3.05286	2655.54	3.05286	3.05286 18	2.24 18	862.55 186	2.55 0	0	0 2.04420	0
Std Liquid Volumetric Flow	sgpm	6.78424	0	6.76914 6.4236	0.13/100 0 5.44106*	0	1.33046 0.00962 5.34006* 0.181	J.114023	0.123653 0. 5.11060 0.	.00629798 5	.48301 6.3	78424 17.204	. U.U8685* 1.29493	0	0	0 0.00154580	5.30833	5.30988	0 0.01101333	1.34237	0.0151087 0	0.0151087 4.9	0.1 ، دست 0555 5.	.11060 5.11		0	0 0.00818650	0
Net ideal Gas Heating Value Gross Ideal Gas Heating Value	Btu/ft^3 Btu/ft^3	1407.44 1542.45		1407.44 1368.0 1542.45 1500.1	16 6554.50 8 7032.14		0 2175 50.3100 2365	.14 7279.40 .71 7804.56	6882.22 7381.32	1407.44 1 1542.45 1	407.44 14 1542.45 15	107.44 776.47 142.45 875.74	1407.44 5 1542.45			1264.95 1389.36	0.0734528 50.3861	0.175650 50.4943	1407.44 1542.45	0.175650 50.4943	1407.44 1542.45	1407.44 733 1542.45 788	1.55 68 0.12 73	884.22 688. 381.32 738	1.11 6882.21 1.32 7381.31		2317.59 2518.16	776.479 875.746

Process Streams		22	25	26	27	28	31	32 - Oll Tool W&B
Composition	Status:	Salved	Schred	Solved	Solved	Schred	Selved	Colved
	To Block:	MIX-104	M04-105		MIX-105	MIX-104	Heater Treater	-
Bid Vapor Volumetric Flow Water		1.35046	1.16681E-05*	0.000132205*	6.97442E-05*	MMSCPD 0	1.35046	1.86426E-05
H2S		0	0*	0*	0*	0	0	0
N2 CO2		0.0112154 0.00348598	2.71153E-07* 3.53402E-06*	2.76906E-05* 4.85614E-05*	1.62077E-07* 2.11239E-06*	0	0.0112154 0.00348598	4.33229E-07 5.64641E-06
C1		0.243107	4.41426E-05*	0.00156547*	2.63854E-05*	0	0.243107	7.05281E-05
а в		0.101305 0.0598968	0.000226454*	0.00252070*	0.000135359*	0	0.101305	0.000361813 0.000378607
IC4		0.00705202	3.07781E-05*	0.000359018*	1.83971E-05*	0	0.00705202	4.91752E-05
ICS		0.00547676	1.83763E-05*	0.00119305*	1.09841E-05*	0	0.00547676	2.93605E-05
nCS		0.00811245	2.40726E-05*	0.000290645*	1.43890E-05*	0	0.00811245	3.84616E-05
2-Methylpentane 3-Methylpentane		0.00252263	4.36936E-06*	4.76728E-05* 5.37348E-05*	2.61170E-06*	0	0.00252263	6.98105E-06
nC6		0.00817396	1.19682E-05*	0.000148424*	7.15378E-06*	0	0.00817396	1.91220E-05
Cyclonexane C7		0.00141350	1.43024E-05*	0.000181712*	1.03402E-06* 8.54900E-06*	0	0.00141350	2.28514E-05
Methylcyclohexane		0	0*	0*	0*	0	0	0
Toluene		0.000851389 0.00343572	1.58148E-06* 2.22748E-06*	1.93625E-05* 2.80769E-05*	9.45299E-07* 1.33144E-06*	0	0.00343572	3.55892E-06
Ethylbenzene		0.00118317	2.60844E-07*	3.37613E-06*	1.55915E-07*	0	0.00118317	4.16758E-07
o-Xylene 2.2.4-Trimethylpentane		0.00166987	3.09073E-07* 0*	4.01073E-06* 0*	1.84743E-07* 0*	0	0.00166987	4.93816E-07 0
C8		0.0184221	3.70030E-06*	4.82305E-05*	2.21179E-06*	0	0.0184221	5.91209E-06
C10		0.00248013	1.622/5E-0/*	2.1/311E-06*	9.69969E-08* 0*	0	0.00248013	2.592/28-0/
C10+		0.0404554	3.96944E-10*	6.47876E-09*	2.37266E-10*	0	0.0404554	6.34211E-10
Note Fraction Water		0 702985	0.0157186*	0.0137293*	0.0157186*		0 702985	0.0157186
H2S		0.702.505	0*	0*	0*		0.702.505	0.013/100
N2 C02		0.00583819	0.000365280*	0.00287562*	0.000365280*		0.00583819	0.000365280
C1		0.126550	0.0594661*	0.162571*	0.0594661*		0.126550	0.0594661
2		0.0527346	0.305064*	0.261770*	0.305064*		0.0527346	0.305064
L3 IC4		0.0311794 0.00367095	0.319225*	0.281809*	0.319225*		0.0311/94 0.00367095	0.319225
nC4		0.0123589	0.136809*	0.123896*	0.136809*		0.0123589	0.136809
nCS		0.00285094 0.00422296	0.0247554*	0.0228703*	0.0247554*		0.00285094	0.0247554 0.0324791
2-Methylpentane		0.00108836	0.00523453*	0.00495073*	0.00523453*		0.00108836	0.00523453
s-methylpentane nC6		0.00131316 0.00425498	0.00588612*	0.00558026*	0.00588612* 0.0161228*		0.00131316 0.00425498	0.00588612 0.0161778
Cyclohexane		0.000735800	0.00233042*	0.00222573*	0.00233042*		0.000735800	0.00233042
C7 Methylcyclohexane		0.0127455	0.0192673*	0.0188705*	0.0192673*		0.0127455	0.0192673
Benzene		0.000443193	0.00213047*	0.00201076*	0.00213047*		0.000443193	0.00213047
Toluene		0.00178847	0.00300073*	0.00291573*	0.00300073*		0.00178847	0.00300073
o-Xylene		0.000869257	0.000416364*	0.000416507*	0.000351392*		0.000869257	0.000351392 0.000416364
2,2,4-Trimethylpentane		0	0*	0*	0*		0	0
C9		0.00958966 0.00129104	0.000498482*	0.000225673*	0.00498482*		0.00958966 0.00129104	0.00498482 0.000218607
C10		0	0*	0*	0*		0	0
Mass Fraction		0.0210591	3.34/582-07*	o./280/E-07*	5.54/38E-07*		0.0210591	5.34/58E-07
Water		0.453610	0.00632226	0.00587856	0.00632226		0.453610	0.00632226
H2S N2		0 00585787	0 000228460	0 00191463	0 000228460		0 00585787	0 000228460
C02		0.00286043	0.00467783	0.00527502	0.00467783		0.00286043	0.00467783
C1		0.0727157	0.0212990	0.0619873	0.0212990		0.0727157	0.0212990
3		0.0492446	0.314275	0.295352	0.314275		0.0492446	0.314275
iC4		0.00764215	0.0538040	0.0515045	0.0538040		0.00764215	0.0538040
iCS		0.00736737	0.0398766	0.0392183	0.0398766		0.00736737	0.0398766
nCS		0.0109129	0.0522375	0.0517582	0.0522375		0.0109129	0.0522375
3-Methylpentane		0.00405319	0.0113248	0.0114295	0.0113248		0.00405319	0.0113248
nC6		0.0131334	0.0310200	0.0315701	0.0310200		0.0131334	0.0310200
C7		0.0457435	0.0431037	0.0449415	0.0431037		0.0457435	0.0431037
Methylcyclohexane		0	0	0	0		0	0
Benzene Toluene		0.00123995 0.00590226	0.005/1543	0.00638523	0.003/1543		0.00123995	0.00371543
Ethylbenzene		0.00234201	0.000832898	0.000884683	0.000832898		0.00234201	0.000832898
o-xyrene 2.2.4-Trimethylpentane		0.00330541 0	0.000986899 0	0.00105097 0	0.000986899 0		0.00330541 n	0.000986899 n
C8		0.0392350	0.0127128	0.0135983	0.0127128		0.0392350	0.0127128
C9		0.00593075	0.000625974	0.000687929	0.000625974		0.00593075	0.000625974
C10+		0.180802	0 2.86172E-06	0 3.83308E-06	0 2.86172E-06		0.180802	2.86172E-06
Mass Flow		Bih	1bh	Ibih	lbh	bh	Ibh	Bih
water H2S		2671.27 0	0.0230801*	0.261509*	0.0137957* 0*	0	2671.27 0	0.0368758
N2		34.4965	0.000834017*	0.0851714*	0.000498518*	ō	34.4965	0.00133254
CO2		16.8448	0.0170769*	0.234656*	0.0102074*	0	16.8448	0.0272844
		334.461	0.747644*	8.32215*	0.446890*	0	334.461	1.19453
C3		289.997	1.14730*	13.1385*	0.685775*	0	289.997	1.83307
nC4		151.514	0.648097*	7.61370*	0.387388*	0	151.514	1.03549
iC5		43.3858	0.145574*	1.74460*	0.0870141*	0	43.3858	0.232588
2-Methylpentane		04.2653	0.1906999*	2.30243* 0.451075*	0.0219761*	0	04.2653 19.7827	0.304685
3-Methylpentane		23.8689	0.0413424*	0.508434*	0.0247117*	0	23.8689	0.0660541
Cyclohexane		/7.3412 13.0615	U.113242* 0.0159853*	1.40438* 0.198049*	0.00955494*	0	/7.3412 13.0615	0.180930 0.0255403
67		269.380	0.157355*	1.99920*	0.0940560*	0	269.380	0.251411
meuri/iCyclonexane Benzene		0 7.30197	0* 0.0135636*	0*	0* 0.00810740*	0	0 7.30197	0.0216710
Toluene		34.7579	0.0225346*	0.284043*	0.0134697*	0	34.7579	0.0360043
Ethylbenzene o-Xvlene		13.7919	0.00304058* 0.00360279*	0.0393546*	0.00181745*	0	13.7919 19.4602	0.00485804
2,2,4-Trimethylpentane		1,	0*	0*	0*	0	12.4355	0.00075828
C8		231.051	0.0464095*	0.604911*	0.0277404*	0	231.051	0.0741500
C10		54.9257	0.00228519* 0*	0.0306021*	0*	0	54.9257	0.00365111
C10+	_	1064.73	1.04470E-05*	0.000170512*	6.24452E-06*	0	1064.73	1.66916E-05
Process Streams		22	25	26	27	28	31	32 - Oil Tool W&B
Propercies Phase: Total	Status: From Block	SPLT-100				HP Separator	MOX-104	MIX-105
	To Block:	MIX-104	M05-105		MIX-105	MICK-104	Heater Treater	-
Property	Units	104.112	00.017	20.017	90.91 **	~	104 112	20 0132
Pressure	psig	104.118	0.862829	-2.11631E-07	0.862829	89 102	104.118	0.862829
Molecular Weight	lb/lbmol	27.9193	44.7901	42.0738	44.7901		27.9193	44.7901
mass HOW Std Vapor Volumetric Flow	ID/N MMSCFD	5888.91 1.92104	3.65061 0.000742315	44.4844 0.00962945	2.18209 0.000443705	0	5888.91 1.92104	5.83269 0.00118602
Std Liquid Volumetric Flow	sgpm	17.2047	0.0146197	0.181688	0.00873869	ō	17.2047	0.0233584
Net Ideal Gas Heating Value Gross Ideal Gas Heating Value	Btu/ft^3 Btu/ft^3	776.479 875.746	2317.59 2518 16	2179.14 2369 71	2317.59 2518 16		776.479 875.746	2317.59 2518 16
value	acception of			2302.71		_	-14.140	1010-10

ATTACHMENT 3

PRODUCTION DATA

OATES PRODUCTION

Row Labels	Sum of Oil	Sum of Water	Sum of Gas Prod	Sum of HP Flare
12-Nov	175.445	207.54	442.81	298.925
13-Nov	164.405	212.66	418.88	287.825
14-Nov	135.62	124.97	325.14	276.08
15-Nov	184.01	193.88	462.19	279.2
16-Nov	179.25	204.54	450.24	343.32
17-Nov	193.57	217.33	486.2	212.06
18-Nov	189.83	194.53	476.8	184.54
19-Nov	194.06	217.24	487.44	338.85
20-Nov	183.31	203.76	460.43	441.96
21-Nov	179.49	189.14	450.84	151.87
22-Nov	173.79	202.97	436.52	55.68
23-Nov	173.83	188.96	502.02	0
24-Nov	171.32	188.69	494.66	0
25-Nov	166.03	187.73	483.43	0
26-Nov	171.02	178.9	473.78	0
27-Nov	161.8	187.4	406.41	122.41
28-Nov	191.76	194.97	485.49	46.17
29-Nov	163.36	182.15	470.67	0
30-Nov	135.44	153.73	364.67	0
1-Dec	169.69	182.49	464.61	0
2-Dec	175.52	176.11	538.88	380.99
3-Dec	173.43	188.57	487.58	246.89
4-Dec	176.4	179.35	496.11	223.19
5-Dec	148.08	140.27	417.56	164.67
6-Dec	169.2	172.84	475.86	219.27
7-Dec	169.8	173.22	477.53	264.24
8-Dec	168.15	177.83	472.89	260.48
9-Dec	163.93	181.76	461.04	241.96
10-Dec	164.96	174.21	463.93	190.67
11-Dec	92.56	70.55	257.86	114.73
Grand Total	5059.06	5448.29	13592.47	5345.98
Average	168.64	181.61	453.08	N/A

ATTACHMENT 4

SAMPLING DATA

SPL-inc. 5057 Owan Industrial Part Drive Unit 5 Williston, ND 58801

EXTENDED HYDROCARBON LIQUID STUDY CERTIFICATE OF ANALYSIS

Company:	Marathon	Sample Name:	Glisar 14-32 SWF Pressurized Liquid
Sample Date:	9/30/2020	Lab ID Number:	20100003-007A
Sample Facility:	Glisar 14-32 SWF	Date Tested:	10/2/2020
Sample Equipment:	Treater	Test Method:	GPA 2186M
Sample Location:	ND	Date Reported:	10/2/2020
Sample Pressure:	76 PSIG		
Sample Temperature:	132°F		
Sampling Method:	GPA-2174		
Type Sample:	Spot		

Components	Mole ³ /4	Weight%	Liq. Vol.%
Carbon Dioxide	0.024	0.008	0.007
Nitrogen	0.025	0.006	0.005
Methane	1.875	0.234	0.564
Ethane	3.609	0.843	1.711
Propane	5.809	1.990	2.837
iso-Butane	1.416	0.639	0.822
n-Butane	5.503	2.484	3.075
iso-Pentane	2.110	1.183	1.368
n-Pentane	3.218	1.804	2.068
2-Methylpentane	1.525	1.021	1.128
3-Methylpentane	1.840	1.232	1.331
Other Hexanes	1.031	0.690	0.763
Heptanes	17.859	13.294	13.740
Octanes	13.437	11.506	11.631
Nonanes	1.809	1.802	1.798
Decanes+	29.508	54.572	50.877
Benzene	0.621	0.377	0.308
Toluene	2.506	1.793	1.487
Ethylbenzene	0.863	0.712	0.590
m-Xylene	0.920	0.759	0.631
p-Xylene	0.149	0.123	0.102
o-Xylene	0.149	0.123	0.100
n-Hexane	4.194	2.807	3.057
2,2,4-Trimethylpentane	0.000	0.000	0.000
Totals	100.000	100.000	100.000

Page 1 of 2

CALCULATED SAMPLE CHARACTERISTICS

	Total	C10+
RELATIVE SPECIFIC GRAVITY	0.72349	0.7768
API GRAVITY AT 60/60 F	64.1	50.67
TRUE VAPOR PRESSURE AT 100 F, PSIA	141.289	0.0009
AVERAGE MOLECULAR WEIGHT	128.742	239.7
AVERAGE BOILING POINT, F	252.406	558.3
BTU/ GALLON OF LIQUID AT 14.73 PSIA	122,641	130,310
LBS/ GALLON OF LIQUID	6.032	6.476

NOTATION: ALL CALCULATIONS PERFORMED USING PHYSICAL CONSTANTS FROM GPA 2145-16, THE TABLES OF PHYSICAL CONSTANTS FOR HYDROCARBONS AND OTHER COMPOUNDS OF INTEREST TO THE NATURAL GAS INDUSTRY.

QUALITY CONTROL DATA

Company:	Marathon	Sample Name:	Glisar 14-32 SWF
Date Sampled:	9/30/2020	Date Tested:	10/2/2020

Analysis Summary - Meter Daily

September 2020

Meter #: 610009582 Name: GLISAR 14-32TFH Press. Base: 14.730 psia Temp. Base: 60.0 F ORM_DAILY_GRSLANDS_CHARLESON2100_2 Mole Percent

Day	Relative Density	Heating Value	CO2	N2	C1	C2	C3	IC4	NC4	IC5	NC5	Neo	C6	C7	C8	C9	C10	02	H2	со	He	Ar	H2S	H2O
1	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
2	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
3	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
4	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
5	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
6	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
7	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
8	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
9	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
10	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
11	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
12	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
13	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
14	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
15	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
16	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
17	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
18	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
19	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
20	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
21	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
22	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
23	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
24	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
25	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
26	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
27	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
28	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
29	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
30	0.9152	1488.11W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	
Ava	0.9152	1488.11 W	0.7966	2.5794	55.4900	22.2289	11.9805	1.1790	3.7366	0.5961	0.8537		0.5592										0.0000	