Enzymatic Oligonucleotide Synthesis Process Flow and Substance Impurity Profile

May 14th 2024

Catalyzing Innovation Through Engineered Enzymes

Powerful Underlying Science

CodeEvolver® directed evolution platform underpins exquisite enzyme engineering capabilities

CodeEvolver®

Deep Technical Expertise

20+ years evolving enzymes supporting small molecule API production and life science applications

Focus

Areas

Highly differentiated products

Custom Solutions for Biocatalysis

Over 50 commercialized enzymes supporting small molecule API production

Potential Game-Changing Technology

ECO Synthesis™ manufacturing platform **poised to**disrupt the RNAi synthesis market

Enzymatic Solutions for siRNA Synthesis are Increasing

Chemical

Hybrid

Enzymatic

Traditional siRNA Synthesis using Phosphoramidite Chemistry (PAC)

PAC fragments + Ligation

ECO Synthesis™ (Enzyme-Catalyzed
Oligonucleotide Synthesis)
Manufacturing Platform

ECO Synthesis™ Manufacturing Platform: Process Flow and Impurity Profile

Spotlight Presentation Luncheon 1

Derek Gauntlett, MBA, Director, ECO Process Development

Two Enzymatic Approaches for Large-scale siRNA Synthesis

TIDES Talks in the Exhibit Hall

Thursday, 16 May 2024 10:10 - 10:20 AM

Mathew Miller, PhD, Director, Life Sciences & RNA Technology

ECO Synthesis™ Manufacturing Platform

Derek Gauntlett

ECO Synthesis™
Manufacturing
Platform:
Modularity for
Maximum
Versatility

Core Technology:

Sequential
Incorporation
of Modified
Building Blocks

Reagents:
NQPs & Starter
Oligo

Conjugation:
Incorporation of
Targeting Moieties

Ligation: (dsRNA Ligase Program)

ECO Synthesis™ Manufacturing Platform – Key Elements

Starter Oligo

- Substrate from which synthesis initiates
- Synthesized via phosphoramidite chemistry (PAC) or enzymatically

Nucleotide Quad Phosphate (NQP)

- Modified nucleotide monomers with blocking group
 - Phosphoramidite analog
- Synthesized chemically or enzymatically

Extension Enzyme

Engineered to incorporate 2'-modified NQPs

Deblocking Enzyme

Engineered to remove blocking group

ECO Synthesis™ Manufacturing Platform - Overview

Key Performance Indicators for ECO enzymes:

- Non-native Substrates
 - Engineered for modified nucleotides
- Promiscuity
 - Minimal bias on 300k+ possible substrates
- Productivity
 - Coupling efficiency ~99% in hours
 - Minimal substrate & product inhibition
- Robustness
 - Stability
 - Manufacturability

Targeting Moieties for Therapeutic Relevance

ECO Synthesis™ Manufacturing Platform Core Cycle

Enzymatic conjugation of targeting moieties

Targeting Moieties for Therapeutic Relevance

Enzymatic conjugation of targeting moieties

ECO Synthesis[™] manufacturing platform enables quantitative incorporation of modified nucleotides with reactive and sterically demanding bulky side chains at 5′, 3′ and intra oligonucleotide.

Chemical Synthesis vs. ECO Synthesis™ Manufacturing Platform

Phosphoramidite Chemistry

Limited Scalability

- Best suited for bench top scale due to limited, singledigit kilogram batch sizes
- Capacity will be challenged to support future demand

Toxic Solvent Use

- Requires large volumes of inorganic solvent (acetonitrile) with high disposal costs
- Likely future supply chain limitations & price volatility

Low Purity

- Inefficient for longer RNAs
- Significant impurities from complex protection / deprotections

High Cost

- High-cost infrastructure investment & raw materials
- High purification costs
- Expensive waste disposal

ECO Synthesis™ Manufacturing Platform

Scalable

- ✓ Enzymes and flow-based process
- ✓ Dual reactor setup enables larger batch sizes compared to PAC

Reduced Waste

- ✓ Aqueous reactions
- ✓ Significantly decreases chemical waste streams
- ✓ Path to enzymatically created monomers

High Purity

Higher purity driven by milder conditions during synthesis

Valuable Economics

- ✓ De-bottlenecks current supply constraints with increased scale & efficiency
- ✓ Integrates with existing manufacturing facilities that have purification capabilities

Progress Achieved on the ECO Synthesis™ Manufacturing Platform

Demonstrating the Power of Combing Enzyme Engineering & Process Development in One Year

Incorporation efficiency: ~88%

FLP purity at N+4 (max. 4) = $^{\sim}60\%$

Accepting mod. nucleotides:

2'-OMe, 2'-F

Incorporation efficiency: ~92%

FLP purity at N+4 (max. 6) = **72**%

Accepting mod. nucleotides:

2'-OMe, 2'-F, PS

Incorporation efficiency: >98%

FLP purity at N+4 (max. 14) = 92.7%

Accepting mod. nucleotides: 2'-

OMe, 2'-F, PS, 2'-H, "others"

Conjugation chemistry

May 2023 TIDES USA Nov 2023 TIDES EU Dec 2023

May 2024 TIDES USA

Gram-scale synthesis (N+6 w/ fully modified nucleotides)

ECO Synthesis™ Current Process Overview: 4-Step Unit Operation

- Immobilized polymerase to elongate the substrate in a controlled manner.
 - Fixed packed bed reactor with co-immobilized enzymes on resin
 - · Recirculation flow model
 - One reservoir system
- Immobilized phosphatase to remove blocking group from substrate and NQP.
 - Fixed packed bed reactor with immobilized enzyme on resin.
 - Linear flow model
 - Two reservoir system
- Ultra filtration diafiltration (UFDF) to increase concentration and desalt
 - Desalt only performed as needed compound dependent.
 - TMP Flux model
 - Cassette style system
- Enzyme to add conjugation moieties in batch
 - Batch reactor system

ECO Synthesis™ Liquid Flow Cycle – Current Research Scale

Key Process Conditions

- **1. Scale:** 2mM (Starter) / 1.5 e.q. NQP
- **2. Volume Start:** 9 mLs

- **3. Extension Residence Time:** 0.10 hours
- **4. Extension Column Size**: 3g resin / column
- **5. Deblock Column Size:** 3g resin / column
- **6. Deblock Residence Time:** 0.10 hours

Note: UFDF performed using 1kDa MWCO cassette at 5th and 13th extensions

ECO Synthesis™ - Process by the Numbers

• Two fully 2'-modified RNA oligonucleotides were synthesized using ECO Synthesis™ manufacturing platform demonstrating the technology's capability to synthesize different sequences.

Compound	Number of Extensions	RNA Starter Length	Added RNA Base Types	Avg. Coupling Efficiency (%)	Avg. Coupling Time (H)	Avg. Deblock Time (H)
Compound 1 w/ 3' Alkyne	14	7	2'F / 2'OMe	98	11.1	2.5
Compound 2	11	7	2'F / 2'OMe	98	6.0	2.5

ECO Synthesis™ Impurity Profile MS - Compound 1 w/ 3' Alkyne

ECO Synthesis™ Process Design – Commercial Scale

Forward Looking for ECO Synthesis™ Manufacturing Platform

Codexis is Positioned for Significant ECO Synthesis™ Improvements in 2024

- ECO Synthesis™ manufacturing platform has made significant progress since TIDES USA in May 2023
- Continue process development
 - Holistic process design space created using a QbD approach to push >99% conversion efficiencies
 - Phosphorothioate oxidation control under sequential ECO Synthesis[™] platform
 - Decreased coupling times for challenging sequences for volumetric productivity improvements
 - Pushing research scale towards fully automated commercial scale processes
 - Evaluate therapeutically relevant conjugate moieties
- Continue enzyme engineering

Codexis Center of Excellence for Enzymatic RNA Synthesis

Your Pathway to Lower Cost and More Scalable RNA Manufacturing

RNA Ligase Services

Enzymatic

ECO Synthesis™ Manufacturing Platform

Booth #628

