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EPA characterization of studies identified after public release of the draft IRIS Toxicological Review of Perfluorohexanesulfonic 

Acid (PFHxS, CASRN 335-46-4) and Related Salts 

Tables 1 and 2 below describe literature identified during the 2023 literature search update performed after release of the public 
comment draft (as described in the Methods Section 1.2.1 of the IRIS PFHxS External Review Draft) or submitted in public comments 
received through the EPA docket1. The most recent ADME/PK studies were considered and incorporated as appropriate in the public 
comment draft, with no additional ADME/PK studies identified since its release. In accordance with charge question 1, the tables show 
EPA’s disposition on the need to incorporate these studies into the finalized assessment and the interpreted impact of these studies on 
key judgments in the draft assessment (i.e., identified hazards and dose-response values, or pivotal uncertainties). The panel is asked to 
weigh in on EPA’s disposition. Supplemental study categories included here are ‘ADME’ and ‘mechanistic, including non-PECO exposure 
route.’ All identified studies not meeting PECO, or the aforementioned supplemental categories are summarized in Figure 1 of this 
document or in the interactive HAWC visual. 
 
Table 1. Studies meeting assessment PECO criteria 
 

Reference Source2 Health outcome Results summary EPA disposition on incorporation and 
characterization of impact3 

 Immune Effects in Humans               

Kaur et al. (2023) Lit update Antibody levels to 
SARS-COV2 in adults 

Inverse association (beta -0.68, 95% CI -
1.18, -0.18) 

No.  
Findings are consistent with existing 
epidemiological evidence and have no impact 
on the draft immunosuppression synthesis 

Porter et al. (2022) Lit update Antibody levels to 
SARS-COV2 in adults 

Inverse association with IgG and 
neutralizing antibodies in response to 

 
1 A total of 186 studies were submitted by the State of New Jersey Department of Environmental Protection and the Natural Resources Defense Council 
(NRDC). Of the 186 studies, 119 studies had been previously identified and can be found in the HERO database. The remaining 67 new studies were screened 
for PECO criteria and evaluated for potential incorporation and impact on the assessment’s conclusions as stated above.   
2 For literature identified by Public Commenters, the full comments are available here: https://www.regulations.gov/docket/EPA-HQ-ORD-2021-0562. 
PFHxS New Studies Identified in the April 2023 Literature Search Update or Submitted to EPA during Public Comment. Diagram shows screening results 
for all identified studies. Information on EPA’s disposition on the inclusion of these studies prior to finalizing the assessment and characterization of 
their impact on key assessment decisions is provided in Table 1 for studies meeting PECO and for supplemental studies on ADME, mechanistic, and non-
PECO exposure routes. Refer to interactive HAWC visual for additional information. 
3As described in charge question 1, only studies that would notably impact the primary EPA draft judgments (i.e., the health effects identified as human 
health hazards and the final reference values) in the Step 4 draft will be added to the Toxicological Review by EPA prior to finalization. The panel is 
asked to identify (with justification) any EPA decisions on incorporation or impact that are not supported. 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10698453
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10602065
https://hero.epa.gov/hero/index.cfm/project/page/project_id/2630
https://www.regulations.gov/docket/EPA-HQ-ORD-2021-0562
https://hawc.epa.gov/summary/visual/assessment/100500074/PFHxS-New-Studies-2023/


   
 

2 
 

Reference Source2 Health outcome Results summary EPA disposition on incorporation and 
characterization of impact3 

COVID vaccination (statistical significance 
varied based on model) 

judgment (i.e., moderate human evidence), 
particularly given that two of the new studies 
are in adults and the draft conclusions are 
primarily based on studies in children. 

Zhang et al. (2023b) Lit update Vaccine response  Inverse association with rubella antibodies 
(-6.48% change, 95% CI -10.69, -2.07). 
Inverse but not statistically significant 
association with mumps antibodies in sub-
population with lower folate. 

Mogensen et al. 
(2015) 

Commenter Vaccine response  Re-analysis of Faroe Islands study, showing 
results when analyzed with structural 
equation modeling.   

Multipollutant modeling results will be added 
to discussion of potential confounding across 
PFAS. 

Zhang et al. (2022) Lit update Infectious disease  Positive association with common cold at 3-
11 yrs (OR 1.31, 95% CI 1.05, 1.63) but not 
12-19 yrs 

No. Existing epidemiological evidence on 
infectious disease is inconsistent and new 
studies do not change the current draft 
synthesis judgment. Huang et al. (2020) Commenter Infectious disease  No association with the number of 

respiratory tract infections in preschool 
children 

Pan et al. (2023) Lit update Asthma  No association with current asthma (OR 
0.97, 95% CI 0.57, 1.65 in Q4 vs Q1) or 
wheezing. Inverse association with asthma 
attacks and emergency visits. 

No. 
Existing epidemiological evidence on asthma 
is inconsistent and new studies do not 
change the current draft synthesis judgment. 

Gaylord et al. (2019) Commenter (on 
PFDA) 

Asthma  No association with asthma diagnosis (OR 
0.96, 95% CI 0.65, 1.44) 

Averina et al. (2019) Commenter (on 
PFDA) 

Asthma Positive association with asthma (OR 2.18, 
95% CI 1.08, 4.42 in Q4 vs Q1). No 
association with allergies or eczema. 

Wen et al. (2019) Commenter Atopic dermatitis  Positive but not statistically significant 
association with atopic dermatitis 

(Ammitzbøll et al., 
2019) 

Commenter (on 
PFDA) 

Multiple sclerosis  No association with multiple sclerosis (2% 
change, 95% CI -9,15) 
 

No.  
Mixed results for autoimmune conditions in 
new studies would not influence PFHxS draft 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10699594
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=3981889
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10410662
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6988475
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10754706
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5080201
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5080647
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5081172
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5080379
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5080379
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Reference Source2 Health outcome Results summary EPA disposition on incorporation and 
characterization of impact3 

Gaylord et al. (2020) Commenter (on 
PFDA) 

Celiac disease  Positive but not statistically significant 
association with celiac disease (OR 1.72, 
95% CI 0.85, 3.49) with stronger effect in 
women (OR 3.24, 95% CI 1.04, 10.11) 

evidence synthesis or integration conclusions 
on immune effects. 

Steenland et al. 
(2018) 

Commenter Ulcerative colitis Inverse association with ulcerative colitis 

Developmental Effects in Humans                

Wang et al. (2022) Lit update Fetal growth 
restriction (Birth 
length (BL); head 
circumference (HC); 
birthweight (BWT))  

No sex-specific associations were observed 
for birth length (BL), birth weight (BWT) 
and head circumference (HC) endpoints.  
BL Male β = −0.080; 95%CI: −0.062, 0.222;  
BL Female β = −0.004; 95%CI: −0.310, 
0.303.  
HC Male β = 0.005; 95%CI: −0.180, 0.191;  
HC Female β = −0.110; 95%CI: −0.345, 
0.125.  
BWT Male β = 0.024; 95%CI: −0.140, 0.188; 
BWT Female β = −0.062; 95%CI: −0.291, 
0.166. 

No.  
Null results observed for fetal growth 
restriction endpoints (birth length, birth 
weight and head circumference) in both 
female and male neonates would not change 
the current draft synthesis judgment for fetal 
growth restriction (i.e., slight human 
evidence). 

Peterson et al. 
(2022) 

Lit update Fetal growth 
restriction  

No associations were evident across fetal 
measures in relation to PFHxS exposures.  

No.  
Null results for fetal biometric endpoints 
would not change the current draft synthesis 
judgment for fetal growth restriction (i.e., 
slight human evidence). 

Wang et al. (2023) Lit update Fetal growth 
restriction  

No associations were evidence across fetal 
growth endpoints [Per each PFHxS log-10 
unit increase, birth weight z-score -0.06 (-
0.25, 0.12), birth length z-score -0.10 (-
0.36, 0.17), head circumference z score 
0.08 (-0.18, 0.35), ponderal index -0.04 (-
0.72, 0.64), weight for length z-score 0.02 (-
0.29, 0.34). 

No.   
Null results for all fetal growth would not 
change the current draft synthesis judgment 
for fetal growth restriction (i.e., slight human 
evidence). 
 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6833754
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5079806
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10590565
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10706020
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10755420
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Reference Source2 Health outcome Results summary EPA disposition on incorporation and 
characterization of impact3 

Ouidir et al. (2020) Commenter (on 
PFDA) 

Fetal growth 
restriction  

Per each PFHxS IQR increase, a statistically 
significant longitudinal decrease in head 
circumference (β = −0.22 mm; p-value: 
<0.05) and increases in longitudinal 
biparietal diameter (β = 0.07 mm; p-value: 
<0.05), and femur length (β = 0.12 mm; p-
value: <0.001) were detected. Results were 
null for abdominal circumference (β = 0.11 
mm), occipital-frontal diameter changes (β 
= −0.04 mm) and estimated fetal growth (β 
= 3.27 g) (p-value/Cis not provided). 

No.  
Study population was previously reported in 
a publication already in the assessment Buck 
Louis et al. (2018). New results for 
longitudinal in utero measurements from 
ultrasonography would not change the 
current draft synthesis judgment. 

Hu et al. (2021) Commenter Fetal growth 
restriction  

Per each PFHxS 2-fold increase, a 6.7 g 
(95% CI -11.4, 24.8) increase in birth 
weight, attenuated with adjustment for co-
pollutants. 

No.  
Study population was previously reported in 
a population already in the assessment and 
new results would not change the current 
draft synthesis judgment.  

Kalloo et al. (2020) Commenter Fetal growth 
restriction, gestational 
age  

N/A.  Duplicative results from other 
publications. 

No.  
The anthropometrics measures of fetal 
growth and gestational duration reported in 
this study population (HOME study) were 
previously reported in a publication already 
in the assessment (Shoaff, 2018, 4619944). 
We also previously demonstrated in 
Appendix C that single PFHxS vs. multi-PFAS 
models were comparable.  

Mwapasa et al. 
(2023) 

Lit update Fetal growth 
restriction, gestational 
age  

Per each log10-unit PFHxS increase, results 
were largely null across the overall 
population and both sexes, although boys 
showed lower birth weight z-scores while 
girls had larger head circumference z-
scores. All of these results had confidence 
intervals that included the null value 
demonstrating a lack of statistical 
significance.   

No.   
Null findings of fetal growth restriction would 
not change the current draft synthesis 
judgment (i.e., slight human evidence). 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6394332
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5016992
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=7301969
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6343966
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10755079
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Reference Source2 Health outcome Results summary EPA disposition on incorporation and 
characterization of impact3 

Petroff et al. (2023) Lit update Gestational age  No association between PFHxS exposure 
and gestational age (ß = 0.04 ± 0.21; 
p=0.85).  
 

No.  
Null results for gestational age would not 
change the current draft human evidence 
synthesis judgment for gestational duration 
(i.e., slight human evidence). 

Yu et al. (2022) Lit update Preterm birth  Results were mixed with a non-significant 
increase in risk seen for untransformed 
data (OR=1.76; 95%CI: 0.91, 3.40 per each 
ng/mL increase) only; transformed results 
were null (OR=0.93; 95%CI: 0.80, 1.08 per 
each ln-unit increase).  

No.  
Small increased risks here along with the null 
results in Padula et al. (2023) and Liao et al. 
(2022b) would not change the current draft 
synthesis judgment for gestational duration. 

Liao et al. (2022b) Lit update Preterm birth  Results were mixed with a statistically 
significant decrease in preterm birth per 
each log10 increase (OR=0.73; 95%CI: 0.39, 
1.38) driven by tertile 3 (OR=0.60; 95%CI: 
0.37, 0.98); results were null for tertile 2 
(OR=0.97; 95%CI: 0.63, 1.50) relative to 
tertile 1. 

No.  
Inconsistent new results on gestational 
duration in the new studies including 
decreased risk reported here combined with 
increased risk by Yu et al. (2022) and null 
results in Padula et al. (2023) above would 
not change the current draft synthesis 
judgment for gestational duration (i.e., slight 
human evidence). 

Padula et al. (2023) Lit update Fetal growth 
restriction, gestational 
duration  

No associations were evident across fetal 
growth and gestational duration endpoints 
[gestational age β= 0.02; 95%CI: −0.19, 
0.23; birth weight for gestational age β= 
−0.06; 95%CI: −0.18, 0.06; term low birth 
weight OR= 1.14; 95%CI: 0.46, 2.84; small 
for gestational age OR= 1.25; 95%CI: 0.84, 
1.87; large for gestational age OR= 0.86; 
95%CI: 0.59, 1.25; preterm birth OR= 0.97; 
95%CI: 0.61, 1.55.  

No. 
Null results for all fetal growth and 
gestational duration endpoints would not 
change the current draft judgment for either 
gestational duration or fetal growth 
restriction (i.e., slight human evidence). 

Hong et al. (2022) Lit update Spontaneous abortion  Inverse association (OR=0.05; 95% CI: 0.00, 
7.36) 

No.  
Updated analysis of study that is already 
included in the draft assessment. 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=11134395
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10410632
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10893257
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10410714
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10410714
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10410632
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10893257
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10893257
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10410697
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Reference Source2 Health outcome Results summary EPA disposition on incorporation and 
characterization of impact3 

Li et al. (2022a) Lit update Anogenital distance  Positive association with two AGD 
measures (p<0.05) 

No.  
New study adds to existing inconsistency in 
the AGD evidence and would not change the 
draft synthesis judgment. 

Developmental Effects in Animals 

Yao et al. (2023) Commenter  Fetal viability in 
animals 

Increased fetal death in mice exposed to 
highest dose (0.3 mg/kg-d) 

Yes. 
Findings are supportive of results from a 
separate animal study that is cited in the 
draft Toxicological Review.  These new 
findings are preliminarily interpreted to 
strengthen the animal evidence synthesis 
judgment from indeterminate to slight 
(dependent on formal study evaluation and 
incorporation into the synthesis).  However, 
these new findings do not change the overall 
evidence integration judgment (i.e., evidence 
suggests). 

Hepatic Effects in Humans             

Borghese et al. 
(2022) 

Lit update Liver enzymes  Positive association with AST, GGT, and 
ALP, positive but not statistically significant 
association with ALT and bilirubin 

No.  
New studies are consistent with the existing 
studies and would not change the draft 
synthesis judgment (i.e., slight human 
evidence). 

Liao et al. (2023) Lit update Liver enzymes Positive association with bilirubin but not 
ALT, AST, or GGT 

Kim et al. (2023b) Lit update Liver enzymes  Positive but not statistically significant 
associations with ALT, AST, and GGT 

Yao et al. (2020) Commenter (on 
PFDA) 

Liver enzymes  Positive association with ALT, AST, GGT 
(statistically significant for GGT) 

Salihović et al. 
(2019) 

Commenter (on 
PFDA) 

Bile acid levels  
(liver)  

Inverse correlations with most bile acids 
(statistically significant for GDCA) 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10601285
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=11348168
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10590558
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10754689
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10754695
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=7021874
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6324314
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Reference Source2 Health outcome Results summary EPA disposition on incorporation and 
characterization of impact3 

Rantakokko et al. 
(2015) 

Commenter (on 
PFDA) 

Non-alcoholic fatty 
liver disease  

Inverse association with lobular 
inflammation (OR 0.02, 95% CI <0.01, 0.53 
for 2–4 foci per 200× field) 

No.  
While there are no studies of clinical liver 
disease available for PFHxS in the current 
draft, the new studies are inconsistent and 
would not change the draft synthesis 
judgment of slight for hepatic effects. 

E et al. (2023) Lit update Liver disease  No association with liver problems (OR 
0.97, 95% CI 0.72, 1.30). Positive but not 
statistically significant association with ALT. 

Nilsson et al. (2022) Lit update Liver problems  Positive association with non-alcoholic fatty 
liver disease in women but not men, with 
strongest association in postmenopausal 
women (OR 2.50, 95% CI 1.29, 4.85 in Q4 vs 
Q1) 

Cancer in Humans       
Feng et al. (2022a) Lit update Breast cancer  No association with breast cancer (OR = 

0.93, 95% CI: 0.79, 1.09) per unit increase in 
ln-transformed plasma PFHxS levels. 

No.  
Inconsistent results across the new studies 
showing increased risk (note: this study 
reports on the same study population as a 
publication already in the assessment), 
decreased risk, and no association between 
PFHxS and breast cancer do not change the 
draft synthesis judgment (i.e., indeterminate 
human evidence; two studies on breast 
cancer were synthesized in the draft, one 
study finding significantly increased risk of 
breast cancer among women <= 50 years of 
age who were estrogen receptor positive; 
and non-significantly decreased risk of breast 
cancer among women who were estrogen 
receptor negative and > 50 years of age, and  
another study reporting significantly 
decreased risk for some genotypes).  
 

Li et al. (2022b) Lit update Breast cancer  Decreased risk for breast cancer (OR = 0.73, 
95% CI: 0.63, 0.87) per SD increase in ln-
transformed PFHxS from the adjusted 
model – without LASSO (see Table S3). 

Wielsøe et al. (2018) Commenter (on 
PFDA) 

Breast cancer  Increased risk for breast cancer (OR 5.45, 
95% CI 1.26, 23.8) in high vs. low PFHxS 
exposure for one genotype). 

Lee et al. (2020) Commenter (on 
PFDA) 

Breast cancer  No association of PFHxS with 
mammographic density, a strong predictor 
of breast cancer (beta -0.02, p-value 0.95). 

Cohn et al. (2020) Commenter Breast cancer  No association with breast cancer 
(quantitative result not reported). 

Goodrich et al. 
(2022) 

Lit update Liver cancer  No association of PFHxS with liver cancer 
(OR = 1.10, 95% CI: 0.56, 2.30) for PFHxS 
greater than the 90th% vs less than 90th%. 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=3351439
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10699595
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10587058
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10328872
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10590559
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5081991
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6956596
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5412451
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10369722
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Reference Source2 Health outcome Results summary EPA disposition on incorporation and 
characterization of impact3 

Shearer et al. (2021) Commenter (on 
PFDA) 

Renal cancer  Increased risk of renal cell carcinoma with 
PFHxS per unit increase in log2-transformed 
serum PFHxS (OR=1.27; 95% CI: 1.03, 1.56) 
that attenuated when controlling for other 
PFAS (OR=1.12; 95% CI: 0.88, 1.43). 

The only study reporting on liver cancer did 
not find an association with PFHxS and would 
not influence the draft synthesis judgment.  
 
The only study of renal cancer reported a 
significant positive association that dissipated 
when controlling for other PFAS and would 
not influence the draft synthesis judgment. 
 
The epidemiologic evidence on PFHxS and the 
risk of cancer remains indeterminate and, 
overall, there remains inadequate 
information to assess carcinogenic potential; 
the new human studies are not impactful.  

Neurodevelopmental Effects in Humans                  

Luo et al. (2022a) Lit update Broad 
neurodevelopmental 
scale  

Inverse but not statistically significant 
association with cognitive, language, 
motor, and social-emotional scores, but 
statistically significant positive association 
with adaptive behavior score 

No.  
There is inconsistency for 
neurodevelopmental effects in the current 
draft, and the new studies showing overall 
mixed but several positive associations with 
PFHxS would not influence the draft synthesis 
judgment of slight evidence.  
  

Oh et al. (2022) Lit update Autism, 
developmental delay  

Positive but not statistically significant 
associations with autism spectrum disorder 
and developmental delay 

Zhou et al. (2023) Lit update Broad 
neurodevelopmental 
scale  

Inverse association with communication 
and motor at 6 mos but inconsistent 
findings for other measures (problem 
solving, personal-social) and other visits (2, 
12, and 24 mos) 

Li et al. (2023c) Lit update Broad 
neurodevelopmental 
scale  

Positive association with persistently low 
trajectory for communication (p<0.05), 
gross motor, problem solving ability 
(p<0.05), and personal-social skills, but not 
fine motor 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=7161466
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10410664
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10590560
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10754688
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10754703
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Reference Source2 Health outcome Results summary EPA disposition on incorporation and 
characterization of impact3 

Oulhote et al. (2019) Commenter (on 
PFDA) 

Broad 
neurodevelopmental 
scale  

Positive association with Boston Naming 
Test. No association with Strengths and 
Difficulties Questionnaire. 

van Larebeke et al. 
(2022) 

Lit update Broad 
neurodevelopmental 
scale  

Inverse (favorable) association with 
incorrect responses on the Continuous 
Performance Test but not other test results 

Xie et al. (2022) Lit update Neurobehavior  No association with behavior including 
externalizing problems 

Ames et al. (2023) Lit update Autism  No association with Social Responsiveness 
Scale score 

Kim et al. (2023a) Lit update ADHD scale  Positive though non-monotonic association 
with ADHD rating scale at 8 yrs, dependent 
on age at exposure measurement and sex 

 Human Male Reproductive   

Luo et al. (2022b) Lit update Semen parameters  No association with sperm concentration of 
motility 

No.  
Evidence is inconsistent in existing studies 
and the new studies would not influence the 
draft synthesis judgment (i.e., indeterminate 
human evidence). 

Ma et al. (2021) Commenter (on 
PFDA) 

Semen parameters  No association sperm concentration, 
motility, or morphology 

Zhang et al. (2011) Commenter Infertility  Lower concentrations of PFHxS in infertile 
men than worker controls in crude analysis 

Rivera-Núñez et al. 
(2023) 

Lit update Reproductive 
hormones 

Positive association with T (p<0.05), no 
association with free T, E1, E2, E3 

No.  
Evidence is inconsistent in existing studies 
and the new studies would not influence the 
draft synthesis conclusion of indeterminate 
evidence. 

Guo et al. (2023) Lit update Reproductive 
hormones 

No association with testosterone or 
estradiol (included boys and girls) 

Wang et al. (2023) Lit update Reproductive 
hormones 

Positive association with estradiol but not 
testosterone (included boys and girls) 

Nian et al. (2020) 
  

Commenter (on 
PFDA) 

Reproductive 
hormones 

No association with total testosterone 
(beta 0.079, 95% CI -0.009, 0.166 per ln-
unit change), FSH, or LH 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6316905
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10602358
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10410693
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10756986
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=11136231
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10410704
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=7643485
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=2919243
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Reference Source2 Health outcome Results summary EPA disposition on incorporation and 
characterization of impact3 

Human Female Reproductive 

Hong et al. (2022) Lit update In vitro fertilization 
outcomes  

No association with oocyte maturation 
rate, fertilization rate, high quality embryo 
rate. Inverse but not statistically significant 
(OR=0.60, 95% CI 0.12, 2.96) for clinical 
pregnancy 

No.  
Evidence of an association with fecundity and 
infertility is inconsistent across new studies 
and was similarly inconsistent across existing 
studies. Thus, the new studies would not 
change the draft synthesis judgment of 
indeterminate human evidence. 

Cohen et al. (2023) Lit update Fecundity, pregnancy  No association with time to pregnancy or 
odds of clinical pregnancy 

Luo et al. (2022c) Lit update Fecundity, infertility  Lower odds of infertility (OR 0.61, 95% CI 
0.45, 0.82) and higher fecundability 

Tan et al. (2022) Lit update Infertility Lower odds of infertility (non-monotonic 
across quartiles and not statistically 
significant) 

(Whitworth et al., 
2016) 

Commenter (on 
PFDA) 

Fecundity No association (FR 0.97, 95% CI 0.90, 1.1) 

Ma et al. (2021) Commenter (on 
PFDA) 

In vitro fertilization 
outcomes, pregnancy  

Fewer zygotes and good quality embryos 
with higher exposure. No association with 
clinical pregnancy. 

Petro et al. (2014) Commenter In vitro fertilization 
outcomes  

Positive association with fertilization rate in 
crude analysis 

Wang et al. (2019) Commenter (on 
PFDA) 

Polycystic ovarian 
syndrome 

Positive but not statistically significant 
association with PCOS-related infertility 
(OR 2.08, 95% CI 0.88, 4.93 in 3rd vs. 1st 
tertile) 

No. 
Existing evidence on gynecological conditions 
is inconsistent and there is considerable 
uncertainty due to potential reverse 
causation. The new study does not inform 
this uncertainty and would not change the 
draft synthesis judgment 

Rivera-Núñez et al. 
(2023) 

Lit update Reproductive 
hormones 

Positive association with E1, E2, E3 
(p<0.05), no association with T, FT 

No.  
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Reference Source2 Health outcome Results summary EPA disposition on incorporation and 
characterization of impact3 

Nian et al. (2020) 
  

Commenter (on 
PFDA) 

Reproductive 
hormones 

No association with total testosterone 
(beta -0.029, 95% CI -0.090, 0.032 per ln-
unit change), FSH, or LH 

New studies on reproductive hormones are 
inconsistent and would not change the 
current draft synthesis judgment. 

Liu et al. (2020a) Commenter (on 
PFDA) 

Reproductive 
hormones 

Positive association with estradiol (6.8% 
change, 95% CI 2.2, 11.6) 

Ding et al. (2020) Commenter Menopause No association with timing of incident 
natural menopause 

Lin et al. (2022) Lit update Postpartum 
hemorrhage 

Higher odds of postpartum hemorrhage 
(OR 3.42, 95% CI 1.45, 8.07) 

Yes.  
This is a new outcome not reported in other 
studies with a large effect size, so evidence 
will be evaluated and considered for inclusion 
in the assessment.  

Kim et al. (2020) Commenter Breastfeeding  Inverse association in crude analysis with 
PFHxS modeled as outcome 

Yes.  
Given the inferred importance of this 
outcome and concerns for effects of other 
PFAS on this outcome, evidence for lactation 
duration will be evaluated and considered for 
inclusion in the assessment. 

Papadopoulou et al. 
(2016) 

Commenter Breastfeeding   Positive but not statistically significant 
association with breastfeeding duration 

Urinary Effects in Humans    

Nilsson et al. (2022) Lit update Kidney disease, urate No association with kidney disease (OR 
0.90, 95% CI 0.76, 1.08) or urate 

No.  
Existing studies are generally consistent but 
predominantly low confidence with 
considerable uncertainty due to potential 
reverse causation, leading to a draft synthesis 
judgment of slight human evidence. The new 
studies do not inform this uncertainty and 
would not change the synthesis judgment. 

Liang et al. (2023) Lit update Glomerular filtration 
rate  

Higher GFR (not statistically significant) 

Sood et al. (2019) Commenter (on 
PFDA) 

Glomerular filtration 
rate  

Inverse but not statistically significant 
association with eGFR (beta -10.3, 95% CI -
23.6, 3.0) 

Pan et al. (2017) Commenter Glomerular filtration 
rate  

Inverse association with GFR in crude 
analysis 

Feng et al. (2022b) Lit update Hyperuricemia  No association with hyperuricemia 
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Reference Source2 Health outcome Results summary EPA disposition on incorporation and 
characterization of impact3 

Arrebola et al. (2019) Commenter (on 
PFDA) 

Hyperuricemia  
   

Positive but not statistically significant 
association with hyperuricemia (OR 1.33, 
95% CI 0.70, 2.54) 

Yao et al. (2020) Commenter (on 
PFDA) 

Uric acid  Positive association with uric acid (beta 
8.44, 95% CI 2.17, 15.09) 

Cardiometabolic Effects in Humans                  

Haug et al. (2023) Lit update Serum lipids  No association with HDL or LDL cholesterol No.  
For serum lipids, the overall mixed findings 
but with some notable positive associations 
with PFHxS from the new studies would not 
change the current draft synthesis judgment 
(i.e., slight human evidence). 

Donat-Vargas et al. 
(2019b) 

Commenter (on 
PFDA) 

Serum lipids, 
hypertension  

No association with total cholesterol, 
triglycerides, or hypertension 

Batzella et al. (2022) Lit update Serum lipids  Positive association with total cholesterol 
(beta 1.74, 95% CI 1.36, 2.13) and LDL-
cholesterol 

Morgan et al. (2023) Lit update Serum lipids  No association with total cholesterol or 
LDL-cholesterol (crude analysis only) 
 

Rosen et al. (2022) Lit update Serum lipids  Positive but not statistically significant 
association with total cholesterol, LDL, and 
triglycerides 

Fan et al. (2020) Commenter Serum lipids                  No association with total or LDL cholesterol 
or triglycerides 

Li et al. (2019) Commenter Serum lipids                  No association with total cholesterol or 
triglycerides 

Nilsson et al. (2022) Lit update Serum lipids, blood 
pressure, 
cardiovascular disease                  

Positive association with total cholesterol 
and LDL-cholesterol in cross-sectional but 
not prospective analysis. No association 
with high blood pressure (OR 0.92, 95% CI 
0.83, 1.03) or cardiovascular disease (OR 
0.96, 95% CI 0.81, 1.15) 
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Reference Source2 Health outcome Results summary EPA disposition on incorporation and 
characterization of impact3 

Fassler et al. (2019) Commenter Serum lipids, 
adiposity, insulin 
resistance                  

No association with BMI, insulin resistance, 
or serum lipids 

Yao et al. (2020) Commenter (on 
PFDA) 

Serum lipids, blood 
glucose                  

Positive association with total cholesterol 
(beta 6.98, 95% CI 3.06, 11.14), 
triglycerides, and blood glucose 

Chen et al. (2020) Commenter Serum lipids, insulin 
resistance, adiposity                  

Positive but not statistically significant 
association with total and LDL cholesterol 
and blood glucose. Inverse association with 
BMI and body fat percent. 

Jain (2014) Commenter Serum lipids, adiposity                  No association with total cholesterol, 
triglycerides, or BMI 

Ding et al. (2022) Lit update Hypertension                  No association with hypertension (HR 0.98, 
95% CI 0.93, 1.04 per 2-fold increase) 

Mitro et al. (2020a) Lit update Blood pressure                  No association with blood pressure, BMI, 
waist circumference, mid-upper arm 
circumference, or skinfold thickness 

Ma et al. (2019) Commenter Blood pressure                  
   

No association with blood pressure 

Sood et al. (2019) Commenter (on 
PFDA) 

Blood pressure                  No association with blood pressure (beta 
0.3, 95% CI -0.1, 0.7) 

Lind et al. (2018) Commenter (on 
PFDA) 

Carotid artery intima-
media thickness                  

Positive association with IMT thickness 
(beta 0.015, 95% CI 0.005, 0.0025) 

No. 
These results support coherence with serum 
lipids but would not change the current draft 
synthesis judgment.  

Li et al. (2023b) Lit update Cardiovascular disease                  No association with acute coronary 
syndrome 

No.  
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Reference Source2 Health outcome Results summary EPA disposition on incorporation and 
characterization of impact3 

Hutcheson et al. 
(2020) 

Commenter Stroke                  Inverse association with stroke in 
participants with diabetes (OR 0.75, 95% CI 
0.64-0.88), no association in participants 
without diabetes 

New studies contribute to existing 
inconsistency and would not change the 
current draft synthesis judgment. 

Yang et al. (2022) Lit update Gestational 
hypertension                  

Lower odds of gestational hypertension (OR 
0.66, 95% CI 0.35, 1.24) and lower 
continuous blood pressure 

No.  
New studies contribute to existing 
inconsistency and would not change the 
current draft synthesis judgment (i.e., mixed 
findings for cardiovascular risk factors did not 
contribute to the slight human evidence 
judgment). 

Huo et al. (2020) Lit update Gestational 
hypertension                  

No association with gestational 
hypertension (OR 0.80, 95% CI 0.44, 1.47) 
or preeclampsia (OR 1.05, 95% CI 0.60, 
1.83) 

Zhu and Bartell 
(2022) 

Lit update Gestational 
hypertension                  

Small positive association with 
hypertensive disorders in pregnancy (OR 
1.03, 95% CI 1.02, 1.04) 

Xu et al. (2022) Lit update Gestational diabetes                  Inverse association with gestational 
diabetes (OR 0.09, 95% CI 0.03, 0.22 in 
third tertile), inverse association with 
continuous glucose levels in oral glucose 
tolerance test 

No.  
Existing studies are inconsistent and new 
studies would not change the current draft 
synthesis judgment (i.e., mixed findings for 
cardiovascular risk factors did not contribute 
to the slight human evidence judgment). Zhang et al. (2023a) Lit update Gestational diabetes                  Positive association with gestational 

diabetes (OR 3.46, 95% CI 1.64, 6.30 in 3rd 
tertile) 

Xu et al. (2020a) Lit update Gestational diabetes                  No association with gestational diabetes 
(OR 0.79, 95% CI 0.46, 1.31 in Q4 vs Q1) 

Preston et al. (2020) Lit update Gestational diabetes                  No association with gestational diabetes 

Liu et al. (2019) Commenter Gestational diabetes                  No association with gestational diabetes in 
crude analysis 

Li et al. (2020) Commenter (on 
PFDA) 

Gestational blood 
glucose                  

Positive but not statistically significant 
association with blood glucose in oral 
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Reference Source2 Health outcome Results summary EPA disposition on incorporation and 
characterization of impact3 

glucose tolerance test (beta 0.07, 95% CI -
0.06, 0.21) 

Dunder et al. (2023) Lit update Blood glucose                  No association with blood glucose No.  
Existing and new studies are primarily null, 
and new studies would not change the 
current draft synthesis judgment. 

Christensen et al. 
(2016) 

Commenter (on 
PFDA) 

Diabetes                  No association with diabetes (OR 0.98, 95 % 
CI 0.69, 1.16) or pre-diabetes (OR 1.00, 95% 
CI 0.77, 1.16) 

Park et al. (2022) Lit update Diabetes                  Positive association with incident diabetes 
(OR 1.58, 95% CI 1.13, 2.21 in T3 vs T1) but 
not monotonic across tertiles 

Cardenas et al. 
(2019) 

Commenter Diabetes                  No association with incident diabetes in a 
cohort of participants from a diabetes 
prevention trial. 

Zong et al. (2016) Commenter Diabetes                  No association with diabetes 

Donat-Vargas et al. 
(2019a) 

Commenter (on 
PFDA) 

Diabetes risk, insulin 
resistance                  

No increase in diabetes risk or HOMA-IR 

Kim et al. (2015) Commenter (on 
PFDA) 

Insulin resistance                  No association with HOMA (beta -0.08, 95% 
CI -0.68, 0.52) 

Mehta et al. (2021) Commenter (on 
PFDA) 

Insulin resistance                  No association with blood glucose or 
HOMA-IR 

Bassler et al. (2019) Commenter Insulin resistance                  Inverse association with insulin 
 

Brosset and Ngueta 
(2022) 

Lit update Glycemic control                  No association with poor glycemic control 

Ye et al. (2021) Commenter (on 
PFDA) 

Metabolic syndrome                  No association with metabolic syndrome 
(OR 1.02, 95% CI 0.93, 1.13) or blood 
glucose, blood pressure, serum lipids, or 
waist circumference 

No.  
Existing and new studies are primarily null, 
and new studies would not change the 
current draft synthesis judgment. 

Leary et al. (2020) Commenter Metabolic syndrome                  No association with metabolic syndrome in 
firefighters 
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Reference Source2 Health outcome Results summary EPA disposition on incorporation and 
characterization of impact3 

Schillemans et al. 
(2022) 

Lit update Adiposity                  No association with BMI z-score No.  
Existing and new studies are primarily null, 
and new studies would not change the 
current draft synthesis judgment. Notably, 
the majority of new studies only indirectly 
examine PFHxS concentrations and/or involve 
crude analyses without adjustment for 
potential confounders (some or most would 
be judged as uninformative during formal 
study evaluations). 

Zeng et al. (2023) Lit update Adiposity                  No association with BMI z-score trajectory 
 

(Harris et al., 2017) Commenter (on 
PFDA) 

Adiposity                  Lower PFHxS levels in obese (-8.0% 
difference, 95% CI -26.6, 15.2 for obese vs 
normal) 

Ji et al. (2012) Commenter (on 
PFDA) 

Adiposity                  Higher PFHxS concentrations in overweight 
participants, but no statistical analysis 

Pirard et al. (2020) Commenter (on 
PFDA) 

Adiposity                  No association with BMI (quantitative 
results not presented) 

Liu et al. (2020b) Commenter (on 
PFDA) 

Adiposity                  No association with BMI 

Kim et al. (2020) Commenter Adiposity                  No association with pre-pregnancy BMI in 
crude analysis with PFHxS modeled as 
outcome 

Bjerregaard-Olesen 
et al. (2016) 

Commenter Adiposity                  No association with pre-pregnancy BMI in 
analysis with PFHxS modeled as outcome 

Chang et al. (2020) Commenter Adiposity                  Inverse association with BMI in analysis 
with PFHxS modeled as outcome 

Cardenas et al. 
(2018) 

Commenter Adiposity                  Positive but not statistically significant 
association with some measures of 
adiposity including skinfold thickness and 
subcutaneous fat 

Colles et al. (2020) Commenter Adiposity                  No association with BMI in analysis with 
PFHxS modeled as outcome 

Eick et al. (2021) Commenter Adiposity                  No association with BMI in crude analysis 
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Reference Source2 Health outcome Results summary EPA disposition on incorporation and 
characterization of impact3 

Fisher et al. (2016) Commenter Adiposity                  No association with BMI in descriptive 
analysis 

Han et al. (2018) Commenter Adiposity                  No association with BMI (quantitative 
results not reported) 

Hölzer et al. (2008) Commenter Adiposity                  No association with BMI in crude analysis 

Huang et al. (2019) Commenter Adiposity                  No association with BMI in analysis with 
PFHxS modeled as outcome 

Koponen et al. 
(2018) 

Commenter Adiposity                  No association with BMI in crude 
correlation analysis (quantitative result not 
reported) 

Lewin et al. (2017) Commenter Adiposity                  No association with BMI in crude analysis  

Mehta et al. (2020) Commenter Adiposity                  No association with BMI 

Nair et al. (2021) Commenter Adiposity                  No association with BMI in crude analysis 

Ramli et al. (2020) Commenter Adiposity                  No association with BMI in analysis with 
PFHxS modeled as outcome 

Rylander et al. 
(2009) 

Commenter Adiposity                  No association with BMI (quantitative 
result not reported) 

Tsai et al. (2018) Commenter Adiposity                  No association with BMI (unadjusted 
means) 

Yang et al. (2019) Commenter Adiposity                  Higher PFHxS concentration with higher 
BMI (unadjusted means) 

Tian et al. (2019) Commenter Adiposity                  No association with BMI or waist 
circumference 

Brantsæter et al. 
(2013) 

Commenter Adiposity, gestational 
weight gain                  

Higher PFHxS concentrations with higher 
BMI (unadjusted means), no association 
with weight change 
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Reference Source2 Health outcome Results summary EPA disposition on incorporation and 
characterization of impact3 

Mitro et al. (2020b) Commenter Gestational weight 
gain                  

No association with gestational weight 
gain; positive but not statistically significant 
association with postpartum weight 
retention 

Thyroid Effects in Humans 

Jensen et al. (2022) Lit update Thyroid hormones                  No association with free T4, positive but 
non-monotonic and not statistically 
significant association with TSH (beta 4.05, 
95% CI -1.58, 10.00) 

No.  
Existing and new studies on thyroid 
hormones are mixed but primarily null and 
new studies would not change the current 
draft synthesis judgment (i.e., indeterminate 
human evidence). 

Derakhshan et al. 
(2022) 

Lit update Thyroid hormones                  Positive association with free T4 (beta 0.13, 
95% CI -0.01, 0.28) but no association with 
TSH or free T3 

Li et al. (2023a) Lit update Thyroid hormones                  No association with TSH or free T4 

Tillaut et al. (2022) Lit update Thyroid hormones                  No association with free T4, free T3, or TSH 

Wang et al. (2023) Lit update Thyroid hormones                  Positive association with total T4 but not 
other thyroid hormones 

Jain and Ducatman 
(2019) 

Commenter (on 
PFDA) 

Thyroid hormones                  Positive association with Total T3 in 
participants at higher glomerular filtration 
stages. 

Dufour et al. (2020) Commenter (on 
PFDA) 

Thyroid disease                  Inverse association with hyperthyroidism 
(OR 0.14, 95% CI 0.03, 0.63) 

(Christensen et al., 
2016) 

Commenter (on 
PFDA) 

Thyroid disease                  Inverse association with thyroid disease 
(OR 0.59, 95% CI 0.20, 1.06) 

Nilsson et al. (2022) Lit update Thyroid problems, 
thyroid hormones                  

No association with thyroid problems (OR 
0.94, 95% CI 0.73, 1.21). Inverse but not 
statistically significant association with T4 
but not T3 or TSH. 

Other Effects in Humans 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6988515
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10410665
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10410696
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10590561
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10702323
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10755420
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6315816
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6793419
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=3350721
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=3350721
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10587058
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Reference Source2 Health outcome Results summary EPA disposition on incorporation and 
characterization of impact3 

Højsager et al. 
(2022) 

Lit update Bone mineral density                  Inverse association with bone mineral 
content and density (p>0.05), stronger in 
boys 

No. 
Existing studies are inconsistent, and new 
evidence is similarly inconsistent; thus, the 
new evidence would not change the draft 
synthesis judgment of indeterminate human 
evidence. 

Zhao et al. (2022) Lit update Bone mineral density                  Inverse association (p>0.05) with femur 
bone mineral density in women without 
menopause/hysterectomy 

Colicino et al. (2020) Lit update Bone mineral density                  No association with lumbar spine or femur 
density 

Xiong et al. (2022) Lit update Bone mineral density                  Positive association with femur density and 
inverse association with lumbar spine 
density in girls only 

Blomberg et al. 
(2022) 

Lit update Bone mineral density                  
 

No association with bone mineral density in 
children to 9 yrs 

Fan et al. (2023) Lit update Bone mineral density, 
osteoporosis                  

Positive but not statistically significant 
association with osteoporosis (OR 1.23, 
95% CI 0.95, 1.60), inverse association with 
bone mineral density (beta -0.23, 95% CI -
0.33, -0.12) 

Shiue (2015d) Commenter (on 
PFDA) 

Oral health                  No association with teeth health, ache, 
tooth loss 

Liao et al. (2022a) Lit update Hematology                  Positive but not statistically significant 
association with gestational anemia in the 
1st and 3rd but not 2nd trimesters. No 
association with hemoglobin concentration 
during pregnancy 

No.  
Inconsistent results in new studies. The new 
evidence would not change the draft 
synthesis judgment of indeterminate human 
evidence (currently one uninformative study 
in assessment). Cui et al. (2022) Lit update Hematology                  Positive association with hematocrit (3.51% 

change, 95% CI 1.82, 5.24) and hemoglobin 
(3.14% change, 95% CI 1.33, 4.99) during 
pregnancy 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10410661
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10410682
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=8569294
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10602028
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10618582
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10701796
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=2854492
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10590603
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10618597
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Reference Source2 Health outcome Results summary EPA disposition on incorporation and 
characterization of impact3 

Liu et al. (2022) Lit update Hematology                  No association with white blood cells and 
lymphocytes 

Shiue (2015a) Commenter (on 
PFDA) 

Neurologic; 
Remembering 
condition                  

No association with difficulty remembering 
(RR 0.45, 95% CI 0.25–0.81 for >3 times per 
wk) 

No.  
Lack of association in both existing and new 
studies for several isolated nervous system 
outcomes; thus, the new evidence would not 
change the draft synthesis judgment of 
indeterminate human evidence. 

Shiue (2015b) Commenter (on 
PFDA) 

Neurologic; 
Depression                  

No association with adult depression 

Shiue (2015c) Commenter (on 
PFDA) 

Neurologic; Hearing 
disturbance                  

No association with trouble hearing 

(Gaylord et al., 2019) Commenter (on 
PFDA) 

Pulmonary function                  No association with FEV or FVC (FEV1 beta -
0.01, 95% CI -0.10, 0.08, FVC beta 0.03, 95% 
CI -0.08, 0.13) 

No.  
Lack of association in available studies, the 
new evidence does not justify development 
of a new hazard section. Shi et al. (2023) 

 
Lit update Pulmonary function                  No association with forced expiratory 

volume or forced volume capacity. 
 

 

Table 2. Studies meeting select categories of supplemental evidence 

Reference Source Assessment Topic Description or Results 
 

EPA disposition on incorporation and characterization of impact 
 

ADME/PK studies 
Vogs et al. 
(2019) 

Lit Update ADME Toxicokinetics of PFAS 
uptake in zebrafish 

No. 
While these results may be of interest in further work in zebrafish, 
these results are not directly applicable to humans or mammalian 
model species. 

Qin et al. (2023) Lit Update ADME Characterization of PFHxS 
protein binding 

No. 
Results do not change draft judgments or provide essential insights 
into potential mechanisms of PFHxS-induced toxicity. 

Mechanistic, including Non-PECO Routes of Exposure 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10698676
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=2821962
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=2965857
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=3045461
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5080201
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10756491
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5080626
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10754795
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Reference Source Assessment Topic Description or Results 
 

EPA disposition on incorporation and characterization of impact 
 

Stoker et al. 
(2023) 

Lit Update Thyroid PFOS & PFHxS found to 
be NIS inhibitors 

No. 
Results do not change the draft evidence integration judgment 
(evidence indicates) or provide essential insights into potential 
mechanisms of PFHxS-induced thyroid toxicity. 

 

Buckalew et al. 
(2020) 

Lit Update Thyroid Evaluation of PFAS 
sodium-iodide 
symporter (NIS) 
inhibitors  

Vongphachan et 
al. (2011) 

Lit Update  
Neurodevelopmental; 
Thyroid 

PFAS effects on mRNA 
expression levels of 
thyroid-responsive 
genes in avian primary 
cultures 

No. 
Results do not change draft judgments or provide essential insights 
into potential mechanisms of PFHxS-induced neurodevelopmental or 
thyroid effects  

Phelps et al. 
(2023) 

Lit Update Immune  PFHxS and GenX 
suppressed the 
respiratory burst in 
zebrafish and human 
neutrophil-like cell line. 

No. 
Results do not change the draft evidence integration judgment 
(evidence indicates) or provide essential insights into potential 
mechanisms of PFHxS-induced immunotoxicity. 

 Park et al. (2021) Lit Update Immune Examination of the 
effects of PFAS 
including, PFHxS, on 
mast cell-mediated 
inflammatory responses 
using in vitro mouse 
bone marrow-derived 
mast cells (BMMCs) and 
human mast cells (HMC-
1) and in vivo mice 
model. 

Hvizdak et al. 
(2023) 

Lit Update Developmental Study demonstrates that 
of the six PFAS tested, 
PFOA, PFOS, PFNA, and 
PFHxS bind to and 
inhibit CYP3A7. CYP3A7 
is responsible for 
facilitating a variety of 

No. 
Results do not change draft judgments or provide essential insights 
into potential mechanisms of PFHxS-induced developmental effects. 
 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10754694
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6315695
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1279110
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10754698
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=9959572
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10699697
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Reference Source Assessment Topic Description or Results 
 

EPA disposition on incorporation and characterization of impact 
 

reactions essential for 
fetal development.  

Gundacker et al. 
(2022) 

Lit Update Developmental Potential MOAs of 
reduced birthweight 
associated with PFAS 
identified. 

Annunziato et al. 
(2019) 

Lit Update Developmental PFAS developmental 
effects on behavioral, 
morphometric and gene 
expression endpoints in 
zebrafish.  

Liu et al. (2020d) Lit Update Developmental Evaluation the toxicity of 
several short chain PFAS 
in hMSC. Results 
demonstrated cytotoxic 
and potential 
developmental toxicity. 

Xu et al. (2021) Lit Update Developmental Lipid profiling during 
different stages of 
zebrafish development 
to understand PFHxS 
toxicity 

Dasgupta et al. 
(2020) 

Lit Update Developmental PFAS affect development 
in zebra fish  

Gaballah et al. 
(2020) 

Lit Update Developmental; 
developmental 
neurotoxicity 

Evaluation of 
developmental and 
neurodevelopmental 
toxicity from PFAS 
exposure 

No. 
Results do not change draft judgments or provide essential insights 
into potential mechanisms of PFHxS-induced developmental effects 
and or neurodevelopmental effects. 

Solan et al. 
(2023)  

Lit Update  Neurotoxicity/ 
hepatotoxicity    

Every short-chain PFAS 
evaluated, except for 
PFHxS, increased the 
activity of at least one 
antioxidant enzyme.  

No.  
Null results do not change the draft evidence integration judgments 
for nervous system (for developmental exposure, evidence suggests; 
in adults, inadequate evidence) or liver (evidence suggests) effects 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10618579
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5080590
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6315705
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=9961925
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6323799
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6356901
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10756608
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Reference Source Assessment Topic Description or Results 
 

EPA disposition on incorporation and characterization of impact 
 

or provide essential insights into potential mechanism(s) of PFHxS-
induced toxicity. 

Menger et al. 
(2020) 

Lit Update Neurotoxicity  PFHxS behavioral effects 
and bioaccumulation in 
zebrafish 

No. 
Results do not change draft judgments for nervous system (for 
developmental exposure, evidence suggests; in adults, inadequate 
evidence or provide essential insights into potential mechanisms of 
PFHxS-induced neurotoxicity effects. 

   

Berntsen et al. 
(2018) 

Lit Update Neurotoxicity PFAS effects on viability 
and NMDA receptor 
activation 

Rericha et al. 
(2021) 

Lit Update Neurodevelopmental PFAS effects on zebrafish 
behavior 

No. 
Results do not change draft judgments or provide essential insights 
into potential mechanisms of PFHxS-induced neurodevelopmental 
effects 

Behr et al. 
(2018) 

Lit Update Reproductive toxicity/ 
Endocrine 

Examination of endocrine 
properties of various 
PFAS including PFHxS 

No. 
Results do not change draft judgments or provide essential insights 
into potential mechanisms of PFHxS-induced reproductive effects. 

Leclercq et al. 
(2022) 

Lit Update Female reproductive/ 
Developmental 

PFAS exposure during 
IVM, PFHxS tended to 
result in higher blastocyst 
rates on day 5 post 
fertilization and on day 6 
post fertilization as well 
as in higher apoptosis 
rates in blastocysts. 
PFHxS resulted in higher 
total cell counts in 
blastocysts. 

No. 
Results do not change the draft evidence integration judgments or 
provide essential insights into potential mechanisms of PFHxS-
induced developmental or female reproductive effects. 

Hallberg et al. 
(2022) 

Lit Update Female reproductive PFHxS induction of 
phenotypic, 
transcriptomic, and DNA 
methylation in bovine 
oocytes 

No. 
Results do not change draft judgments or provide essential insights 
into potential mechanisms of PFHxS-induced female reproductive 
effects. 

Hallberg et al. 
(2021) 

Lit Update Female reproductive PFHxS effects on bovine 
preimplantation in-vitro 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6311635
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5079644
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=9944350
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=4825616
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10699699
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10273381
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=9960588
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Reference Source Assessment Topic Description or Results 
 

EPA disposition on incorporation and characterization of impact 
 

Qiu et al. (2020) Lit Update Female Repro; Other PFAS binding to estrogen 
receptors 

No, results do not influence draft judgments or provide key insights 
into key science issues, nor do they provide essential insights into 
potential mechanisms of PFHxS-induced effects. 

Fragki et al. 
(2023) 

Lit update Hepatic PFAS, including PFHxS 
may lead to interference 
of hepatic gene 
expression and lipid 
metabolism. 

No. 
Results do not change draft judgments or provide essential insights 
into potential mechanisms of PFHxS-induced hepatic effects. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Søderstrøm et al. 
(2022) 

Lit Update Hepatic PFAS modulation of 
PPAR-signaling pathway 
in Atlantic cod fish. 

Evans et al. 
(2022) 

Lit Update Hepatic Characterization of PPAR 
alpha and hER binding to 
PFAS 

Ishibashi et al. 
(2019) 

Lit Update Hepatic PFAS binding to human 
and Balkal seal PPAR 
alpha  

Ojo et al. (2020) Lit Update Hepatic PFAS mixtures effects on 
HepG2 cells 

Ojo et al. (2021) Lit Update Hepatoxicity Evaluation of oxidative 
stress caused by 
individual and combined 
PFAS on human liver 
cells 

Bjork et al. 
(2021) 

Lit Update Hepatotoxicity Evaluation of binary 
mixtures of PFAS on 
molecular responses. 
PPAR alpha activation 
was observed in FAO rat 
hepatoma cells exposed 
to binary mixtures of 
PFAS. 

Ishibashi et al. 
(2011) 

Lit Update Hepatic PPAR alpha activation in 
Baikal seal by PFAS 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6304523
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10699601
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10273354
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10410649
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5024210
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6333436
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=8453078
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=9959478
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1276109
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Reference Source Assessment Topic Description or Results 
 

EPA disposition on incorporation and characterization of impact 
 

Wallace et al. 
(2013) 

Lit Update Hepatic PFAS structure activity 
relationships and 
interference with 
mitochondrial respiration 
in rat liver 

Sørli et al. (2020) Lit Update Respiratory 
Toxicity/Other 

 in vitro models to assess 
toxicity to the 
respiratory system; i) a 
lung surfactant (LS) 
function assay to assess 
the acute inhalation 
toxicity potential, and ii) 
a cell model with human 
bronchial epithelial cells 
to study pro-
inflammatory potential 
and modulation of 
inflammatory 
responses. PFHxS, PFOA 
and PFOS can inhibit LS 
function. 

No, results do not influence draft judgments or provide key insights 
into key science issues, nor do they provide essential insights into 
potential mechanisms of PFHxS-induced respiratory or other 
effects. 

 Qin et al. (2020) Lit Update Cardiometabolic 
effects; Diabetes 

Stimulation of insulin 
secretion by Islet beta 
cells cause by PFAS 

No. 
Results do not change draft judgments or provide essential insights 
into potential mechanisms of PFHxS-induced cardiometabolic 
effects  

Qin et al. (2023) Lit Update ADME Characterization of PFHxS 
protein binding 

No 
Results do not change draft judgements or provide essential insight 
into the dosimetric extrapolation approach. 
 

Pan et al. (2019) Lit Update Other human bone 
mesenchymal stem cells 
(hBMSCs) were used to 
evaluate the effects of Cl-
PFESA at non-cytotoxic 
concentrations on 
molecular regulation and 
cellular function of stem 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5079766
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5918817
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6315677
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10754795
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5381544
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Reference Source Assessment Topic Description or Results 
 

EPA disposition on incorporation and characterization of impact 
 

cells compared to PFOS, 
perfluorohexane 
sulfonate (PFHxS) and 
perfluorooctanoic acid 
(PFOA). 

Hoover et al. 
(2019) 

Lit Update Other  Examination of the 
cytotoxicity of PFAS singly 
and in binary mixtures 
using an amphibian 
fibroblast cell line. 
Second, we used this 
experimental data to 
develop quantitative 
structure-activity 
relationship (QSAR) 
models for single and 
binary mixtures. 

Xu et al. (2020b) Lit Update Other Effects of PFAS exposure 
on serum microRNAs 

Modaresi et al. 
(2021) 

Lit Update Other PFAS augment 
adipogenesis in 3T3-L1 
adipocytes 

Mann et al. 
(2021) 

Lit Update Other 
 

Use of human fatty acid 
binding protein to detect 
PFAS.  

Wang et al. 
(2018) 

Lit Update Other  Stabilization of liposomes 
by PFAS 

 

Nguyen et al. 
(2020) 

Lit Update Other Inhibition of carbonic 
anhydrases by PFAS  

Liu et al. (2020c) Lit Update Other PFAS effects on 
pancreatic and 
endocrine pluripotent 
cell differentiation  

 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5381555
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6316200
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=9959527
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=9960590
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5080469
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6318636
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6392503
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Reference Source Assessment Topic Description or Results 
 

EPA disposition on incorporation and characterization of impact 
 

Xie et al. (2021) Lit Update Other PFAS and POPs effects on 
3T3-L1 adipogenesis 

Shen et al. 
(2020) 

Lit Update Other PFAS effects on lipid 
bilayer 

U.S. EPA (2019) Lit Update Other CompTox Dashboard 

 
 
 
 
 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=9960215
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6833654
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5794424
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Figure 1. PFHxS new studies identified in the April 2023 literature search update or submitted to EPA during public comment. 
Diagram shows screening results for all identified studies. Information on EPA’s disposition on the inclusion of these studies. Information 
on EPA’s disposition on the inclusion of these studies prior to finalizing the assessment and characterization of their impact on key 
assessment decisions is provided in Table 1 and Table 2 for studies meeting PECO and for supplemental studies on ADME, mechanistic, 
and non-PECO exposure routes. Refer to interactive HAWC visual for additional information.

https://hawc.epa.gov/summary/visual/assessment/100500074/Literature-Search-Update-April-2023/
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