EPA characterization of studies identified after public release of the draft IRIS Toxicological Review of Perfluorohexanesulfonic Acid (PFHxS, CASRN 335-46-4) and Related Salts

Tables 1 and 2 below describe literature identified during the 2023 literature search update performed after release of the public comment draft (as described in the Methods Section 1.2.1 of the IRIS PFHxS External Review Draft) or submitted in public comments received through the EPA docket¹. The most recent ADME/PK studies were considered and incorporated as appropriate in the public comment draft, with no additional ADME/PK studies identified since its release. In accordance with charge question 1, the tables show EPA's disposition on the need to incorporate these studies into the finalized assessment and the interpreted impact of these studies on key judgments in the draft assessment (i.e., identified hazards and dose-response values, or pivotal uncertainties). The panel is asked to weigh in on EPA's disposition. Supplemental study categories included here are 'ADME' and 'mechanistic, including non-PECO exposure route.' All identified studies not meeting PECO, or the aforementioned supplemental categories are summarized in Figure 1 of this document or in the interactive HAWC visual.

Reference	Source ²	Health outcome	Results summary	EPA disposition on incorporation and characterization of impact ³
Immune Effects in Humans				
<u>Kaur et al. (2023)</u>	Lit update	Antibody levels to SARS-COV2 in adults	Inverse association (beta -0.68, 95% CI - 1.18, -0.18)	No. Findings are consistent with existing
Porter et al. (2022)	Lit update	Antibody levels to SARS-COV2 in adults	Inverse association with IgG and neutralizing antibodies in response to	epidemiological evidence and have no impact on the draft immunosuppression synthesis

Table 1. Studies meeting assessment PECO criteria

¹ A total of 186 studies were submitted by the State of New Jersey Department of Environmental Protection and the Natural Resources Defense Council (NRDC). Of the 186 studies, 119 studies had been previously identified and can be found in the <u>HERO</u> database. The remaining 67 new studies were screened for PECO criteria and evaluated for potential incorporation and impact on the assessment's conclusions as stated above.

² For literature identified by Public Commenters, the full comments are available here: <u>https://www.regulations.gov/docket/EPA-HQ-ORD-2021-0562</u>. PFHxS New Studies Identified in the April 2023 Literature Search Update or Submitted to EPA during Public Comment. Diagram shows screening results for all identified studies. Information on EPA's disposition on the inclusion of these studies prior to finalizing the assessment and characterization of their impact on key assessment decisions is provided in Table 1 for studies meeting PECO and for supplemental studies on ADME, mechanistic, and non-PECO exposure routes. Refer to interactive <u>HAWC visual</u> for additional information.

³As described in charge question 1, only studies that would notably impact the primary EPA draft judgments (i.e., the health effects identified as human health hazards and the final reference values) in the Step 4 draft will be added to the Toxicological Review by EPA prior to finalization. The panel is asked to identify (with justification) any EPA decisions on incorporation or impact that are not supported.

Reference	Source ²	Health outcome	Results summary	EPA disposition on incorporation and characterization of impact ³
			COVID vaccination (statistical significance varied based on model)	judgment (i.e., <i>moderate</i> human evidence), particularly given that two of the new studies
<u>Zhang et al. (2023b)</u>	Lit update	Vaccine response	Inverse association with rubella antibodies (-6.48% change, 95% CI -10.69, -2.07). Inverse but not statistically significant association with mumps antibodies in sub- population with lower folate.	are in adults and the draft conclusions are primarily based on studies in children.
<u>Mogensen et al.</u> (2015)	Commenter	Vaccine response	Re-analysis of Faroe Islands study, showing results when analyzed with structural equation modeling.	Multipollutant modeling results will be added to discussion of potential confounding across PFAS.
<u>Zhang et al. (2022)</u>	Lit update	Infectious disease	Positive association with common cold at 3- 11 yrs (OR 1.31, 95% CI 1.05, 1.63) but not 12-19 yrs	No. Existing epidemiological evidence on infectious disease is inconsistent and new studies do not change the current draft synthesis judgment.
<u>Huang et al. (2020)</u>	Commenter	Infectious disease	No association with the number of respiratory tract infections in preschool children	
<u>Pan et al. (2023)</u>	Lit update	Asthma	No association with current asthma (OR 0.97, 95% CI 0.57, 1.65 in Q4 vs Q1) or wheezing. Inverse association with asthma attacks and emergency visits.	No. Existing epidemiological evidence on asthma is inconsistent and new studies do not change the current draft synthesis judgment.
Gaylord et al. (2019)	Commenter (on PFDA)	Asthma	No association with asthma diagnosis (OR 0.96, 95% CI 0.65, 1.44)	
Averina et al. (2019)	Commenter (on PFDA)	Asthma	Positive association with asthma (OR 2.18, 95% CI 1.08, 4.42 in Q4 vs Q1). No association with allergies or eczema.	
Wen et al. (2019)	Commenter	Atopic dermatitis	Positive but not statistically significant association with atopic dermatitis	
(Ammitzbøll et al., 2019)	Commenter (on PFDA)	Multiple sclerosis	No association with multiple sclerosis (2% change, 95% CI -9,15)	No. Mixed results for autoimmune conditions in new studies would not influence PFHxS draft

Reference	Source ²	Health outcome	Results summary	EPA disposition on incorporation and characterization of impact ³
<u>Gaylord et al. (2020)</u>	Commenter (on PFDA)	Celiac disease	Positive but not statistically significant association with celiac disease (OR 1.72, 95% CI 0.85, 3.49) with stronger effect in women (OR 3.24, 95% CI 1.04, 10.11)	evidence synthesis or integration conclusions on immune effects.
<u>Steenland et al.</u> (2018)	Commenter	Ulcerative colitis	Inverse association with ulcerative colitis	
		Dev	velopmental Effects in Humans	
<u>Wang et al. (2022)</u>	Lit update	Fetal growth restriction (Birth length (BL); head circumference (HC); birthweight (BWT))	No sex-specific associations were observed for birth length (BL), birth weight (BWT) and head circumference (HC) endpoints. BL Male β = -0.080; 95%CI: -0.062, 0.222; BL Female β = -0.004; 95%CI: -0.310, 0.303. HC Male β = 0.005; 95%CI: -0.180, 0.191; HC Female β = -0.110; 95%CI: -0.345, 0.125. BWT Male β = 0.024; 95%CI: -0.140, 0.188; BWT Female β = -0.062; 95%CI: -0.291, 0.166.	No. Null results observed for fetal growth restriction endpoints (birth length, birth weight and head circumference) in both female and male neonates would not change the current draft synthesis judgment for fetal growth restriction (i.e., <i>slight</i> human evidence).
<u>Peterson et al.</u> (2022)	Lit update	Fetal growth restriction	No associations were evident across fetal measures in relation to PFHxS exposures.	No. Null results for fetal biometric endpoints would not change the current draft synthesis judgment for fetal growth restriction (i.e., <i>slight</i> human evidence).
Wang et al. (2023)	Lit update	Fetal growth restriction	No associations were evidence across fetal growth endpoints [Per each PFHxS log-10 unit increase, birth weight z-score -0.06 (- 0.25, 0.12), birth length z-score -0.10 (- 0.36, 0.17), head circumference z score 0.08 (-0.18, 0.35), ponderal index -0.04 (- 0.72, 0.64), weight for length z-score 0.02 (- 0.29, 0.34).	No. Null results for all fetal growth would not change the current draft synthesis judgment for fetal growth restriction (i.e., <i>slight</i> human evidence).

Reference	Source ²	Health outcome	Results summary	EPA disposition on incorporation and characterization of impact ³
<u>Ouidir et al. (2020)</u>	Commenter (on PFDA)	Fetal growth restriction	Per each PFHxS IQR increase, a statistically significant longitudinal decrease in head circumference ($\beta = -0.22$ mm; p-value: <0.05) and increases in longitudinal biparietal diameter ($\beta = 0.07$ mm; p-value: <0.05), and femur length ($\beta = 0.12$ mm; p- value: <0.001) were detected. Results were null for abdominal circumference ($\beta = 0.11$ mm), occipital-frontal diameter changes (β = -0.04 mm) and estimated fetal growth (β = 3.27 g) (p-value/Cis not provided).	No. Study population was previously reported in a publication already in the assessment <u>Buck</u> <u>Louis et al. (2018)</u> . New results for longitudinal in utero measurements from ultrasonography would not change the current draft synthesis judgment.
<u>Hu et al. (2021)</u>	Commenter	Fetal growth restriction	Per each PFHxS 2-fold increase, a 6.7 g (95% CI -11.4, 24.8) increase in birth weight, attenuated with adjustment for co- pollutants.	No. Study population was previously reported in a population already in the assessment and new results would not change the current draft synthesis judgment.
<u>Kalloo et al. (2020)</u>	Commenter	Fetal growth restriction, gestational age	N/A. Duplicative results from other publications.	No. The anthropometrics measures of fetal growth and gestational duration reported in this study population (HOME study) were previously reported in a publication already in the assessment (Shoaff, 2018, 4619944). We also previously demonstrated in Appendix C that single PFHxS vs. multi-PFAS models were comparable.
<u>Mwapasa et al.</u> (2023)	Lit update	Fetal growth restriction, gestational age	Per each log ₁₀ -unit PFHxS increase, results were largely null across the overall population and both sexes, although boys showed lower birth weight z-scores while girls had larger head circumference z- scores. All of these results had confidence intervals that included the null value demonstrating a lack of statistical significance.	No. Null findings of fetal growth restriction would not change the current draft synthesis judgment (i.e., <i>slight</i> human evidence).

Reference	Source ²	Health outcome	Results summary	EPA disposition on incorporation and characterization of impact ³
Petroff et al. (2023)	Lit update	Gestational age	No association between PFHxS exposure and gestational age ($\beta = 0.04 \pm 0.21$; p=0.85).	No. Null results for gestational age would not change the current draft human evidence synthesis judgment for gestational duration (i.e., <i>slight</i> human evidence).
<u>Yu et al. (2022)</u>	Lit update	Preterm birth	Results were mixed with a non-significant increase in risk seen for untransformed data (OR=1.76; 95%CI: 0.91, 3.40 per each ng/mL increase) only; transformed results were null (OR=0.93; 95%CI: 0.80, 1.08 per each In-unit increase).	No. Small increased risks here along with the null results in <u>Padula et al. (2023)</u> and <u>Liao et al.</u> (2022b) would not change the current draft synthesis judgment for gestational duration.
<u>Liao et al. (2022b)</u>	Lit update	Preterm birth	Results were mixed with a statistically significant decrease in preterm birth per each log10 increase (OR=0.73; 95%CI: 0.39, 1.38) driven by tertile 3 (OR=0.60; 95%CI: 0.37, 0.98); results were null for tertile 2 (OR=0.97; 95%CI: 0.63, 1.50) relative to tertile 1.	No. Inconsistent new results on gestational duration in the new studies including decreased risk reported here combined with increased risk by <u>Yu et al. (2022)</u> and null results in <u>Padula et al. (2023)</u> above would not change the current draft synthesis judgment for gestational duration (i.e., <i>slight</i> human evidence).
<u>Padula et al. (2023)</u>	Lit update	Fetal growth restriction, gestational duration	No associations were evident across fetal growth and gestational duration endpoints [gestational age β = 0.02; 95%CI: -0.19, 0.23; birth weight for gestational age β = -0.06; 95%CI: -0.18, 0.06; term low birth weight OR= 1.14; 95%CI: 0.46, 2.84; small for gestational age OR= 1.25; 95%CI: 0.84, 1.87; large for gestational age OR= 0.86; 95%CI: 0.59, 1.25; preterm birth OR= 0.97; 95%CI: 0.61, 1.55.	No. Null results for all fetal growth and gestational duration endpoints would not change the current draft judgment for either gestational duration or fetal growth restriction (i.e., <i>slight</i> human evidence).
<u>Hong et al. (2022)</u>	Lit update	Spontaneous abortion	Inverse association (OR=0.05; 95% CI: 0.00, 7.36)	No. Updated analysis of study that is already included in the draft assessment.

Reference	Source ²	Health outcome	Results summary	EPA disposition on incorporation and characterization of impact ³
<u>Li et al. (2022a)</u>	Lit update	Anogenital distance	Positive association with two AGD measures (<i>p</i> <0.05)	No. New study adds to existing inconsistency in the AGD evidence and would not change the draft synthesis judgment.
		De	velopmental Effects in Animals	
<u>Yao et al. (2023)</u>	Commenter	Fetal viability in animals	Increased fetal death in mice exposed to highest dose (0.3 mg/kg-d)	Yes. Findings are supportive of results from a separate animal study that is cited in the draft Toxicological Review. These new findings are preliminarily interpreted to strengthen the animal evidence synthesis judgment from <i>indeterminate</i> to <i>slight</i> (dependent on formal study evaluation and incorporation into the synthesis). However, these new findings do not change the overall evidence integration judgment (i.e., <i>evidence</i> <i>suggests</i>).
			Hepatic Effects in Humans	
<u>Borghese et al.</u> (2022)	Lit update	Liver enzymes	Positive association with AST, GGT, and ALP, positive but not statistically significant association with ALT and bilirubin	No. New studies are consistent with the existing studies and would not change the draft
<u>Liao et al. (2023)</u>	Lit update	Liver enzymes	Positive association with bilirubin but not ALT, AST, or GGT	synthesis judgment (i.e., <i>slight</i> human evidence).
<u>Kim et al. (2023b)</u>	Lit update	Liver enzymes	Positive but not statistically significant associations with ALT, AST, and GGT	
<u>Yao et al. (2020)</u>	Commenter (on PFDA)	Liver enzymes	Positive association with ALT, AST, GGT (statistically significant for GGT)	
<u>Salihović et al.</u> (2019)	Commenter (on PFDA)	Bile acid levels (liver)	Inverse correlations with most bile acids (statistically significant for GDCA)	

Reference	Source ²	Health outcome	Results summary	EPA disposition on incorporation and characterization of impact ³
<u>Rantakokko et al.</u> (2015)	Commenter (on PFDA)	Non-alcoholic fatty liver disease	Inverse association with lobular inflammation (OR 0.02, 95% Cl <0.01, 0.53 for 2–4 foci per 200× field)	No. While there are no studies of clinical liver disease available for PFHxS in the current
<u>E et al. (2023)</u>	Lit update	Liver disease	No association with liver problems (OR 0.97, 95% CI 0.72, 1.30). Positive but not statistically significant association with ALT.	draft, the new studies are inconsistent and would not change the draft synthesis judgment of <i>slight</i> for hepatic effects.
<u>Nilsson et al. (2022)</u>	Lit update	Liver problems	Positive association with non-alcoholic fatty liver disease in women but not men, with strongest association in postmenopausal women (OR 2.50, 95% CI 1.29, 4.85 in Q4 vs Q1)	
	·		Cancer in Humans	
<u>Feng et al. (2022a)</u>	Lit update	Breast cancer	No association with breast cancer (OR = 0.93, 95% CI: 0.79, 1.09) per unit increase in In-transformed plasma PFHxS levels.	No. Inconsistent results across the new studies showing increased risk (note: this study
<u>Li et al. (2022b)</u>	Lit update	Breast cancer	Decreased risk for breast cancer (OR = 0.73, 95% CI: 0.63, 0.87) per SD increase in In- transformed PFHxS from the adjusted model – without LASSO (see Table S3).	reports on the same study population as a publication already in the assessment), decreased risk, and no association between PFHxS and breast cancer do not change the draft synthesis judgment (i.e. indeterminate
Wielsøe et al. (2018)	Commenter (on PFDA)	Breast cancer	Increased risk for breast cancer (OR 5.45, 95% CI 1.26, 23.8) in high vs. low PFHxS exposure for one genotype).	human evidence; two studies on breast cancer were synthesized in the draft, one study finding significantly increased risk of
<u>Lee et al. (2020)</u>	Commenter (on PFDA)	Breast cancer	No association of PFHxS with mammographic density, a strong predictor of breast cancer (beta -0.02, <i>p</i> -value 0.95).	breast cancer among women <= 50 years of age who were estrogen receptor positive; and non-significantly decreased risk of breast cancer among women who were estrogen
<u>Cohn et al. (2020)</u>	Commenter	Breast cancer	No association with breast cancer (quantitative result not reported).	receptor negative and > 50 years of age, and another study reporting significantly
Goodrich et al. (2022)	Lit update	Liver cancer	No association of PFHxS with liver cancer (OR = 1.10, 95% CI: 0.56, 2.30) for PFHxS greater than the 90 th % vs less than 90 th %.	decreased risk for some genotypes).

Reference	Source ²	Health outcome	Results summary	EPA disposition on incorporation and characterization of impact ³		
Shearer et al. (2021)	Commenter (on PFDA)	Renal cancer	Increased risk of renal cell carcinoma with PFHxS per unit increase in log ₂ -transformed serum PFHxS (OR=1.27; 95% CI: 1.03, 1.56) that attenuated when controlling for other PFAS (OR=1.12; 95% CI: 0.88, 1.43).	The only study reporting on liver cancer did not find an association with PFHxS and would not influence the draft synthesis judgment. The only study of renal cancer reported a significant positive association that dissipated when controlling for other PFAS and would not influence the draft synthesis judgment. The epidemiologic evidence on PFHxS and the risk of cancer remains indeterminate and, overall, there remains <i>inadequate</i> <i>information to assess carcinogenic potential;</i> the new human studies are not impactful.		
	Neurodevelopmental Effects in Humans					
<u>Luo et al. (2022a)</u>	Lit update	Broad neurodevelopmental scale	Inverse but not statistically significant association with cognitive, language, motor, and social-emotional scores, but statistically significant positive association with adaptive behavior score	No. There is inconsistency for neurodevelopmental effects in the current draft, and the new studies showing overall mixed but several positive associations with		
<u>Oh et al. (2022)</u>	Lit update	Autism, developmental delay	Positive but not statistically significant associations with autism spectrum disorder and developmental delay	PFHxS would not influence the draft synthesis judgment of <i>slight</i> evidence.		
<u>Zhou et al. (2023)</u>	Lit update	Broad neurodevelopmental scale	Inverse association with communication and motor at 6 mos but inconsistent findings for other measures (problem solving, personal-social) and other visits (2, 12, and 24 mos)			
Li et al. (2023c)	Lit update	Broad neurodevelopmental scale	Positive association with persistently low trajectory for communication (<i>p</i> <0.05), gross motor, problem solving ability (<i>p</i> <0.05), and personal-social skills, but not fine motor			

Reference	Source ²	Health outcome	Results summary	EPA disposition on incorporation and characterization of impact ³
Oulhote et al. (2019)	Commenter (on PFDA)	Broad neurodevelopmental scale	Positive association with Boston Naming Test. No association with Strengths and Difficulties Questionnaire.	
<u>van Larebeke et al.</u> (2022)	Lit update	Broad neurodevelopmental scale	Inverse (favorable) association with incorrect responses on the Continuous Performance Test but not other test results	
<u>Xie et al. (2022)</u>	Lit update	Neurobehavior	No association with behavior including externalizing problems	
<u>Ames et al. (2023)</u>	Lit update	Autism	No association with Social Responsiveness Scale score	
<u>Kim et al. (2023a)</u>	Lit update	ADHD scale	Positive though non-monotonic association with ADHD rating scale at 8 yrs, dependent on age at exposure measurement and sex	
			Human Male Reproductive	
<u>Luo et al. (2022b)</u>	Lit update	Semen parameters	No association with sperm concentration of motility	No. Evidence is inconsistent in existing studies
<u>Ma et al. (2021)</u>	Commenter (on PFDA)	Semen parameters	No association sperm concentration, motility, or morphology	and the new studies would not influence the draft synthesis judgment (i.e., <i>indeterminate</i> buman evidence)
Zhang et al. (2011)	Commenter	Infertility	Lower concentrations of PFHxS in infertile men than worker controls in crude analysis	numan evidence).
<u>Rivera-Núñez et al.</u> (2023)	Lit update	Reproductive hormones	Positive association with T (<i>p</i> <0.05), no association with free T, E1, E2, E3	No. Evidence is inconsistent in existing studies
<u>Guo et al. (2023)</u>	Lit update	Reproductive hormones	No association with testosterone or estradiol (included boys and girls)	and the new studies would not influence the draft synthesis conclusion of <i>indeterminate</i>
<u>Wang et al. (2023)</u>	Lit update	Reproductive hormones	Positive association with estradiol but not testosterone (included boys and girls)	evidence.
<u>Nian et al. (2020)</u>	Commenter (on PFDA)	Reproductive hormones	No association with total testosterone (beta 0.079, 95% CI -0.009, 0.166 per In- unit change), FSH, or LH	

Reference	Source ²	Health outcome	Results summary	EPA disposition on incorporation and characterization of impact ³			
	Human Female Reproductive						
<u>Hong et al. (2022)</u>	Lit update	In vitro fertilization outcomes	No association with oocyte maturation rate, fertilization rate, high quality embryo rate. Inverse but not statistically significant (OR=0.60, 95% CI 0.12, 2.96) for clinical pregnancy	No. Evidence of an association with fecundity and infertility is inconsistent across new studies and was similarly inconsistent across existing studies. Thus, the new studies would not			
<u>Cohen et al. (2023)</u>	Lit update	Fecundity, pregnancy	No association with time to pregnancy or odds of clinical pregnancy	change the draft synthesis judgment of <i>indeterminate</i> human evidence.			
<u>Luo et al. (2022c)</u>	Lit update	Fecundity, infertility	Lower odds of infertility (OR 0.61, 95% CI 0.45, 0.82) and higher fecundability				
<u>Tan et al. (2022)</u>	Lit update	Infertility	Lower odds of infertility (non-monotonic across quartiles and not statistically significant)				
(<u>Whitworth et al.,</u> 2016)	Commenter (on PFDA)	Fecundity	No association (FR 0.97, 95% CI 0.90, 1.1)				
<u>Ma et al. (2021)</u>	Commenter (on PFDA)	In vitro fertilization outcomes, pregnancy	Fewer zygotes and good quality embryos with higher exposure. No association with clinical pregnancy.				
<u>Petro et al. (2014)</u>	Commenter	In vitro fertilization outcomes	Positive association with fertilization rate in crude analysis				
<u>Wang et al. (2019)</u>	Commenter (on PFDA)	Polycystic ovarian syndrome	Positive but not statistically significant association with PCOS-related infertility (OR 2.08, 95% CI 0.88, 4.93 in 3rd vs. 1st tertile)	No. Existing evidence on gynecological conditions is inconsistent and there is considerable uncertainty due to potential reverse causation. The new study does not inform this uncertainty and would not change the draft synthesis judgment			
<u>Rivera-Núñez et al.</u> (2023)	Lit update	Reproductive hormones	Positive association with E1, E2, E3 (p <0.05), no association with T, FT	No.			

Reference	Source ²	Health outcome	Results summary	EPA disposition on incorporation and characterization of impact ³
<u>Nian et al. (2020)</u>	Commenter (on PFDA)	Reproductive hormones	No association with total testosterone (beta -0.029, 95% CI -0.090, 0.032 per In- unit change), FSH, or LH	New studies on reproductive hormones are inconsistent and would not change the current draft synthesis judgment.
<u>Liu et al. (2020a)</u>	Commenter (on PFDA)	Reproductive hormones	Positive association with estradiol (6.8% change, 95% Cl 2.2, 11.6)	
<u>Ding et al. (2020)</u>	Commenter	Menopause	No association with timing of incident natural menopause	
<u>Lin et al. (2022)</u>	Lit update	Postpartum hemorrhage	Higher odds of postpartum hemorrhage (OR 3.42, 95% CI 1.45, 8.07)	Yes. This is a new outcome not reported in other studies with a large effect size, so evidence will be evaluated and considered for inclusion in the assessment.
<u>Kim et al. (2020)</u>	Commenter	Breastfeeding	Inverse association in crude analysis with PFHxS modeled as outcome	Yes. Given the inferred importance of this outcome and concerns for effects of other PFAS on this outcome, evidence for lactation duration will be evaluated and considered for inclusion in the assessment.
<u>Papadopoulou et al.</u> (2016)	Commenter	Breastfeeding	Positive but not statistically significant association with breastfeeding duration	
			Urinary Effects in Humans	
Nilsson et al. (2022)	Lit update	Kidney disease, urate	No association with kidney disease (OR 0.90, 95% Cl 0.76, 1.08) or urate	No. Existing studies are generally consistent but
Liang et al. (2023)	Lit update	Glomerular filtration rate	Higher GFR (not statistically significant)	predominantly low confidence with considerable uncertainty due to potential reverse causation, leading to a draft synthesi judgment of <i>slight</i> human evidence. The new studies do not inform this uncertainty and would not change the synthesis judgment.
<u>Sood et al. (2019)</u>	Commenter (on PFDA)	Glomerular filtration rate	Inverse but not statistically significant association with eGFR (beta -10.3, 95% CI - 23.6, 3.0)	
<u>Pan et al. (2017)</u>	Commenter	Glomerular filtration rate	Inverse association with GFR in crude analysis	
Feng et al. (2022b)	Lit update	Hyperuricemia	No association with hyperuricemia	

Reference	Source ²	Health outcome	Results summary	EPA disposition on incorporation and characterization of impact ³
<u>Arrebola et al. (2019)</u>	Commenter (on PFDA)	Hyperuricemia	Positive but not statistically significant association with hyperuricemia (OR 1.33, 95% Cl 0.70, 2.54)	
<u>Yao et al. (2020)</u>	Commenter (on PFDA)	Uric acid	Positive association with uric acid (beta 8.44, 95% Cl 2.17, 15.09)	
		Care	diometabolic Effects in Humans	
<u>Haug et al. (2023)</u>	Lit update	Serum lipids	No association with HDL or LDL cholesterol	No.
<u>Donat-Vargas et al.</u> (2019b)	Commenter (on PFDA)	Serum lipids, hypertension	No association with total cholesterol, triglycerides, or hypertension	For serum lipids, the overall mixed findings but with some notable positive associations with PFHxS from the new studies would not
Batzella et al. (2022)	Lit update	Serum lipids	Positive association with total cholesterol (beta 1.74, 95% Cl 1.36, 2.13) and LDL- cholesterol	change the current draft synthesis judgment (i.e., <i>slight</i> human evidence).
<u>Morgan et al. (2023)</u>	Lit update	Serum lipids	No association with total cholesterol or LDL-cholesterol (crude analysis only)	
<u>Rosen et al. (2022)</u>	Lit update	Serum lipids	Positive but not statistically significant association with total cholesterol, LDL, and triglycerides	
<u>Fan et al. (2020)</u>	Commenter	Serum lipids	No association with total or LDL cholesterol or triglycerides	
<u>Li et al. (2019)</u>	Commenter	Serum lipids	No association with total cholesterol or triglycerides	
<u>Nilsson et al. (2022)</u>	Lit update	Serum lipids, blood pressure, cardiovascular disease	Positive association with total cholesterol and LDL-cholesterol in cross-sectional but not prospective analysis. No association with high blood pressure (OR 0.92, 95% CI 0.83, 1.03) or cardiovascular disease (OR 0.96, 95% CI 0.81, 1.15)	

Reference	Source ²	Health outcome	Results summary	EPA disposition on incorporation and characterization of impact ³
Fassler et al. (2019)	Commenter	Serum lipids, adiposity, insulin resistance	No association with BMI, insulin resistance, or serum lipids	
<u>Yao et al. (2020)</u>	Commenter (on PFDA)	Serum lipids, blood glucose	Positive association with total cholesterol (beta 6.98, 95% Cl 3.06, 11.14), triglycerides, and blood glucose	
<u>Chen et al. (2020)</u>	Commenter	Serum lipids, insulin resistance, adiposity	Positive but not statistically significant association with total and LDL cholesterol and blood glucose. Inverse association with BMI and body fat percent.	
<u>Jain (2014)</u>	Commenter	Serum lipids, adiposity	No association with total cholesterol, triglycerides, or BMI	
<u>Ding et al. (2022)</u>	Lit update	Hypertension	No association with hypertension (HR 0.98, 95% Cl 0.93, 1.04 per 2-fold increase)	
<u>Mitro et al. (2020a)</u>	Lit update	Blood pressure	No association with blood pressure, BMI, waist circumference, mid-upper arm circumference, or skinfold thickness	
<u>Ma et al. (2019)</u>	Commenter	Blood pressure	No association with blood pressure	
Sood et al. (2019)	Commenter (on PFDA)	Blood pressure	No association with blood pressure (beta 0.3, 95% CI -0.1, 0.7)	
Lind et al. (2018)	Commenter (on PFDA)	Carotid artery intima- media thickness	Positive association with IMT thickness (beta 0.015, 95% CI 0.005, 0.0025)	No. These results support coherence with serum lipids but would not change the current draft synthesis judgment.
<u>Li et al. (2023b)</u>	Lit update	Cardiovascular disease	No association with acute coronary syndrome	No.

Reference	Source ²	Health outcome	Results summary	EPA disposition on incorporation and characterization of impact ³	
<u>Hutcheson et al.</u> (2020)	Commenter	Stroke	Inverse association with stroke in participants with diabetes (OR 0.75, 95% CI 0.64-0.88), no association in participants without diabetes	New studies contribute to existing inconsistency and would not change the current draft synthesis judgment.	
Yang et al. (2022)	Lit update	Gestational hypertension	Lower odds of gestational hypertension (OR 0.66, 95% CI 0.35, 1.24) and lower continuous blood pressure	No. New studies contribute to existing inconsistency and would not change the	
<u>Huo et al. (2020)</u>	Lit update	Gestational hypertension	No association with gestational hypertension (OR 0.80, 95% CI 0.44, 1.47) or preeclampsia (OR 1.05, 95% CI 0.60, 1.83)	current draft synthesis judgment (i.e., mixed findings for cardiovascular risk factors did not contribute to the <i>slight</i> human evidence judgment).	
Zhu and Bartell (2022)	Lit update	Gestational hypertension	Small positive association with hypertensive disorders in pregnancy (OR 1.03, 95% Cl 1.02, 1.04)		
<u>Xu et al. (2022)</u>	Lit update	Gestational diabetes	Inverse association with gestational diabetes (OR 0.09, 95% CI 0.03, 0.22 in third tertile), inverse association with continuous glucose levels in oral glucose tolerance test	No. Existing studies are inconsistent and new studies would not change the current draft synthesis judgment (i.e., mixed findings for cardiovascular risk factors did not contribute	
<u>Zhang et al. (2023a)</u>	Lit update	Gestational diabetes	Positive association with gestational diabetes (OR 3.46, 95% CI 1.64, 6.30 in 3rd tertile)	to the <i>slight</i> human evidence judgment).	
<u>Xu et al. (2020a)</u>	Lit update	Gestational diabetes	No association with gestational diabetes (OR 0.79, 95% Cl 0.46, 1.31 in Q4 vs Q1)		
Preston et al. (2020)	Lit update	Gestational diabetes	No association with gestational diabetes		
<u>Liu et al. (2019)</u>	Commenter	Gestational diabetes	No association with gestational diabetes in crude analysis		
<u>Li et al. (2020)</u>	Commenter (on PFDA)	Gestational blood glucose	Positive but not statistically significant association with blood glucose in oral		

Reference	Source ²	Health outcome	Results summary	EPA disposition on incorporation and characterization of impact ³
			glucose tolerance test (beta 0.07, 95% Cl - 0.06, 0.21)	
<u>Dunder et al. (2023)</u>	Lit update	Blood glucose	No association with blood glucose	No.
<u>Christensen et al.</u> (2016)	Commenter (on PFDA)	Diabetes	No association with diabetes (OR 0.98, 95 % CI 0.69, 1.16) or pre-diabetes (OR 1.00, 95% CI 0.77, 1.16)	Existing and new studies are primarily null, and new studies would not change the current draft synthesis judgment.
<u>Park et al. (2022)</u>	Lit update	Diabetes	Positive association with incident diabetes (OR 1.58, 95% Cl 1.13, 2.21 in T3 vs T1) but not monotonic across tertiles	
<u>Cardenas et al.</u> (2019)	Commenter Diabetes No association with incident diabetes in a cohort of participants from a diabetes prevention trial.			
Zong et al. (2016)	Commenter	Diabetes	No association with diabetes	
<u>Donat-Vargas et al.</u> (2019a)	Commenter (on PFDA)	er (on Diabetes risk, insulin No increase in diabetes risk or HOMA-IR resistance		
<u>Kim et al. (2015)</u>	Commenter (on PFDA)	Insulin resistance	No association with HOMA (beta -0.08, 95% CI -0.68, 0.52)	
<u>Mehta et al. (2021)</u>	Commenter (on PFDA)	Insulin resistance	No association with blood glucose or HOMA-IR	
Bassler et al. (2019)	Commenter	Insulin resistance	Inverse association with insulin	
Brosset and Ngueta (2022)	Lit update	Glycemic control	No association with poor glycemic control	
<u>Ye et al. (2021)</u>	Commenter (on PFDA)	Metabolic syndrome	No association with metabolic syndrome (OR 1.02, 95% Cl 0.93, 1.13) or blood glucose, blood pressure, serum lipids, or waist circumference	No. Existing and new studies are primarily null, and new studies would not change the current draft synthesis judgment.
Leary et al. (2020)	Commenter	Metabolic syndrome	No association with metabolic syndrome in firefighters	

Reference	Source ²	Health outcome	Results summary	EPA disposition on incorporation and characterization of impact ³
Schillemans et al. (2022)	Lit update	Adiposity	No association with BMI z-score	No. Existing and new studies are primarily null,
Zeng et al. (2023)	Lit update	Adiposity	No association with BMI z-score trajectory	and new studies would not change the current draft synthesis judgment. Notably, the majority of new studies only indirectly.
(<u>Harris et al., 2017</u>)	Commenter (on PFDA)	Adiposity	Lower PFHxS levels in obese (-8.0% difference, 95% CI -26.6, 15.2 for obese vs normal)	examine PFHxS concentrations and/or involve crude analyses without adjustment for potential confounders (some or most would
<u>Ji et al. (2012)</u>	Commenter (on PFDA)	Adiposity	Higher PFHxS concentrations in overweight participants, but no statistical analysis	be judged as <i>uninformative</i> during formal study evaluations).
Pirard et al. (2020)	Commenter (on PFDA)	Adiposity	No association with BMI (quantitative results not presented)	
<u>Liu et al. (2020b)</u>	Commenter (on PFDA)	Adiposity	No association with BMI	
<u>Kim et al. (2020)</u>	Commenter	Adiposity	No association with pre-pregnancy BMI in crude analysis with PFHxS modeled as outcome	
Bjerregaard-Olesen et al. (2016)	Commenter	Adiposity	No association with pre-pregnancy BMI in analysis with PFHxS modeled as outcome	
<u>Chang et al. (2020)</u>	Commenter	Adiposity	Inverse association with BMI in analysis with PFHxS modeled as outcome	
<u>Cardenas et al.</u> (2018)	Commenter	Adiposity	Positive but not statistically significant association with some measures of adiposity including skinfold thickness and subcutaneous fat	
<u>Colles et al. (2020)</u>	Commenter	Adiposity	No association with BMI in analysis with PFHxS modeled as outcome	
Eick et al. (2021)	Commenter	Adiposity	No association with BMI in crude analysis	

Reference	Source ²	Health outcome	Results summary	EPA disposition on incorporation and characterization of impact ³
Fisher et al. (2016)	Commenter	Adiposity	No association with BMI in descriptive analysis	
<u>Han et al. (2018)</u>	Commenter	Adiposity	No association with BMI (quantitative results not reported)	
<u>Hölzer et al. (2008)</u>	Commenter	Adiposity	No association with BMI in crude analysis	
Huang et al. (2019)	Commenter	Adiposity	No association with BMI in analysis with PFHxS modeled as outcome	
<u>Koponen et al.</u> (2018)	Commenter	Adiposity	No association with BMI in crude correlation analysis (quantitative result not reported)	
Lewin et al. (2017)	Commenter	Adiposity	No association with BMI in crude analysis	
<u>Mehta et al. (2020)</u>	Commenter	Adiposity	No association with BMI	
<u>Nair et al. (2021)</u>	Commenter	Adiposity	No association with BMI in crude analysis	
<u>Ramli et al. (2020)</u>	Commenter	Adiposity	No association with BMI in analysis with PFHxS modeled as outcome	
<u>Rylander et al.</u> (2009)	Commenter	Adiposity	No association with BMI (quantitative result not reported)	
<u>Tsai et al. (2018)</u>	Commenter	Adiposity	No association with BMI (unadjusted means)	
Yang et al. (2019)	Commenter	Adiposity	Higher PFHxS concentration with higher BMI (unadjusted means)	
<u>Tian et al. (2019)</u>	Commenter	Adiposity	No association with BMI or waist circumference	
Brantsæter et al. (2013)	Commenter	Adiposity, gestational weight gain	Higher PFHxS concentrations with higher BMI (unadjusted means), no association with weight change	

Reference	Source ²	Health outcome	Results summary	EPA disposition on incorporation and characterization of impact ³
<u>Mitro et al. (2020b)</u>	Commenter	Gestational weight gain	No association with gestational weight gain; positive but not statistically significant association with postpartum weight retention	
			Thyroid Effects in Humans	
<u>Jensen et al. (2022)</u>	Lit update	Thyroid hormones	No association with free T4, positive but non-monotonic and not statistically significant association with TSH (beta 4.05, 95% CI -1.58, 10.00)	No. Existing and new studies on thyroid hormones are mixed but primarily null and new studies would not change the current
<u>Derakhshan et al.</u> (2022)	Lit update	Thyroid hormones	Positive association with free T4 (beta 0.13, 95% CI -0.01, 0.28) but no association with TSH or free T3	draft synthesis judgment (i.e. <i>, indeterminate</i> human evidence).
<u>Li et al. (2023a)</u>	Lit update	Thyroid hormones	No association with TSH or free T4	
Tillaut et al. (2022)	Lit update	Thyroid hormones	No association with free T4, free T3, or TSH	
<u>Wang et al. (2023)</u>	Lit update	Thyroid hormones	Positive association with total T4 but not other thyroid hormones	
Jain and Ducatman (2019)	Commenter (on PFDA)	Thyroid hormones	Positive association with Total T3 in participants at higher glomerular filtration stages.	
<u>Dufour et al. (2020)</u>	Commenter (on PFDA)	Thyroid disease	Inverse association with hyperthyroidism (OR 0.14, 95% Cl 0.03, 0.63)	
(<u>Christensen et al.,</u> 2016)	Commenter (on PFDA)	Thyroid disease	Inverse association with thyroid disease (OR 0.59, 95% Cl 0.20, 1.06)	
Nilsson et al. (2022)	Lit update	Thyroid problems, thyroid hormones	No association with thyroid problems (OR 0.94, 95% CI 0.73, 1.21). Inverse but not statistically significant association with T4 but not T3 or TSH.	
			Other Effects in Humans	

Reference	Source ²	Health outcome	Results summary	EPA disposition on incorporation and characterization of impact ³
<u>Højsager et al.</u> (2022)	Lit update	Bone mineral density	Inverse association with bone mineral content and density (<i>p</i> >0.05), stronger in boys	No. Existing studies are inconsistent, and new evidence is similarly inconsistent; thus, the
<u>Zhao et al. (2022)</u>	Lit update	Bone mineral density	Inverse association (<i>p</i> >0.05) with femur bone mineral density in women without menopause/hysterectomy	new evidence would not change the draft synthesis judgment of <i>indeterminate</i> human evidence.
Colicino et al. (2020)	Lit update	Bone mineral density	No association with lumbar spine or femur density	
Xiong et al. (2022)	Lit update	Bone mineral density	Positive association with femur density and inverse association with lumbar spine density in girls only	
Blomberg et al. (2022)	Lit update	Bone mineral density	No association with bone mineral density in children to 9 yrs	
<u>Fan et al. (2023)</u>	Lit update	Bone mineral density, osteoporosis	Positive but not statistically significant association with osteoporosis (OR 1.23, 95% Cl 0.95, 1.60), inverse association with bone mineral density (beta -0.23, 95% Cl - 0.33, -0.12)	
<u>Shiue (2015d)</u>	Commenter (on PFDA)	Oral health	No association with teeth health, ache, tooth loss	
<u>Liao et al. (2022a)</u>	Lit update	Hematology	Positive but not statistically significant association with gestational anemia in the 1st and 3rd but not 2nd trimesters. No association with hemoglobin concentration during pregnancy	No. Inconsistent results in new studies. The new evidence would not change the draft synthesis judgment of <i>indeterminate</i> human evidence (currently one <i>uninformative</i> study
<u>Cui et al. (2022)</u>	Lit update	Hematology	Positive association with hematocrit (3.51% change, 95% CI 1.82, 5.24) and hemoglobin (3.14% change, 95% CI 1.33, 4.99) during pregnancy	in assessment).

Reference	Source ²	Health outcome	Results summary	EPA disposition on incorporation and characterization of impact ³	
<u>Liu et al. (2022)</u>	Lit update	Hematology	No association with white blood cells and lymphocytes		
<u>Shiue (2015a)</u>	Commenter (on PFDA)	Neurologic; Remembering condition	No association with difficulty remembering (RR 0.45, 95% CI 0.25–0.81 for >3 times per wk)	No. Lack of association in both existing and new studies for several isolated nervous system	
<u>Shiue (2015b)</u>	Commenter (on PFDA)	Neurologic; Depression	No association with adult depression	outcomes; thus, the new evidence would not change the draft synthesis judgment of indeterminate human evidence	
<u>Shiue (2015c)</u>	Commenter (on PFDA)	Neurologic; Hearing disturbance	No association with trouble hearing	maeterminate numan evidence.	
(<u>Gaylord et al., 2019</u>)	Commenter (on PFDA)	(on Pulmonary function No association with FEV or FVC (FEV1 beta 0.01, 95% CI -0.10, 0.08, FVC beta 0.03, 95% CI -0.08, 0.13)		No. Lack of association in available studies, the new evidence does not justify development	
<u>Shi et al. (2023)</u>	Lit update	Pulmonary function	No association with forced expiratory volume or forced volume capacity.	of a new hazard section.	

Table 2. Studies meeting select categories of supplemental evidence

Reference	Source	Assessment Topic	Description or Results	EPA disposition on incorporation and characterization of impact	
ADME/PK studies					
<u>Vogs et al.</u> (2019)	Lit Update	ADME	Toxicokinetics of PFAS uptake in zebrafish	No. While these results may be of interest in further work in zebrafish, these results are not directly applicable to humans or mammalian model species.	
<u>Qin et al. (2023)</u>	Lit Update	ADME	Characterization of PFHxS protein binding	No. Results do not change draft judgments or provide essential insights into potential mechanisms of PFHxS-induced toxicity.	
		Mecha	anistic, including Non-PECO R	Routes of Exposure	

Reference	Source	Assessment Topic	Description or Results	EPA disposition on incorporation and characterization of impact
Stoker et al.	Lit Update	Thyroid	PFOS & PFHxS found to	No.
<u>(2023)</u>			be NIS inhibitors	Results do not change the draft evidence integration judgment
Buckalew et al. (2020)	Lit Update	Thyroid	Evaluation of PFAS sodium-iodide symporter (NIS) inhibitors	(evidence indicates) or provide essential insights into potential mechanisms of PFHxS-induced thyroid toxicity.
Vongphachan et	Lit Update		PFAS effects on mRNA	No.
<u>al. (2011)</u>		Neurodevelopmental;	expression levels of	Results do not change draft judgments or provide essential insights
		Thyroid	thyroid-responsive	into potential mechanisms of PFHxS-induced neurodevelopmental or
			genes in avian primary	thyroid effects
			cultures	
Phelps et al.	Lit Update	Immune	PFHxS and GenX	No.
<u>(2023)</u>			suppressed the	Results do not change the draft evidence integration judgment
			respiratory burst in	(evidence indicates) or provide essential insights into potential
			zebrafish and human	mechanisms of PFHxS-induced immunotoxicity.
			neutrophil-like cell line.	
Park et al. (2021)	Lit Update	Immune	Examination of the	
			effects of PFAS	
			including, PFHxS, on	
			mast cell-mediated	
			inflammatory responses	
			using in vitro mouse	
			bone marrow-derived	
			mast cells (BMMCs) and	
			human mast cells (HMC-	
			1) and in vivo mice	
the dealer is a set	1:411	Developmental	model.	
HVIZOAK ET AL.	Lit Update	Developmental	Study demonstrates that	NO.
(2023)			OT THE SIX PEAS TESTED,	Results do not change draft judgments or provide essential insights
			PELVS bind to and	into potential mechanisms of PERXS-induced developmental effects.
			inhihit CVD2A7 CVD2A7	
			is responsible for	

Reference	Source	Assessment Topic	Description or Results	EPA disposition on incorporation and characterization of impact
			reactions essential for	
			fetal development.	
Gundacker et al.	Lit Update	Developmental	Potential MOAs of	
<u>(2022)</u>			reduced birthweight	
			associated with PFAS	
			identified.	
Annunziato et al.	Lit Update	Developmental	PFAS developmental	
<u>(2019)</u>			effects on behavioral,	
			morphometric and gene	
			expression endpoints in	
			zebrafish.	
<u>Liu et al. (2020d)</u>	Lit Update	Developmental	Evaluation the toxicity of	
			several short chain PFAS	
			in hMSC. Results	
			demonstrated cytotoxic	
			and potential	
			developmental toxicity.	
<u>Xu et al. (2021)</u>	Lit Update	Developmental	Lipid profiling during	
			different stages of	
			zebrafish development	
			to understand PFHxS	
			toxicity	
Dasgupta et al.	Lit Update	Developmental	PFAS affect development	
<u>(2020)</u>			in zebra fish	
<u>Gaballah et al.</u>	Lit Update	Developmental;	Evaluation of	No.
<u>(2020)</u>		developmental	developmental and	Results do not change draft judgments or provide essential insights
		neurotoxicity	neurodevelopmental	into potential mechanisms of PFHxS-induced developmental effects
			toxicity from PFAS	and or neurodevelopmental effects.
			exposure	
<u>Solan et al.</u>	Lit Update	Neurotoxicity/	Every short-chain PFAS	No.
<u>(2023)</u>		hepatotoxicity	evaluated, except for	Null results do not change the draft evidence integration judgments
			PFHxS, increased the	for nervous system (for developmental exposure, evidence suggests;
			activity of at least one	in adults, inadequate evidence) or liver (evidence suggests) effects
			antioxidant enzyme.	

Reference	Source	Assessment Topic	Description or Results	EPA disposition on incorporation and characterization of impact
				or provide essential insights into potential mechanism(s) of PFHxS- induced toxicity.
<u>Menger et al.</u> (2020)	Lit Update	Neurotoxicity	PFHxS behavioral effects and bioaccumulation in zebrafish	No. Results do not change draft judgments for nervous system (for developmental exposure, evidence suggests ; in adults, inadequate
Berntsen et al. (2018)	Lit Update	Neurotoxicity	PFAS effects on viability and NMDA receptor activation	evidence or provide essential insights into potential mechanisms of PFHxS-induced neurotoxicity effects.
<u>Rericha et al.</u> (2021)	Lit Update	Neurodevelopmental	PFAS effects on zebrafish behavior	No. Results do not change draft judgments or provide essential insights into potential mechanisms of PFHxS-induced neurodevelopmental effects
<u>Behr et al.</u> (2018)	Lit Update	Reproductive toxicity/ Endocrine	Examination of endocrine properties of various PFAS including PFHxS	No. Results do not change draft judgments or provide essential insights into potential mechanisms of PFHxS-induced reproductive effects.
Leclercq et al. (2022)	Lit Update	Female reproductive/ Developmental	PFAS exposure during IVM, PFHxS tended to result in higher blastocyst rates on day 5 post fertilization and on day 6 post fertilization as well as in higher apoptosis rates in blastocysts. PFHxS resulted in higher total cell counts in blastocysts.	No. Results do not change the draft evidence integration judgments or provide essential insights into potential mechanisms of PFHxS- induced developmental or female reproductive effects.
Hallberg et al. (2022)	Lit Update	Female reproductive	PFHxS induction of phenotypic, transcriptomic, and DNA methylation in bovine oocytes	No. Results do not change draft judgments or provide essential insights into potential mechanisms of PFHxS-induced female reproductive effects.
Hallberg et al. (2021)	Lit Update	Female reproductive	PFHxS effects on bovine preimplantation in-vitro	

Reference	Source	Assessment Topic	Description or Results	EPA disposition on incorporation and characterization of impact
<u>Qiu et al. (2020)</u>	Lit Update	Female Repro; Other	PFAS binding to estrogen receptors	No, results do not influence draft judgments or provide key insights into key science issues, nor do they provide essential insights into potential mechanisms of PFHxS-induced effects.
<u>Fragki et al.</u> (2023)	Lit update	Hepatic	PFAS, including PFHxS may lead to interference of hepatic gene expression and lipid metabolism.	No. Results do not change draft judgments or provide essential insights into potential mechanisms of PFHxS-induced hepatic effects.
<u>Søderstrøm et al.</u> (2022)	Lit Update	Hepatic	PFAS modulation of PPAR-signaling pathway in Atlantic cod fish.	
<u>Evans et al.</u> (2022)	Lit Update	Hepatic	Characterization of PPAR alpha and hER binding to PFAS	
<u>Ishibashi et al.</u> (2019)	Lit Update	Hepatic	PFAS binding to human and Balkal seal PPAR alpha	
<u>Ojo et al. (2020)</u>	Lit Update	Hepatic	PFAS mixtures effects on HepG2 cells	
<u>Ojo et al. (2021)</u>	Lit Update	Hepatoxicity	Evaluation of oxidative stress caused by individual and combined PFAS on human liver cells	
<u>Bjork et al.</u> (2021)	Lit Update	Hepatotoxicity	Evaluation of binary mixtures of PFAS on molecular responses. PPAR alpha activation was observed in FAO rat hepatoma cells exposed to binary mixtures of PFAS.	
<u>Ishibashi et al.</u> (2011)	Lit Update	Hepatic	PPAR alpha activation in Baikal seal by PFAS	

Reference	Source	Assessment Topic	Description or Results	EPA disposition on incorporation and characterization of impact
<u>Wallace et al.</u> (2013)	Lit Update	Hepatic	PFAS structure activity relationships and interference with mitochondrial respiration in rat liver	
<u>Sørli et al. (2020)</u>	Lit Update	Respiratory Toxicity/Other	in vitro models to assess toxicity to the respiratory system; i) a lung surfactant (LS) function assay to assess the acute inhalation toxicity potential, and ii) a cell model with human bronchial epithelial cells to study pro- inflammatory potential and modulation of inflammatory responses. PFHxS, PFOA and PFOS can inhibit LS function.	No, results do not influence draft judgments or provide key insights into key science issues, nor do they provide essential insights into potential mechanisms of PFHxS-induced respiratory or other effects.
<u>Qin et al. (2020)</u>	Lit Update	Cardiometabolic effects; Diabetes	Stimulation of insulin secretion by Islet beta cells cause by PFAS	No. Results do not change draft judgments or provide essential insights into potential mechanisms of PFHxS-induced cardiometabolic effects
<u>Qin et al. (2023)</u>	Lit Update	ADME	Characterization of PFHxS protein binding	No Results do not change draft judgements or provide essential insight
<u>Pan et al. (2019)</u>	Lit Update	Other	human bone mesenchymal stem cells (hBMSCs) were used to evaluate the effects of Cl- PFESA at non-cytotoxic concentrations on molecular regulation and cellular function of stem	into the dosimetric extrapolation approach.

Reference	Source	Assessment Topic	Description or Results	EPA disposition on incorporation and characterization of impact
			cells compared to PFOS, perfluorohexane sulfonate (PFHxS) and perfluorooctanoic acid	
<u>Hoover et al.</u> (2019)	Lit Update	Other	Examination of the cytotoxicity of PFAS singly and in binary mixtures using an amphibian fibroblast cell line. Second, we used this experimental data to develop quantitative structure-activity relationship (QSAR) models for single and binary mixtures.	
<u>Xu et al. (2020b)</u>	Lit Update	Other	Effects of PFAS exposure on serum microRNAs	
Modaresi et al. (2021)	Lit Update Lit Update	Other Other	PFAS augment adipogenesis in 3T3-L1 adipocytes Use of human fatty acid	
<u>Mann et al.</u> (2021)			binding protein to detect PFAS.	
<u>Wang et al.</u> (2018)	Lit Update	Other	Stabilization of liposomes by PFAS	
<u>Nguyen et al.</u> (2020)	Lit Update	Other	Inhibition of carbonic anhydrases by PFAS	
<u>Liu et al. (2020c)</u>	Lit Update	Other	PFAS effects on pancreatic and endocrine pluripotent cell differentiation	

Reference	Source	Assessment Topic	Description or Results	EPA disposition on incorporation and characterization of impact
<u>Xie et al. (2021)</u>	Lit Update	Other	PFAS and POPs effects on	
			3T3-L1 adipogenesis	
Shen et al.	Lit Update	Other	PFAS effects on lipid	
<u>(2020)</u>			bilayer	
<u>U.S. EPA (2019)</u>	Lit Update	Other	CompTox Dashboard	

Figure 1. PFHxS new studies identified in the April 2023 literature search update or submitted to EPA during public comment. Diagram shows screening results for all identified studies. Information on EPA's disposition on the inclusion of these studies. Information on EPA's disposition on the inclusion of these studies prior to finalizing the assessment and characterization of their impact on key assessment decisions is provided in Table 1 and Table 2 for studies meeting PECO and for supplemental studies on ADME, mechanistic, and non-PECO exposure routes. Refer to interactive <u>HAWC visual</u> for additional information.

References

Ames, JL; Burjak, M; Avalos, LA; Braun, JM; Bulka, CM; Croen, LA; Dunlop, AL; Ferrara, A; Fry, RC; <u>Hedderson, MM; Karagas, MR; Liang, D; Lin, PID; Lyall, K; Moore, B; Morello-Frosch, R;</u> <u>O'Connor, TG; Oh, J; Padula, AM; Woodruff, TJ; Zhu, Y; Hamra, GB.</u> (2023). Prenatal exposure to per- and polyfluoroalkyl substances and childhood autism-related outcomes. <u>Epidemiology. http://dx.doi.org/10.1097/EDE.000000000001587</u>.

<u>Ammitzbøll, C; Börnsen, L; Petersen, ER; Oturai, AB; Søndergaard, HB; Grandjean, P; Sellebjerg, F.</u> (2019). Perfluorinated substances, risk factors for multiple sclerosis and cellular immune activation. J Neuroimmunol 330: 90-95. <u>http://dx.doi.org/10.1016/j.jneuroim.2019.03.002</u>.

- Annunziato, KM; Jantzen, CE; Gronske, MC; Cooper, KR. (2019). Subtle morphometric, behavioral and gene expression effects in larval zebrafish exposed to PFHxA, PFHxS and 6:2 FTOH. Aquat Toxicol 208: 126-137. <u>http://dx.doi.org/10.1016/j.aquatox.2019.01.009</u>.
- Arrebola, JP; Ramos, JJ; Bartolomé, M; Esteban, M; Huetos, O; Cañas, AI; López-Herranz, A; Calvo, E; <u>Pérez-Gómez, B; Castaño, A; BIOAMBIENT.ES.</u> (2019). Associations of multiple exposures to persistent toxic substances with the risk of hyperuricemia and subclinical uric acid levels in BIOAMBIENT.ES study. Environ Int 123: 512-521. <u>http://dx.doi.org/10.1016/j.envint.2018.12.030</u>.
- Averina, M; Brox, J; Huber, S; Furberg, AS; Sørensen, M. (2019). Serum perfluoroalkyl substances (PFAS) and risk of asthma and various allergies in adolescents. The Tromsø study Fit Futures in Northern Norway. Environ Res 169: 114-121. http://dx.doi.org/10.1016/j.envres.2018.11.005.
- Bassler, J; Ducatman, A; Elliott, M; Wen, S; Wahlang, B; Barnett, J; Cave, MC. (2019). Environmental perfluoroalkyl acid exposures are associated with liver disease characterized by apoptosis and altered serum adipocytokines. Environ Pollut 247: 1055-1063. http://dx.doi.org/10.1016/j.envpol.2019.01.064.
- Batzella, E; Zare Jeddi, M; Pitter, G; Russo, F; Fletcher, T; Canova, C. (2022). Associations between Mixture of Perfluoroalkyl Substances and Lipid Profile in a Highly Exposed Adult Community in the Veneto Region. Int J Environ Res Public Health 19. <u>http://dx.doi.org/10.3390/ijerph191912421</u>.
- Behr, AC; Lichtenstein, D; Braeuning, A; Lampen, A; Buhrke, T. (2018). Perfluoroalkylated substances (PFAS) affect neither estrogen and androgen receptor activity nor steroidogenesis in human cells in vitro. Toxicol Lett 291: 51-60. http://dx.doi.org/10.1016/j.toxlet.2018.03.029.
- Berntsen, HF; Bjørklund, CG; Strandabø, R; Haug, TM; Moldes-Anaya, A; Fuentes-Lazaro, J; Verhaegen, S; Paulsen, RE; Tasker, RA; Ropstad, E. (2018). PFOS-induced excitotoxicity is dependent on Ca2+ influx via NMDA receptors in rat cerebellar granule neurons. Toxicol Appl Pharmacol 357: 19-32. http://dx.doi.org/10.1016/j.taap.2018.08.015.
- Bjerregaard-Olesen, C; Bach, CC; Long, M; Ghisari, M; Bech, BH; Nohr, EA; Henriksen, TB; Olsen, J; Bonefeld-Jørgensen, EC. (2016). Determinants of serum levels of perfluorinated alkyl acids in Danish pregnant women. Int J Hyg Environ Health 219: 867-875. http://dx.doi.org/10.1016/j.ijheh.2016.07.008.
- Bjork, JA; Dawson, DA; Krogstad, JO; Wallace, KB. (2021). Transcriptional effects of binary combinations of PFAS in FaO cells. Toxicology 464: 152997. http://dx.doi.org/10.1016/j.tox.2021.152997.
- <u>Blomberg, A; Mortensen, J; Weihe, P; Grandjean, P.</u> (2022). Bone mass density following developmental exposures to perfluoroalkyl substances (PFAS): a longitudinal cohort study. Environ Health 21: 113. <u>http://dx.doi.org/10.1186/s12940-022-00929-w</u>.

- Borghese, MM; Liang, CL; Owen, J; Fisher, M. (2022). Individual and mixture associations of perfluoroalkyl substances on liver function biomarkers in the Canadian Health Measures Survey. Environ Health 21: 85. <u>http://dx.doi.org/10.1186/s12940-022-00892-6</u>.
- Brantsæter, AL; Whitworth, KW; Ydersbond, TA; Haug, LS; Haugen, M; Knutsen, HK; Thomsen, C; Meltzer, HM; Becher, G; Sabaredzovic, A; Hoppin, JA; Eggesbø, M; Longnecker, MP. (2013). Determinants of plasma concentrations of perfluoroalkyl substances in pregnant Norwegian women. Environ Int 54: 74-84. http://dx.doi.org/10.1016/j.envint.2012.12.014.
- Brosset, E; Ngueta, G. (2022). Exposure to per- and polyfluoroalkyl substances and glycemic control in older US adults with type 2 diabetes mellitus. Environ Res 216: 114697. http://dx.doi.org/10.1016/j.envres.2022.114697.
- Buck Louis, GM; Zhai, S; Smarr, MM; Grewal, J; Zhang, C; Grantz, KL; Hinkle, SN; Sundaram, R; Lee, S; <u>Honda, M; Oh, J; Kannan, K.</u> (2018). Endocrine disruptors and neonatal anthropometry, NICHD Fetal Growth Studies - Singletons. Environ Int 119: 515-526. <u>http://dx.doi.org/10.1016/j.envint.2018.07.024</u>.
- Buckalew, AR; Wang, J; Murr, AS; Deisenroth, C; Stewart, WM; Stoker, TE; Laws, SC. (2020). Evaluation of potential sodium-iodide symporter (NIS) inhibitors using a secondary Fischer rat thyroid follicular cell (FRTL-5) radioactive iodide uptake (RAIU) assay. Arch Toxicol 94: 873-885. <u>http://dx.doi.org/10.1007/s00204-020-02664-y</u>.
- <u>Cardenas, A; Hauser, R; Gold, DR; Kleinman, KP; Hivert, MF; Fleisch, AF; Lin, PD; Calafat, AM;</u> <u>Webster, TF; Horton, ES; Oken, E.</u> (2018). Association of perfluoroalkyl and polyfluoroalkyl substances with adiposity. JAMA Netw Open 1: e181493. http://dx.doi.org/10.1001/jamanetworkopen.2018.1493.
- Cardenas, A; Hivert, MF; Gold, DR; Hauser, R; Kleinman, KP; Lin, PD; Fleisch, AF; Calafat, AM; Ye, X; Webster, TF; Horton, ES; Oken, E. (2019). Associations of perfluoroalkyl and polyfluoroalkyl substances with incident diabetes and microvascular disease. Diabetes Care 42: 1824-1832. http://dx.doi.org/10.2337/dc18-2254.
- <u>Chang, CJ; Ryan, PB; Smarr, MM; Kannan, K; Panuwet, P; Dunlop, AL; Corwin, EJ; Barr, DB.</u> (2020). Serum per- and polyfluoroalkyl substance (PFAS) concentrations and predictors of exposure among pregnant African American women in the Atlanta area, Georgia. Environ Res 198: 110445. <u>http://dx.doi.org/10.1016/j.envres.2020.110445</u>.
- <u>Chen, Z; Yang, T; Walker, DI; Thomas, DC; Qiu, C; Chatzi, L; Alderete, TL; Kim, JS; Conti, Q; Breton, CV; Liang, D; Hauser, ER; Jones, DP; Gilliland, FD.</u> (2020). Dysregulated lipid and fatty acid metabolism link perfluoroalkyl substances exposure and impaired glucose metabolism in young adults. Environ Int 145: 106091. <u>http://dx.doi.org/10.1016/j.envint.2020.106091</u>.
- <u>Christensen, KY; Raymond, MR; Thompson, BA; Anderson, HA.</u> (2016). Fish consumption, levels of nutrients and contaminants, and endocrine-related health outcomes among older male anglers in Wisconsin. J Occup Environ Med 58: 668-675. http://dx.doi.org/10.1097/JOM.00000000000758</u>.
- Cohen, NJ; Yao, M; Midya, V; India-Aldana, S; Mouzica, T; Andra, SS; Narasimhan, S; Meher, AK; <u>Arora, M; Chan, JKY; Chan, SY; Loy, SL; Minguez-Alarcon, L; Oulhote, Y; Huang, J; Valvi, D.</u> (2023). Exposure to perfluoroalkyl substances and women's fertility outcomes in a Singaporean population-based preconception cohort. Sci Total Environ 873: 162267. <u>http://dx.doi.org/10.1016/j.scitotenv.2023.162267</u>.
- <u>Cohn, BA; La Merrill, MA; Krigbaum, NY; Wang, M; Park, JS; Petreas, M; Yeh, G; Hovey, RC;</u> <u>Zimmermann, L; Cirillo, PM.</u> (2020). In utero exposure to poly- and perfluoroalkyl substances (PFASs) and subsequent breast cancer. Reprod Toxicol 92: 112-119. <u>http://dx.doi.org/10.1016/j.reprotox.2019.06.012</u>.
- <u>Colicino, E; Pedretti, NF; Busgang, SA; Gennings, C.</u> (2020). Per- and poly-fluoroalkyl substances and bone mineral density: Results from the Bayesian weighted quantile sum regression. Environmental Epidemiology 4: 1. <u>http://dx.doi.org/10.1097/EE9.000000000000092</u>.

- <u>Colles, A; Bruckers, L; Den Hond, E; Govarts, E; Morrens, B; Schettgen, T; Buekers, J; Coertjens, D;</u> <u>Nawrot, T; Loots, I; Nelen, V; De Henauw, S; Schoeters, G; Baeyens, W; van Larebeke, N.</u> (2020). Perfluorinated substances in the Flemish population (Belgium): Levels and determinants of variability in exposure. Chemosphere 242: 125250. <u>http://dx.doi.org/10.1016/j.chemosphere.2019.125250</u>.
- <u>Cui, F; Liu, H; Li, Y; Zheng, TZ; Xu, S; Xia, W; Sheng, X.</u> (2022). Association of exposure to per- and polyfluoroalkyl substances with hemoglobin and hematocrit during pregnancy. Ecotoxicol Environ Saf 248: 114319. <u>http://dx.doi.org/10.1016/j.ecoenv.2022.114319</u>.
- Dasgupta, S; Reddam, A; Liu, Z; Liu, J; Volz, DC. (2020). High-content screening in zebrafish identifies perfluorooctanesulfonamide as a potent developmental toxicant. Environ Pollut 256: 113550. http://dx.doi.org/10.1016/j.envpol.2019.113550.
- Derakhshan, A; Kortenkamp, A; Shu, H; Broeren, MAC; Lindh, CH; Peeters, RP; Bornehag, CG; Demeneix, B; Korevaar, TIM. (2022). Association of per- and polyfluoroalkyl substances with thyroid homeostasis during pregnancy in the SELMA study. Environ Int 167: 107420. http://dx.doi.org/10.1016/j.envint.2022.107420.
- Ding, N; Harlow, SD; Randolph, JF; Calafat, AM; Mukherjee, B; Batterman, S; Gold, EB; Park, SK. (2020). Associations of perfluoroalkyl substances with incident natural menopause: The study of women's health across the nation. J Clin Endocrinol Metab 105: E3169-E3182. http://dx.doi.org/10.1210/clinem/dgaa303.
- Ding, N; Karvonen-Gutierrez, CA; Mukherjee, B; Calafat, AM; Harlow, SD; Park, SK. (2022). Per- and Polyfluoroalkyl Substances and Incident Hypertension in Multi-Racial/Ethnic Women: The Study of Women's Health Across the Nation. Hypertension 79: 101161HYPERTENSIONAHA12118809.

http://dx.doi.org/10.1161/HYPERTENSIONAHA.121.18809.

- Donat-Vargas, C; Bergdahl, IA; Tornevi, A; Wennberg, M; Sommar, J; Kiviranta, H; Koponen, J; Rolandsson, O; Åkesson, A. (2019a). Perfluoroalkyl substances and risk of type II diabetes: A prospective nested case-control study. Environ Int 123: 390-398. http://dx.doi.org/10.1016/j.envint.2018.12.026.
- Donat-Vargas, C; Bergdahl, IA; Tornevi, A; Wennberg, M; Sommar, J; Koponen, J; Kiviranta, H; <u>Åkesson, A.</u> (2019b). Associations between repeated measure of plasma perfluoroalkyl substances and cardiometabolic risk factors. Environ Int 124: 58-65. <u>http://dx.doi.org/10.1016/j.envint.2019.01.007</u>.
- <u>Dufour, P; Pirard, C; Petrossians, P; Beckers, A; Charlier, C.</u> (2020). Association between mixture of persistent organic pollutants and thyroid pathologies in a Belgian population. Environ Res 181: 108922. <u>http://dx.doi.org/10.1016/j.envres.2019.108922</u>.
- Dunder, L; Salihovic, S; Elmståhl, S; Lind, PM; Lind, L. (2023). Associations between per- and polyfluoroalkyl substances (PFAS) and diabetes in two population-based cohort studies from Sweden. J Expo Sci Environ Epidemiol. <u>http://dx.doi.org/10.1038/s41370-023-00529-x</u>.
- <u>E, L; Zhang, S; Jiang, X.</u> (2023). Association between perfluoroalkyl substances exposure and the prevalence of nonalcoholic fatty liver disease in the different sexes: a study from the National Health and Nutrition Examination Survey 2005-2018. Environ Sci Pollut Res Int 30: 44292-44303. <u>http://dx.doi.org/10.1007/s11356-023-25258-4</u>.
- <u>Eick, SM; Enright, EA; Geiger, SD; Dzwilewski, KLC; DeMicco, E; Smith, S; Park, JS; Aguiar, S;</u>
 <u>Woodruff, TJ; Morello-Frosch, R; Schantz, SL.</u> (2021). Associations of maternal stress, prenatal exposure to per- and polyfluoroalkyl substances (PFAS), and demographic risk factors with birth outcomes and offspring neurodevelopment: An overview of the ECO.CA.IL prospective birth cohorts [Review]. Int J Environ Res Public Health 18: 742. http://dx.doi.org/10.3390/ijerph18020742.

- Evans, N; Conley, JM; Cardon, M; Hartig, P; Medlock-Kakaley, E; Gray, LE, Jr. (2022). In vitro activity of a panel of per- and polyfluoroalkyl substances (PFAS), fatty acids, and pharmaceuticals in peroxisome proliferator-activated receptor (PPAR) alpha, PPAR gamma, and estrogen receptor assays. Toxicol Appl Pharmacol 449: 116136. http://dx.doi.org/10.1016/j.taap.2022.116136.
- Fan, S; Wu, Y; Bloom, MS; Lv, J; Chen, L; Wang, W; Li, Z; Jiang, Q; Bu, L; Shi, J; Shi, T; Zeng, X; Zhang, L; Zhang, Z; Yang, B; Dong, G; Feng, W. (2023). Associations of per- and polyfluoroalkyl substances and their alternatives with bone mineral density levels and osteoporosis prevalence: A community-based population study in Guangzhou, Southern China. Sci Total Environ 862: 160617-160617. http://dx.doi.org/10.1016/j.scitotenv.2022.160617.
- Fan, Y: Lu, C: Li, X: Xu, Q: Zhang, Y: Yang, X: Han, X: Du, G: Xia, Y: Wang, X. (2020). Serum albumin mediates the effect of multiple per- and polyfluoroalkyl substances on serum lipid levels. Environ Pollut 266 Pt 2: 115138. <u>http://dx.doi.org/10.1016/j.envpol.2020.115138</u>.
- Fassler, CS; Pinney, SE; Xie, C; Biro, FM; Pinney, SM. (2019). Complex relationships between perfluorooctanoate, body mass index, insulin resistance and serum lipids in young girls. Environ Res 176: 108558. <u>http://dx.doi.org/10.1016/j.envres.2019.108558</u>.
- Feng, Y; Bai, Y; Lu, Y; Chen, M; Fu, M; Guan, X; Cao, Q; Yuan, F; Jie, J; Li, M; Meng, H; Wang, C; Hong, S; Zhou, Y; Zhang, X; He, M; Guo, H. (2022a). Plasma perfluoroalkyl substance exposure and incidence risk of breast cancer: A case-cohort study in the Dongfeng-Tongji cohort. Environ Pollut 306: 119345. <u>http://dx.doi.org/10.1016/j.envpol.2022.119345</u>.
- Feng, Y; Fu, M; Guan, X; Wang, C; Meng, H; Zhou, Y; He, M; Guo, H. (2022b). Associations of exposure to perfluoroalkyl substances with serum uric acid change and hyperuricemia among Chinese women: Results from a longitudinal study. Chemosphere 308: 136438. http://dx.doi.org/10.1016/j.chemosphere.2022.136438.
- Fisher, M; Arbuckle, TE; Liang, CL; Leblanc, A; Gaudreau, E; Foster, WG; Haines, D; Davis, K; Fraser,
 WD. (2016). Concentrations of persistent organic pollutants in maternal and cord blood from the maternal-infant research on environmental chemicals (MIREC) cohort study.
 Environ Health 15: 59. http://dx.doi.org/10.1186/s12940-016-0143-y.
- Fragki, S: Louisse, J: Bokkers, B: Luijten, M: Peijnenburg, A: Rijkers, D: Piersma, AH; Zeilmaker, MJ. (2023). New approach methodologies: A quantitative in vitro to in vivo extrapolation case study with PFASs. Food Chem Toxicol 172: 113559. http://dx.doi.org/10.1016/j.fct.2022.113559.
- <u>Gaballah, S; Swank, A; Sobus, JR; Howey, XM; Schmid, J; Catron, T; Mccord, J; Hines, E; Strynar, M;</u> <u>Tal, T.</u> (2020). Evaluation of developmental toxicity, developmental neurotoxicity, and tissue dose in zebrafish exposed to GenX and other PFAS. Environ Health Perspect 128: 47005. <u>http://dx.doi.org/10.1289/EHP5843</u>.
- Gaylord, A; Berger, KI; Naidu, M; Attina, TM; Gilbert, J; Koshy, TT; Han, X; Marmor, M; Shao, Y; Giusti, R; Goldring, RM; Kannan, K; Trasande, L. (2019). Serum perfluoroalkyl substances and lung function in adolescents exposed to the World Trade Center disaster. Environ Res 172: 266-272. <u>http://dx.doi.org/10.1016/j.envres.2019.02.024</u>.
- <u>Gaylord, A; Trasande, L; Kannan, K; Thomas, KM; Lee, S; Liu, M; Levine, J.</u> (2020). Persistent organic pollutant exposure and celiac disease: A pilot study. Environ Res 186: 109439. <u>http://dx.doi.org/10.1016/j.envres.2020.109439</u>.
- <u>Goodrich, JA; Walker, D; Lin, X; Wang, H; Lim, T; McConnell, R; Conti, DV; Chatzi, L; Setiawan, VW.</u> (2022). Exposure to perfluoroalkyl substances and risk of hepatocellular carcinoma in a multiethnic cohort. JHEP Rep 4: 100550. <u>http://dx.doi.org/10.1016/j.jhepr.2022.100550</u>.
- <u>Gundacker, C; Audouze, K; Widhalm, R; Granitzer, S; Forsthuber, M; Jornod, F; Wielsøe, M; Long, M;</u> <u>Halldórsson, TI; Uhl, M; Bonefeld-Jørgensen, EC.</u> (2022). Reduced Birth Weight and Exposure to Per- and Polyfluoroalkyl Substances: A Review of Possible Underlying

Mechanisms Using the AOP-HelpFinder [Review]. Toxics 10: 684. http://dx.doi.org/10.3390/toxics10110684.

- Guo, J; Huang, S; Yang, L; Zhou, J; Xu, X; Lin, S; Li, H; Xie, X; Wu, S. (2023). Association between polyfluoroalkyl substances exposure and sex steroids in adolescents: The mediating role of serum albumin. Ecotoxicol Environ Saf 253: 114687. http://dx.doi.org/10.1016/j.ecoenv.2023.114687.
- Hallberg, I; Moberg, M; Olovsson, M; Damdimopoulou, P; Ruegg, J; Sirard, MA; Persson, S; Sjunnesson, YC. (2021). The effect of perfluorohexanesulfonate (PFHxS) on bovine preimplantation embryo development in vitro. Toxicol Lett 350: S169-S170.
- Hallberg, I; Persson, S; Olovsson, M; Moberg, M; Ranefall, P; Laskowski, D; Damdimopoulou, P;
 <u>Sirard, MA; Rüegg, J; Sjunnesson, YCB.</u> (2022). Bovine oocyte exposure to perfluorohexane sulfonate (PFHxS) induces phenotypic, transcriptomic, and DNA methylation changes in resulting embryos in vitro. Reprod Toxicol 109: 19-30. http://dx.doi.org/10.1016/j.reprotox.2022.024.
- Han, W; Gao, Y; Yao, Q; Yuan, T; Wang, Y; Zhao, S; Shi, R; Bonefeld-Jorgensen, EC; Shen, X; Tian, Y.
 (2018). Perfluoroalkyl and polyfluoroalkyl substances in matched parental and cord serum in Shandong, China. Environ Int 116: 206-213. http://dx.doi.org/10.1016/j.envint.2018.04.025.
- Harris, MH; Rifas-Shiman, SL; Calafat, AM; Ye, X; Mora, AM; Webster, TF; Oken, E; Sagiv, SK. (2017). Predictors of per- and polyfluoroalkyl substance (PFAS) plasma concentrations in 6-10 year old American children. Environ Sci Technol 51: 5193-5204. http://dx.doi.org/10.1021/acs.est.6b05811.
- Haug, M; Dunder, L; Lind, PM; Lind, L; Salihovic, S. (2023). Associations of perfluoroalkyl substances (PFAS) with lipid and lipoprotein profiles. J Expo Sci Environ Epidemiol. http://dx.doi.org/10.1038/s41370-023-00545-x.
- Højsager, FD; Andersen, M; Juul, A; Nielsen, F; Möller, S; Christensen, HT; Grøntved, A; Grandjean, P; Jensen, TK. (2022). Prenatal and early postnatal exposure to perfluoroalkyl substances and bone mineral content and density in the Odense child cohort. Environ Int 167: 107417. http://dx.doi.org/10.1016/j.envint.2022.107417.
- <u>Hölzer, J: Midasch, O: Rauchfuss, K: Kraft, M: Reupert, R: Angerer, J: Kleeschulte, P: Marschall, N:</u> <u>Wilhelm, M.</u> (2008). Biomonitoring of perfluorinated compounds in children and adults exposed to perfluorooctanoate-contaminated drinking water. Environ Health Perspect 116: 651-657. <u>http://dx.doi.org/10.1289/ehp.11064</u>.
- Hong, A; Zhuang, L; Cui, W; Lu, Q; Yang, P; Su, S; Wang, B; Zhang, G; Chen, D. (2022). Per- and polyfluoroalkyl substances (PFAS) exposure in women seeking in vitro fertilization-embryo transfer treatment (IVF-ET) in China: Blood-follicular transfer and associations with IVF-ET outcomes. Sci Total Environ 838: 156323.

http://dx.doi.org/10.1016/j.scitotenv.2022.156323.

- <u>Hoover, G; Kar, S; Guffey, S; Leszczynski, J; Sepúlveda, MS.</u> (2019). In vitro and in silico modeling of perfluoroalkyl substances mixture toxicity in an amphibian fibroblast cell line. Chemosphere 233: 25-33. <u>http://dx.doi.org/10.1016/j.chemosphere.2019.05.065</u>.
- Hu, JMY; Arbuckle, TE; Janssen, P; Lanphear, BP; Zhuang, LH; Braun, JM; Chen, A; McCandless, LC. (2021). Prenatal exposure to endocrine disrupting chemical mixtures and infant birth weight: a Bayesian analysis using kernel machine regression. Environ Res 195: 110749. http://dx.doi.org/10.1016/j.envres.2021.110749.
- <u>Huang, H; Wang, Q; He, X; Wu, Y; Xu, C.</u> (2019). Association between polyfluoroalkyl chemical concentrations and leucocyte telomere length in US adults. Sci Total Environ 653: 547-553. <u>http://dx.doi.org/10.1016/j.scitotenv.2018.10.400</u>.
- Huang, H; Yu, K; Zeng, X; Chen, Q; Liu, Q; Zhao, Y; Zhang, J; Zhang, X; Huang, L. (2020). Association between prenatal exposure to perfluoroalkyl substances and respiratory tract infections in

preschool children. Environ Res 191: 110156. http://dx.doi.org/10.1016/j.envres.2020.110156.

- Huo, X; Huang, R; Gan, Y; Luo, K; Aimuzi, R; Nian, M; Ao, J; Feng, L; Tian, Y; Wang, W; Ye, W; Zhang, J. (2020). Perfluoroalkyl substances in early pregnancy and risk of hypertensive disorders of pregnancy: A prospective cohort study. Environ Int 138: 105656. http://dx.doi.org/10.1016/j.envint.2020.105656.
- Hutcheson, R; Innes, K; Conway, B. (2020). Perfluoroalkyl substances and likelihood of stroke in persons with and without diabetes. Diab Vasc Dis Res 17: 1-8. http://dx.doi.org/10.1177/1479164119892223.
- <u>Hvizdak, M; Kandel, SE; Work, HM; Gracey, EG; McCullough, RL; Lampe, JN.</u> (2023). Per- and polyfluoroalkyl substances (PFAS) inhibit cytochrome P450 CYP3A7 through direct coordination to the heme iron and water displacement. J Inorg Biochem 240: 112120. http://dx.doi.org/10.1016/j.jinorgbio.2023.112120</u>.
- Ishibashi, H; Hirano, M; Kim, EY; Iwata, H. (2019). In vitro and in silico evaluations of binding affinities of perfluoroalkyl substances to baikal seal and human peroxisome proliferatoractivated receptor α. Environ Sci Technol 53: 2181-2188. http://dx.doi.org/10.1021/acs.est.8b07273.
- Ishibashi, H; Kim, EY; Iwata, H. (2011). Transactivation potencies of the Baikal seal (Pusa sibirica) peroxisome proliferator-activated receptor α by perfluoroalkyl carboxylates and sulfonates: estimation of PFOA induction equivalency factors. Environ Sci Technol 45: 3123-3130. http://dx.doi.org/10.1021/es103748s.
- Jain, RB. (2014). Contribution of diet and other factors to the levels of selected polyfluorinated compounds: data from NHANES 2003-2008. Int J Hyg Environ Health 217: 52-61. http://dx.doi.org/10.1016/j.ijheh.2013.03.008.
- Jain, RB; Ducatman, A. (2019). Perfluoroalkyl acids and thyroid hormones across stages of kidney function. Sci Total Environ 696: 133994. http://dx.doi.org/10.1016/i.scitotenv.2019.133994.
- Jensen, RC; Glintborg, D; Timmermann, CAG; Nielsen, F; Boye, H; Madsen, JB; Bilenberg, N; Grandjean, P; Jensen, TK; Andersen, MS. (2022). Higher free thyroxine associated with PFAS exposure in first trimester. The Odense Child Cohort. Environ Res 212: 113492. http://dx.doi.org/10.1016/j.envres.2022.113492.
- Ji, K; Kim, S; Kho, Y; Sakong, J; Paek, D; Choi, K. (2012). Major perfluoroalkyl acid (PFAA) concentrations and influence of food consumption among the general population of Daegu, Korea. Sci Total Environ 438: 42-48. <u>http://dx.doi.org/10.1016/j.scitotenv.2012.08.007</u>.
- Kalloo, G; Wellenius, GA; Mccandless, L; Calafat, AM; Sjodin, A; Romano, ME; Karagas, MR; Chen, A; Yolton, K; Lanphear, BP; Braun, JM. (2020). Exposures to chemical mixtures during pregnancy and neonatal outcomes: The HOME study. Environ Int 134: 105219. http://dx.doi.org/10.1016/j.envint.2019.105219.
- Kaur, K; Lesseur, C; Chen, L; Andra, SS; Narasimhan, S; Pulivarthi, D; Midya, V; Ma, Y; Ibroci, E;
 <u>Gigase, F; Lieber, M; Lieb, W; Janevic, T; De Witte, LD; Bergink, V; Rommel, AS; Chen, J.</u>
 (2023). Cross-sectional associations of maternal PFAS exposure on SARS-CoV-2 IgG
 antibody levels during pregnancy. Environ Res 219: 115067.
 <u>http://dx.doi.org/10.1016/j.envres.2022.115067</u>.
- Kim, JH; Park, HY; Jeon, JD; Kho, Y; Kim, SK; Park, MS; Hong, YC. (2015). The modifying effect of vitamin C on the association between perfluorinated compounds and insulin resistance in the Korean elderly: a double-blind, randomized, placebo-controlled crossover trial. Eur J Nutr 55: 1011-1020. <u>http://dx.doi.org/10.1007/s00394-015-0915-0</u>.
- <u>Kim, JI; Kim, BN; Lee, YA; Shin, CH; Hong, YC; Døssing, LD; Hildebrandt, G; Lim, YH.</u> (2023a). Association between early-childhood exposure to perfluoroalkyl substances and ADHD

symptoms: A prospective cohort study. Sci Total Environ 879: 163081. http://dx.doi.org/10.1016/j.scitotenv.2023.163081.

- Kim, K; Bennett, DH; Calafat, AM; Hertz-Picciotto, I; Shin, HM. (2020). Temporal trends and determinants of serum concentrations of per- and polyfluoroalkyl substances among Northern California mothers with a young child, 2009-2016. Environ Res 186: 109491. http://dx.doi.org/10.1016/j.envres.2020.109491.
- <u>Kim, OJ; Kim, S; Park, EY; Oh, JK; Jung, SK; Park, S; Hong, S; Jeon, HL; Kim, HJ; Park, B; Park, B; Kim, S;</u>
 <u>Kim, B.</u> (2023b). Exposure to serum perfluoroalkyl substances and biomarkers of liver
 function: The Korean national environmental health survey 2015-2017. Chemosphere 322:
 138208. <u>http://dx.doi.org/10.1016/j.chemosphere.2023.138208</u>.
- Koponen, J; Winkens, K; Airaksinen, R; Berger, U; Vestergren, R; Cousins, IT; Karvonen, AM; <u>Pekkanen, J; Kiviranta, H.</u> (2018). Longitudinal trends of per- and polyfluoroalkyl substances in children's serum. Environ Int 121: 591-599. <u>http://dx.doi.org/10.1016/j.envint.2018.09.006</u>.
- Leary, DB; Takazawa, M; Kannan, K; Khalil, N. (2020). Perfluoroalkyl substances and metabolic syndrome in firefighters a pilot study. J Occup Environ Med 62: 52-57. http://dx.doi.org/10.1097/JOM.00000000001756.
- Leclercq, A; Ranefall, P; Sjunnesson, YCB; Hallberg, I. (2022). Occurrence of late-apoptotic symptoms in porcine preimplantation embryos upon exposure of oocytes to perfluoroalkyl substances (PFASs) under in vitro meiotic maturation. PLoS ONE 17: e0279551. http://dx.doi.org/10.1371/journal.pone.0279551.
- Lee, E; Kinninger, A; Ursin, G; Tseng, C; Hurley, S; Wang, M; Wang, Y; Park, JS; Petreas, M; Deapen, D; <u>Reynolds, P.</u> (2020). Serum levels of commonly detected persistent organic pollutants and per- and polyfluoroalkyl substances (PFASs) and mammographic density in postmenopausal women. Int J Environ Res Public Health 17: 606. <u>http://dx.doi.org/10.3390/ijerph17020606</u>.
- Lewin, A; Arbuckle, TE; Fisher, M; Liang, CL; Marro, L; Davis, K; Abdelouahab, N; Fraser, WD. (2017). Univariate predictors of maternal concentrations of environmental chemicals: The MIREC study. Int J Hyg Environ Health 220: 77-85. http://dx.doi.org/10.1016/j.ijheh.2017.01.001.
- Li, A; Hou, J; Fu, J; Wang, Y; Hu, Y; Zhuang, T; Li, M; Song, M; Jiang, G. (2023a). Association between serum levels of TSH and free T4 and per- and polyfluoroalkyl compounds concentrations in pregnant women. J Environ Sci 124: 11-18. <u>http://dx.doi.org/10.1016/j.jes.2021.10.026</u>.
- Li, H; Chen, J; Jingchao, L; Yang, J; Tan, Z; Li, L; Xiao, F; An, Z; Ma, C; Liu, Y; Wang, L; Zhang, X; Guo, H. (2023b). Association of exposure to perfluoroalkyl substances and risk of the acute coronary syndrome: A case-control study in Shijiazhuang Hebei Province. Chemosphere 313: 137464. <u>http://dx.doi.org/10.1016/j.chemosphere.2022.137464</u>.
- Li, J; Yang, L; He, G; Wang, B; Miao, M; Ji, H; Wen, S; Cao, W; Yuan, W; Liang, H. (2022a). Association between prenatal exposure to perfluoroalkyl substances and anogenital distance in female neonates. Ecotoxicol Environ Saf 245: 114130. http://dx.doi.org/10.1016/j.ecoenv.2022.114130.
- Li, J; Yao, J; Xia, W; Dai, J; Liu, H; Pan, Y; Xu, S; Lu, S; Jin, S; Li, Y; Sun, X; Zhang, B; Zheng, T; Jiang, Y; Jing, T. (2020). Association between exposure to per- and polyfluoroalkyl substances and blood glucose in pregnant women. Int J Hyg Environ Health 230: 113596. http://dx.doi.org/10.1016/j.ijheh.2020.113596.
- Li, QQ; Huang, J; Cai, D; Chou, WC; Zeeshan, M; Chu, C; Zhou, Y; Lin, L; Ma, HM; Tang, C; Kong, M; Xie, Y; Dong, GH; Zeng, XW. (2023c). Prenatal exposure to legacy and alternative per- and polyfluoroalkyl substances and neuropsychological development trajectories over the first 3 years of life. Environ Sci Technol 57: 3746-3757. http://dx.doi.org/10.1021/acs.est.2c07807.

- Li, S; Cirillo, P; Hu, X; Tran, V; Krigbaum, N; Yu, S; Jones, DP; Cohn, B. (2019). Understanding mixed environmental exposures using metabolomics via a hierarchical community network model in a cohort of California women in 1960's. Reprod Toxicol 92: 57-65. http://dx.doi.org/10.1016/j.reprotox.2019.06.013.
- Li, X; Song, F; Liu, X; Shan, A; Huang, Y; Yang, Z; Li, H; Yang, Q; Yu, Y; Zheng, H; Cao, XC; Chen, D; Chen, KX; Chen, X; Tang, NJ. (2022b). Perfluoroalkyl substances (PFASs) as risk factors for breast cancer: a case-control study in Chinese population. Environ Health 21: 83. http://dx.doi.org/10.1186/s12940-022-00895-3.
- Liang, Y; Zhou, H; Zhang, J; Li, S; Shen, W; Lei, L. (2023). Exposure to perfluoroalkyl and polyfluoroalkyl substances and estimated glomerular filtration rate in adults: a cross-sectional study based on NHANES (2017-2018). Environ Sci Pollut Res Int. http://dx.doi.org/10.1007/s11356-023-26384-9.
- Liao, Q; Tang, P; Fan, H; Song, Y; Liang, J; Huang, H; Pan, D; Mo, M; Leilei; Lin, M; Chen, J; Wei, H; Long, J; Shao, Y; Zeng, X; Liu, S; Huang, D; Qiu, X. (2023). Association between maternal exposure to per- and polyfluoroalkyl substances and serum markers of liver function during pregnancy in China: A mixture-based approach. Environ Pollut 323: 121348. http://dx.doi.org/10.1016/j.envpol.2023.121348.
- Liao, Q; Tang, P; Pan, D; Song, Y; Lei, L; Liang, J; Liu, B; Lin, M; Huang, H; Mo, M; Huang, C; Wei, M; Liu, S; Huang, D; Qiu, X. (2022a). Association of serum per- and polyfluoroalkyl substances and gestational anemia during different trimesters in Zhuang ethnic pregnancy women of Guangxi, China. Chemosphere 309: 136798.

http://dx.doi.org/10.1016/j.chemosphere.2022.136798.

- Liao, Q; Tang, P; Song, Y; Liu, B; Huang, H; Liang, J; Lin, M; Shao, Y; Liu, S; Pan, D; Huang, D; Qiu, X. (2022b). Association of single and multiple prefluoroalkyl substances exposure with preterm birth: Results from a Chinese birth cohort study. Chemosphere 307: 135741. http://dx.doi.org/10.1016/j.chemosphere.2022.135741.
- Lin, M; Liao, Q; Tang, P; Song, Y; Liang, J, un; Li, J; Mu, C; Liu, S; Qiu, X; Yi, R, ui; Pang, Q; Pan, D; Zeng, X; Huang, D. (2022). Association of maternal perfluoroalkyl substance exposure with postpartum haemorrhage in Guangxi, China. Ecotoxicol Environ Saf 245: 114078. http://dx.doi.org/10.1016/j.ecoenv.2022.114078.
- Lind, PM; Salihovic, S; Stubleski, J; Kärrman, A; Lind, L. (2018). Changes in plasma levels of perfluoroalkyl substances (PFASs) are related to increase in carotid intima-media thickness over 10 years a longitudinal study. Environ Health 17: 59. http://dx.doi.org/10.1186/s12940-018-0403-0.
- Liu, H; Pan, Y; Jin, S; Sun, X; Jiang, Y; Wang, Y; Ghassabian, A; Li, Y; Xia, W; Cui, Q; Zhang, B; Zhou, A; Dai, J; Xu, S. (2020a). Associations between six common per- and polyfluoroalkyl substances and estrogens in neonates of China. J Hazard Mater 407: 124378. http://dx.doi.org/10.1016/j.jhazmat.2020.124378.
- Liu, J: Gao, X: Wang, Y: Leng, J: Li, J: Zhao, Y: Wu, Y. (2020b). Profiling of emerging and legacy per-/polyfluoroalkyl substances in serum among pregnant women in China. Environ Pollut 271: 116376. <u>http://dx.doi.org/10.1016/j.envpol.2020.116376</u>.
- Liu, S; Yang, R; Yin, N; Faiola, F. (2020c). Effects of per- and poly-fluorinated alkyl substances on pancreatic and endocrine differentiation of human pluripotent stem cells. Chemosphere 254: 126709. http://dx.doi.org/10.1016/j.chemosphere.2020.126709.
- Liu, S; Yang, R; Yin, N; Faiola, F. (2020d). The short-chain perfluorinated compounds PFBS, PFHxS, PFBA and PFHxA, disrupt human mesenchymal stem cell self-renewal and adipogenic differentiation. J Environ Sci 88: 187-199. http://dx.doi.org/10.1016/j.jes.2019.08.016.
- Liu, X; Zhang, L; Chen, L; Li, J; Wang, Y; Wang, J; Meng, G; Chi, M; Zhao, Y; Chen, H; Wu, Y. (2019). Structure-based investigation on the association between perfluoroalkyl acids exposure and

both gestational diabetes mellitus and glucose homeostasis in pregnant women. Environ Int 127: 85-93. <u>http://dx.doi.org/10.1016/j.envint.2019.03.035</u>.

- Liu, Y; Zhang, Z; Han, D; Zhao, Y; Yan, X; Cui, S. (2022). Association between environmental chemicals co-exposure and peripheral blood immune-inflammatory indicators. Front Public Health 10: 980987. <u>http://dx.doi.org/10.3389/fpubh.2022.980987</u>.
- Luo, F; Chen, Q; Yu, G; Huo, X; Wang, H; Nian, M; Tian, Y; Xu, J; Zhang, J; Zhang, J. (2022a). Exposure to perfluoroalkyl substances and neurodevelopment in 2-year-old children: A prospective cohort study. Environ Int 166: 107384. <u>http://dx.doi.org/10.1016/j.envint.2022.107384</u>.
- Luo, K; Huang, W; Zhang, Q; Liu, X; Nian, M; Wei, M; Wang, Y; Chen, D; Chen, X; Zhang, J. (2022b). Environmental exposure to legacy poly/perfluoroalkyl substances, emerging alternatives and isomers and semen quality in men: A mixture analysis. Sci Total Environ 833: 155158. http://dx.doi.org/10.1016/j.scitotenv.2022.155158.
- Luo, K; Liu, X; Zhou, W; Nian, M; Qiu, W; Yang, Y; Zhang, J. (2022c). Preconception exposure to perfluoroalkyl and polyfluoroalkyl substances and couple fecundity: A couple-based exploration. Environ Int 170: 107567. <u>http://dx.doi.org/10.1016/j.envint.2022.107567</u>.
- Ma, S; Xu, C; Ma, J; Wang, Z; Zhang, Y; Shu, Y; Mo, X. (2019). Association between perfluoroalkyl substance concentrations and blood pressure in adolescents. Environ Pollut 254: 112971. http://dx.doi.org/10.1016/j.envpol.2019.112971.
- Ma, X; Cui, L; Chen, L; Zhang, J; Zhang, X; Kang, Q; Jin, F; Ye, Y. (2021). Parental plasma concentrations of perfluoroalkyl substances and In Vitro fertilization outcomes. Environ Pollut 269: 116159. <u>http://dx.doi.org/10.1016/j.envpol.2020.116159</u>.
- Mann, MM; Tang, JD; Berger, BW. (2021). Engineering human liver fatty acid binding protein for detection of poly- and perfluoroalkyl substances. Biotechnol Bioeng 119: 513-522. http://dx.doi.org/10.1002/bit.27981.
- Mehta, SS; Applebaum, KM; James-Todd, T; Coleman-Phox, K; Adler, N; Laraia, B; Epel, E; Parry, E; Wang, M; Park, JS; Zota, AR. (2020). Associations between sociodemographic characteristics and exposures to PBDEs, OH-PBDEs, PCBs, and PFASs in a diverse, overweight population of pregnant women. J Expo Sci Environ Epidemiol 30: 42-55. http://dx.doi.org/10.1038/s41370-019-0173-y.
- Mehta, SS; James-Todd, T; Applebaum, KM; Bellavia, A; Coleman-Phox, K; Adler, N; Laraia, B; Epel, E; Parry, E; Wang, M; Park, JS; Zota, AR. (2021). Persistent organic pollutants and maternal glycemic outcomes in a diverse pregnancy cohort of overweight women. Environ Res 193: 110551. http://dx.doi.org/10.1016/j.envres.2020.110551.
- Menger, F; Pohl, J: Ahrens, L; Carlsson, G; Örn, S. (2020). Behavioural effects and bioconcentration of per- and polyfluoroalkyl substances (PFASs) in zebrafish (Danio rerio) embryos. Chemosphere 245: 125573. http://dx.doi.org/10.1016/j.chemosphere.2019.125573.
- Mitro, SD; Sagiv, SK; Fleisch, AF; Jaacks, LM; Williams, PL; Rifas-Shiman, SL; Calafat, AM; Hivert, MF; Oken, E; James-Todd, TM. (2020a). Pregnancy per- and polyfluoroalkyl substance concentrations and postpartum health in project viva: A prospective cohort. J Clin Endocrinol Metab 105: e3415–e3426. http://dx.doi.org/10.1210/clinem/dgaa431.
- <u>Mitro, SD; Sagiv, SK; Rifas-Shiman, SL; Calafat, AM; Fleisch, AF; Jaacks, LM; Williams, PL; Oken, E;</u> <u>James-Todd, TM.</u> (2020b). Per- and polyfluoroalkyl substance exposure, gestational weight gain, and postpartum weight changes in Project Viva. Obesity (Silver Spring) 28: 1984-1992. <u>http://dx.doi.org/10.1002/oby.22933</u>.
- Modaresi, SMS; Wei, W; Emily, M; DaSilva, NA; Slitt, AL. (2021). Per- and polyfluoroalkyl substances (PFAS) augment adipogenesis and shift the proteome in murine 3T3-L1 adipocytes. Toxicology 465: 153044. http://dx.doi.org/10.1016/j.tox.2021.153044.
- <u>Mogensen, UB; Grandjean, P; Heilmann, C; Nielsen, F; Weihe, P; Budtz-Jørgensen, E.</u> (2015). Structural equation modeling of immunotoxicity associated with exposure to perfluorinated alkylates. Environ Health 14: 47. <u>http://dx.doi.org/10.1186/s12940-015-0032-9</u>.

- Morgan, S: Mottaleb, MA; Kraemer, MP; Moser, DK; Worley, J; Morris, AJ; Petriello, MC. (2023). Effect of lifestyle-based lipid lowering interventions on the relationship between circulating levels of per-and polyfluoroalkyl substances and serum cholesterol. Environ Toxicol Pharmacol 98: 104062. <u>http://dx.doi.org/10.1016/j.etap.2023.104062</u>.
- Mwapasa, M; Huber, S; Chakhame, BM; Maluwa, A; Odland, ML; Rollin, H; Choko, A; Xu, S; Odland, JO. (2023). Serum Concentrations of Selected Poly- and Perfluoroalkyl Substances (PFASs) in Pregnant Women and Associations with Birth Outcomes. A Cross-Sectional Study from Southern Malawi. Int J Environ Res Public Health 20: 1689. http://dx.doi.org/10.3390/ijerph20031689.
- Nair, AS; Ma, ZQ; Watkins, SM; Wood, SS. (2021). Demographic and exposure characteristics as predictors of serum per- and polyfluoroalkyl substances (PFASs) levels A community-level biomonitoring project in Pennsylvania. Int J Hyg Environ Health 231: 113631. http://dx.doi.org/10.1016/j.ijheh.2020.113631.
- Nguyen, GTH; Nocentini, A; Angeli, A; Gratteri, P; Supuran, CT; Donald, WA. (2020). Perfluoroalkyl substances of significant environmental concern can strongly inhibit human carbonic anhydrase isozymes. Anal Chem 92: 4614-4622. http://dx.doi.org/10.1021/acs.analchem.0c00163.
- Nian, M; Luo, K; Luo, F; Aimuzi, R; Huo, X; Chen, Q; Tian, Y; Zhang, J. (2020). Association between prenatal exposure to PFAS and fetal sex hormones: Are the short-chain PFAS safer? Environ Sci Technol 54: 8291-8299. <u>http://dx.doi.org/10.1021/acs.est.0c02444</u>.
- Nilsson, S; Smurthwaite, K; Aylward, LL; Kay, M; Toms, LM; King, L; Marrington, S; Kirk, MD; <u>Mueller, JF; Bräunig, J.</u> (2022). Associations between serum perfluoroalkyl acid (PFAA) concentrations and health related biomarkers in firefighters. Environ Res 215: 114370. <u>http://dx.doi.org/10.1016/j.envres.2022.114370</u>.
- Oh, J; Shin, HM; Kannan, K; Busgang, SA; Schmidt, RJ; Schweitzer, JB; Hertz-Picciotto, I; Bennett, DH. (2022). Childhood exposure to per- and polyfluoroalkyl substances and neurodevelopment in the CHARGE case-control study. Environ Res 215: 114322. http://dx.doi.org/10.1016/j.envres.2022.114322.
- Ojo, AF: Peng, C: Ng, JC. (2020). Combined effects and toxicological interactions of perfluoroalkyl and polyfluoroalkyl substances mixtures in human liver cells (HepG2). Environ Pollut 263: 114182. http://dx.doi.org/10.1016/j.envpol.2020.114182.
- <u>Ojo, AF: Xia, Q: Peng, C: Ng. JC.</u> (2021). Evaluation of the individual and combined toxicity of perfluoroalkyl substances to human liver cells using biomarkers of oxidative stress. Chemosphere 281: 130808. <u>http://dx.doi.org/10.1016/j.chemosphere.2021.130808</u>.
- Ouidir, M; Buck Louis, GM; Kanner, J; Grantz, KL; Zhang, C; Sundaram, R; Rahman, ML; Lee, S; Kannan, K; Tekola-Ayele, F; Mendola, P. (2020). Association of maternal exposure to persistent organic pollutants in early pregnancy with fetal growth. JAMA Pediatr 174: 149-161. <u>http://dx.doi.org/10.1001/jamapediatrics.2019.5104</u>.
- <u>Oulhote, Y; Coull, B; Bind, MA; Debes, F; Nielsen, F; Tamayo, I; Weihe, P; Grandjean, P.</u> (2019). Joint and independent neurotoxic effects of early life exposures to a chemical mixture: A multipollutant approach combining ensemble learning and g-computation. Environmental Epidemiology 3: e063. <u>http://dx.doi.org/10.1097/ee9.0000000000000063</u>.
- Padula, AM; Ning, X; Bakre, S; Barrett, ES; Bastain, T; Bennett, DH; Bloom, MS; Breton, CV; Dunlop, AL; Eick, SM; Ferrara, A; Fleisch, A; Geiger, S; Goin, DE; Kannan, K; Karagas, MR; Korrick, S; Meeker, JD; Morello-Frosch, R. (2023). Birth outcomes in relation to prenatal exposure to per-and polyfluoroalkyl substances and stress in the environmental influences on child health outcomes (echo) program [Supplemental Data]. Environ Health Perspect 131: (037006) 037001-037011. http://dx.doi.org/10.1289/EHP10723.
- Pan, Y; Qin, H; Liu, W; Zhang, Q; Zheng, L; Zhou, C; Quan, X. (2019). Effects of chlorinated polyfluoroalkyl ether sulfonate in comparison with perfluoroalkyl acids on gene profiles

and stemness in human mesenchymal stem cells. Chemosphere 237: 124402. <u>http://dx.doi.org/10.1016/j.chemosphere.2019.124402</u>.

- Pan, Y; Zhu, Y; Zheng, T; Cui, Q; Buka, SL; Zhang, B; Guo, Y; Xia, W; Yeung, LW; Li, Y; Zhou, A; Qiu, L; Liu, H; Jiang, M; Wu, C; Xu, S; Dai, J. (2017). Novel Chlorinated Polyfluorinated Ether Sulfonates and Legacy Per-/Polyfluoroalkyl Substances: Placental Transfer and Relationship with Serum Albumin and Glomerular Filtration Rate. Environ Sci Technol 51: 634-644. http://dx.doi.org/10.1021/acs.est.6b04590.
- Pan, Z; Guo, Y; Zhou, Q; Wang, Q; Pan, S; Xu, S; Li, L. (2023). Perfluoroalkyl substance exposure is associated with asthma and innate immune cell count in US adolescents stratified by sex. Environ Sci Pollut Res Int 30: 52535-52548. <u>http://dx.doi.org/10.1007/s11356-023-26065-7</u>.
- Papadopoulou, E; Sabaredzovic, A; Namork, E; Nygaard, UC; Granum, B; Haug, LS. (2016). Exposure of Norwegian toddlers to perfluoroalkyl substances (PFAS): The association with breastfeeding and maternal PFAS concentrations. Environ Int 94: 687-694. http://dx.doi.org/10.1016/j.envint.2016.07.006.
- Park, SJ: Sim, KH: Shrestha, P: Yang, JH: Lee, YJ. (2021). Perfluorooctane sulfonate and bisphenol A induce a similar level of mast cell activation via a common signaling pathway, Fyn-Lyn-Syk activation. Food Chem Toxicol 156: 112478. <u>http://dx.doi.org/10.1016/j.fct.2021.112478</u>.
- Park, SK; Wang, X; Ding, N; Karvonen-Gutierrez, CA; Calafat, AM; Herman, WH; Mukherjee, B; Harlow, SD. (2022). Per- and polyfluoroalkyl substances and incident diabetes in midlife women: the Study of Women's Health Across the Nation (SWAN). Diabetologia 65: 1157-1168. http://dx.doi.org/10.1007/s00125-022-05695-5.
- Peterson, AK; Eckel, SP; Habre, R; Yang, T; Faham, D; Amin, M; Grubbs, BH; Farzan, SF; Kannan, K; Robinson, M; Lerner, D; Al-Marayati, LA; Walker, DK; Grant, EG; Breton, CV; Bastain, TM. (2022). Detected prenatal perfluorooctanoic acid (PFOA) exposure is associated with decreased fetal head biometric parameters in participants experiencing higher perceived stress during pregnancy in the MADRES cohort. 9. http://dx.doi.org/10.1016/j.envadv.2022.100286.
- Petro, EM; D'Hollander, W; Covaci, A; Bervoets, L; Fransen, E; De Neubourg, D; De Pauw, I; Leroy, JL; Jorssen, EP; Bols, PE. (2014). Perfluoroalkyl acid contamination of follicular fluid and its consequence for in vitro oocyte developmental competence. Sci Total Environ 496: 282-288. <u>http://dx.doi.org/10.1016/j.scitotenv.2014.07.028</u>.
- Petroff, RL; Cavalcante, RG; Langen, ES; Dolinoy, DC; Padmanabhan, V; Goodrich, JM. (2023). Mediation effects of DNA methylation and hydroxymethylation on birth outcomes after prenatal per- and polyfluoroalkyl substances (PFAS) exposure in the Michigan motherinfant Pairs cohort. Clinical Epigenetics 15: 49. <u>http://dx.doi.org/10.1186/s13148-023-01461-5</u>.
- Phelps, DW; Palekar, AI; Conley, HE; Ferrero, G; Driggers, JH; Linder, KE; Kullman, SW; Reif, DM; Sheats, MK; Dewitt, JC; Yoder, JA. (2023). Legacy and emerging per- and polyfluoroalkyl substances suppress the neutrophil respiratory burst. J Immunotoxicol 20: 2176953. http://dx.doi.org/10.1080/1547691X.2023.2176953.
- <u>Pirard, C; Dufour, P; Charlier, C.</u> (2020). Background contamination of perfluoralkyl substances in a Belgian general population. Toxicol Lett 333: 13-21. http://dx.doi.org/10.1016/j.toxlet.2020.07.015.
- Porter, AK; Kleinschmidt, SE; Andres, KL; Reusch, CN; Krisko, RM; Taiwo, OA; Olsen, GW; Longnecker, MP. (2022). Antibody response to COVID-19 vaccines among workers with a wide range of exposure to per- and polyfluoroalkyl substances. Environ Int 169: 107537. http://dx.doi.org/10.1016/j.envint.2022.107537.
- Preston, EV; Rifas-Shiman, SL; Hivert, MF; Zota, AR; Sagiv, SK; Calafat, AM; Oken, E; James-Todd, T. (2020). Associations of per- and polyfluoroalkyl substances (PFAS) with glucose tolerance

during pregnancy in project viva. J Clin Endocrinol Metab 105: E2864-E2876. <u>http://dx.doi.org/10.1210/clinem/dgaa328</u>.

- Qin, W; Henneberger, L; Huchthausen, J; König, M; Escher, BL (2023). Role of bioavailability and protein binding of four anionic perfluoroalkyl substances in cell-based bioassays for quantitative in vitro to in vivo extrapolations. Environ Int 173: 107857. http://dx.doi.org/10.1016/j.envint.2023.107857.
- <u>Qin, WP; Cao, LY; Li, CH; Guo, LH; Colbourne, J; Ren, XM.</u> (2020). Perfluoroalkyl Substances Stimulate Insulin Secretion by Islet β Cells via G Protein-Coupled Receptor 40. Environ Sci Technol 54: 3428-3436. <u>http://dx.doi.org/10.1021/acs.est.9b07295</u>.
- <u>Qiu, Z; Qu, K; Luan, F; Liu, Y; Zhu, Y; Yuan, Y; Li, H; Zhang, H; Hai, Y; Zhao, C.</u> (2020). Binding specificities of estrogen receptor with perfluorinated compounds: A cross species comparison. Environ Int 134: 105284. <u>http://dx.doi.org/10.1016/j.envint.2019.105284</u>.
- Ramli, MR; Yoneda, M; Ali Mohd, M; Mohamad Haron, DE; Ahmad, ED. (2020). Level and determinants of serum perfluoroalkyl acids (PFAAs) in a population in Klang Valley, Malaysia. Int J Hyg Environ Health 223: 179-186. http://dx.doi.org/10.1016/j.ijheh.2019.09.005.
- Rantakokko, P; Männistö, V; Airaksinen, R; Koponen, J; Viluksela, M; Kiviranta, H; Pihlajamäki, J. (2015). Persistent organic pollutants and non-alcoholic fatty liver disease in morbidly obese patients: A cohort study. Environ Health 14: 79. <u>http://dx.doi.org/10.1186/s12940-015-0066-z</u>.
- Rericha, Y; Cao, D; Truong, L; Simonich, M; Field, JA; Tanguay, RL. (2021). Behavior effects of structurally diverse per- and polyfluoroalkyl substances in zebrafish. Chem Res Toxicol 34: 1409-1416. <u>http://dx.doi.org/10.1021/acs.chemrestox.1c00101</u>.
- Rivera-Núñez, Z; Kinkade, CW; Khoury, L; Brunner, J; Murphy, H; Wang, C; Kannan, K; Miller, RK; O'Connor, TG; Barrett, ES. (2023). Prenatal perfluoroalkyl substances exposure and maternal sex steroid hormones across pregnancy. Environ Res 220: 115233. http://dx.doi.org/10.1016/j.envres.2023.115233.
- Rosen, EM; Kotlarz, N; Knappe, DRU; Lea, CS; Collier, DN; Richardson, DB; Hoppin, JA. (2022). Drinking water-associated PFAS and fluoroethers and lipid outcomes in the GenX exposure study. Environ Health Perspect 130: 97002. <u>http://dx.doi.org/10.1289/EHP11033</u>.
- Rylander, C; Phi, DT; Odland, JØ; Sandanger, TM. (2009). Perfluorinated compounds in delivering women from south central Vietnam. J Environ Monit 11: 2002-2008. http://dx.doi.org/10.1039/b908551c.
- Salihović, S; Dickens, AM; Schoultz, I; Fart, F; Sinisalu, L; Lindeman, T; Halfvarson, J; Orešič, M; <u>Hyötyläinen, T.</u> (2019). Simultaneous determination of perfluoroalkyl substances and bile acids in human serum using ultra-high-performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 412: 2251-2259. <u>http://dx.doi.org/10.1007/s00216-019-02263-6</u>.
- Schillemans, T; Iszatt, N; Remy, S; Schoeters, G; Fernández, MF; D'Cruz, SC; Desalegn, A; Haug, LS; Lignell, S; Lindroos, AK; Fábelová, L; Murinova, LP; Kosjek, T; Tkalec, Ž; Gabriel, C; Sarigiannis, D; Pedraza-Díaz, S; Esteban-López, M; Castaño, A; ... Åkesson, A. (2022). Crosssectional associations between exposure to per- and polyfluoroalkyl substances and body mass index among European teenagers in the HBM4EU aligned studies. Environ Pollut 316: 120566. http://dx.doi.org/10.1016/j.envpol.2022.120566.
- <u>Shearer, JJ; Callahan, CL; Calafat, AM; Huang, WY; Jones, RR; Sabbisetti, VS; Freedman, ND; Sampson,</u> <u>JN; Silverman, DT; Purdue, MP; Hofmann, JN.</u> (2021). Serum concentrations of per- and polyfluoroalkyl substances and risk of renal cell carcinoma. J Natl Cancer Inst 113: 580-587. <u>http://dx.doi.org/10.1093/jnci/djaa143</u>.

- <u>Shen, Z; Ge, J; Ye, H; Tang, S; Li, Y.</u> (2020). Cholesterol-like Condensing Effect of Perfluoroalkyl Substances on a Phospholipid Bilayer. J Phys Chem B 124: 5415-5425. <u>http://dx.doi.org/10.1021/acs.jpcb.0c00980</u>.
- Shi, S; Ding, Y; Wu, B; Hu, P; Chen, M; Dong, N; Vinturache, A; Gu, H; Dong, X; Ding, G. (2023).
 Association of perfluoroalkyl substances with pulmonary function in adolescents (NHANES 2007-2012). Environ Sci Pollut Res Int. <u>http://dx.doi.org/10.1007/s11356-023-26119-w</u>.
- Shiue, I. (2015a). Arsenic, heavy metals, phthalates, pesticides, hydrocarbons and polyfluorinated compounds but not parabens or phenols are associated with adult remembering condition: US NHANES, 2011-2012. Environ Sci Pollut Res Int 22: 6381-6386. http://dx.doi.org/10.1007/s11356-015-4261-9.
- Shiue, I. (2015b). Urinary heavy metals, phthalates and polyaromatic hydrocarbons independent of health events are associated with adult depression: USA NHANES, 2011-2012. Environ Sci Pollut Res Int 22: 17095-17103. <u>http://dx.doi.org/10.1007/s11356-015-4944-2</u>.
- Shiue, I. (2015c). Urinary heavy metals, phthalates, perchlorate, nitrate, thiocyanate, hydrocarbons, and polyfluorinated compounds are associated with adult hearing disturbance: USA NHANES, 2011-2012. Environ Sci Pollut Res Int 22: 20306-20311. http://dx.doi.org/10.1007/s11356-015-5546-8.
- Shiue, I. (2015d). Urinary heavy metals, phthalates, phenols, thiocyanate, parabens, pesticides, polyaromatic hydrocarbons but not arsenic or polyfluorinated compounds are associated with adult oral health: USA NHANES, 2011-2012. Environ Sci Pollut Res Int 22: 15636-15645. http://dx.doi.org/10.1007/s11356-015-4749-3.
- Søderstrøm, S; Lille-Langøy, R; Yadetie, F; Rauch, M; Milinski, A; Dejaegere, A; Stote, RH; Goksøyr, A; Karlsen, OA. (2022). Agonistic and potentiating effects of perfluoroalkyl substances (PFAS) on the Atlantic cod (Gadus morhua) peroxisome proliferator-activated receptors (Ppars). Environ Int 163: 107203. <u>http://dx.doi.org/10.1016/j.envint.2022.107203</u>.
- Solan, ME; Koperski, CP; Senthilkumar, S; Lavado, R. (2023). Short-chain per- and polyfluoralkyl substances (PFAS) effects on oxidative stress biomarkers in human liver, kidney, muscle, and microglia cell lines. Environ Res 223: 115424-115424. http://dx.doi.org/10.1016/j.envres.2023.115424.
- Sood, S; Ojo, AO; Adu, D; Kannan, K; Ghassabian, A; Koshy, T; Vento, SM; Pehrson, LJ; Gilbert, JF; Arogundade, FA; Ademola, AD; Salako, BO; Raji, Y; Osafo, C; Antwi, S; Trachtman, H; Trasande, L; Ajayi, S; Burke, D; Cooper, R; Gbadegesin, R; Ilori, T; Mamven, M; Olanrewaju, T; Parekh, R; Rhule, J; Salako, T; Tayo, B; Ulasi, I; Investigators, HAKDRN. (2019). Association Between Perfluoroalkyl Substance Exposure and Renal Function in Children With CKD Enrolled in H3Africa Kidney Disease Research Network. 4: 1641-1645. http://dx.doi.org/10.1016/j.ekir.2019.07.017.
- <u>Sørli, JB; Låg, M; Ekeren, L; Perez-Gil, J; Haug, LS; Da Silva, E; Matrod, MN; Gützkow, KB; Lindeman, B.</u> (2020). Per- and polyfluoroalkyl substances (PFASs) modify lung surfactant function and pro-inflammatory responses in human bronchial epithelial cells. Toxicol In Vitro 62: 104656. <u>http://dx.doi.org/10.1016/j.tiv.2019.104656</u>.
- Steenland, K; Kugathasan, S; Barr, DB. (2018). PFOA and ulcerative colitis. Environ Res 165: 317-321. http://dx.doi.org/10.1016/j.envres.2018.05.007.
- <u>Stoker, TE; Wang, J; Murr, AS; Bailey, J. R.; Buckalew, AR.</u> (2023). High-Throughput Screening of ToxCast PFAS Chemical Library for Potential Inhibitors of the Human Sodium Iodide Symporter. Chem Res Toxicol. <u>http://dx.doi.org/10.1021/acs.chemrestox.2c00339</u>.
- Tan, Y; Zeng, Z; Liang, H; Weng, X; Yao, H; Fu, Y; Li, Y; Chen, J; Wei, X; Jing, C. (2022). Association between Perfluoroalkyl and Polyfluoroalkyl Substances and Women's Infertility, NHANES 2013-2016. Int J Environ Res Public Health 19. http://dx.doi.org/10.3390/ijerph192215348.

Tian, YP; Zeng, XW; Bloom, MS; Lin, S; Wang, SQ; Yim, SHL; Yang, M; Chu, C; Gurram, N; Hu, LW; Liu, KK; Yang, BY; Feng, D; Liu, RQ; Nian, M; Dong, GH. (2019). Isomers of perfluoroalkyl substances and overweight status among Chinese by sex status: Isomers of C8 Health Project in China. Environ Int 124: 130-138.

http://dx.doi.org/10.1016/j.envint.2019.01.006.

- <u>Tillaut, H; Monfort, C; Giton, F; Warembourg, C; Rouget, F; Cordier, S; Laine, F; Gaudreau, E;</u> <u>Garlantezec, R; Saint-Amour, D; Chevrier, C.</u> (2022). Persistent organic pollutant exposure and thyroid function among 12-year-old children. Neuroendocrinology. <u>http://dx.doi.org/10.1159/000528631</u>.
- <u>Tsai, MS; Miyashita, C; Araki, A; Itoh, S; Bamai, YA; Goudarzi, H; Okada, E; Kashino, I; Matsuura, H;</u> <u>Kishi, R.</u> (2018). Determinants and Temporal Trends of Perfluoroalkyl Substances in Pregnant Women: The Hokkaido Study on Environment and Children's Health. Int J Environ Res Public Health 15: 989. <u>http://dx.doi.org/10.3390/ijerph15050989</u>.
- <u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2019). CompTox Chemicals Dashboard [Database]. Research Triangle Park, NC. Retrieved from <u>https://comptox.epa.gov/dashboard</u>
- van Larebeke, N; Koppen, G; Decraemer, S; Colles, A; Bruckers, L; Den Hond, E; Govarts, E; Morrens, B; Schettgen, T; Remy, S; Coertjens, D; Nawrot, T, im; Nelen, V; Baeyens, W; Schoeters, G. (2022). Per- and polyfluoroalkyl substances (PFAS) and neurobehavioral function and cognition in adolescents (2010-2011) and elderly people (2014): Results from the Flanders Environment and Health Studies (FLEHS). Environ Sci Eur 34: 98. http://dx.doi.org/10.1186/s12302-022-00675-3.
- <u>Vogs, C: Johanson, G; Näslund, M; Wulff, S; Sjödin, M; Hellstrandh, M; Lindberg, J; Wincent, E.</u> (2019). Toxicokinetics of perfluorinated alkyl acids influences their toxic potency in the Zebrafish embryo (Danio rerio). Environ Sci Technol 53: 3898-3907. <u>http://dx.doi.org/10.1021/acs.est.8b07188</u>.
- <u>Vongphachan, V; Cassone, CG; Wu, DM; Chiu, SZ; Crump, D; Kennedy, SW.</u> (2011). Effects of perfluoroalkyl compounds on mRNA expression levels of thyroid hormone-responsive genes in primary cultures of avian neuronal cells. Toxicol Sci 120: 392-402. <u>http://dx.doi.org/10.1093/toxsci/kfq395</u>.
- <u>Wallace, KB; Kissling, GE; Melnick, RL; Blystone, CR.</u> (2013). Structure-activity relationships for perfluoroalkane-induced in vitro interference with rat liver mitochondrial respiration. Toxicol Lett 222: 257-264. <u>http://dx.doi.org/10.1016/j.toxlet.2013.07.025</u>.
- Wang, H; Li, W; Yang, J; Wang, Y; Du, H; Han, M; Xu, L; Liu, S; Yi, J; Chen, Y; Jiang, Q; He, G. (2022). Gestational exposure to perfluoroalkyl substances is associated with placental DNA methylation and birth size. Sci Total Environ 858: 159747. http://dx.doi.org/10.1016/j.scitotenv.2022.159747.
- Wang, H; Zhang, X; Liu, Y; Liu, J. (2018). Stabilization of Liposomes by Perfluorinated Compounds. ACS Omega 3: 15353-15360. <u>http://dx.doi.org/10.1021/acsomega.8b02448</u>.
- <u>Wang, W; Zhou, W; Wu, S; Liang, F; Li, Y; Zhang, J; Cui, L; Feng, Y; Wang, Y.</u> (2019). Perfluoroalkyl substances exposure and risk of polycystic ovarian syndrome related infertility in Chinese women. Environ Pollut 247: 824-831. <u>http://dx.doi.org/10.1016/j.envpol.2019.01.039</u>.
- Wang, Z; Zhang, J; Dai, Y; Zhang, L; Guo, J; Xu, S; Chang, X; Wu, C; Zhou, Z. (2023). Mediating effect of endocrine hormones on association between per- and polyfluoroalkyl substances exposure and birth size: Findings from sheyang mini birth cohort study. Environ Res 226: 115658. http://dx.doi.org/10.1016/j.envres.2023.115658.
- Wen, HJ; Wang, SL; Chen, PC; Guo, YL. (2019). Prenatal perfluorooctanoic acid exposure and glutathione s-transferase T1/M1 genotypes and their association with atopic dermatitis at 2 years of age. PLoS ONE 14: e0210708. http://dx.doi.org/10.1371/journal.pone.0210708.

<u>Whitworth, KW; Haug, LS; Sabaredzovic, A; Eggesbo, M; Longnecker, MP.</u> (2016). Brief Report: Plasma Concentrations of Perfluorooctane Sulfonamide and Time-to-pregnancy Among Primiparous Women. Epidemiology 27: 712-715.

http://dx.doi.org/10.1097/EDE.000000000000524.

- <u>Wielsøe, M; Eiberg, H; Ghisari, M; Kern, P; Lind, O; Bonefeld-Jørgensen, EC.</u> (2018). Genetic variations, exposure to persistent organic pollutants and breast cancer risk a greenlandic case-control study. Basic & Clinical Pharmacology & Toxicology Online Pharmacology Online 123: 335-346. <u>http://dx.doi.org/10.1111/bcpt.13002</u>.
- Xie, Y; Berntsen, HF; Zimmer, KE; Ropstad, E; Verhaegen, S; Connolly, L. (2021). Lipogenic Potency of Individual Perfluorinated Alkyl Acids (PFAAs) and Persistent Organic Pollutant (POP) Mixtures at Human Blood-Based Exposure Levels on Adipogenesis in 3T3-L1 Cells. Exposure and Health 14: 87-98. <u>http://dx.doi.org/10.1007/s12403-021-00420-w</u>.
- Xie, Z; Tan, J; Fang, G; Ji, H; Miao, M; Tian, Y; Hu, H; Cao, W; Liang, H; Yuan, W. (2022). Associations between prenatal exposure to perfluoroalkyl substances and neurobehavioral development in early childhood: A prospective cohort study. Ecotoxicol Environ Saf 241: 113818. http://dx.doi.org/10.1016/j.ecoenv.2022.113818.
- Xiong, X; Chen, B; Wang, Z; Ma, L; Li, S; Gao, Y. (2022). Association between perfluoroalkyl substances concentration and bone mineral density in the US adolescents aged 12-19 years in NHANES 2005-2010. Front Endocrinol (Lausanne) 13: 980608. http://dx.doi.org/10.3389/fendo.2022.980608.
- Xu, C; Zhang, L; Zhou, Q; Ding, J; Yin, S; Shang, X; Tian, Y. (2022). Exposure to per- and polyfluoroalkyl substances as a risk factor for gestational diabetes mellitus through interference with glucose homeostasis. Sci Total Environ 838: 156561. http://dx.doi.org/10.1016/j.scitotenv.2022.156561.
- Xu, H; Zhou, Q; Zhang, J; Chen, X; Zhao, H; Lu, H; Ma, B; Wang, Z; Wu, C; Ying, C; Xiong, Y; Zhou, Z; Li,
 X. (2020a). Exposure to elevated per- and polyfluoroalkyl substances in early pregnancy is related to increased risk of gestational diabetes mellitus: A nested case-control study in Shanghai, China. Environ Int 143: 105952.

http://dx.doi.org/10.1016/j.envint.2020.105952.

- Xu, M; Legradi, J; Leonards, P. (2021). Using comprehensive lipid profiling to study effects of PFHxS during different stages of early zebrafish development. Sci Total Environ 808: 151739. http://dx.doi.org/10.1016/j.scitotenv.2021.151739.
- Xu, Y; Jurkovic-Mlakar, S; Li, Y; Wahlberg, K; Scott, K; Pineda, D; Lindh, CH; Jakobsson, K; Engström, K. (2020b). Association between serum concentrations of perfluoroalkyl substances (PFAS) and expression of serum microRNAs in a cohort highly exposed to PFAS from drinking water. Environ Int 136: 105446. <u>http://dx.doi.org/10.1016/j.envint.2019.105446</u>.
- Yang, J; Wang, H; Du, H; Xu, L; Liu, S; Yi, J; Qian, X; Chen, Y; Jiang, Q; He, G. (2019). Factors associated with exposure of pregnant women to perfluoroalkyl acids in North China and health risk assessment. Sci Total Environ 655: 356-362. http://dx.doi.org/10.1016/j.scitotenv.2018.11.042.
- Yang, L; Ji, H; Liang, H; Yuan, W; Song, X; Li, X; Niu, J; Shi, H; Wen, S; Miao, M. (2022). Associations of perfluoroalkyl and polyfluoroalkyl substances with gestational hypertension and blood pressure during pregnancy: A cohort study. Environ Res 215: 114284. http://dx.doi.org/10.1016/j.envres.2022.114284.
- Yao, J: Pan, Y: Sheng, N: Su, Z: Guo, Y: Wang, J: Dai, J. (2020). Novel perfluoroalkyl ether carboxylic acids (PFECAs) and sulfonic acids (PFESAs): Occurrence and association with serum biochemical parameters in residents living near a fluorochemical plant in China. Environ Sci Technol 54: 13389-13398. <u>http://dx.doi.org/10.1021/acs.est.0c02888</u>.
- <u>Yao, W; Xu, J; Tang, W; Gao, C; Tao, L; Yu, J; Lv, J; Wang, H; Fan, Y; Xu, DX; Huang, Y.</u> (2023). Developmental toxicity of perfluorohexane sulfonate at human relevant dose during

pregnancy via disruption in placental lipid homeostasis. Environ Int 177: 108014. <u>http://dx.doi.org/10.1016/j.envint.2023.108014</u>.

- Ye, WL; Chen, ZX; Xie, YQ; Kong, ML; Li, QQ; Yu, S; Chu, C; Dong, GH; Zeng, XW. (2021). Associations between serum isomers of perfluoroalkyl acids and metabolic syndrome in adults: Isomers of C8 Health Project in China. Environ Res 196: 110430. http://dx.doi.org/10.1016/j.envres.2020.110430.
- Yu, Y; Qin, XD; Bloom, MS; Chu, C; Dai, X; Li, QQ; Chen, ZX; Kong, ML; Xie, YQ; Meng, WJ; Yang, BY; Hu, LW; Zeng, XW; Zhao, XM; Zhou, Y; Dong, GH. (2022). Associations of prenatal exposure to perfluoroalkyl substances with preterm birth: A family-based birth cohort study. Environ Res 214: 113803. <u>http://dx.doi.org/10.1016/j.envres.2022.113803</u>.
- Zeng, X; Chen, T; Cui, Y; Zhao, J; Chen, Q; Yu, Z; Zhang, Y; Han, L; Chen, Y; Zhang, J. (2023). In utero exposure to perfluoroalkyl substances and early childhood BMI trajectories: A mediation analysis with neonatal metabolic profiles. Sci Total Environ 867: 161504. http://dx.doi.org/10.1016/j.scitotenv.2023.161504.
- Zhang, W; Lin, Z; Hu, M; Wang, X; Lian, Q; Lin, K; Dong, Q; Huang, C. (2011). Perfluorinated chemicals in blood of residents in Wenzhou, China. Ecotoxicol Environ Saf 74: 1787-1793. http://dx.doi.org/10.1016/j.ecoenv.2011.04.027.
- Zhang, Y; Chen, R; Gao, Y; Qu, J; Wang, Z; Zhao, M; Bai, X; Jin, H. (2023a). Human serum poly- and perfluoroalkyl substance concentrations and their associations with gestational diabetes mellitus. Environ Pollut 317: 120833. <u>http://dx.doi.org/10.1016/j.envpol.2022.120833</u>.
- Zhang, Y; Mustieles, V; Sun, Y; Oulhote, Y; Wang, YX; Messerlian, C. (2022). Association between serum per- and polyfluoroalkyl substances concentrations and common cold among children and adolescents in the United States. Environ Int 164: 107239. http://dx.doi.org/10.1016/j.envint.2022.107239.
- Zhang, Y; Mustieles, V; Wang, YX; Sun, Q; Coull, B; Sun, Y; Slitt, A; Messerlian, C. (2023b). Red blood cell folate modifies the association between serum per- and polyfluoroalkyl substances and antibody concentrations in U.S. adolescents. Environ Sci Technol 57: 2445-2456. http://dx.doi.org/10.1021/acs.est.2c07152.
- Zhao, X; Lin, JY; Dong, WW; Tang, ML; Yan, SG. (2022). Per- and polyfluoroalkyl substances exposure and bone mineral density in the U.S. population from NHANES 2005-2014. J Expo Sci Environ Epidemiol. <u>http://dx.doi.org/10.1038/s41370-022-00452-7</u>.
- Zhou, Y; Li, Q; Wang, P; Li, J; Zhao, W; Zhang, L; Wang, H; Cheng, Y; Shi, H; Li, J; Zhang, Y. (2023). Associations of prenatal PFAS exposure and early childhood neurodevelopment: Evidence from the Shanghai Maternal-Child Pairs Cohort. Environ Int 173: 107850. http://dx.doi.org/10.1016/j.envint.2023.107850.
- Zhu, Y: Bartell, SM. (2022). Per- and polyfluoroalkyl substances in drinking water and hypertensive disorders of pregnancy in the United States during 2013-2015. Environmental Epidemiology 6: e209. http://dx.doi.org/10.1097/EE9.000000000000209.
- Zong, G: Grandjean, P: Wang, X: Sun, Q. (2016). Lactation history, serum concentrations of persistent organic pollutants, and maternal risk of diabetes. Environ Res 150: 282-288. http://dx.doi.org/10.1016/j.envres.2016.06.023.